Indirect Searches for Gravitino Dark Matter

Michael Grefe

Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany

12th International Conference on Topics in Astroparticle and Underground Physics

München – 5 September 2011

Based on work in progress in collaboration with Laura Covi and Gilles Vertongen.

Why Are We Interested in Unstable Gravitino Dark Matter?

- ► Supergravity predicts the gravitino as the spin-3/2 superpartner of the graviton
- Gravitinos are produced thermally after inflation:

$$\Omega_{3/2}h^2 \simeq 0.27 \left(\frac{T_R}{10^{10}\,\text{GeV}}\right) \left(\frac{100\,\text{GeV}}{m_{3/2}}\right) \left(\frac{m_{\tilde{g}}}{1\,\text{TeV}}\right)^2 \qquad \text{[Bolz et al. (2001)]}$$

- Problem in scenarios with neutralino dark matter:
 - Thermal leptogenesis requires high reheating temperature: $T_R\gtrsim 10^9\,{
 m GeV}$ [Davidson *et al.* (2002)]
 - Late gravitino decays are in conflict with BBN \Rightarrow Cosmological gravitino problem

Why Are We Interested in Unstable Gravitino Dark Matter?

- Supergravity predicts the gravitino as the spin-3/2 superpartner of the graviton
- Gravitinos are produced thermally after inflation:

$$\Omega_{3/2}h^2 \simeq 0.27 \left(\frac{T_R}{10^{10}\,\text{GeV}}\right) \left(\frac{100\,\text{GeV}}{m_{3/2}}\right) \left(\frac{m_{\tilde{g}}}{1\,\text{TeV}}\right)^2 \qquad \text{[Bolz et al. (2001)]}$$

- Problem in scenarios with neutralino dark matter:
 - Thermal leptogenesis requires high reheating temperature: $T_R\gtrsim 10^9\,{
 m GeV}$ [Davidson *et al.* (2002)]
 - Late gravitino decays are in conflict with BBN \Rightarrow Cosmological gravitino problem

Possible solution: Gravitino is the LSP and thus stable!

- Correct relic density for $m_{3/2} > O(10) \text{ GeV} \Rightarrow$ Gravitino dark matter
- Still problematic:

9

+ Late NLSP decays are in conflict with BBN \Rightarrow Cosmological gravitino problem

Why Are We Interested in Unstable Gravitino Dark Matter?

- Supergravity predicts the gravitino as the spin-3/2 superpartner of the graviton
- Gravitinos are produced thermally after inflation:

$$\Omega_{3/2}h^2 \simeq 0.27 \left(\frac{T_R}{10^{10}\,\text{GeV}}\right) \left(\frac{100\,\text{GeV}}{m_{3/2}}\right) \left(\frac{m_{\tilde{g}}}{1\,\text{TeV}}\right)^2 \qquad \text{[Bolz et al. (2001)]}$$

- Problem in scenarios with neutralino dark matter:
 - Thermal leptogenesis requires high reheating temperature: $T_R\gtrsim 10^9\,{
 m GeV}$ [Davidson *et al.* (2002)]
 - Late gravitino decays are in conflict with BBN $\ \Rightarrow\$ Cosmological gravitino problem

Possible solution: Gravitino is the LSP and thus stable!

- Correct relic density for $m_{3/2} > O(10) \text{ GeV} \Rightarrow$ Gravitino dark matter
- Still problematic:

9

+ Late NLSP decays are in conflict with BBN \Rightarrow Cosmological gravitino problem

Possible solution: *R* parity is not exactly conserved!

Gravitino Dark Matter with Bilinear *R*-Parity Violation

- ► Bilinear *R*-Parity Violation: $W_{R_p} = \mu_i H_u L_i$, $-\mathcal{L}_{R_p}^{\text{soft}} = B_i H_u \tilde{\ell}_i + m_{H_d \ell_i}^2 H_d^* \tilde{\ell}_i + \text{h.c.}$
 - Only lepton number violated \Rightarrow Proton remains stable!
- Cosmological bounds on *R*-violating couplings
 - Lower bound: The NLSP must decay fast enough to evade BBN constraints
 - Upper bound: The lepton/baryon asymmetry must not be washed out
- ► Gravitino decay suppressed by Planck scale and small *R*-parity violation
 - The gravitino lifetime exceeds the age of the universe by many orders of magnitude

The unstable gravitino is a well-motivated and viable dark matter candidate!

Gravitino Dark Matter with Bilinear *R*-Parity Violation

- ► Bilinear *R*-Parity Violation: $W_{R_p} = \mu_i H_u L_i$, $-\mathcal{L}_{R_p}^{\text{soft}} = B_i H_u \tilde{\ell}_i + m_{H_d \ell_i}^2 H_d^* \tilde{\ell}_i + \text{h.c.}$
 - Only lepton number violated \Rightarrow Proton remains stable!
- Cosmological bounds on *R*-violating couplings
 - Lower bound: The NLSP must decay fast enough to evade BBN constraints
 - Upper bound: The lepton/baryon asymmetry must not be washed out
- ► Gravitino decay suppressed by Planck scale and small *R*-parity violation
 - The gravitino lifetime exceeds the age of the universe by many orders of magnitude

The unstable gravitino is a well-motivated and viable dark matter candidate!

- Rich phenomenology instead of elusive gravitinos
 - A long-lived NLSP could be observed at the LHC
 - Gravitino decays lead to possibly observable signals at indirect detection experiments

Gravitinos could be indirectly observed at colliders and in the spectra of cosmic rays!

Gravitino Decay Channels

- Several contributing decay channels: $\psi_{3/2} \rightarrow \gamma \nu_i, Z^* \nu_i, h^* \nu_i, W^* \ell_i$
 - For $m_{3/2} < m_W$ three-body decays can play an important role

[Choi et al. (2010)]

• Ratio between $\gamma \nu_i$ and other channels is model-dependent

• Gravitino decays produce spectra of stable cosmic rays: γ , e, p, $\nu_{e/\mu/\tau}$, d

- Two-body decay spectra generated with PYTHIA
- · Deuteron coalescence treated on event-by-event basis

Gravitino Decay Channels

- Several contributing decay channels: $\psi_{3/2} \rightarrow \gamma \nu_i, \ Z^* \nu_i, \ h^* \nu_i, \ W^* \ell_i$
 - For $m_{3/2} < m_W$ three-body decays can play an important role

[Choi et al. (2010)]

• Ratio between $\gamma \nu_i$ and other channels is model-dependent

• Gravitino decays produce spectra of stable cosmic rays: γ , e, p, $\nu_{e/\mu/\tau}$, d

- Two-body decay spectra generated with PYTHIA
- · Deuteron coalescence treated on event-by-event basis

Basis for phenomenology of indirect gravitino dark matter searches!

Gravitino Decay Signals in Cosmic-Ray Spectra: $\frac{e^+}{e^++e^-}$ and e^-

- Gravitino decay could explain the rise in the PAMELA positron fraction data
 - Explanation requires a gravitino lifetime of $\mathcal{O}(10^{26})\,s$ and a mass $\gtrsim 200\,GeV$
- Also contribution to absolute electron flux expected

Gravitino Decay Signals in Cosmic-Ray Spectra: \bar{p} and γ

- Gravitino decay could explain the rise in the PAMELA positron fraction data
 - Explanation requires a gravitino lifetime of $\mathcal{O}(10^{26})\,s$ and a mass $\gtrsim 200\,GeV$
- Also contribution to absolute electron flux expected
- Problems:
 - Associated \bar{p} from W, Z and h fragmentation in conflict with data (\rightarrow gravitino not leptophilic)
 - · Associated gamma-ray flux in conflict with Fermi LAT data for isotropic diffuse flux

Gravitino Decay Signals in Cosmic-Ray Spectra: \bar{p} and γ

- Gravitino decay could explain the rise in the PAMELA positron fraction data
 - Explanation requires a gravitino lifetime of $\mathcal{O}(10^{26})\,s$ and a mass $\gtrsim 200\,GeV$
- Also contribution to absolute electron flux expected
- Problems:
 - Associated \bar{p} from W, Z and h fragmentation in conflict with data (\rightarrow gravitino not leptophilic)
 - Associated gamma-ray flux in conflict with Fermi LAT data for isotropic diffuse flux

Astrophysical sources like pulsars required to explain cosmic-ray excesses!

Antideuteron Signals from Gravitino Decays

- > In particular sensitive to low gravitino masses due to small astrophysical background
- AMS-02 and GAPS will be able to put strong constraints on light gravitinos

Antideuteron Signals from Gravitino Decays

- > In particular sensitive to low gravitino masses due to small astrophysical background
- AMS-02 and GAPS will be able to put strong constraints on light gravitinos

Antideuterons are a valuable channel for light gravitino searches!

Neutrino Signals from Gravitino Decays

- Neutrinos provide directional information like gamma rays
- Gravitino signal features monoenergetic neutrino line at the end of the spectrum
- Atmospheric neutrinos are dominant background for gravitino signals
 - Measurement of other neutrino flavors would allow to reduce the background
 - Signal-to-background ratio best at the end of the spectrum and for large gravitino masses

Neutrino Signals from Gravitino Decays

- Neutrinos provide directional information like gamma rays
- Gravitino signal features monoenergetic neutrino line at the end of the spectrum
- Atmospheric neutrinos are dominant background for gravitino signals
 - Measurement of other neutrino flavors would allow to reduce the background
 - Signal-to-background ratio best at the end of the spectrum and for large gravitino masses

Neutrinos are a valuable channel for heavy gravitino searches!

Neutrino Detection with Upward Through-Going Muons

Muon tracks from charged current DIS of muon neutrinos off nuclei outside the detector

Advantages

• Muon track reconstruction is well-understood at neutrino telescopes

Disadvantages

- Neutrino-nucleon DIS and propagation energy losses shift muon spectrum to lower energies
- Bad energy resolution (0.3 in log₁₀ E) smears out cutoff energy

Neutrino Detection – Improvements Using Showers

► Hadronic and electromagnetic showers from charged current DIS of electron and tau neutrinos and neutral current interactions of all neutrino flavors inside the detector

Disadvantages

• TeV-scale shower reconstruction is not yet well understood

Advantages

- $3 \times$ larger signal and $3 \times$ lower background compared to other channels
- Better energy resolution (0.18 in log₁₀ E) helps to distinguish spectral features

Neutrino Detection – Improvements Using Showers

► Hadronic and electromagnetic showers from charged current DIS of electron and tau neutrinos and neutral current interactions of all neutrino flavors inside the detector

Disadvantages

• TeV-scale shower reconstruction is not yet well understood

Advantages

- + 3× larger signal and 3× lower background compared to other channels
- Better energy resolution (0.18 in log₁₀ E) helps to distinguish spectral features

Showers are potentially the best channel for dark matter searches in neutrinos!

Michael Grefe (DESY)

Indirect Searches for Gravitino Dark Matter

TAUP 2011 - 5 September 2011 10 / 13

Limits on the Gravitino Dark Matter Parameter Space

- Cosmic-ray data give bounds on gravitino lifetime
 - Photon line bounds very strong for low gravitino masses ٠
 - Uncertainties from charged cosmic-ray propagation •
 - Background subtraction could improve bounds •
 - Antideuterons can be complementary to photon line searches for low gravitino masses (\rightarrow future work)
 - Neutrino bounds are competitive for heavy gravitinos

10,000

Limits on the Gravitino Dark Matter Parameter Space

Cosmic-ray data give bounds on gravitino lifetime

- Photon line bounds very strong for low gravitino masses
- Uncertainties from charged cosmic-ray propagation
- Background subtraction could improve bounds
- Antideuterons can be complementary to photon line searches for low gravitino masses ($\rightarrow~$ future work)
- Neutrino bounds are competitive for heavy gravitinos

Strong bounds from multi-messenger approach!

Conclusions and Outlook

- Gravitino dark matter with broken *R* parity is well motivated from cosmology
- The Gravitino lifetime is naturally in the range of indirect detection experiments
- Cannot explain the PAMELA excess due to constraints from gamma rays and antiprotons
- Forthcoming antideuteron searches will probe light gravitino dark matter
- Neutrino experiments like IceCube can probe heavy gravitino dark matter
- New detection strategies will improve the sensitivity of neutrino experiments to dark matter
- Multi-messenger approach strongly constrains gravitino lifetime and strength of *R*-parity violation

Conclusions and Outlook

- Gravitino dark matter with broken R parity is well motivated from cosmology
- The Gravitino lifetime is naturally in the range of indirect detection experiments
- Cannot explain the PAMELA excess due to constraints from gamma rays and antiprotons
- Forthcoming antideuteron searches will probe light gravitino dark matter
- Neutrino experiments like IceCube can probe heavy gravitino dark matter
- New detection strategies will improve the sensitivity of neutrino experiments to dark matter
- Multi-messenger approach strongly constrains gravitino lifetime and strength of *R*-parity violation

Thanks for your attention!