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What Do We Know about Dark Matter?

» Dark matter is observed on various scales through its gravitational interaction
» Dark matter contributes significantly to the energy density of the universe

DISTRIBUTION OF DARK MATTER IN NGC 319%
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» Dark matter properties known from observations:
No electromagnetic and strong interactions
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What Do We Know about Dark Matter?

» Dark matter is observed on various scales through its gravitational interaction
» Dark matter contributes significantly to the energy density of the universe
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» Dark matter properties known from observations: Atoms
i i i 4.6% Dark
e No electromagnetic and strong interactions Energy
s . . Dark
e At least gravitational and at most weak-scale interactions Matter

23%
e Non-baryonic

Cold (maybe warm)

Long-lived on cosmological time scales but not necessarily stable! ~ [NASA/WMAP Science Team]

Particle dark matter could be a (super)WIMP with lifetime > age of the universe! J
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Motivation for Unstable Gravitino Dark Matter

Why Are We Interested in Unstable Gravitino Dark Matter?

» Supergravity predicts the gravitino as the spin-3/2 superpartner of the graviton
» Gravitinos are produced thermally after inflation:

T, 100 GeV mg \?
93/2h2 ~ 0.27 (1010 RGeV) ( . ) (1 TegV) [Bolz et al. (2001)]

» Problem in scenarios with neutralino dark matter:
e Thermal leptogenesis requires high reheating temperature: Tg > 10° GeV [Davidson et al. (2002)]
e Late gravitino decays are in conflict with BBN =- Cosmological gravitino problem

Michael Grefe (IFT UAM/CSIC) Indirect Searches for Gravitino Dark Matter PLANCK 2012 — 30 May 2012 3/15



Why Are We Interested in Unstable Gravitino Dark Matter?

» Supergravity predicts the gravitino as the spin-3/2 superpartner of the graviton
» Gravitinos are produced thermally after inflation:

T, 100 GeV mg \?
93/2h2 ~ 0.27 (1010 RGeV) ( . ) (1 TegV) [Bolz et al. (2001)]

» Problem in scenarios with neutralino dark matter:
e Thermal leptogenesis requires high reheating temperature: Tg > 10° GeV [Davidson et al. (2002)]
e Late gravitino decays are in conflict with BBN =- Cosmological gravitino problem
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» Supergravity predicts the gravitino as the spin-3/2 superpartner of the graviton
» Gravitinos are produced thermally after inflation:
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» Problem in scenarios with neutralino dark matter:
e Thermal leptogenesis requires high reheating temperature: Tg > 10° GeV [Davidson et al. (2002)]
e Late gravitino decays are in conflict with BBN =- Cosmological gravitino problem

Possible solution: Gravitino is the LSP and thus stable! )

» Correct relic density possible for m;,, > O(10) GeV = Gravitino dark matter
» Still problematic:
e Late NLSP decays are in conflict with BBN = Cosmological gravitino problem

Possible solution: R parity is not exactly conserved! J
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Gravitino Dark Matter with Bilinear R-Parity Violation

» Bilinear R-Parity Violation: W = uiHuLj, —L;‘;“ = BiHyl; + mf, . H3li + h.c.
e Only lepton number violated = Proton remains stable!
» Cosmological bounds on R-violating couplings (parametrized by ¢)

o Lower bound: The NLSP must decay fast enough to evade BBN constraints: ¢ > 10~
e Upper bound: The lepton/baryon asymmetry must not be washed out: £<1077

» Gravitino decay suppressed by Planck scale and small R-parity violation

52 m3
o Gravitino decay width: s/, oc — /2
PI

e The gravitino lifetime exceeds the age of the universe by many orders of magnitude

The unstable gravitino is a well-motivated and viable dark matter candidate! J
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52 m3
o Gravitino decay width: s/, oc — /2
PI

e The gravitino lifetime exceeds the age of the universe by many orders of magnitude

The unstable gravitino is a well-motivated and viable dark matter candidate! J

» Rich phenomenology instead of elusive gravitinos
e A long-lived NLSP could be observed at the LHC [Bobrovskyi et al. (2010, 2011)]
e Gravitino decays lead to possibly observable signals at indirect detection experiments

Gravitinos could be indirectly observed at colliders and in the spectra of cosmic rays! )
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Gravitino Decay Channels
» Several contributing decay channels: 3,0 — v v;, Zv;, hv,, W,
e For mg,, < my three-body decays can play an important role [Choi et al. (2010)]

e Ratio between ~ v; and other channels is model-dependent
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» Gravitino decays produce spectra of stable cosmic rays: v, e, p, ve/, -, d
e Two-body decay spectra generated with PYTHIA
e Deuteron coalescence treated on event-by-event basis in PYTHIA [Kadastik et al. (2009)]
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» Gravitino decays produce spectra of stable cosmic rays: v, e, p, ve/, -, d
e Two-body decay spectra generated with PYTHIA

e Deuteron coalescence treated on event-by-event basis in PYTHIA [Kadastik et al. (2009)]

Basis for phenomenology of indirect gravitino dark matter searches! J
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Cosmic-Ray Propagation

» Cosmic rays from gravitino decays propagate through the Milky Way

» Experiments observe spectra of gamma rays, charged cosmic rays and neutrinos

[NASA E/PO, SSU, Aurore Simonnet] [AMS-02 Collaboration] [lceCube Collaboration]
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Gravitino Decay Signals in Cosmic-Ray Spectra

antiproton flux

isotropic diffuse gamma—ray flux
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» Observed antiproton spectrum well described by astrophysical background
e No need for contribution from dark matter

» Isotropic diffuse gamma-ray spectrum exhibits power-law behaviour
e Source not completely understood, but no sign of spectral features of a particle decay

» Even without astrophysical backgrounds lifetimes below O(10%6~10?7) s excluded
e Gravitino decay cannot be the origin of the PAMELA and Fermi LAT cosmic-ray anomalies
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Gravitino Decay Signals in Cosmic-Ray Spectra

antiproton flux isotropic diffuse gamma-ray flux
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» Observed antiproton spectrum well described by astrophysical background
e No need for contribution from dark matter

» Isotropic diffuse gamma-ray spectrum exhibits power-law behaviour
e Source not completely understood, but no sign of spectral features of a particle decay

» Even without astrophysical backgrounds lifetimes below O(10%6~10?7) s excluded
e Gravitino decay cannot be the origin of the PAMELA and Fermi LAT cosmic-ray anomalies

Astrophysical sources like pulsars required to explain cosmic-ray excesses! J

Michael Grefe (IFT UAM/CSIC) Indirect Searches for Gravitino Dark Matter PLANCK 2012 — 30 May 2012 7/15



Antideuteron Signals from Gravitino Decays

» In particular sensitive at low energies due to small astrophysical background
» AMS-02 and GAPS will be able to put strong constraints on light gravitinos
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Antideuteron Signals from Gravitino Decays

» In particular sensitive at low energies due to small astrophysical background
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Antideuterons are a valuable channel for light gravitino searches! )
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Neutrino Signals from Gravitino Decays

» Neutrinos provide directional information like gamma rays

» Gravitino signal features neutrino line at the end of the spectrum
» Atmospheric neutrinos are the dominant background for the gravitino signal
e Discrimination of neutrino flavours would allow to reduce the background
e Signal-to-background ratio best at the end of the spectrum and for large gravitino masses
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Neutrinos are a valuable channel for heavy gravitino searches! J
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Neutrino Detection with Upward Through-Going Muons

» Muon tracks from charged current DIS of muon neutrinos off nuclei outside the detector

Advantages
e Muon track reconstruction is well-understood at neutrino telescopes

Disadvantages
e Neutrino—nucleon DIS and propagation energy losses shift muon spectrum to lower energies

o Bad energy resolution (0.3 in log;o E) smears out cut-off energy
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Neutrino Detection — Improvements Using Showers

» Hadronic and electromagnetic showers from charged current DIS of electron and tau neutrinos
and neutral current interactions of all neutrino flavours inside the detector

Disadvantages
e TeV-scale showers are difficult to discriminate from short muon tracks
Advantages
e 3x larger signal and 3x lower background compared to other channels
o Better energy resolution (0.18 in logq E) helps to distinguish spectral features
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Neutrino Detection — Improvements Using Showers

» Hadronic and electromagnetic showers from charged current DIS of electron and tau neutrinos
and neutral current interactions of all neutrino flavours inside the detector

Disadvantages
e TeV-scale showers are difficult to discriminate from short muon tracks

Advantages

e 3x larger signal and 3x lower background compared to other channels
o Better energy resolution (0.18 in logq E) helps to distinguish spectral features
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Showers are potentially the best channel for dark matter searches in neutrinos!
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Limits on the Gravitino Lifetime
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» Cosmic-ray data give bounds on gravitino lifetime
e Photon line bounds very strong for low gravitino masses

100

e Uncertainties from charged cosmic-ray propagation

e Background subtraction will improve bounds

e Antideuterons can be complementary to photon line
searches for low gravitino masses

e Neutrino bounds are competitive for heavy gravitinos
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Indirect Detection of Gravitino Dark Matter

Limits on the Gravitino Lifetime
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» Cosmic-ray data give bounds on gravitino lifetime
Photon line bounds very strong for low gravitino masses

Wide range of bounds from multi-messenger approach! J
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Limits on the Amount of R-Parity Violation

2
» Limits on gravitino lifetime constrain the strength of R-parity violation: 73,5 ngsl
3/2
e Gamma-ray bounds are important for all gravitino masses
e Bounds from all cosmic-ray channels are comparable in strength

e Neutrino bounds competitive especially for large masses
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Indirect searches reach the cosmologically favoured range of R-parity violation! )
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Conclusions and Outlook

e Gravitino dark matter with broken R parity is well motivated from cosmology
e The Gravitino lifetime is naturally in the range of indirect detection experiments

e Cannot explain the PAMELA and Fermi LAT anomalies due to constraints from
gamma rays and antiprotons

e Forthcoming antideuteron searches will probe light gravitino dark matter
e Neutrino experiments like lceCube can probe heavy gravitino dark matter

¢ New detection strategies will improve the sensitivity of neutrino experiments to
dark matter

e Multi-messenger approach allows to constrain gravitino lifetime and strength of
R-parity violation over a wide range of gravitino masses
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e Gravitino dark matter with broken R parity is well motivated from cosmology
e The Gravitino lifetime is naturally in the range of indirect detection experiments

e Cannot explain the PAMELA and Fermi LAT anomalies due to constraints from
gamma rays and antiprotons

e Forthcoming antideuteron searches will probe light gravitino dark matter
e Neutrino experiments like lceCube can probe heavy gravitino dark matter

¢ New detection strategies will improve the sensitivity of neutrino experiments to
dark matter

e Multi-messenger approach allows to constrain gravitino lifetime and strength of
R-parity violation over a wide range of gravitino masses

Thanks for your attention! J
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