Gravitino Dark Matter with Broken R-Parity

Michael Grefe

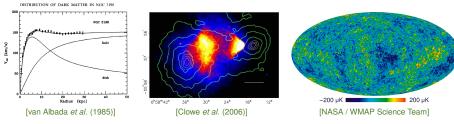
Departamento de Física Teórica Instituto de Física Teórica UAM/CSIC Universidad Autónoma de Madrid

Instituto de Física Corpuscular – CSIC/Universitat de València

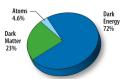
València - 21 June 2012

Based on JCAP 0901 (2009) 029, JCAP 1004 (2010) 017, arXiv:1111.6779 [hep-ph] and ongoing work.

Collaborators: L. Covi, T. Delahaye, A. Ibarra, D. Tran, G. Vertongen

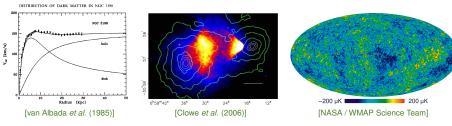

Outline

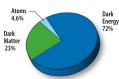
- Motivation for Unstable Gravitino Dark Matter
- ▶ Gravitino Dark Matter with Broken R Parity
- Indirect Detection of Gravitino Dark Matter
- ▶ Implications for the LHC
- Limits on the Amount of R-Parity Violation
- Conclusions and Outlook


Motivation for Unstable Gravitino Dark Matter

What Do We Know about Dark Matter?

- Dark matter is observed on various scales through its gravitational interaction
- Dark matter contributes significantly to the energy density of the universe

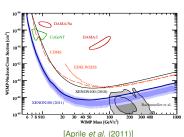

- ▶ Dark matter properties known from observations:
 - No electromagnetic and strong interactions
 - At least gravitational and at most weak-scale interactions
 - Non-baryonic
 - · Cold (maybe warm)
 - Long-lived on cosmological time scales but not necessarily stable!


[NASA / WMAP Science Team]

What Do We Know about Dark Matter?

- Dark matter is observed on various scales through its gravitational interaction
- Dark matter contributes significantly to the energy density of the universe

- ▶ Dark matter properties known from observations:
 - No electromagnetic and strong interactions
 - At least gravitational and at most weak-scale interactions
 - Non-baryonic
 - Cold (maybe warm)
 - Long-lived on cosmological time scales but not necessarily stable!



[NASA / WMAP Science Team]

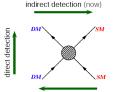
Particle dark matter could be a (super)WIMP with lifetime \gg age of the universe!

How Can We Unveil the Nature of Dark Matter?

- There are three main search strategies for dark matter:
 - Direct detection of dark matter in the scattering off matter nuclei
 - Production of dark matter particles at colliders
 - Indirect detection of dark matter in cosmic ray signatures

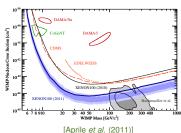
thermal freeze-out (early Univ.) indirect detection (now)

production at colliders
[Max-Planck-Institut für Kernphysik]


[AMS collaboration]

[CERN]

How Can We Unveil the Nature of Dark Matter?


- There are three main search strategies for dark matter:
 - Direct detection of dark matter in the scattering off matter nuclei
 - Production of dark matter particles at colliders
 - Indirect detection of dark matter in cosmic ray signatures

thermal freeze-out (early Univ.)

production at colliders
[Max-Planck-Institut für Kernphysik]

[AMS collaboration]

A combination will be necessary to identify the nature of particle dark matter!

- Smallness of observed neutrino masses motivates seesaw mechanism
- ► Can explain baryon asymmetry via thermal leptogenesis [Fukugita, Yanagida (1986)]
 - Requires high reheating temperature after inflation: $T_R \gtrsim 10^9 \, \text{GeV}$ [Davidson, Ibarra (2002)]
 Supergravity predicts the gravitino as the spin-3/2 superpartner of the graviton
- ► Gravitinos are abundantly produced in thermal scatterings:

$$\Omega_{3/2} h^2 \simeq 0.27 \left(rac{T_R}{10^{10} \, {
m GeV}}
ight) \left(rac{100 \, {
m GeV}}{m_{3/2}}
ight) \left(rac{m_{ ilde{g}}}{1 \, {
m TeV}}
ight)^2$$
 [Bolz et al. (2001)]

- Problem in scenarios with neutralino dark matter:
 - Gravitino decays suppressed by Planck scale: $au_{3/2} \sim \frac{M_{\rm Pl}^2}{m_{3/2}^3} \approx 3 \, {\rm years} \left(\frac{100 \, {\rm GeV}}{m_{3/2}} \right)^3$
 - Late decays with $\tau \gtrsim \mathcal{O}(1-1000\,\mathrm{s})$ in conflict with BBN \Rightarrow Cosmological gravitino problem

- Smallness of observed neutrino masses motivates seesaw mechanism
- ► Can explain baryon asymmetry via thermal leptogenesis [Fukugita, Yanagida (1986)]
 - Requires high reheating temperature after inflation: $T_R \gtrsim 10^9 \, \text{GeV}$ [Davidson, Ibarra (2002)] Supergravity predicts the gravitino as the spin-3/2 superpartner of the graviton
- ► Gravitinos are abundantly produced in thermal scatterings:

$$\Omega_{3/2} h^2 \simeq 0.27 \left(\frac{T_R}{10^{10} \, \text{GeV}} \right) \left(\frac{100 \, \text{GeV}}{m_{3/2}} \right) \left(\frac{m_{\tilde{g}}}{1 \, \text{TeV}} \right)^2$$
 [Bolz et al. (2001)]

- ▶ Problem in scenarios with neutralino dark matter:
 - Gravitino decays suppressed by Planck scale: $au_{3/2} \sim \frac{M_{\rm Pl}^2}{m_{3/2}^3} \approx 3 \, {\rm years} \left(\frac{100 \, {\rm GeV}}{m_{3/2}} \right)^3$
 - Late decays with $\tau \gtrsim \mathcal{O}(1-1000\,\mathrm{s})$ in conflict with BBN \Rightarrow Cosmological gravitino problem

Possible solution: Gravitino is the LSP and thus stable!

Gravitino relic density:

$$\Omega_{3/2} h^2 \simeq 0.27 \left(\frac{T_R}{10^{10}\,\text{GeV}}\right) \left(\frac{100\,\text{GeV}}{\textit{m}_{3/2}}\right) \left(\frac{\textit{m}_{\tilde{g}}}{1\,\text{TeV}}\right)^2$$

- ► Correct relic density possible for $m_{3/2} > \mathcal{O}(10) \,\text{GeV} \Rightarrow \text{Gravitino dark matter}$
- Still problematic:
 - NLSP can only decay to gravitino LSP:

$$\tau_{\rm NLSP} \simeq \frac{48\pi M_{\rm Pl}^2 m_{3/2}^2}{m_{\rm NLSP}^5} \approx \frac{9\,{\rm days}}{\left(\frac{m_{3/2}}{10\,{\rm GeV}}\right)^2 \left(\frac{150\,{\rm GeV}}{m_{\rm NLSP}}\right)^5}$$

Late NLSP decays are in conflict with BBN ⇒ Cosmological gravitino problem

Gravitino relic density:

$$\Omega_{3/2} h^2 \simeq 0.27 \left(rac{T_R}{10^{10} \, {
m GeV}}
ight) \left(rac{100 \, {
m GeV}}{m_{3/2}}
ight) \left(rac{m_{ ilde{g}}}{1 \, {
m TeV}}
ight)^2$$

- ► Correct relic density possible for $m_{3/2} > \mathcal{O}(10) \,\text{GeV} \Rightarrow \text{Gravitino dark matter}$
- Still problematic:
 - NLSP can only decay to gravitino LSP:

$$\tau_{\rm NLSP} \simeq \frac{48\pi M_{\rm Pl}^2 m_{3/2}^2}{m_{\rm NLSP}^5} \approx \frac{9\,{\rm days}}{\left(\frac{m_{3/2}}{10\,{\rm GeV}}\right)^2 \left(\frac{150\,{\rm GeV}}{m_{\rm NLSP}}\right)^5}$$

Late NLSP decays are in conflict with BBN ⇒ Cosmological gravitino problem

Possible solution: *R*-parity is not exactly conserved!

- Other options:
 - Choose harmless NLSP like sneutrino
 - Dilute NLSP density by late entropy production

[Covi, Kraml (2007)]

[Buchmüller et al. (2006)]

Gravitino Dark Matter with Broken R-Parity

Gravitino Dark Matter with Bilinear R-Parity Violation

- Bilinear R-parity violation: $W_{R_p} = \mu_i H_u L_i$, $-\mathcal{L}_{R_p}^{\text{soft}} = B_i H_u \tilde{\ell}_i + m_{H_d \ell_i}^2 H_d^* \tilde{\ell}_i + \text{h.c.}$
 - Only lepton number violated ⇒ Proton remains stable!
- ► *R*-parity violation parametrized by non-vanishing sneutrino VEV: $\xi = \frac{\langle \tilde{\nu} \rangle}{v}$
- Cosmological bounds on R-violating couplings
 - Lower bound: The NLSP must decay fast enough to evade BBN constraints: $\xi \gtrsim \mathcal{O}(10^{-11})$
 - Upper bound: No washout of the lepton/baryon asymmetry: $\xi \lesssim \mathcal{O}(10^{-7})$
- ▶ Tiny bilinear R-parity violation can be related to $U(1)_{B-L}$ breaking [Buchmüller et al. (2007)]
- Gravitino decay suppressed by Planck scale and small R-parity violation
 - Gravitino decay width: $\Gamma_{3/2} \propto \frac{\xi^2 \, m_{3/2}^3}{M_{\rm Pl}^2}$ [Takayama, Yamaguchi (2000)]
 - The gravitino lifetime by far exceeds the age of the universe ($\tau_{3/2} \gg 10^{17}$ s)

Gravitino Dark Matter with Bilinear R-Parity Violation

- Bilinear R-parity violation: $W_{R_p} = \mu_i H_u L_i$, $-\mathcal{L}_{R_p}^{\text{soft}} = B_i H_u \tilde{\ell}_i + m_{H_d \ell_i}^2 H_d^* \tilde{\ell}_i + \text{h.c.}$
 - Only lepton number violated ⇒ Proton remains stable!
- ► *R*-parity violation parametrized by non-vanishing sneutrino VEV: $\xi = \frac{\langle \tilde{\nu} \rangle}{v}$
- Cosmological bounds on R-violating couplings
 - Lower bound: The NLSP must decay fast enough to evade BBN constraints: $\xi \gtrsim \mathcal{O}(10^{-11})$
 - Upper bound: No washout of the lepton/baryon asymmetry: $\xi \lesssim \mathcal{O}(10^{-7})$
- ▶ Tiny bilinear R-parity violation can be related to $U(1)_{B-L}$ breaking [Buchmüller et al. (2007)]
- ► Gravitino decay suppressed by Planck scale and small *R*-parity violation
 - Gravitino decay width: $\Gamma_{3/2} \propto \frac{\xi^2 \, m_{3/2}^3}{M_{\rm Pl}^2}$ [Takayama, Yamaguchi (2000)]
 - The gravitino lifetime by far exceeds the age of the universe ($\tau_{3/2} \gg 10^{17} \, \text{s}$)

The unstable gravitino is a well-motivated and viable dark matter candidate!

Phenomenology of Unstable Gravitino Dark Matter

- Rich phenomenology instead of elusive gravitinos:
 - A long-lived NLSP could be observed at the LHC [Buchmüller et al. (2007), Bobrovskyi et al. (2010, 2011)]
 - Gravitino decays lead to possibly observable signals at indirect detection experiments
 [Takayama, Yamaguchi (2000), Buchmüller et al. (2007), Bertone et al. (2007), Ibarra, Tran (2008), Ishiwata et al. (2008) etc.]

Gravitinos could be indirectly observed at colliders and in the spectra of cosmic rays!

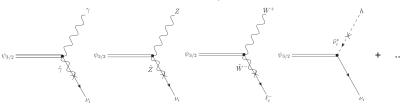
Bilinear R-Parity Violation: Neutralino-Neutrino Mixing

- ▶ Bilinear R-parity violation extends neutralino mass matrix to include neutrinos
- ▶ 7×7 matrix with basis $\psi_i^0 = (-i\tilde{\gamma}, -i\tilde{Z}, \tilde{H}_u^0, \tilde{H}_d^0, \nu_i)^T$

$$M_N^7 = \begin{pmatrix} M_1 c_W^2 + M_2 \, s_W^2 & (M_2 - M_1) \, s_W \, c_W & 0 & 0 & 0 \\ (M_2 - M_1) \, s_W \, c_W & M_1 s_W^2 + M_2 \, c_W^2 & m_Z \, s_\beta & -m_Z \, c_\beta & -m_Z \, \xi_j \\ 0 & m_Z \, s_\beta & 0 & -\mu & 0 \\ 0 & -m_Z \, c_\beta & -\mu & 0 & 0 \\ 0 & -m_Z \, \xi_i & 0 & 0 & 0 \end{pmatrix}$$

- ▶ Diagonalized by unitary matrix N^7
- ▶ Mixing to neutrinos via neutrino–zino coupling: $N_{\nu_i X}^7 \simeq -\xi_i U_{X\tilde{Z}}$
- Analytical approximation shows dependence on SUSY parameters
 - $U_{\tilde{\gamma}\tilde{Z}} \simeq m_Z \sin\theta_W \cos\theta_W \frac{M_2 M_1}{M_1 M_2}$
 - $\bullet \ \ {\color{red} U_{\tilde{Z}\tilde{Z}}} \simeq -m_Z \left(\frac{\sin^2\theta_W}{M_1} + \frac{\cos^2\theta_W}{M_2} \right)$

Bilinear R-Parity Violation: Chargino-Charged Lepton Mixing


- ▶ Bilinear *R*-parity violation extends chargino mass matrix to include charged leptons
- ▶ 5 × 5 matrix with basis vectors $\psi^- = (-i\tilde{W}^-, \tilde{H}_d^-, \ell_i^-)^T$ and $\psi^+ = (-i\tilde{W}^+, \tilde{H}_u^+, e_i^{c+})^T$

$$M_C^5 = egin{pmatrix} M_2 & \sqrt{2} \, m_W \, s_{eta} & 0 \ \sqrt{2} \, m_W \, c_{eta} & \mu & - rac{m_{\ell_{ij}}}{\sqrt{2}} \, rac{c_{eta}}{m_W \, \epsilon_i} & 0 & m_{\ell_{ij}} \end{pmatrix}$$

- ▶ Diagonalized by unitary matrices U^5 and V^5
- ▶ Mixing to left-handed leptons via lepton–wino coupling: $U_{\ell_i X}^5 \simeq -\sqrt{2} \, \xi_i \, {\color{red} U_{X ilde{W}}}$
- ▶ Mixing to right-handed leptons suppressed and negligible
- ▶ Analytical approximation shows dependence on SUSY parameters
 - $U_{\tilde{W}\tilde{W}} \simeq \frac{m_W}{M_2}$
- ▶ Bilinear R-parity also induces mass mixing in the scalar sector
 - Mixing between SM-like Higgs and sneutrino proportional to sneutrino VEV

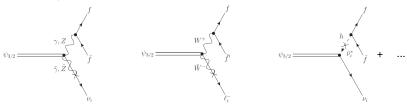
Gravitino Decay Channels: 2-body Decays

Several two-body decay channels: $\psi_{3/2} \to \gamma \nu_i$, $Z \nu_i$, $W \ell_i$, $h \nu_i$

$$\bullet \ \Gamma_{\gamma\nu_i} \simeq \frac{\xi_i^2 \, m_{3/2}^3}{32 \, \pi \, M_{\rm Pl}^2} |U_{\tilde{\gamma}\tilde{Z}}|^2 \propto \frac{\xi_i^2 \, m_{3/2}^3}{M_{\rm Pl}^2} \left(\frac{M_2 - M_1}{M_1 \, M_2}\right)^2$$

•
$$\Gamma_{Z\nu_i} \simeq \frac{\xi_i^2 \, m_{3/2}^3}{32 \, \pi \, M_{\rm Pl}^2} \left(1 - \frac{m_Z^2}{m_{3/2}^2}\right)^2 \left\{ \frac{U_{Z\tilde{Z}}^2}{Z\tilde{Z}} \, f\left(\frac{m_Z^2}{m_{3/2}^2}\right) + \ldots \right\}$$

$$\bullet \ \Gamma_{W^+\ell_i^-} \simeq \frac{\xi_i^2 \, m_{3/2}^3}{32 \, \pi \, M_{\rm Pl}^2} \Big(1 - \frac{m_W^2}{m_{3/2}^2}\Big)^2 \Big\{ \frac{U_{\tilde{W}\tilde{W}}^2}{\tilde{W}\tilde{W}} \, f\Big(\frac{m_W^2}{m_{3/2}^2}\Big) + \ldots \Big\}$$


•
$$\Gamma_{h\nu_i} \simeq \frac{\xi_i^2 m_{3/2}^3}{196 \pi M_{Pl}^2} \left(1 - \frac{m_h^2}{m_{3/2}^2}\right)^4$$

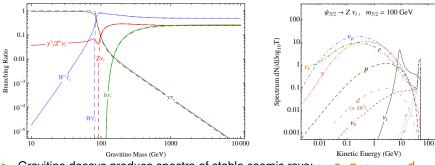
ightharpoonup Dependence on mass mixings ightarrow dependence on gaugino masses

Gravitino Decay Channels: 3-body Decays

For $m_{3/2} < m_W$ also three-body decays can play an important role

[Choi et al. (2010)]

$$\bullet \ \ \frac{\mathrm{d} \Gamma_{Z^* \nu_{\hat{I}}}}{\mathrm{d} s} \propto \frac{\xi_{\hat{I}}^2 \, m_{3/2}^3}{M_{\mathrm{Pl}}^2 \big((\mathrm{s} - m_Z^2)^2 + m_Z^2 \Gamma_Z^2 \big)} \Big(1 - \frac{\mathrm{s}}{m_{3/2}^2} \Big)^2 \Big\{ \mathrm{s} \, \, \mathbf{U}_{\tilde{\mathbf{Z}}\tilde{\mathbf{Z}}}^2 \, f\Big(\frac{\mathrm{s}}{m_{3/2}^2} \Big) + \ldots \Big\}$$

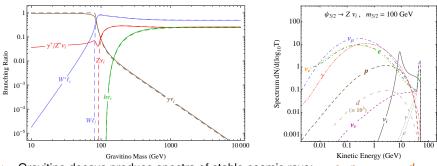

$$\bullet \ \ \frac{{\rm d}\Gamma_{W^{+*}\ell_{\hat{i}}^{-}}}{{\rm d}s} \propto \frac{\xi_{\hat{i}}^{2}\,m_{3/2}^{3}}{M_{\rm Pl}^{2}((s-m_{W}^{2})^{2}+m_{W}^{2}\Gamma_{W}^{2})}\Big(1-\frac{s}{m_{3/2}^{2}}\Big)^{2}\Big\{s\,U_{\tilde{W}\tilde{W}}^{2}\,f\Big(\frac{s}{m_{3/2}^{2}}\Big)+\ldots\Big\}$$

$$\bullet \ \ \frac{d\Gamma_{h^*\nu_i}}{ds} \propto \frac{\xi_i^2 \, m_{3/2}^3 \, m_f^2 \, s}{M_{\rm Pl}^2 \, v^2 \big((s - m_h^2)^2 + m_h^2 \Gamma_h^2 \big)} \Big(1 - \frac{s}{m_{3/2}^2} \Big)^4$$

I will concentrate on 2-body dacays in this talk

Gravitino Branching Ratios and Final State Particle Spectra

- ▶ Branching ratios are independent of strength of *R*-parity violation
- ▶ Ratio between $\gamma \nu_i$ and other channels is model-dependent



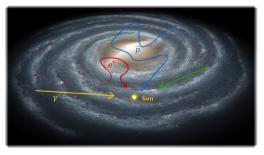
- ▶ Gravitino decays produce spectra of stable cosmic rays: γ , θ , ρ , $\nu_{\theta/\mu/\tau}$, d
 - Two-body decay spectra generated with PYTHIA
 - Deuteron coalescence treated on event-by-event basis in PYTHIA

[Kadastik et al. (2009)]

Gravitino Branching Ratios and Final State Particle Spectra

- ▶ Branching ratios are independent of strength of *R*-parity violation
- ▶ Ratio between $\gamma \nu_i$ and other channels is model-dependent

- ▶ Gravitino decays produce spectra of stable cosmic rays: γ , θ , ρ , $\nu_{\theta/\mu/\tau}$, d
 - Two-body decay spectra generated with PYTHIA
 - Deuteron coalescence treated on event-by-event basis in PYTHIA


[Kadastik et al. (2009)]

Basis for phenomenology of indirect gravitino dark matter searches!

Indirect Detection of Gravitino Dark Matter

Cosmic-Ray Propagation

Cosmic rays from gravitino decays propagate through the Milky Way

Experiments observe spectra of gamma rays, charged cosmic rays and neutrinos

[NASA E/PO, SSU, Aurore Simonnet]

[AMS-02 Collaboration]

[IceCube Collaboration]

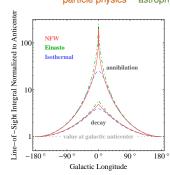
What Is the Difference of Dark Matter Annihilations and Decays?

Different angular distribution of the gamma-ray/neutrino flux from the galactic halo:

Dark Matter Annihilation

$\frac{dJ_{\text{halo}}}{dE} = \frac{\langle \sigma v \rangle_{\text{DM}}}{8\pi \, m_{\text{DM}}^2} \, \frac{dN}{dE} \int_{\text{l.o.s.}} \rho_{\text{halo}}^2(\vec{l}) \, d\vec{l}$ particle physics astrophysics

Dark Matter Decay


$$\frac{dJ_{\text{halo}}}{dE} = \frac{1}{4\pi \tau_{\text{DM}} m_{\text{DM}}} \frac{dN}{dE} \int_{\text{l.o.s.}} \rho_{\text{halo}}(\vec{l}) d\vec{l}$$
particle physics
astrophysics

Annihilation (e.g. WIMP dark matter)

- Annihilation cross section related to relic density
- Strong signal from peaked structures
- Uncertainties from choice of halo profile

Decay (e.g. unstable gravitino dark matter)

- Lifetime unrelated to production in the early universe
- Less anisotropic signal
- Less sensitive to the halo model

What Is the Difference of Dark Matter Annihilations and Decays?

Different angular distribution of the gamma-ray/neutrino flux from the galactic halo:

Dark Matter Annihilation

particle physics astrophysics

Dark Matter Decay

$$\frac{dJ_{\text{halo}}}{dE} = \frac{1}{4\pi \, \tau_{\text{DM}} \, m_{\text{DM}}} \frac{dN}{dE} \int_{\text{l.o.s.}} \rho_{\text{halo}}(\vec{l}) \, d\vec{l}$$
particle physics
astrophysics

Annihilation (e.g. WIMP dark matter)

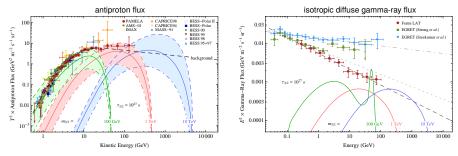
- Annihilation cross section related to relic density
- Strong signal from peaked structures
- Uncertainties from choice of halo profile

Decay (e.g. unstable gravitino dark matter)

- · Lifetime unrelated to production in the early universe
- Less anisotropic signal
- Less sensitive to the halo model

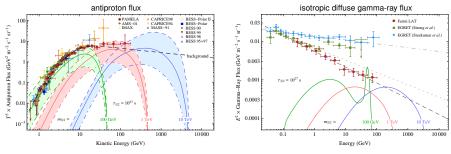
ine-of-Sight Integral Normalized to Anticenter annihilation decay -180° -90° 90° 180° Galactic Longitude

Directional detection can distinguish unstable gravitino from standard WIMPs!


NEW

Einasto

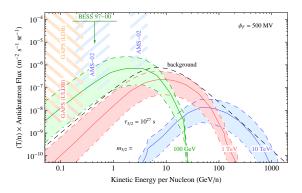
Isothermal


100

Gravitino Decay Signals in Cosmic-Ray Spectra

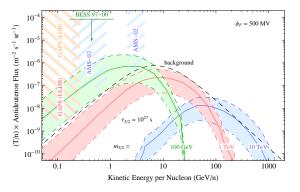
- Observed antiproton spectrum well described by astrophysical background
 - No need for contribution from dark matter
- ▶ Isotropic diffuse gamma-ray spectrum exhibits power-law behaviour
 - Source not completely understood, but no sign of spectral features of a particle decay
- ▶ Even without astrophysical backgrounds lifetimes below $\mathcal{O}(10^{26} 10^{27})$ s excluded
 - Gravitino decay cannot be the origin of the PAMELA and Fermi LAT cosmic-ray anomalies

Gravitino Decay Signals in Cosmic-Ray Spectra



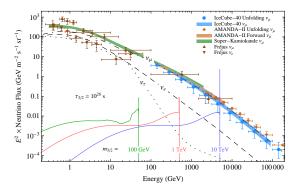
- Observed antiproton spectrum well described by astrophysical background
 - No need for contribution from dark matter
- ▶ Isotropic diffuse gamma-ray spectrum exhibits power-law behaviour
 - Source not completely understood, but no sign of spectral features of a particle decay
- ▶ Even without astrophysical backgrounds lifetimes below $\mathcal{O}(10^{26}-10^{27})$ s excluded
 - Gravitino decay cannot be the origin of the PAMELA and Fermi LAT cosmic-ray anomalies

Astrophysical sources like pulsars required to explain cosmic-ray excesses!

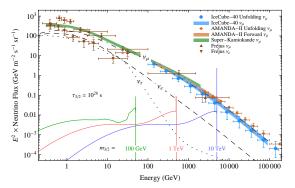

Antideuteron Signals from Gravitino Decays

- In particular sensitive at low energies due to small astrophysical background
- AMS-02 and GAPS will be able to put strong constraints on light gravitinos

Antideuteron Signals from Gravitino Decays


- In particular sensitive at low energies due to small astrophysical background
- AMS-02 and GAPS will be able to put strong constraints on light gravitinos

Antideuterons are a valuable channel for light gravitino searches!


Neutrino Signals from Gravitino Decays

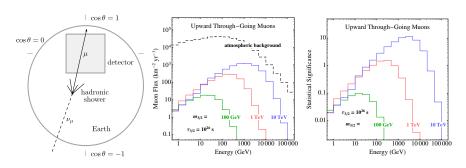
- Neutrinos provide directional information like gamma rays
- Gravitino signal features neutrino line at the end of the spectrum
- Atmospheric neutrinos are the dominant background for the gravitino signal
 - Discrimination of neutrino flavours would allow to reduce the background
 - Signal-to-background ratio best at the end of the spectrum and for large gravitino masses

Neutrino Signals from Gravitino Decays

- Neutrinos provide directional information like gamma rays
- Gravitino signal features neutrino line at the end of the spectrum
- Atmospheric neutrinos are the dominant background for the gravitino signal
 - Discrimination of neutrino flavours would allow to reduce the background
 - Signal-to-background ratio best at the end of the spectrum and for large gravitino masses

Neutrinos are a valuable channel for heavy gravitino searches!

Neutrino Detection with Upward Through-Going Muons


Muon tracks from charged current DIS of muon neutrinos off nuclei outside the detector

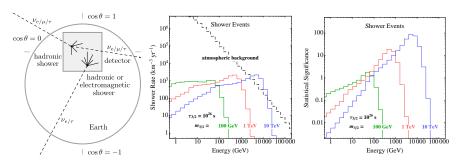
Advantages

Muon track reconstruction is well-understood at neutrino telescopes

Disadvantages

- Neutrino-nucleon DIS and propagation energy losses shift muon spectrum to lower energies
- Bad energy resolution (0.3 in log₁₀ E) smears out cut-off energy

Neutrino Detection - Improvements Using Showers


► Hadronic and electromagnetic showers from charged current DIS of electron and tau neutrinos and neutral current interactions of all neutrino flavours inside the detector

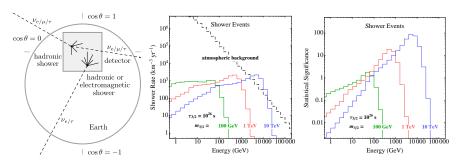
Disadvantages

TeV-scale showers are difficult to discriminate from short muon tracks

Advantages

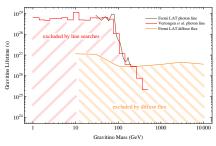
- ullet 3× larger signal and 3× lower background compared to other channels
- Better energy resolution (0.18 in log₁₀ E) helps to distinguish spectral features

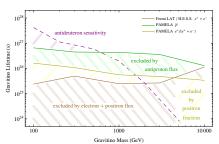
Neutrino Detection - Improvements Using Showers


► Hadronic and electromagnetic showers from charged current DIS of electron and tau neutrinos and neutral current interactions of all neutrino flavours inside the detector

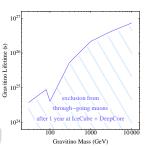
Disadvantages

TeV-scale showers are difficult to discriminate from short muon tracks

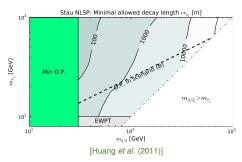

Advantages


- ullet 3× larger signal and 3× lower background compared to other channels
- Better energy resolution (0.18 in log₁₀ E) helps to distinguish spectral features

Showers are potentially the best channel for dark matter searches in neutrinos!


Limits on the Gravitino Lifetime

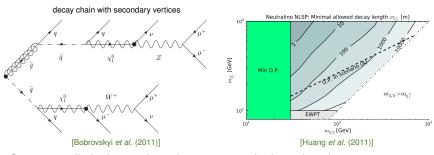
- Cosmic-ray data give bounds on gravitino lifetime
 - Photon line bounds very strong for low gravitino masses
 - Uncertainties from charged cosmic-ray propagation
 - Background subtraction will improve bounds
 - Antideuterons can be complementary to photon line searches for low gravitino masses
 - Neutrino bounds are competitive for heavy gravitinos


Wide range of bounds from multi-messenger approach!

Implications for the LHC

Implications for the LHC: Stau NLSP

- NLSP decays before BBN but may be metastable on collider scales
- ▶ Stau decay channels: $\tilde{\tau}_R \rightarrow \tau \, \nu_\mu, \mu \, \nu_\tau$ and $\tilde{\tau}_L \rightarrow \bar{t}_R \, b_L$
- Characteristic signatures:
 - Slow particle with long ionising charged track
 - Displaced vertex with missing energy and muon track or jet
- Minimal decay length from washout limit: 4 mm


Gamma-ray limits from galaxy clusters constrain decay length

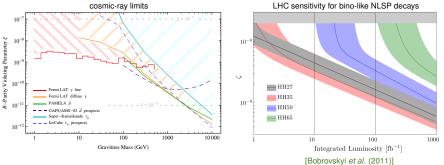
▶ Minimal decay lengths from current limits: $\mathcal{O}(100) \, \text{m} - \mathcal{O}(10) \, \text{km}$

[Huang et al. (2011)]

Implications for the LHC: Neutralino NLSP

- ▶ Neutralino decay channels: $\tilde{\chi}_1^0 \rightarrow Z \nu_i, W^+ \ell_i^-, h \nu_i$
- Bino decay length is directly related to gravitino decay width
- Characteristic signatures:
 - Displaced vertices far from the interaction point
 - For too small *R*-parity violation indistinguishable from stable neutralino

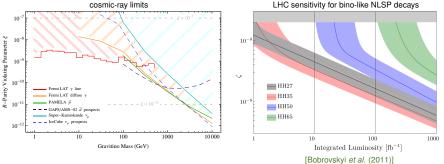
► Gamma-ray limits from galaxy clusters constrain decay length


[Huang et al. (2011)]

▶ Minimal decay lengths from current limits: $\mathcal{O}(100) \, \text{m} - \mathcal{O}(10) \, \text{km}$

Limits on the Amount of *R*-Parity Violation

Limits on the Amount of R-Parity Violation


- Limits on gravitino lifetime constrain the strength of R-parity violation: $au_{3/2} \propto \frac{M_{\rm Pl}^2}{\xi^2 \, m_{3/2}^3}$
 - Limits from photon line searches dominate for small gravitino masses
 - For heavier gravitino bounds from all cosmic-ray channels are comparable

- ▶ The LHC has the potential to detect NLSP decays beyond cosmic-ray constraints
 - Good sensitivity with clean decay chain: $\tilde{\chi}_1^0 \to Z \nu_i$ and $Z \to \mu^+ \mu^-$
 - Taking all channels can improve sensitivity another order of magnitude [Bobrovskyi et al. (2011)]

Limits on the Amount of R-Parity Violation

- Limits on gravitino lifetime constrain the strength of R-parity violation: $au_{3/2} \propto \frac{M_{\rm Pl}^2}{\xi^2 \, m_{3/2}^3}$
 - Limits from photon line searches dominate for small gravitino masses
 - For heavier gravitino bounds from all cosmic-ray channels are comparable

- ▶ The LHC has the potential to detect NLSP decays beyond cosmic-ray constraints
 - Good sensitivity with clean decay chain: $\tilde{\chi}_1^0 \to Z \nu_i$ and $Z \to \mu^+ \mu^-$
 - Taking all channels can improve sensitivity another order of magnitude [Bobrovskyi et al. (2011)] Indirect and collider searches probe interesting range of *R*-parity violation!

Conclusions and Outlook

Conclusions

- Gravitino dark matter with broken R-parity is well motivated from cosmology
- Consistent with thermal leptogenesis and big bang nucleosynthesis
- The Gravitino lifetime is naturally in the range of indirect detection experiments
- Cannot explain the PAMELA and Fermi LAT excesses due to constraints from gamma rays and antiprotons
- Multi-messenger approach constrains gravitino lifetime and strength of R-parity violation

Outlook

- Forthcoming experiments like AMS-02 will greatly improve cosmic-ray data
- Antideuteron searches will probe light gravitino dark matter
- Neutrino experiments like IceCube will probe heavy gravitino dark matter
- LHC may discover decays of metastable NLSPs beyond cosmic-ray constraints on R-parity violation
- We are living in interesting times for dark matter searches!

Outlook

- Forthcoming experiments like AMS-02 will greatly improve cosmic-ray data
- Antideuteron searches will probe light gravitino dark matter
- Neutrino experiments like IceCube will probe heavy gravitino dark matter
- LHC may discover decays of metastable NLSPs beyond cosmic-ray constraints on R-parity violation
- We are living in interesting times for dark matter searches!

Thanks for your attention!