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1 Motivation for Models with Gauge-Mediated Supersym-

metry Breaking

As we have learned in previous presentations in this seminar, supersymmetry (SUSY) must

be softly broken in order to be phenomenologically viable. However, SUSY cannot be broken

in the observable sector, as this would usually imply that at least some of the sparticles

should have been already observed. This reasoning is based on the supertrace theorem

which states that for a globally supersymmetric theory without gravitational anomalies

the following supertrace vanishes:

STrM2 =
∑

J

(−1)2J (2J + 1)M2

J = 0. (1.1)

Here MJ is the tree-level mass of a particle with spin J . In the case of tree-level SUSY-

breaking communication this theorem rather generically implies the existence of a sparticle

lighter than its ordinary partner.

Consequently, it is usually assumed that SUSY is broken in a hidden sector which has

no renormalizable couplings to the observable sector which contains the MSSM particles.

Moreover, the effective theory describing the observable sector should have a non-vanishing

supertrace.
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A generic example is given by gravity mediation in supergravity and has already been

discussed in this seminar. Another possibility is a theory with vanishing supertrace at the

tree level, but with a non-vanishing supertrace at the quantum level, induced by the known

gauge interactions. This type of theories is called gauge mediation.

One problem in gravity mediation is the generic introduction of new sources of flavor

violation. In the Standard Model (SM) the Yukawa couplings are the only source of flavor

violation, whereas the gauge interactions are flavor blind. The new physics that creates the

Yukawa couplings is unknown but its scale ΛF is usually assumed to be high – probably

close to MGUT or even MP . Since in gravity mediation the soft SUSY breaking terms are

created at MP & ΛF we generically expect new sources of flavor violation. In the case of

gauge mediation, on the other hand, the soft terms are generated at a messenger scale M . If

M ≪ ΛF , the flavor violation in the soft terms is only created via Yukawa interactions. This

is one of the main motivations for models with gauge-mediated SUSY breaking (GMSB).

Another, more technical, motivation is that since the mechanism is happening at scales

much below MP the dynamics can be treated with field-theoretical tools – we avoid dif-

ficulties with treating quantum gravity. Thus gauge mediation is often also discussed in

connection with mechanisms for SUSY breaking like dynamical SUSY breaking (DSB).

2 Ordinary Gauge Mediation

With the term ordinary gauge mediation we refer to the class of models of gauge-mediated

supersymmetry breaking with a messenger sector that are described in the review by Giu-

dice and Rattazzi [1].

2.1 General Structure of GMSB Models

The Messenger Sector We do not know the mechanism of SUSY breaking, but we know

that SUSY must be broken in a hidden sector. Therefore, we can describe our ignorance by

a spurion X which is a SM singlet chiral superfield that acquires a VEV along the scalar

and auxiliary components:

〈X〉 = M + θ2F . (2.1)

The parameters M and
√

F are the fundamental mass scales connected with GMSB.

In addition to the unspecified hidden sector and the observable sector that contains

all the MSSM fields we have a messenger sector which mediates SUSY breaking to the

observable sector (see figure 1). The structure of the unknown messenger sector dominantly

determines the low-energy phenomenology. In the minimal model the messenger sector is

composed of Nf flavors of chiral superfields φi and φ̃i (i = 1, . . . ,Nf ) transforming as a

real representation r ⊕ r̄ under the SM gauge group and coupling to the superfield X at

tree level via Yukawa-like interactions:

W = λijXφiφ̃j . (2.2)

Replacing X by its VEV this coupling generates a supersymmetric mass of order M for the

messenger fields and mass-squared splittings inside the messenger supermultiplets of order

F .
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Figure 1: Modular structure of models with gauge-mediated supersymmetry breaking.

In order to preserve gauge coupling unification the messenger fields are usually chosen

to form complete GUT multiplets, e.g. φi and φ̃i transforming in the 5⊕ 5̄ under SU(5) ⊃
GSM . In this case the GUT scale MGUT is unchanged but the unified gauge coupling

receives an extra contribution compared to the MSSM case:

δα−1

GUT = −N

2π
ln

MGUT

M
, where N =

Nf
∑

i=1

2T (ri) (2.3)

is the sum of the indices of the representations of the different flavors. In the case of 5⊕ 5̄

we have T = 1/2 and therefore N = Nf . Requiring perturbativity up to the GUT scale

then implies an upper bound on the so-called messenger index N :

N . 150/ ln
MGUT

M
. (2.4)

Soft Mass Spectrum Since the MSSM supermultiplets do not directly couple to the

spurion superfield X, they are mass-degenerate at tree level. While the gauge boson and

matter fermion masses are protected by gauge invariance, the gauginos and sfermions can

receive soft SUSY-breaking contributions to their masses at loop level (see figure 2). Gaug-

ino masses arise at one-loop level from gauge couplings to messengers, whereas squared

sfermion masses require two loops involving messengers and gauge bosons. Thus, we natu-

rally expect the soft masses to be of the same order:

msoft ∼
αr

4π

F

M
. (2.5)

If the messenger mass scale M and the SUSY breaking scale
√

F are comparable in size,

then these scales differ only by the loop factor from the soft mass scale, i.e.
√

F ∼ 104–

105 GeV. In most realistic cases, however, one considers the case where
√

F ≪ M which

requires a higher SUSY breaking scale.

An explicit Feynman diagram diagram calculation in the leading-log approximation

gives for the SUSY-breaking gaugino masses at the scale µ (t = ln M2/µ2)

Mr(t) =
αr(t)

4π
ΛG , (2.6)

with the gauge couplings αr in a GUT normalization and

ΛG = N
F

M
g(F/M2) , (2.7)

where

g(x) =
1

x2
[(1 + x) ln(1 + x)] + (x → −x) . (2.8)
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Figure 2: Feynman diagrams contributing to the soft supersymmetry-breaking gaugino (λ)

and sfermion (f̃) masses. The scalar and fermionic components of the messenger fields (Φ) are

denoted by dashed and solid lines, respectively. Gauge bosons are denoted by wiggled lines.

Figure taken from [1].

In the limit F ≪ M2 this expression simplifies to

Mr(t) =
αr(t)

4π
N

F

M
. (2.9)

This leads to universal gaugino masses at the GUT scale and the general relation

M1

α1

=
M2

α2

=
M3

α3

= N
F

M
. (2.10)

Neglecting contributions from Yukawa couplings the SUSY-breaking sfermion masses

turn out to be

m2

f̃
(t) = 2

3
∑

r=1

C f̃
2

α2
r(t)

16π2

[

Λ2

S +
1

br

(

1 − α2
r(t)

α2
r(0)

)

Λ2

G

]

(2.11)

with

αr(t) = αr(0)

[

1 +
αr(0)

4π
brt

]−1

(2.12)

and

Λ2

S = N
F 2

M2
f(F/M2) , (2.13)

where

f(x) =
1 + x

x2

[

ln(1 + x) − 2Li2

(

x

1 + x

)

+
1

2
Li2

(

2x

1 + x

)]

+ (x → −x) . (2.14)
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Here Li2(x) =
∫ x
2

dt
ln t is an Eulerian logarithmic integral. In the limit F ≪ M2 this expres-

sion simplifies to

m2

f̃
(t) = 2

3
∑

r=1

C f̃
2

α2
r(t)

16π2

[

N
F 2

M2
+

1

br

(

1 − α2
r(t)

α2
r(0)

)

N2
F 2

M2

]

, (2.15)

where C f̃
2

is the quadratic Casimir, i.e. C2 = (N2 − 1)/2N for the fundamental represen-

tation of SU(N) and C2 = Y 2 for the U(1), and b1 = 33/5, b2 = 1 and b3 = −3 are the

one-loop β-function coefficients.

In order to obtain the physical sfermion squared masses one has to add the D-term

contribution M2

Z cos 2β(T f̃
3
− Qf̃ sin2 θW ). In the case of the stop one cannot neglect the

Yukawa contribution and this leads to a smaller stop mass compared to the other colored

sfermions.

There is typically a large hierarchy between strongly and weakly interacting particles

which comes from the hierarchy in the coupling constants (α3 ≫ α2, α1).

The soft trilinear terms arise only at two-loop order and are generated proportional to

the corresponding Yukawa couplings. Therefore we do not have any new source of flavor

violation.

In the limit F ≪ M2 the soft masses and the trilinear terms can also be determined

using an elegant method that extracts the terms from the gauge and matter wave-function

renormalizations S and Z. The holomorphic function S(X,µ) can be obtained by integrating

the renormalization group evolution from an ultraviolet scale ΛUV down to the scale µ across

the messenger threshold M :

S(X,µ) = S(ΛUV ) +
b′

32π2
ln

X

ΛUV
+

b

32π2
ln

µ

X
, (2.16)

where b is the one-loop β-function coefficient of the low-energy theory and b′ = b−N takes

care of the messenger contribution to the running. At the minimum 〈X〉 = M + θ2F the

soft gaugino mass then is given by

Mλ(µ) = − 1

2

∂ ln S(X,µ)

∂ ln X

∣

∣

∣

∣

X=M

F

M
. (2.17)

The real function Z(X,X†, µ) is determined by integrating the renormalization group evo-

lution from ΛUV down to µ with tree-level matching at the intermediate scale M :

Z(X,X†, µ) = Z(ΛUV )

[

α(ΛUV )

α(X)

]2C f̃
2

/b′ [α(X)

α(µ)

]2C f̃
2

/b

, (2.18)

where

α−1(µ) = α−1(X) +
b

4π
ln

µ2

XX†
, α−1(X) = α−1(ΛUV ) +

b′

4π
ln

XX†

Λ2

UV

. (2.19)

Then the soft sfermion masses and trilinear terms are given by:

m2

f̃
(µ) = − ∂2 ln Z(X,X†, µ)

∂ ln X ∂ ln X†

∣

∣

∣

∣

X=M

FF †

MM †
(2.20)
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and

A(µ) =
∂ ln Z(X,X†, µ)

∂ ln X

∣

∣

∣

∣

X=M

F

M
. (2.21)

Radiative electroweak symmetry breaking (EWSB) requires to have

2|µ|2 =
|m2

Hd
− m2

Hu
|

√

1 − sin2(2β)
− m2

Hu
− m2

Hd
− M2

Z (2.22)

and

2b = sin(2β)
(

m2

Hu
+ m2

Hd
+ 2|µ|2

)

. (2.23)

The solution of these equations usually leads to a large value for µ compared to the bino

mass. Therefore the lightest neutralino is mainly bino-like and in many cases the lightest

sparticle.

In conclusion ordinary gauge mediation is a very predictive scenario and one expects

a number of distinctive features in the mass spectrum:

• Unification of gauge couplings implies unification of gaugino masses

• Gaugino and sfermion masses are similar

• Colored sparticles are more massive than uncolored sparticles

• Usually a bino or a stau as the NLSP

The µ Problem in GMSB Models In the MSSM we have a supersymmetric mass

term for the two Higgs doublets

W = µHuHd (2.24)

and in addition a soft SUSY-breaking mass term

V = bHuHd + h.c. (2.25)

Radiative EWSB implies that we typically need to have the supersymmetric mass term and

the SUSY-breaking soft mass term at the same order and in particular both at the scale of

soft masses:

b ∼ µ2 ∼
(

1

16π2

F

M

)2

. (2.26)

In general the µ problem is connected to the fact that µ is required to be at the weak scale

while it is expected to be at some high fundamental mass scale, since it is a parameter

of the unbroken supersymmetric theory. If, however, the generation of µ is connected to

gauge-mediated SUSY breaking, then the main problem is not to generate it at the correct

scale but to generate b at the same scale.

If we introduce a direct coupling of the Higgs fields to the SUSY-breaking field X,

W = λXHuHd , (2.27)

we get µ = λM while b = λF . Then, even if F ∼ M2, µ and b are generated at the same

order of the small parameter λ and therefore b is typically too large.
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Even if this is a generic problem there are particular models which can achieve the

correct ratio. Adding two singlet fields S and N we can have a superpotential

W = S
(

λ1HuHd + λ2N
2 + λφφ̃ − M2

N

)

+ Xφφ̃ (2.28)

giving µ = λ1 〈S〉 and b = λ1FS . The VEV for S is generated at one loop,

〈S〉 ∼ 1

16π2

F 2

MM2

N

, (2.29)

whereas FS is only generated at two-loop level:

FS ∼
(

1

16π2

F

M

)2

. (2.30)

Thus we obtain b ∼ µ2 if M2

N ∼ F can be arranged. So there ways to adjust µ and b but

these mechanisms do not appear very generically in GMSB models.

2.2 Phenomenological Implications

When the theory is coupled to gravity, the massless spin-1/2 goldstino field from SUSY

breaking provides the longitudinal modes of the gravitino and therefore the gravitino ac-

quires a SUSY-breaking mass. In supergravity this mass is given by

m3/2 =
F0√
3MP

, (2.31)

where F0 is the fundamental SUSY-breaking scale. The ratio k ≡ F/F0 between the SUSY

breaking in the messenger sector and the fundamental SUSY-breaking scale depends on

how SUSY breaking is communicated to the messengers. In the case of a tree-level coupling

it is just given by the coupling constant λ. The gravitino mass can then be rewritten as

m3/2 =
F

k
√

3MP

=
1

k

( √
F

100TeV

)2

2.4 eV (2.32)

and it follows that the gravitino is the lightest supersymmetric particle (LSP) for any

relevant value of F in GMSB models. Actually, since the gravitino mass is the measure of

gravity-mediated effects, it is the solution to the flavor problem in gravity mediation that

requires this light gravitino.

A light gravitino can be problematic in cosmology as there a severe upper bounds on

the reheating temperature from the requirement that the gravitinos do not overclose the

universe:

TR < 10TeV × h2

( m3/2

100 keV

)

(

TeV

M3

)

. (2.33)

For gravitino masses below keV, however, this problem is absent. If they are produced at

the right abundance gravitinos are a generic candidate for the dark matter in the universe.

Depending on their mass they behave as cold or warm dark matter.
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In GMSB models with conserved R-parity we expect all sparticles to decay promptly

into the next-to-lightest supersymmetric particle (NLSP) which then decays into the grav-

itino with couplings suppressed by F . The NLSP is typically a bino or a stau with lifetime

τNLSP =
1

k2

(

100GeV

mNLSP

)5
( √

F

100TeV

)4

3 × 10−13 s , (2.34)

which also has important implications for cosmology since late decays of the NLSP can

potentially spoil the correct predictions of big bang nucleosynthesis (BBN).

There are also distinctive signals at colliders: Apart from the structure of the mass

spectrum there are specific signals depending on the NLSP decay length

LNLSP =
1

k2

(

100GeV

mNLSP

)5
( √

F

100TeV

)4
√

E2

NLSP

m2

NLSP

− 1 100µm . (2.35)

Depeding on the SUSY-breaking scale F we can have the following three cases:

•
√

F & 106 GeV

– NLSP decays outside the detector and appears to be stable

– The neutralino NLSP case resembles the stable neutralino case with missing

transverse energy

– The stau NLSP case gives an ionizing track of a massive charged particle

•
√

F . 106 GeV

– NLSP promptly decays

– The neutralino NLSP decays into a photon and a gravitino giving two photons

plus missing energy in the final state

– The stau NLSP decays into a stau and a gravitino giving two charged leptons

plus missing energy in the final state

•
√

F ∼ 106 GeV

– NLSP decays with a displaced vertex inside the detector

– Allows reconstruction of the SUSY-breaking scale

3 Recent Developments

3.1 (Extra)Ordinary Gauge Mediation

In the last years it has been discussed if the generic predictions of ordinary GMSB scenarios

are really generic. In (extra)ordinary gauge mediation the implications of a generalized

superpotential coupling of the messengers to the singlet X are studied. The most general

renormalizable, gauge invariant superpotential is given by

W = (λijX + mij) φiφ̃j = (λ2ijX + m2ij) lil̃j + (λ3ij + m3ij) qiq̃j . (3.1)
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Here li, l̃i and qi, q̃i are the SU(2) doublet and SU(3) triplet components of φi, φ̃i, respec-

tively. It might well be that there is a splitting between doublet and triplet components

similar to SUSY GUT models and their origin might also be related. In comparison with

ordinary gauge mediation the superpotential contains additional supersymmetric messen-

ger mass terms in (extra)ordinary gauge mediation. This can lead to a couple of changes

on the predictions of GMSB models:

• A triplet messenger index much larger than the doublet messenger index reduces the

mass hierarchy between squarks and sleptons and their masses can even be at the

same scale

• Different messenger indices for the doublet and triplet components can also lead to a

small µ parameter. This implies a higgsino-like NLSP and therefore different collider

signals

• The effective messenger index can be smaller than one, giving the possibility for very

light gauginos

The prediction of gaugino mass unification, a light gravitino LSP and therefore no intro-

duction of new sources for flavor violation are still valid in these models.

3.2 General Gauge Mediation

The goal of this framework is to study which predictions of models with GMSB are really

generic and which predictions are model-dependent. Therefore general gauge mediation

defines gauge mediation in a much broader sense than the ordinary GMSB models. This

definition includes an observable sector with all the MSSM fields and a hidden sector with

a global symmetry G ⊃ GSM that contains the source of SUSY breaking at a scale M ,

messengers (if there are any) and other particles outside the MSSM. Now the requirement

is that gauge fields of the MSSM couple to the hidden sector and communicate SUSY

breaking, i.e. in the limit αr → 0 the two sectors are decoupled.

Technically the hidden sector information is contained in the current supermultiplet

J (x, θ, θ̄) of G satisfying the conservation equation

D2J = D̄2J = 0 (3.2)

and their correlation functions. The non-vanishing two-point functions are determined from

Lorentz invariance and current conservation. In general it turns out that the gaugino masses

are not related to each other. In addition the sfermion masses are not related to the gaugino

masses, but there exist two sum rules for the sfermion masses at the high scale M :

Tr Y m2

f̃
= 0 , (3.3)

Tr (B − L) m2

f̃
= 0 . (3.4)

The generic predictions of gauge mediation found in this framework are:

• No new sources of flavor violation
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• Existence of two mass relations for the sfermions

• Typically small trilinear terms

• Correct ratio of µ and b challenging

• The gravitino is the lightest supersymmetric particle

In conclusion, none of the characteristics of ordinary gauge mediation, except for the exis-

tence of a gravitino LSP, generalizes to general gauge mediation.

3.3 Tree Level Gauge Mediation

This recently proposed class of models breaks with the common lore that SUSY breaking

must be mediated at the loop level. In a particular realization the model is a SUSY GUT

with an additional U(1)X gauge group. A simple choice is an SO(10) model which contains

the maximal subgroup SU(5) × U(1). SUSY breaking is described by a SM singlet field Z

that acquires an F -term VEV and carries a charge XZ under the U(1)X .

Sfermion masses are generated at tree level from the coupling of the Z VEV to the

sfermions via the heavy gauge superfield VX :

m2

f̃
= 2g2Xf̃XZ

(

F

MV

)2

. (3.5)

The supertrace sum rule is fulfilled since the SUSY breaking scalar masses are proportional

to their X charge and the U(1)X generator is traceless for complete GUT multiplets.

Gaugino masses are generated at one-loop level with heavy matter fields acting as

messengers to SUSY breaking:

Mλ ∼ N
α

4π

F

M
, (3.6)

where N is the messenger index and M the messenger mass. One would expect that the

gaugino masses are suppressed by a loop factor with respect to the sfermion masses. How-

ever, typically this factor is partly compensated by the fact that usually N > 1 and the

messenger mass scale M is smaller than the heavy gauge boson mass scale MV .

The predictions for the low-energy spectrum depend on the particular embedding in

the SU(5) multiplets. In the studied cases they are the following:

• The soft mass ratio of sfermions in different SU(5) multiplets at the GUT scale is

given by:

m2

5̄
= 2m2

10
or m2

5̄
=

3

4
m2

10
. (3.7)

• Gaugino masses are suppressed with respect to sfermion masses by a factor of about

10:

Mλ/m2

10 = 1/10 . (3.8)

• The NLSP is the bino and the LSP is a gravitino with mass around 15GeV.
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