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Gravitino Dark Matter

• Gravitino is spin-3/2 superpartner of graviton in supergravity theories.

• Thermally produced during reheating phase in the early universe:

Ω3/2h2 ' 0.27
(

TR

1010 GeV

)

(

100 GeV

m3/2

)

(

mg̃

1 TeV

)2

.

[Bolz, Brandenburg, Buchmüller (2001)]

• Thermal leptogenesis requires reheating temperature TR & 109 GeV.

• High TR together with low gravitino mass leads to overproduction!
⇒ m3/2 & O(10) GeV favored.

• If gravitino not LSP, late decays can spoil BBN predictions.

• If gravitino LSP, natural candidate for Cold Dark Matter.

• With conserved R-parity, late NLSP decays into gravitinos and SM particles may
spoil BBN predictions!

Possible solution: R-parity not exactly conserved!
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R-Parity Violation and Indirect Detection

• R-parity violating terms in superpotential:

W/Rp
= µi Li Hu + λLLEc + λ′LQDc + λ′′UcDcDc .

• Even very small /Rp couplings make NLSP decay into SM particles before BBN.

• Proton stable if λ′′ forbidden.

• Lower bound on /Rp couplings from BBN, upper bound from Leptogenesis.
⇒ Gravitino unstable but very long-lived: τ3/2 ≈ O(1023 − 1037) s.

• Couplings suppressed by Planck mass and small R-parity violation.

Gravitino remains viable Dark Matter candidate!

• Even for gravitino lifetimes much larger than the age of the universe decay
products may be observable.

• Look for signatures in cosmic-ray species with low background and spectra of
particles that propagate freely:

→ Gamma rays, Positrons, Antiprotons and Neutrinos.

R-parity violation makes gravitino accessible to indirect detection!
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Annihilating WIMP DM vs Decaying Gravitino DM

WIMP Annihilation Gravitino Decay

• Flux ∝ %2 → Dominant signal from dense
regions.

• WIMPs accumulate inside stars and
planets due to capturing via weak
interactions.
⇒ Look for cosmic rays from galactic
center or at neutrinos from center of the
Sun or the Earth!

• Flux ∝ %→ Almost isotropic signal.

• Gravitinos do not accumulate inside stars
or planets.

• Gravitino distribution follows DM halo
density profile.
⇒ Look for diffuse flux of cosmic rays.
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Neutrino signals from galactic center and Sun
not favored because of additional backgrounds
from these directions.

Fluxes from decays are much less sensitive to
density fluctuations.
⇒ No boost factors for decaying DM!

Annihilating and decaying DM require
different strategies for observation!
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Gravitino Decay Channels
Tree level gravitino decay channels in models with bilinear R-parity breaking:

• ψ3/2 → γ νl

• ψ3/2 → W±l∓

• ψ3/2 → Z 0νl

• ψ3/2 → h νl

Assumption: Gravitino decays through neutralino–neutrino and chargino–charged
lepton mixing via sneutrino VEV.

ψ3/2 〈ν̃l〉

νl , l∓

γ,Z 0,W±

χ̃0, χ̃∓

+ ψ3/2

νl , l∓

〈ν̃l〉

Z 0,W±
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Signal in Positrons

• Motivated by PAMELA and ATIC/PPB-BETS data we study the case of electron
sneutrino VEV and the parameters

m3/2 ' 250 GeV, 500 GeV, 1.2 TeV and τ3/2 ' O(1026) s.
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• ATIC/PPB-BETS data hint at heavy Dark Matter particle (1.2 TeV).

Is there also an observable signal in neutrinos?
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Neutrino Spectra

Neutrino spectrum from gravitino decay:

dNν

dE
= BR(γνe) δ

(

E −
m3/2

2

)

+ BR(We)
dNW

ν

dE
+ BR(Z 0νe)

dNZ
ν

dE
+ BR(hνe)

dNh
ν

dE

• Branching ratios depend dominantly on gravitino mass.

• Spectra from fragmentation of W and Z 0 and h bosons generated with PYTHIA.
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Flux from Galactic and Extragalactic Decays

Galactic Flux
dJhalo

dE = 1
4πτ3/2m3/2

∫

l.o.s.

%halo(~l)d~l · dNν
dE

• Exclude galactic disk to avoid galactic neutrino background.

• No strong angular dependence. ⇒ Use averaged galactic flux.

• No significant dependence on used halo profile.

Extragalactic Flux
dJeg
dE =

Ω3/2%c

4πτ3/2m3/2H0Ω
1/2
M

∞
∫

1

y−3/2dy√
1+ΩΛ/ΩM y−3

dNν
d(yE)

• Redshifted spectrum from decays at extragalactic distances.

• Extragalactic contribution subdominant.

Include neutrino propagation: Oscillations redistribute flux into all flavors.

⇒ Signals for νµ and ντ are equivalent, νe is slightly different!

Neutrino signal does not significantly depend on flavor of sneutrino VEV!
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Neutrino Background

• Main background are atmospheric electron and muon neutrinos.

• Tau neutrino background from conversion of muon into tau neutrinos.

• Neutrino signal from gravitino decay below the atmospheric background except
for tau neutrinos!

• Signal-to-background ratio increases for larger gravitino masses!
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Strategy to reduce background and/or high statistics and spectral information needed!

Michael Grefe Neutrino Signals from Unstable Gravitino Dark Matter



Neutrino Background

• Main background are atmospheric electron and muon neutrinos.

• Tau neutrino background from conversion of muon into tau neutrinos.

• Neutrino signal from gravitino decay below the atmospheric background except
for tau neutrinos!

• Signal-to-background ratio increases for larger gravitino masses!

10-8

10-7

10-6

10-5

10-4

10-3

10-2

 1  10  100  1000  10000

E
2  x

 d
J/

dE
 (

G
eV

 c
m

-2
 s

-1
 s

r-1
)

E (GeV)

νe

νµ

ντ

atmospheric neutrinos

m3/2 = 250, 500, 1200 GeV

Strategy to reduce background and/or high statistics and spectral information needed!

Michael Grefe Neutrino Signals from Unstable Gravitino Dark Matter



Background Reduction for Tau Neutrinos

• Tau neutrino background can be reduced substantially, if only down-going
neutrinos are considered.

• Prompt tau neutrinos from atmospheric charmed particle decay become
important at higher energies!
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• Very good signal-to-background ratio if cuts on the energy can be applied!

Tau neutrino signal from decaying gravitino dark matter is in principle observable!
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Experimental Situation for Tau Neutrinos

Problems

• Only (partially) contained events for tau neutrinos.
⇒ Small event rates: Only O(1) tau neutrinos
per century in Super-Kamiokande.

• No detailed spectral information!

• Super-K can identify tau neutrinos, but only on a
statistical basis.

• No event-by-event identification for tau neutrinos!
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More statistics and better flavor identification needed to extract signal from background!

Future possibilities

• Hyper-Kamiokande will have mass of O(1) Mton.
⇒ Factor of ∼ 20 improvement in statistics compared to Super-K.

• IceCube could improve the statistics by several orders of magnitude.

• However, no strategy to identify tau neutrinos below many TeV!

Tau neutrinos offer the most promising signal
but are also most difficult to detect in neutrino experiments!
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Experimental Situation for Muon Neutrinos

• Through-going muon events provide much better statistics due to larger effective
detector volume!

[Montaruli (2009)]

IceCube (completed detector)

• Signal: O(103), O(102), O(10) events/yr for m3/2 = 1.2 TeV, 500 GeV, 250 GeV

• Atmospheric background: O(105) events/yr

• Large statistics but very low signal-to-background ratio!

Spectral information would help to extract the signal from the background!
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Bound on Gravitino Lifetime

• Non-observation of neutrino signal can be used to constrain gravitino parameters!

• Compare signal from γνe and Z 0νe lines to atmospheric background.

• Taking only down-going tau neutrinos can improve the bound significantly!
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• Gamma-ray channel sets bound on the order of 1027 s below MW !

• Neutrinos usually impose weaker bounds on the model than other channels.

Bound from down-going tau neutrinos may be competetive at higher masses!
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Conclusions

• Gravitino with broken R-parity is theoretically well motivated Dark Matter
candidate, compatible with thermal leptogenesis and BBN predictions.

• Neutrinos from decaying gravitino dark matter are most likely observable
in the tau sector, due to a large signal-to-background ratio!

• Present neutrino experiments provide low statistics and cannot identify
tau neutrinos on an event-by-event basis.

• Future neutrino experiments can improve sensitivity for low flux signals,
but also have to provide tau flavor identification (ideally event by event).

• Muon neutrinos have larger statistics but low signal-to-background ratio.

• A dedicated analysis might extract the signal using spectral information!

Neutrino signals can make important contributions
to unveil the nature of the Dark Matter in the universe!
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