Neutrino Signals from Unstable Dark Matter

Ongoing Project in Collaboration with Laura Covi, Alejandro Ibarra and David Tran

> Michael Grefe DESY Theory Group, Hamburg DESY Theory Workshop, 1st October 2009

Motivation

- Recent cosmic ray experiments show anomalies in the 10 GeV up to TeV range (PAMELA, FERMI, HESS, ...)
- Can be explained by astrophysical sources: pulsars
- But: could also be a signal of dark matter annihilation or decay!
- Need further observations to discriminate between scenarios

Annihilating vs Decaying Dark Matter

 $\infty \xrightarrow{1} \rho$ $m_{DM} \tau_{DM}$ Look for diffuse signal Directionality can discriminate annihilation and decay

astrophysics

- Gamma-rays and neutrinos are messengers that provide directional observations
- In addition to halo flux isotropic (but subdominant) flux from cosmological dark matter density

Scalar DM Decay Channels and Neutrino Flux

- Neutrino oscillations distribute the flux equally into all flavors
- Atmospheric neutrinos are the dominant background

Dark Matter Decay Channels and Neutrino Flux

Upgoing-Throughgoing Muon Events

- Downgoing muon signal is dominated by atmospheric muons (only upgoing events can be used $\rightarrow 2\pi$ sensitivity)
- Muon energy loss shifts 10⁶
 spectrum to lower energies and initial neutrino energy 10⁵
 cannot be reconstructed

(Partially) Contained Muon Events

- A muon veto allows to discriminate starting from throughgoing tracks (→ 4π sensitivity, e.g. Super-Kamiokande, IceCube +DeepCore)
- 10^{\prime} DM --> μμ (ττ DM --> If the shower is also detected atmospheric 10⁶ reconstruction of initial neutrino energy possible $(10^{5} \text{ dN/dVdt (km^{-3} yr^{-1})})^{10^{4}}$ detector 10² μ 10^{1} contained muons Earth $m_{DM} = 10 \text{ TeV}$, $\tau_{DM} = 10^{26} \text{ s}$ 10⁰ 10 100 1000 10000 E_{μ} (GeV)

Shower Events

 Energy of initial neutrino can be reconstructed for charged current events

Limits on the Dark Matter Parameter Space

Michael Grefe | Neutrino Signals from Unstable Dark Matter | 1st October 2009 | Page 9

Neutrino Telescopes

- Large-scale neutrino telescopes like Amanda, Antares or IceCube have much larger event rates
- Upgoing muon rates for dark matter with lifetime of 10²⁶ s (scales with T_{DM}⁻¹):

		$DM \to v \: v$		$DM \rightarrow We$		Atmospheric
		1 TeV	10 TeV	1 TeV	10 TeV	
Super-Kamiokande	Rate (yr-1)	4.1	17	0.31	1.7	430
Antares (~ Amanda)	Rate (yr-1)	28	170	1.6	14	1,600
IceCube80	Rate (yr-1)	3,600	14,000	220	1,400	200,000
IceCube80 + DeepCore	Rate (yr-1)	6,400	14,000	450	1,600	400,000

Much stronger limits or even detection seem possible

Conclusion

- Indirect dark matter searches possibly play an important role to unveil the nature of the dark matter in the near future
- Decaying dark matter will need different search strategies than the well-established strategies for annihilating WIMPs
- Neutrinos are a tool complementary to charged cosmic rays and gamma rays that can help to discriminate between annihilating and decaying dark matter
- Forthcoming neutrino telescopes will be able to set constraints on dark matter parameters that are competitive with those from other cosmic ray species
- Even the detection of a neutrino signal seems possible

