Jet production at low Bjorken-x from HERA

S. Levonian

- HERA and low x physics
- Inclusive Forward jets
- Forward jets in multijet configurations
- Azimuthal correlations in dijet system

Low $x \leq 5 \cdot 10^{-3}$
The HERA Collider

HERA-1 (1993-2000) $\sim 120 \text{ pb}^{-1}$
HERA-2 (2003-2007) $\sim 380 \text{ pb}^{-1}$

Last 3 months - low E_p run to measure F_L^p
($E_p = 460; 575 \text{ GeV}, \quad \mathcal{L} = 20\text{pb}^{-1}$)

- HERA upgrade: $\mathcal{L} \times 3$, Polarised e^+/e^-
 (Exp. improvements: silicon trackers, triggering, ...)

- Final Data samples H1+ZEUS: $2 \times 0.5 \text{ fb}^{-1}$
Small x domain of HERA

- ep DIS: clean QCD laboratory with high resolving power $Q^2 \Rightarrow 0.001\text{fm}$

- Low $x \leq 10^{-3}$: new kinematic domain at HERA
 \Rightarrow any sign of novel parton dynamics?
Small x domain of HERA

- ep DIS: clean QCD laboratory with high resolving power $Q^2 \Rightarrow 0.001\text{fm}$
- Low $x \leq 10^{-3}$: new kinematic domain at HERA
 \Rightarrow any sign of novel parton dynamics?
- NLO DGLAP is still perfectly OK for F_2^p (too inclusive?)
Small x domain of HERA

- **ep DIS**: clean QCD laboratory with high resolving power $Q^2 \Rightarrow 0.001\text{fm}$

- **Low $x \leq 10^{-3}$**: new kinematic domain at HERA
 \Rightarrow any sign of novel parton dynamics?

- **NLO DGLAP is still perfectly OK for F_2^p** (too inclusive?)

- There is a lot of glue in proton at low x!
 \Rightarrow gluodynamics in high energy limit of QCD ($W^2 \approx Q^2/x$)
QCD at low x

Lots of glue in the proton \Rightarrow long gluon cascade at low x. Perturbative expansion of evolution equations $\sim \sum_{mn} A_{mn} \ln(Q^2)^m \ln(1/x)^n$ hard to calculate explicitly

\Rightarrow approximations needed

DGLAP: resums $\ln(Q^2)^n$ terms, neglecting $\ln(1/x)^n$ terms

strong k_T ordering in partonic cascade

BFKL: resums $\ln(1/x)^n$ terms

no k_T ordering in partonic cascade \Rightarrow more hard gluons are radiated far from the hard interaction vertex

CCFM: angular ordered parton emission \Rightarrow

reproduces DGLAP at large x and BFKL at $x \to 0$

- How long is partonic cascade at HERA, at small x?
- Do the $\ln(1/x)^n$ terms play a major role in parton dynamics as suggested by BFKL?

\Rightarrow Look at (multi)jet final states at low x in different configurations
Low x phenomenology

Fixed order QCD calculations

- NLO 2-jet
- NLO 3-jet
- DISENT, NLOJET++, NLOJET++

LO ME + PS MC models

- Rapgap Dir
- Rapgap Res
- Cascade
- Lepto (CDM)

- k_t-ordered gluon radiation (DGLAP)
- Angular ordering (DGLAP \leftrightarrow BFKL)
- Random walk in k_t (BFKL like)
Forward jets

Strategy

\((E_t^{jet})^2 \approx Q^2 \Rightarrow\) suppress phase space for DGLAP evolution

large \(x_{jet} \gg x_{Bj}\) \(\Rightarrow\) enhance BFKL evolution

Event selection

\(10^{-4} < x < 4 \cdot 10^{-3} \quad 5 < Q^2 < 85 \text{GeV}^2\)

\(E_t^{jet} > 3.5 \text{GeV} \quad 7^\circ < \theta_{jet} < 20^\circ\)

\(x_{jet} > 0.035 \quad 0.5 < (E_t^{jet})^2/Q^2 < 2\)
Forward jets

Strategy

\[(E_{t}^{jet})^2 \approx Q^2 \Rightarrow \text{suppress phase space for DGLAP evolution} \]

large \(x_{jet} \gg x_{Bj}\) \(\Rightarrow\) enhance BFKL evolution

Event selection

\[10^{-4} < x < 4 \cdot 10^{-3} \quad 5 < Q^2 < 85 \text{GeV}^2 \]

\[E_{t}^{jet} > 3.5 \text{GeV} \quad 7^\circ < \theta_{jet} < 20^\circ \]

\[x_{jet} > 0.035 \quad 0.5 < (E_{t}^{jet})^2/Q^2 < 2\]

- Huge improvement from LO to NLO, but still insufficient at low \(x\)
- Resolved \(\gamma\) component in DGLAP MC helps ("breaks" \(k_t\) ordering)
- CDM and RG(d+r) provide similar description \(\Rightarrow\) inconclusive
Forward jets against CCFM Monte Carlo

- extended forward range
 \(2 < \eta^{jet} < 4.3 \)
 \(E_t^{jet} > 5 \text{GeV}, x_{jet} > 0.036 \)

- Jet rate is OK, but shapes of the distributions are not described

- Clear sensitivity to uPDF
5 < Q^2 < 80 \text{ GeV}^2 \\
10^{-4} < x < 10^{-2} \\
Jets: \quad E_{t,\text{jet}}^* > 4 \text{ GeV} \\
\quad -1 < \eta < 2.5 \\
\quad N_{\text{jet}} \geq 3 \\

- Gluon radiation is frequent at low x \\
- $O(\alpha_s^3)$ QCD can only predict up to 4 jets \\
- RG d+r (DGLAP type of MC) underestimates high jet multiplicities \\
- CDM (BFKL like MC) is just perfect!
Two and Three Jet production vs NLO QCD

- NLO QCD is OK in this domain ($x > 2 \cdot 10^{-4}, E_t^{j1} > 7\text{GeV}, E_t^{j2(3)} > 5\text{GeV}$)

⇒ Try even higher jet multiplicities and look for specific jet topologies
3-jet samples with different topologies

Central jets:
\[-1 < \eta_{jet} < 1\]

Forward jets:
\[\eta_{fj1} > 1.73\]
\[x_{fj1} > 0.035\]
\[\eta_{fj2} > 1\]

All jets:
\[E^*_{t,jet} > 4 \text{ GeV}\]

- Large deficit at small \(x\) for 2-forward jet topology! There \(\mathcal{O}(\alpha_s^3)\) calculation is insufficient
3- and 4-jet distributions vs LO+PS Monte Carlo

- CDM describes well all distributions except high p_T tail where it is too hard
- DGLAP MC (RG dir+res) fails both in shapes and normalization ($3j \times 1.55$, $4j \times 2.9$)
Collinear factorisation scheme:

jets are back-to-back at LO, hence
\(\Delta \Phi^* < 180^\circ \) are only possible at higher orders

\(k_t \) factorisation scheme:

\(\Delta \Phi^* < 180^\circ \) already at LO

Sensitive to details of parton dynamics

\[\mathcal{O}(\alpha_s^3) \] calculations describes the data reasonably well
(although with still large scale uncertainty)

ZEUS vs NLO DGLAP

\[\mathcal{O}(\alpha_s^3) \] calculations describe the data reasonably well
(although with still large scale uncertainty)
Azimuthal correlations vs CCFM

H1 data vs CCFM based MC

- Although Cascade fail to describe the shape of $\Delta \Phi^*$, 2 sets of uPDF (both describing HERA F_2) essentially cover the data
- Large sensitivity to uPDF

ZEUS data vs CCFM based MC

- "collinear approach" (HERWIG) fails
- Cascade based on k_t factorisation describes data much better
Implications for LHC predictions

- Large part of LHC phase space is at low x
- Tevatron is at large x

\Rightarrow SM predictions based on fixed order calculations and on DGLAP MC may not work even if tuned to Tevatron data

- Low x dynamics has to be implemented
- CDM and Cascade MC after additional tuning are promising tools for LHC
Summary

- There is a lot of gluon radiation at small x. Hard gluons are often radiated forward, with large rapidity separation from hard interaction vertex. This has an important implications for LHC!

- Fixed order QCD predictions based on DGLAP approach give large improvement with every order in α_s. Presently available calculations describe basic properties of multijet production in DIS, however it still fails at lowest x and for specific configurations with very forward jets.

- Color Dipole Model gives best description of jet production at HERA down to lowest x while models with k_t-ordered gluon radiation fail completely. This provides a substantial indication for unordered gluon radiation at small x as expected from $\ln(1/x)$ terms in evolution equations.

- Forward jet data and azimuthal correlations in dijet system show sensitivity to unintegrated PDFs and therefore can be used for their extraction.
BACKUP SLIDES...
H1 Forward jets: triple differential cross sections

\begin{align*}
5 < Q^2 < 10 & \quad 10 < Q^2 < 20 & \quad 20 < Q^2 < 85 \\
\begin{array}{c|c|c|c}
\text{Region} & \text{Value} & \text{Value} & \text{Value} \\
\hline
5 < Q^2 < 10 & 1.2 < r < 7 & 0.6 < r < 3.5 & 0.1 < r < 1.8 \\
\end{array}
\end{align*}
H1 Forward jets vs NLL BFKL

(C.Royon, DIS-2008)

$\frac{d\sigma}{dx \, dp_T^2} \, dQ^2$ - H1 DATA
Azimuthal correlations: Data vs NLOJET++

- NLO 3-jet is not in agreement with H1 data