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Chapter 1

The Standard Model in a nutshell

1.1 Preliminaries

• What specifies the theory? Action S or (more or less equivalently) Lagrangian (density)
L. The action is dimensionless and simply the integral over the Lagrangian density,
S =

∫
d4xL. Here, dimension refers to the mass dimension in natural units, where

[m] = [E] = [p] = [x−1] = [t−1]. The Lagrangian (density) therefore has dimension 4.
So what are possible terms? Look at the mass dimension of fields: The dimension of
fields in 4 dimensions is

[φ] = 1, [ψ] =
3

2
, [Aµ] = 1. (1.1.1)

• In addition there can be coupling constants with mass dimension.

• renormalisable theory: no coupling constants with negative mass dimension (e.g. Stan-
dard Model). Only limited number of terms possible, such as m2φ2 + φ4... (we will
discuss effective theories later, where also non-renormalisable terms are present).

• How to arrive at the Lagrangian? Input: Field content and symmetries.

• Given the Lagrangian can read off Feynman rules and perturbatively calculate any
process of interest.

1.1.1 Symmetries

We know nature likes symmetries. Symmetry principles underlie most of the dynamics of the
Standard Model. We are familiar with two basic types of symmetry, spacetime and internal.

1.1.1.1 Lorentz symmetry

Since Einstein we know that we live in a four dimensional spacetime and that for systems
where gravity is only a small effect this can be approximately described by Minkowski space,
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subject to Lorentz symmetry. The Minwoski space metric ds2 = ηµνdx
µdxν = −dt2 + dx2 +

dy2 + dz2 is invariant under SO(3, 1) Lorentz transformations of the coordinates. These
transformations are the Lorentz transformations and are the foundation of special relativity.
Different kinds of fields transform differently under Lorentz transformation, they live in
different representations of the Lorentz group.

For example, under a Lorentz transformation given by an SO(3, 1) matrix Mµ
ν , a vector

field Aµ transforms as
Aµnew = Mµ

ν A
ν
old (1.1.2)

Other representations are the spinor representation that describes fermions such as the
quarks and leptons and the (trivial) scalar representation which describes the Higgs. In
general there are different representations for different spin (and for the case of spinors there
are two different irreducible representations, the left- and right- handed spinors).

The Lagrangian has to be invariant under Lorentz transformations, so fields which trans-
form non-trivially have to be combined in the right way. For the case of Dirac spinors this
combination turns out to be ψ̄ψ ≡ ψ†γ0ψ, with γ0 one of the Dirac gamma matrices which
are subject to the Clifford algabra

{γµ, γν} = 2ηµν , (1.1.3)

with ηµν the Minkowski metric. For the case of particles vectors the Lorentz indices have to
be contracted, e.g. ηµνA

νAµ ≡ AµA
µ.

1.1.1.2 Internal symmetries

A second type of symmetry are internal symmetries. These may be either global symmetries
(such as the approximate SU(2) isospin symmetry of the strong interactions) or local (gauge)
symmetries. An example of these is the SU(3) gauge symmetry of the strong interactions
which transforms quark states of different colour into one another. Internal symmetries
do not change the Lorentz indices of a particle: an SU(3)c rotation changes the colour of
a quark, but not its spin. Again, the Lagrangian has to be a singlet, so only particular
combinations of fields are allowed.

Gauge theories

The theory of a free Dirac fermion

L = ψ̄(x)(i/∂ −m)ψ(x) (1.1.4)

with /∂ ≡ γµ∂µ is a Lorentz scalar and invariant under a global phase transformation ψ(x)→
eiαψ(x). To make it invariant under a local (= gauge) transformation, ψ(x) → eiα(x)ψ(x),
need to introduce a gauge field transforming as

Aµ(x)→ Aµ(x) +
1

g
∂µα(x) . (1.1.5)
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We can then write down a gauge invariant Lagrangian:

L = ψ̄(x)(i /D −m)ψ(x)− 1

4
F µν(x)Fµν(x), (1.1.6)

where the covariant derivative is

Dµ = ∂µ − igAµ(x) (1.1.7)

and the field strength tensor

Fµν(x) = ∂µAν(x)− ∂νAµ(x) . (1.1.8)

(1.1.6) is the Lagrangian of QED. Aµ is the massless photon. g = eQ where e is the
elementary charge and Q the electric charge of fermion ψ in units of e. It contains in
particular the fermion-gauge vertex

Dg� = ieQγµ .

The local transformation ψ(x) → eiαψ(x) defines a group, the Abelian unitary group
U(1), so QED is also called an Abelian gauge theory. Generalizing this to more compli-
cated groups, one obtains the non-Abelian gauge theories or Yang-Mills theories. Now
ψ is an n-dimensional vector corresponding to an n-dimensional representation of a com-
pact Lie group. Focusing on the special unitary groups SU(N), one can write the gauge
transformation as

ψi(x)→ eiα
aTaijψj(x) (1.1.9)

where T a are the generators, (traceless hermitian) matrices fulfilling the commutation
relations

[T a, T b] = if abcT c (1.1.10)

where f abc are the (totally antisymmetric) structure constants that vanish for an Abelian
group. A gauge invariant Lagrangian can be obtained by introducing the gauge fields Aaµ
transforming as

Aaµ(x)→ Aaµ(x) +
1

g
∂µα

a(x) + f abcAbµ(x)αc(x) . (1.1.11)

The covariant derivative reads

Dµ = ∂µ − igAaµ(x)T a . (1.1.12)

and the field strength tensor

F a
µν(x) = ∂µA

a
ν(x)− ∂νAaµ(x) + g f abcAbµA

c
ν . (1.1.13)

The resulting Yang-Mills Langrangian reads

LYM = ψ̄(i /D −m)ψ − 1

4
F a
µνF

µν
a . (1.1.14)
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It contains not only the fermion-gauge vertex

iDga

j� = igγµT aij ,

but also 3- and 4-gauge boson vertices.

Chiral gauge theories

A four-component Dirac spinor ψ can be decomposed into two Weyl spinors ψL and ψR
(they are the irreducible pieces wrt Lorentz transformations)

ψ =

(
ψL
ψR

)
(1.1.15)

ψL and ψR really are independent fields and can carry different gauge quantum numbers.
This is exactly the case in the Standard Model. In this case the Dirac mass term

−mψ̄ψ = −m (ψ̄LψR + ψ̄RψL) = −mψ̄LψR + h.c. (1.1.16)

is forbidden by gauge invariance. We were slightly sloppy here and take ψL,R to mean

ψL = PLψ =

(
ψL
0

)
ψR = PRψ =

(
0
ψR

)
(1.1.17)
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1.2 Express review of the Standard Model

1.2.1 SM particle content

1.2.2 SM Lagrangian

The SM is a quantum field theory that is defined by its gauge symmetries and its matter
content. The gauge symmetry group is

GSM = SU(3)c × SU(2)L × U(1)Y . (1.2.1)

The matter content contains the fermions (quarks and leptons) with the following quantum
numbers under GSM,

qL =

(
uL
dL

)
∼ (3, 2) 1

6
, uR ∼ (3, 1) 2

3
,

dR ∼ (3, 1)− 1
3
, lL ∼ (1, 2)− 1

2
, eR ∼ (1, 1)−1, (1.2.2)

where the numbers in brackets refer to the dimension of the SU(N) representations and
subscript corresponds to weak hypercharge Y . All fermion fields come in three copies or
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flavours. Finally, there is the scalar Higgs field,

H ∼ (1, 2) 1
2
. (1.2.3)

We can now write down the most general renormalizable GSM invariant Lagrangian with
these fields,

LSM = Lg + Lf + LH + LY , (1.2.4)

Lg = −1

4
Gµν
a G a

µν −
1

4
W µν
a W a

µν −
1

4
B µνBµν , (1.2.5)

Lf = q̄iL i /D qiL + ūiR i /D uiR + d̄iR i /D diR + l̄iL i /D liL + ēiR i /D eiR , (1.2.6)

LH = |DµH|2 − V (H) , (1.2.7)

LY = −Y ij
u q̄iL H̃ ujR − Y

ij
d q̄iLH djR − Y

ij
l l̄iLH ejR + h.c. , (1.2.8)

where we have introduced H̃ = iσ2H
∗ in the last line. The covariant derivative of the quark

doublet reads1

DµqL =
(
∂µ − igsG a

µ t
a − igW a

µ
σa

2
− ig′Y Bµ

)
qL , (1.2.9)

where ta is the generator of SU(3) in the fundamental representation, σa a Pauli matrix, and
Y the hypercharge, see (1.2.2). In the covariant derivatives of the lepton and Higgs doublet,
the first term in (1.2.9) is absent, for the quark singlets the second one is absent, and the
covariant derivative of the lepton singlet only contains the last term.

Actually, there is one additional term compatible with the gauge symmetries that was
omitted in (1.2.4). The term

Lθ = θ
g2
s

64π2
εµναβG a

µνG
a
αβ , (1.2.10)

although a total divergence, has a physical effect due to the non-trivial vacuum structure
of non-Abelian gauge theory. In practice, it would induce CP violation in the strong in-
teractions, leading e.g. to an electric dipole moment for the neutron. Since this has not
been observed experimentally, one obtains a bound θ . 10−9. Within the SM, there is no
explanation for the absence of this term (i.e. the smallness of this parameter): this is the
strong CP problem. An interesting solution is the Peccei-Quinn mechanism that requires
the existence of an axion. We will discuss this later in the lecture.

1.2.3 Electroweak symmetry breaking

The Higgs potential is given by

V (H) = −µ2|H|2 + λ|H|4 (1.2.11)

1Other common notations for the gauge couplings are gs ≡ g3, g ≡ g2, g′ ≡ g1. Another common notation
is g1 =

√
5/3g′, which is the normalization obtained in GUTs (see below). Note that the signs before the

i in (1.2.9) are a convention; this convention differs between textbooks and leads to different signs in the
Feynman rules. So be careful never to mix Feynman rules from two different sources!For a comparison of
conventions in popular textbooks, see table 2 of [1].
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λ > 0 required for consistency to have a bounded potential. For µ2 < 0 the minimum
of the potential will be at zero. For µ2 > 0 on the other hand, the Higgs potential has a
minimum for a non-zero field value of H. This means that the Higgs field develops a vacuum
expectation value (VEV); since the Higgs field is charged under the electroweak (EW)
gauge symmetry SU(2)L × U(1)Y , its VEV leads to spontaneous symmetry breaking
and gives masses to the EW gauge bosons.

In general the Higgs field (which has four real components) can be written as

H(x) = eiπ
a(x)σ

a

2
1√
2

(
0

φ(x)

)
. (1.2.12)

A gauge transformation (to unitary gauge) can now be used to remove the (unphysical)
Nambu-Goldstone bosons πa from the spectrum (they are eaten by the W and Z gauge
bosons). The potential for the real scalar φ is then minimized for

〈φ〉 ≡ v =

√
µ2

λ
. (1.2.13)

Let us call the excitation around this vev h(x), so

H(x) =
1√
2

(
0

v + h(x)

)
(1.2.14)

Lets plug this back into the SM Lagrangian and start with the covariant derivative of the
Higgs field, which completely determines the coupling to the gauge fields:

|DµH|2 ≡ (DµH)†(DµH) ⊃ 1

2
(0 v)

(
gW a

µ τ
a +

1

2
g′Bµ

)(
gW µ

b τ
b +

1

2
g′Bµ

)(
0
v

)
(1.2.15)

1

2

v 2

4

[
g2(W 1

µ )2 + g2(W 2
µ )2 + (−gW 3

µ + g′Bµ)2
]

(1.2.16)

=
g2v 2

4
W +
µ W

−µ +
(g2 + g′2)v 2

4
ZµZ

µ (1.2.17)

≡ m2
WW

+
µ W

−µ +m2
ZZµZ

µ , (1.2.18)

where

W ±
µ =

1√
2

(W 1
µ ∓ iW 2

µ ) , (1.2.19)

Zµ = cwW
3
µ − swBµ , Aµ = swW

3
µ + cwBµ , (1.2.20)

sw ≡ sin θw =
g′√

g2 + g′2
, cw ≡ cos θw =

g√
g2 + g′2

. (1.2.21)

Comparing with the measured W and Z masses, the electroweak vev is v = 246 GeV. The
photon remains massless and corresponds to the unbroken part of the EW gauge symmetry,
with gauge coupling e = gsw. The electric charge is given by Q = T3 + Y , where T3 is the
third component of weak isospin and is ±1

2
for the two components of an SU(2)L doublet

and 0 for SU(2)L singlets.
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1.2.4 Quark masses and mixing

Since the SM fermions are chiral, i.e. left- and right-handed chiralities have different gauge
quantum numbers, fermion masses are forbidden by the SM gauge symmetries. Quark and
charged lepton masses are only generated in the course of EWSB from the Yukawa couplings
in (1.2.8). In the broken phase, one obtains the mass terms for the quarks

Lmq = − v√
2
ūiLY

ij
u u

j
R −

v√
2
d̄iLY

ij
d d

j
R . (1.2.22)

In general, Yu,d can be arbitrary complex 3×3 matrices. To obtain the physical quark fields,
we have to go to the mass eigenstate basis. This can be achieved by performing unitary
field rotations,

uL → V u
L uL, uR → V u

RuR, dL → V d
LdL, dR → V d

RdR. (1.2.23)

The rotation matrices can always be chosen such that

v√
2

(V u
L )†YuV

u
R = Mu ,

v√
2

(V d
L )†YdV

d
R = Md , (1.2.24)

are diagonal, i.e.

Mu = diag(mu,mc,mt) , Md = diag(md,ms,mb) . (1.2.25)

To see if the rotations (1.2.23) have any physical impact, we have to insert them into
LSM and see if the rotation matrices drop out everywhere. In fact it is clear that all flavour
diagonal couplings will be unchanged, since the matrices are unitary, e.g.

ūLγ
µuL → ūL(V L

u )†γµV L
u uL = ūLγ

µuL (1.2.26)

This applies to

• kinetic terms

• neutral currents

However, they do not cancel in the W vertices:

ūLγµdL → ūL(V L
u )†γµV L

d dL = ūLγ
µVCKMdL . (1.2.27)

This can lead to flavour changing transitions such as

uDgW

s�
VCKM is the Cabibbo-Kobayashi-Maskawa quark mixing matrix that parametrizes quark

flavour violation in the SM,

VCKM =

 Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

 .

10



Note that there are unitarity relations between the different entries, such as VudV
∗
ub+VcdV

∗
cb+

VtdV
∗
tb = 0. How many physical parameters are contained in VCKM?

Consider N generations: N × N unitary: 2N2 − N2 (from the condition U †U = 1). An
orthogonal matrix O(N) has N(N − 1)/2 angles, i.e. the N(N + 1)/2 are phases!But 2N
fermions can absorb 2N − 1 phases (A phase rotation which is equal for all fermions cancels
out), so in total we have (N − 1)(N − 2)/2 phases.

N angles phases

2 1 0

3 3 1

4 6 3

A complex phase is equivalent to CP violation. Need three generations to have CP
violation in general.

There are many different physically equivalent ways to parametrize the CKM matrix.
A convenient parametrization is the Wolfenstein parametrization that is based on an
expansion in the Cabibbo angle θC ≡ θ12 or in λ = s12 ≈ 0.22,

VCKM =

 1− λ2

2
λ Aλ3(ρ− iη)

−λ 1− λ2

2
Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

+O(λ4) . (1.2.28)

1.2.5 The Higgs

We have seen that 3 out of 4 degrees of freedom were absorbed by the W and Z bosons.
Plugging

H(x) =
1√
2

(
0

v + h(x)

)
(1.2.29)

back into the Higgs potential and covariant derivative, we also obtain the Lagrangian of a
real, massive scalar, the Higgs boson,

LH =
1

2
(∂µh)2 − 1

2
m2
hh

2 − λ

2
mhh

3 − 1

4
λh4 + terms with gauge fields . (1.2.30)

where mh =
√

2µ =
√
λ/2v. We see that roughly the Higgs boson mass is given by the

electroweak vev v = 246GeV, with an additional unknown coupling. It could be much
lighter for smaller coupling (and has been searched for in rare meson decays in the 70s...)
As we all know it has now been measured to be mh ∼ 125 GeV.

Properties of the Higgs

Given the Higgs mass, the couplings of the Higgs to all SM states are completely determined.
A natural question to ask is therefore how well does the observed particle match these
predictions, or in other words is it really the Higgs?
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Figure 1.1: Production cross section at 8 TeV LHC.

The Higgs couplings to gauge bosons and fermions are directly proportional to the masses
of the particles. Since the pole masses of the gauge bosons and fermions are known [the
electron and light quark masses are too small to be relevant]

MZ = 91.187 GeV , MW = 80.425 GeV , mτ = 1.777 GeV , mµ = 0.106 GeV ,

mt = 173.3± 1.2 GeV , mb = 4.88± 0.07 GeV , mc = 1.64± 0.07 GeV (1.2.31)

the production cross section and all partial widths for the Higgs decays into these particles
can be predicted.

1.2.5.1 Production cross section

The initial state at the LHC is protons. Higgs has tiny couplings to valence quarks. As the
largest coupling of the Higgs is to the top quark, the main production channel at the LHC
turns out to be: gluon fusion. The overall production cross section is about 20pb, i.e. about
half a million Higgses have been produced in the last LHC run.

1.2.5.2 Decays

In the Born approximation, the partial width of the Higgs boson decay into fermion pairs is
given by

ΓBorn(H → ff̄) =
GµNc

4
√

2π
MH m

2
f β

3
f (1.2.32)

with β = (1 − 4m2
f/M

2
H)1/2 being the velocity of the fermions in the final state and Nc the

color factor Nc = 3 (1) for quarks (leptons). The Higgs boson will have the tendency to
decay into the heaviest ones allowed by phase space. The W and Z bosons are too heavy
to both be on-shell. As the Higgs carries no electric charge, the decay into photons is a
loop process and hence suppressed (but still the most important channel for discovery due
to small background).
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Figure 1.3: Branching ratios of the measured boson compared with the SM expectation.
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1.2.6 Accidental & approximate symmetries of the SM

While the gauge symmetry of the SM is seen as fundamental, there are also accidental
symmetries in the SM that only arise as a consequence of imposing gauge invariance and
renormalizability with a given particle content. These accidental symmetries can be exact
or approximate. They are very powerful when constraining physics beyond the SM since
the new physics can violate the accidental symmetries, but the violation is typically subject
to strong experimental constraints. Typically, this means that new physics either has to
contain these symmetries as accidental symmetries as well, or they have to be promoted to
fundamental symmetries.

1.2.6.1 Baryon & lepton number

The classical SM Lagrangian is exactly invariant under baryon number U(1)B, where (anti-)
quarks carry B = 1

3
(−1

3
) and leptons have B = 0. There are strong bounds on B violation

from proton decay.
Likewise, individual lepton family numbers Le, Lµ, and Lτ are conserved in the SM with

massless neutrinos. This implies the absence of processes such as µ→ eγ. Since neutrinos are
massive, the lepton family numbers are no longer exactly conserved, but they still constitute
very good approximate symmetries due to the smallness of neutrino masses.

At the quantum level, B and L are violated by sphaleron processes. This is completely
irrelevant for low-energy physics but might have played a role in the early universe. The
combination B − L is still exactly conserved.

1.2.6.2 Custodial symmetry

The Higgs potential
VH = −µ2|H|2 + λ|H|4 (1.2.33)

is not only invariant under local SU(2)L × U(1)Y gauge transformations, but in fact has a
larger global symmetry group. This can be seen by writing the four real components of H,

H =

(
φ1 + iφ2

φ3 + iφ4

)
(1.2.34)

as a vector, ~φ = (φ1, φ2, φ3, φ4)T . Then, one has

|H|2 = H†H = ~φ · ~φ , (1.2.35)

which is obviously invariant under four-dimensional rotations that leave the norm of ~φ in-
variant, i.e. SO(4) transformations. The same is then true for the potential.

In the broken phase, one has φ4 = (v + h)/
√

2, so

|H|2 = ~φ3 · ~φ3 +
1

2
(h+ v)2 , (1.2.36)

where ~φ3 = (φ1, φ2, φ3)T , which is only invariant under SO(3).
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The relation of these symmetries to SU(2)L can be understood by noting that SO(4) ∼
SU(2)× SU(2) and SO(3) ∼ SU(2).

The group SU(2)L × SU(2)R has been broken to the diagonal subgroup SU(2)V , the
custodial symmetry group.

Under the custodial symmetry SU(2)V , the physical Higgs h transforms as a singlet and
the SU(2)L gauge fields (W 1

µ ,W
2
µ ,W

3
µ ) as a triplet. If it were exact, it would thus predict

mW = mZ . In reality, custodial symmetry is violated by g′ so that at tree-level, we have

m2
W

m2
Zc

2
w

≡ ρ = 1 . (1.2.37)

Exact custodial symmetry would further predict Yu = Yd; thus, the ρ parameter deviates
from 1 also due to effects involving the difference between Yukawa couplings.

Models in which custodial symmetry is not a good approximate symmetry typically lead
to large deviations from ρ = 1.

1.2.6.3 Flavour symmetry

In the absence of fermion masses there is a large (accidental) global symmetry,

qiL → U ij
qL
qjL

uiR → U ij
uR
ujR

diR → U ij
dR
djR

liL → U ij
lL
ljL

eiR → U ij
eR
ejR .

This symmetry is accidental in the sense that it is not imposed, but rather follows from the
fermion content and gauge symmetries of the standard model. Since there are five inde-
pendent U(3) symmetries, the global flavor symmetry of the matter Lagrangian is [U(3)]5.
These symmetries are only approximate in the presence of Yukawa couplings Only a very
small subgroup of [U(3)]5 is not violated, corresponding to baryon and lepton number.

The Yukawa couplings of the SM show a very hierarchical pattern: only the top quark
mass is of the order of the electroweak scale, mt ≈ v/

√
2, while the other quark and charged

lepton masses are a factor of 50 to a million smaller. Also the CKM mixing is very hierar-
chical. This means that the SM exhibits an approximate flavour symmetry

Gfl = U(2)qL × U(2)uR × U(3)dR , (1.2.38)

which is exact in the limit of switching of all Yukawa couplings but the top one.
An important consequence of the smallness of quark masses is the suppression of flavour-

changing neutral currents (FCNCs). While they are forbidden at tree level, they can be
induced at 1-loop level through loops involving W bosons. Consider the transition di → dj,
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diF
Vki
fuk

W−

yf
V ∗
kj

Fdj

}
The resulting amplitude will be of the form∑

VkiV
∗
kj F (muk) = VuiV

∗
ujF (mu) + VciV

∗
cjF (mc) + VtiV

∗
tjF (mt)

≈
(
VuiV

∗
uj + VciV

∗
cj

)
F (0) + VtiV

∗
tjF (mt)

= VtiV
∗
tj [F (mt)− F (0)] (1.2.39)

where we have used the unitarity of the CKM matrix and the smallness of the up and charm
masses. Obviously, the amplitude would vanish for degenerate quark masses. The vanishing
of FCNCs for degenerate (or massless) quarks is a general and fundamental property called
the GIM mechanism (Glashow-Iliopoulos- Maiani). In this example, GIM is violated by
the large top quark mass.

Further reading: section 3 of [2]

1.3 Why physics beyond the SM?

1.3.1 Observational hints for BSM

1.3.1.1 Dark matter

There is overwhelming evidence for the existence of dark matter over a very large range
of astrophysical scales, ranging from galactic scales to the largest observable scales in the
Universe. On galactic scales for instance it solves the puzzle of galactic rotation curves:
while the rotational velocity of an object circling the galactic center should scale like v(r) ∝√
M(r)/r inside the galaxy and ∝ 1/

√
r outside of it, one observes that the rotation curves

remain constant up to the outermost visible stars. This can be solved by postulating and
invisible halo with mass density ρ(r) ∝ 1/r2 ⇒M(r) ∝ r.

There are many more ways to infer the existence of dark matter, from e.g. the anisotropies
of the cosmic microwave background and the large scale structure of visible matter in the
universe to galaxy cluster collisions such as the “bullet cluster”, a collision of two clusters
of galaxies where the visible matter (hot gas) decelerated in the course of the collision, but
gravitational lensing was used to show the the bulk of the total mass continued ballistically.

The crucial point about dark matter is that one can infer from primordial nucleosynthesis
that it is non baryonic. The only candidate within the standard model are neutrinos, but
they turn out not to work. So it has to be BSM physics.

There are many candidates, including

• axions,

• sterile (GSM singlet) neutrinos,
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• WIMPs.

An example for a WIMP is the lightest SUSY particle (LSP) in SUSY models with conserved
R-parity. We will come back to dark matter in much more detail later.

1.3.1.2 Neutrino oscillations

The SM Lagrangian (1.2.4) does not give masses to neutrinos. The observational evidence
for neutrino oscillations has however shown conclusively that neutrinos are massive. The
simplest possibility is to add an additional field νR ∼ (1, 1)0 and write down another Yukawa
coupling,

LYν = −Y ij
ν l̄iL H̃ νjR + h.c. (1.3.1)

This would not explain the fact that neutrinos are at least one million times lighter than
charged leptons. But actually since νR does not carry any quantum numbers, an additional
term is allowed,

LMν = −1

2
M ij

ν (νiR)cνjR + h.c. (1.3.2)

This is a Majorana mass term. Since it is not protected by any symmetry, it could be very
large. The physical neutrino masses would then be (for a single generation) the eigenvalues
of the matrix (

0 v√
2
Yν

v√
2
Yν Mν

)
. (1.3.3)

For Mν � v, there is a heavy state with approximate mass Mν and one with approximate
mass

mν ≈
v 2Y 2

ν

2Mν

, (1.3.4)

for each generation. You can see that the light neutrino mass decreases as the Majorana
mass increases. This is why this mechanism is called the see-saw mechanism. For Yν ∼ 1,
one needs Mν ∼ 1014 GeV to be in the right ballpark for sub-eV neutrino masses.

Further reading: [3]

1.3.1.3 Baryon asymmetry

The universe contains much more matter than antimatter. If there was a period of inflation,
the initial state is symmetric however, so the asymmetry hsa to be generated dynamically.
This requires among other things the violation of CP symmetry. Although CP is violated in
the SM by the CKM phase, this effect is too small to explain the BAU. Thus there have to
exist other sources of CPV beyond the standard model.
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1.3.2 Theoretical motivation for BSM

1.3.2.1 SM Charges

There is no a priori reason in the SM why hypercharge should come in fractional numbers
(or why electric charge should come in multiples of e/3). It turns out that the cancellation
of gauge anomalies requires charge to be quantized. 2

Charge quantization would be explained if the U(1)Y gauge symmetry were the remnant
of a larger, spontaneously broken non-Abelian gauge symmetry. This can happen e.g. in
theories of grand unification of the strong and EW interactions.

More generally the quantum numbers of standard model matter points to some unifying
symmetry. In particular the GSM quantum numbers of the SM fermions (+ 1 right-handed
neutrino) fit exactly to a single 16-dimensional representation of SO(10).

1.3.2.2 Gauge coupling unification

Extrapolating the three gauge couplings of the SM to higher energies, they come tantalizingly
close at a scale ∼ 1016 GeV. Could this be a hint of a unification of all forces at or close to
this scale?

1.3.2.3 Flavour puzzle

The SM with massless neutrinos has 18 parameters (not counting the QCD vacuum angle
θ):

• 3 gauge couplings

• Higgs mass and VEV

• 6 quark masses

• 3 charged lepton masses

• 3 CKM angles, 1 phase.

That is, 13 of the 18 parameters come from the Yukawa Lagrangian LY. The values of these
parameters are completely unexplained in the SM. Their values show a very hierarchical
pattern:

(mu,mc,mt) ≈ (2× 10−3, 1× 100, 2× 102) GeV , (1.3.5)

(md,ms,mb) ≈ (5× 10−3, 1× 10−1, 4× 100) GeV , (1.3.6)

(me,mµ,mτ ) ≈ (5× 10−4, 1× 10−1, 2× 100) GeV , (1.3.7)

2Interestingly, explaining neutrino masses by the addition of the state νR ∼ (1, 1)0, anomaly cancellation
then guarantees charge quantization.
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|VCKM| ∼

 1 λ λ3

λ 1 λ2

λ3 λ2 1

 with λ ∼ 0.2 . (1.3.8)

The origin of these hierarchies is a big mystery.

1.3.2.4 How to include gravity?

General relativity has a coupling constant with negative mass dimension GN ∼ 1/M2
P , so it

is non-renormalisable. It can therefore not be simply treated as the other forces. It can still
be treated as an effective theory, but new physics need to come in at the Planck scale (at
the latest).

1.3.2.5 Hierarchy problem

Since the Higgs boson discovery, we know that the Higgs boson exists and that its mass is
mh ≈ 125 GeV. In principle, this makes the SM consistent up to very high energy scales
(Maybe the Higgs quartic coupling runs negative below the Planck scale, so new physics
would be needed already below 1012 GeV or so.).

However, assuming that there is new physics at high energy scales, there is a funda-
mental problem with the Higgs mass. The problem is that m2

H receives enormous quantum
corrections from the virtual effects of every particle that couples, directly or indirectly, to
the Higgs field.

hch
This corresponds to a correction to m2

H from a loop containing a Dirac fermion f with
mass mf . If the Higgs field couples to f with a term in the Lagrangian −λfHf̄f , then the
Feynman diagram yields a correction

∆m2
H = −|λf |

2

8π2
Λ2

UV + . . . . (1.3.9)

Here ΛUV is an ultraviolet momentum cutoff used to regulate the loop integral; the ellipses
represent terms proportional to m2

f , which grow at most logarithmically.
The total mass is now the bare mass plus the radiative correction,

m2
h = m2

0 + ∆m2
H . (1.3.10)

For ΛUV � 100 GeV a precise cancellation is required. As long as we only consider the
Standard Model, there is no problem, as it is a renormalisable QFT and Λ does not have
any meaning. But as we said the SM cannot be valid up to infinite energies

• gravity will come into the game at the Planck scale at around 1019 GeV

• if grand unification, NP at 1016 GeV (’optional’)
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• also Landau pole of g1 (very high scales, but also can’t trust perturbation theory at
large couplings...)

This implies that the SM should be treated as an EFT, and the cutoff is ’physical’.
This is called the naturalness problem because it is considered highly unnatural to

have such an enormously precise cancellation without a symmetry reason. Related is the
hierarchy problem, the question why the electroweak scale is so much smaller than the
Planck scale.

Technically, the problem is that the Higgs mass renormalizes additively as opposed to
multiplicatively. The latter is what happens for fermion and vector masses: the correction
to the mass is then proportional to the mass itself. Fermions and vectors don’t have a
naturalness problem even if they are light because their mass terms violate a symmetry –
chiral or gauge symmetry, respectively.

This “hierarchy problem” has occupied theorists for a long time, and there are many
potential solutions, including:

• Perhaps Λ is actually not much larger than v, so there is no hierarchy after all. Theories
with extra dimensions are a recent attempt along this direction.

• Perhaps M really is much larger than v, and low-energy supersymmetry makes this nat-
ural. In an exactly supersymmetric theory, scalar masses renormalize multiplicatively
like fermion masses and are therefore safe from the naturalness problem.

• Perhaps there are no fundamental scalars in nature after all, and the electroweak
symmetry is broken some other way. For example, Technicolor models break the elec-
troweak symmetry via a fermion-antifermion condensate.

Further reading: [4–6]

What is the scale of new physics?

Since the fine-tuning increases quadratically with (Λ/mh)
2, the hierarchy problem indicates

the presence of a new scale not far above the electroweak scale.
Note however that this is quite different from the situation of the Standard Model without

the Higgs boson: Before the start of the LHC we knew that something new had to be
discovered that unitarises WW scattering with a mass below a TeV. Now that we have
found the Higgs, the situation is a bit different: We still know that there has to be physics
beyond the SM, but the scale is much less clear (and depends on the somewhat subjective
view as to how much fine tuning is acceptable).
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Chapter 2

Effective field theories

Effective field theory (EFT) is a powerful tool in QFT that allows to separate physics oper-
ating at very different energy scales. In EFTs, we “integrate out” physics at short distances
(high energies) and replace it by non-renormalizable interactions among the “light” fields in
our low-energy theory.

This has two important applications:

1. Avoiding large logarithms in multi-scale problems.

Using dimensional regularization with minimal subtraction to perform a calculation of
a process at energy E, one typically chooses the renormalization scale µ close to this
scale E to avoid large logarithms of the form lnE/µ. However, if particles with vastly
different masses m contribute to the process (e.g. in loop integrals), one can run into
large logs of the form lnm/µ that invalidate perturbation theory.

2. Parametrizing the ignorance about short-distance physics.

At energies much lower than the mass scale of new physics, indirect new physics effects
on low-energy observables can be described by new and/or modified interactions among
the light (known) particles.

2.1 Integrating out fields

Consider a theory with Lagrangian Lfull = LH(φH , φL)+L(φL), where φH are fields describing
particles with masses bigger than some scale Λ and φL all the lighter particles. The basic
idea of EFTs is that there are two equivalent descriptions of physics at energies much lower
than Λ:

1. The full theory described by Lfull;

2. The effective theory described by

Leff = L(φL) +
∑
k

Ci
Λk−4

O(k)
i (φL) (2.1.1)
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where Ci is a dimensionless coefficient and O(k)
i (φL) are local operators of mass

dimension k built out of the light fields.

Here, dimension refers to the mass dimension in natural units, where [m] = [E] = [p] =
[x−1] = [t−1]. The Lagrangian (density) has units of energy per length3, so its dimension is
4. The dimension of fields in 4 dimensions is

[φ] = 1, [ψ] =
3

2
, [Aµ] = 1, [Fµν ] = 2. (2.1.2)

There are two unsettling facts about (2.1.1). First, it involves an infinite sum over
operators with arbitrarily high dimension. The reason this is not a problem is because the
contribution of an operator of dimension k to a process at energies E � Λ will scale as

Ci

(
E

Λ

)k−4

=


O(1) if k = 4 (“marginal”)
� 1 if k > 4 (“irrelevant”)
� 1 if k < 4 (“relevant”)

(2.1.3)

If we are interested in describing physics to a given accuracy, we can therefore truncate
the series and consider only operators up to a certain dimension. The number of operators
with fixed dimension is always finite.

The second unsettling fact is that the operators with k > 4 lead to non-renormalizable
interactions. This is a general feature of EFTs: at low energies, the effect of the heavy fields
is replaced by non-renormalizable interactions of the light fields. This is not a problem
because, as we just saw, there is always a finite number of non-renormalizable operators that
contributes to a given process if probed to a given accuracy.

In fact, this implies that the low-energy limit of any fundamental theory will always be a
renormalizable theory, since the non-renormalizable interactions are suppressed by powers of
E/Λ. (From this point of view, the fact that the SM is renormalizable is neither surprising
nor fundamental!)

If one knows the full theory, one can compute the Wilson coefficients Ci in terms of the
parameters of the full theory. This is done via the procedure of matching. By construction,
the full and the effective theories describe the same physics at low energies. So one simply
computes an observable in both theories and equates the results. This is best illustrated by
an example.
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Figure 2.1: Feynman diagram for β decay.

2.2 Fermi theory of beta decay

In the SM, the beta decay of a neutron is based on the quark-level transition d → ue−ν̄.
Let’s compute the diagram in unitary gauge.

iMfull = (ūu
ig√

2
Vudγ

µPLud) (2.2.1)

× −i
k2 −m2

W + iε

[
gµν −

kµkν
m2
W

]
(ūe

ig√
2
γνPLvν) (2.2.2)

m2
W�k

2

−→ −i g2

2m2
W

Vud(ūuγ
µPLud)(ūeγµPLvν) (2.2.3)

Now let’s construct an effective theory containing Fermi’s 4-fermion contact interaction.
It reads

Leff =
C4f

Λ2
(ūγµPLd)(ēγµPLν) . (2.2.4)

We can easily compute the amplitude in the effective theory,

iMeff = i
C4f

Λ2
(ūuγ

µPLud)(ūeγµPLvν) . (2.2.5)

From the matching conditionMeff =Mfull, we can then read off

C4f

Λ2
= − g2

2m2
W

Vud ≡
4GF√

2
Vud (2.2.6)

where GF is Fermi’s constant.

2.3 Standard Model as an effective theory

We know that the SM is not the final theory, but we know that it gives a good description
of “low energy” physics. Treating it as an effective field theory, we can get an understanding
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of possible new physics effects in low energy experiments by adding non-renormalizable
operators invariant under the SM gauge symmetry to the SM Lagrangian.

Given a Lagrangian for an extension of the SM we want to construct the effective La-
grangian

L(ϕSM ;χBSM) −→ Leff = LSM(ϕSM) +
∑
i

aiOi(ϕSM), (2.3.1)

where we collectively denoted the SM fields as ϕSM and the heavy fields as χBSM . All
the information about the original Lagrangian and its parameters is now encoded in the
coefficients ai of the higher-dimensional operators Oi. The operators Oi are independent
of any hypothetical SM extension because they are constructed from the known SM fields.
Note that a possible caveat is that the BSM fields are actually not heavy. It is conceivable
that we haven’t seen any BSM fields yet not due to their heaviness, but because they are so
weakly coupled. This case would not be captured by the EFT approach.

Dimension 2

There is only a single “relevant” operator: the dimension-2 Higgs mass term. Let’s for
simplicity consider a single real scalar with mass term 1

2
m2φ2. Without a symmetry reason

forbidding it, loops involving physics above the cutoff should lead to corrections of order Λ2.
Another way to put this is to add an operator CΛ2φ2. Without a symmetry reason, one
should expect that C is O(1). We see that if we want our scalar to be much lighter than Λ,
we need to perform a fine-tuning. This is the hierarchy problem in EFT language!

Dimension 3

While the SM Lagrangian does not contain explicit fermion mass terms since they are for-
bidden by the gauge symmetry, what would happen if a mass term for a fermion, mψ̄ψ,
were present? Although fermion masses have dimension 3 and are thus relevant, they do not
suffer from a naturalness problem. The reason is that the fermion mass term breaks chiral
symmetry under which ψ → eiαγ5ψ. Since this symmetry is obeyed by the kinetic term,
the radiative correction to m has to vanish for m = 0. This fixes the scaling of the mass
correction to ∆m ∝ m(a+ b lnµ/m).

Dimension 4

The kinetic terms, gauge interactions, Yukawa couplings, and Higgs quartic couplings are all
dimension-4 operators in the SM.

(Dimension 0)

We could also add a dimension-0 operator to the SM Lagrangian: L ⊃ CΛ4. This is a vac-
uum energy. Astrophysical observations show that CΛ4 ≈ (meV)4, in stark disagreement
with the EFT expectation.
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Dimension 5

It turns out that there is only a single dimension-5 operator invariant under the SM gauge
symmetry. It reads

L5 = −C
ij
5

Λ
(H̃† (liL)c)(H̃† ljL) (2.3.2)

In the broken phase and in unitary gauge, it reads

L5 = −C
ij
5

Λ

v 2

2
(νiL)cνjL + terms with h (2.3.3)

This is a Majorana mass term for left-handed neutrinos! If Λ � v and Cij
5 ∼ O(1), we

automatically get very small neutrino masses.

Dimension 6

At the dimension-6 level, a large number of operators invariant under the SM gauge sym-
metries can be written down. Ignoring the flavour structure and assuming baryon number
conservation, the number of operators is 59. Taking into account the flavour structure, the
total number of free parameters (real and imaginary parts of Wilson coefficients) is 2499.

Among these operators, the most interesting ones for phenomenology are the ones that
violate the approximate and/or accidental symmetries of the SM discussed in section 1.2.6,
because they can be probed in precision experiments:

• operators violating custodial symmetry are probed by precision measurements at the
Z pole by LEP;

• operators violating baryon number can lead to proton decay, with extremely stringent
experimental bounds;

• flavour-violating operators can contribute to flavour-changing neutral currents.

Further reading: [7–10]
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Chapter 3

Precision tests of the Standard Model

3.1 Electroweak precision tests

The idea of electroweak precision tests is to constrain the presence of new heavy particles
via their influence on standard model observables which are well measured. This task of
analyzing SM extensions and comparing with experiments is in principle straightforward.
One needs to calculate all the observables, including the contributions of the proposed new
particles, and needs to make sure that the results agree with the experiments within errors.
In practice, this can be quite tedious. When the new particles are heavy compared to the
energies at which the PEW measurements were made, one can integrate the new particles
out and construct an effective theory in terms of the SM fields only as we have done in the
last section. The PEW experiments can be used to constrain the coefficients of the effective
theory. This can be, and has been, done once and for all (or at least until there is new
data). Various SM extensions can then be constrained by comparing with the bounds on
the effective coefficients instead of comparing to the experimental data. This is often much
simpler.

3.1.1 Oblique corrections

One type of new physics contribution is particularly constrained by the PEW measurements,
corrections to the electroweak gauge boson self energies. The corresponding operators are
those that do not contain any fermion fields. Such operators originate whenever heavy fields
directly couple only to the SM gauge fields and the Higgs doublet. Sometimes such operators
are referred to as “oblique”.

Historically this has not been formulated in the EFT language but in terms of electroweak
gauge boson vacuum polarizations. For completeness let us take a brief detour and follow
the historic path. The XY gauge boson vacuum polarization can be written as

Xgp Yg = iΠXY (q2) gµν + iΠq
XY (q2) qµqν . (3.1.1)
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The form is fixed by Lorentz invariance. The second term only correct the longitudinal
components of the gauge boson propagators and are suppressed. Let’s take two external Z
bosons as an example. The corrected Z propagator will then read

iGµν
Z (q) =

−igµν
q2 −m2

Z

(
1 + iΠZZ

−i
q2 −m2

Z

+ . . .

)
+ qµqν terms, (3.1.2)

which can be resummed to yield

iGµν
Z (q) =

−igµν
q2 −m2

Z −ΠZZ(q2)
+ qµqν terms. (3.1.3)

The physical mass is given by the pole in the propagator,

m2
Z,pole = m2

Z + Re[ΠZZ(m2
Z)] . (3.1.4)

Assuming that the new particles are heavy allows for the expansion of the new physics
contributions to the self-energies in powers of q2/M2

new about q2 = 0, where Mnew represents
the heavy scale of the new interactions. Keeping only constant and linear terms in q2 thus
yields

Πγγ(q
2) = q2Π′γγ(0) + · · ·

ΠZγ(q
2) = q2Π′Zγ(0) + · · · (3.1.5)

ΠZZ(q2) = ΠZZ(0) + q2Π′ZZ(0) + · · ·
ΠWW(q2) = ΠWW(0) + q2Π′WW(0) + · · ·

for the part of the vacuum polarization functions which arise solely from the new interac-
tions. This approximation thus allows us to express the new contributions in terms of six
parameters. In the electroweak sector, the SM has three undetermined parameters that is the
gauge coupling constants g and g′ and the electroweak vev v. Three most precisely measured
quantities, α ,GF , and MZ are used to determine the parameters of the SM. These three
measurements cannot be therefore used to constrain new physics. This leaves three mea-
surable parameters. A convenient parameterization which describes potential new physics
contributions to electroweak radiative corrections is given by the S , T , U formalism of Pe-
skin and Takeuchi. These parameters are defined such that they vanish for a reference point
in the SM (i.e., a specific value for the top-quark and Higgs masses) and deviations from
zero would then signal the existence of new physics. They are given by

αS = 4s2
wc

2
w

[
Π′ZZ(0)− c2

w − s2
w

swcw
Π′Zγ(0)− Π′γγ(0)

]
,

αT =
ΠWW(0)

M2
W

− ΠZZ(0)

M2
Z

, (3.1.6)

αU = 4s2
w

[
Π′WW(0)− c2

wΠ′ZZ(0)− 2swcwΠ′Zγ(0)− s2
wΠ′γγ(0)

]
.
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This definition ensures that the parameters T and U vanish if the new physics observes
custodial isospin symmetry. In fact T represents the shift of the ρ parameter due to new
physics,

ρ = 1 + δρSM + αT . (3.1.7)

U is typically very suppressed in BSM models, so for simplicity we’ll put it to zero.
The electroweak observables can be expressed in terms of the parameters S , T in a

straightforward fashion. For example the gauge boson masses are

M2
Z = M2

Z0

1− αT
1−GFM2

Z0S/2
√

2π
,

M2
W = M2

W0

1

1−GFM2
W0S/2

√
2π

, (3.1.8)

where MZ0 ,MW0 are the Standard Model expressions.

3.1.2 EFT language

3.1.2.1 T parameter

The T parameter has a very simple interpretation in the SM EFT discussed in chapter 2.
Up to an overall factor, it is the Wilson coefficient of the operator OT = |H†DµH|2,

CT
Λ2

= −2α

v 2
T . (3.1.9)

To see this, we can expand OT in the unitary gauge,

OT = |H†DµH|2 =
e2v4

16c2
ws

2
w

ZµZ
µ + terms with h (3.1.10)

=
v 2

2

m2
Z

2
ZµZ

µ + terms with h , (3.1.11)

so we get a contribution to the Z mass, but not the W mass.

3.1.2.2 S parameter

S is the Wilson coefficient of the operator OS = H†σiHW i
µνB

µν ,

CS
Λ2

=
α

4swcwv 2
S . (3.1.12)

3.1.2.3 U parameter

The operator for the U parameter is

OU = (H†W µνH)(H†WµνH) (3.1.13)

which corresponds to a dimension 8 operator and is therefore suppressed by 1
Λ4 .
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Figure 3.1: Experimentally allowed region in the plane of the oblique parameters S and T .
Taken from [11].

3.1.2.4 Experimental bounds

A global χ2 analysis, that includes all data and correlations, is possible using the EFT
methods. All of the data is included in bounding the effective parameters S and T . One
needs to consider the two-dimensional allowed range for S and T instead of the independent
bounds on these parameters, as the experimentally allowed range for S is strongly correlated
with T , see fig. 3.1.

Using naive dimensional analysis, from |T | . 0.2 we can now estimate that Λ & 5 TeV×√
CT , where CT should be of O(1) for a theory not respecting custodial symmetry.

The electroweak precision observables also depend on the Higgs mass. A global analysis
of SM data yielded mH . 200 GeV, so perfectly compatible with the measured value.

3.1.3 Example: heavy quark doublet

As a concrete example, let’s introduce a 4th generation of quarks: a doublet QL = (TL, BL)T

and two singlets TR, BR with Lagrangian

LQ = iQ̄L /DQL + iT̄R /DTR + iB̄R /DBR − (YT Q̄LH̃TR + YB Q̄LHBR + h.c.) (3.1.14)

For simplicity, we do not introduce any tree-level mixing with the SM quarks. Just as in the
SM, after EWSB the heavy quarks will get masses MT,B = vYT,B/

√
2.

Let us get a rough estimate of how the S and T parameters will depend on the Lagrangian
parameters. Computing the T parameter in the unbroken phase, we need a loop with 4
external Higgs legs. Let’s assume MT � MB and focus on the T contribution. Accounting
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for the colour factor, loop factor, mass suppression and Yukawa couplings, one expects

CT
Λ2
∼ Nc

16π2

Y 4
T

M2
T

=
Nc

4π2

M2
T

v4
. (3.1.15)

A remarkable fact about this contribution is that it does not decouple for MT → ∞. This
is because the T parameter measures the violation of custodial symmetry, which grows with
the T -B mass difference. For the S parameter, we need a loop with an external Wµ, Bµ and
two Higgses. Taking M = MT = MB, we can then estimate

CS
Λ2
∼ Nc

16π2

gg′Y 2
T

M2
=

Nc

8π2

gg′

v 2
. (3.1.16)

We see that S becomes independent of v and the masses, so it essentially “counts” the
number of new SU(2)L doublets in the theory.

Doing the exact computation, one finds

T =
Nc

α16π2v 2

(
M2

T +M2
B −

2M2
TM

2
B

M2
T −M2

B

ln
M2

T

M2
B

)
, (3.1.17)

S =
Nc

6π

[
1 + 2Y ln

(
M2

B

M2
T

)]
. (3.1.18)

As expected, T vanishes for MT →MB. S becomes mass-independent in this limit.

Further reading: [12]
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Chapter 4

Introduction to supersymmetry

A SUSY transformation transforms a fermionic state into a bosonic one and vice versa,

Q|fermion〉 = |boson〉 , Q|boson〉 = |fermion〉 . (4.0.1)

Q must be a spinor. Q and its hermitian conjugate Q† are the generators of SUSY transfor-
mations. They carry spin 1

2
, so clearly SUSY is a spacetime symmetry, i.e. an extension of

Poincaré symmetry.

4.1 Interlude: spacetime symmetries and spinors

The Poincaré group is the symmetry group of Minkowski spacetime, which is the Lorentz
group plus spacetime translations.

• The proper orthochronous Lorentz group SO+(1, 3) describes boosts and rotations;

• The Lorentz group O(1, 3) contains in addition time reversal and parity;

• The Poincaré group contains in addition spacetime translations.

Under a Lorentz transformation

xµ → (x′)µ = Λµ
νx

ν (4.1.1)

where Λµ
ν satisfies

Λµ
ση

στΛν
τ = ηµν (4.1.2)

Limiting ourselves for the moment to transformations in the neighbourhood of the identity
(i.e. no time reversal or parity), an infinitesimal Lorentz transformation can be written as

x′µ = Λµ
νx

ν = (δµν + ωµν)x
ν (4.1.3)

where ωµν = −ωνµ. We can write the ωµν as a linear combination of six basis matrices Mρσ,

ωµν =
1

2
Ωρσ(Mρσ)µν (4.1.4)
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where Ωρσ are just six numbers which parametrise the Lorentz transformation. A finite
transformation is then given by ΛM = exp(− i

2
ΩρσM

ρσ), where the basis matrices are called
generators. The group multiplication law is encoded in the commutation relations of the
generators,

[Pµ, Pν ] = 0, (4.1.5)

[Mµν , Pρ] = i(gνρPµ − gµρPν), (4.1.6)

[Mµν ,Mρσ] = i(gνρMµσ − gµρMνσ − gνσMµρ + gµσMνρ) (4.1.7)

where we have suppressed the matrix indices. This can also be written in terms of rotations
J and boosts K,

Jk =
1

2
εijkM ij Ki = M0i = −M i0 (4.1.8)

with i, j, k = 1, 2, 3. The commutator relations then become

[Ji, Jj] = iεijkJk

[Ki, Kj] = −iεijkJk
[Ji, Kj] = iεijkKk .

The Ji are Hermitian, and the Ki are anti-Hermitian. The Ji satisfy the algebra of the
rotation group, SU(2). To disentangle the algebra, define the Hermitian generators

Ai =
1

2
(Ji + iKi)

Bi =
1

2
(Ji − iKi) .

which satisfy the algebra

[Ai, Aj] = iεijkAk

[Bi, Bj] = iεijkBk

[Ai, Bj] = 0 .

The algebra for the Ai and the Bi is that of SU(2), and the two algebras are independent. We
have thus shown that the Lorentz group, SO(3, 1), is locally isomorphic to SU(2)× SU(2).

Fields transform under irreducible representations of this group, that is

φa(x)→ D[Λ]abφ
b(Λ−1x) (4.1.9)

where the matrices D[Λ] form a representation of the Lorentz group, meaning that

D[Λ1]D[Λ2] = D[Λ1Λ2], D[Λ−1] = D[Λ]−1, D[1] = 1 . (4.1.10)

Irreducible representations of this algebra are classified according to a pair of half-integer
numbers, one for each of the SU(2). The (0, 0) representation corresponds to a scalar. The
(1

2
, 0) and (0, 1

2
) representations are called spinors and are needed to describe fermion fields.
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Under Lorentz transformations, a (1
2
, 0) spinor χ transforms as χ→ S[Λ]χ, where

S[Λ] = exp(− i
2
Ωµνσ

µν), σµν = i
4
(σµσ̄ν − σν σ̄µ), (4.1.11)

σµ = (1, ~σ), σ̄µ = (1,−~σ) (4.1.12)

with

~σ = (σ1, σ2, σ3), σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (4.1.13)

Here the σµν satisfy the Lorentz algebra. A (0, 1
2
) spinor η† (the dagger is just a convention)

instead transforms as η† → S[Λ]∗η†. Consequently, when representing spinors belonging to
these two representations by two-column vectors, care has to be taken because their indices
cannot be contracted to form a Lorentz invariant quantity. It is conventional to use dotted
indices for the ones transforming as (0, 1

2
) and undotted ones for those transforming as (1

2
, 0).

The (1
2
, 0) and (0, 1

2
) representations are related by hermitian conjugation. That is, if χα is

a (1
2
, 0) fermion, then (χα)† transforms as a (0, 1

2
) fermion.

(χα)† ≡ χ†α̇ (η†α̇)† ≡ ηα (4.1.14)

The indices can be raised and lowered using the epsilon symbol

χα = εαβχβ ηα̇ = εα̇β̇ηβ̇ (4.1.15)

where
ε12 = −ε21 = ε21 = −ε12 = 1 (4.1.16)

both for dotted and undotted indices. As a convention, repeated spinor indices contracted
like

α
α or α̇

α̇ (4.1.17)

can be suppressed. The components of the spinors are anticommuting Grassmann num-
bers so one has e.g.

χη ≡ χαηα = χαεαβη
β = −ηβεαβχα = ηβεβαχ

α = ηβχβ ≡ ηχ. (4.1.18)

Likewise, for dotted indices one can define χ†η† = χ†α̇η
†α̇ = η†χ†. These two-component

spinors are called Weyl spinors.
To connect to the four component notation for Dirac spinors, note that in the Weyl basis

γµ =

(
0 σµ

σ̄µ 0

)
. (4.1.19)

We can combine the two types of spinor into a four-component Dirac spinor

ψ =

(
χα
η†α̇

)
(4.1.20)
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and we have ψ̄ = ψ†γ0 = (ηα χ†α̇). We can also define left- and right-handed spinors (four
component spinors with only one Weyl spinor inside),

ψL = PLψ =

(
χα
0

)
, ψR = PRψ =

(
0
η†α̇

)
, (4.1.21)

where PL,R = 1
2
(1∓ γ5), as well as Majorana spinors

ψM,L =

(
χα
χ†α̇

)
, ψM,R =

(
ηα
η†α̇

)
. (4.1.22)

We see that a Majorana spinor is a Dirac spinor with χ = η. A charge conjugated spinor
field is defined as

ψc = Cψ̄T =

(
ηα
χ†α̇

)
, (4.1.23)

where

C =

(
εαβ 0

0 εα̇β̇

)
, (4.1.24)

so it is obtained from the Dirac spinor by interchanging η ↔ χ. For a Majorana spinor,
ψcM = ψM . For a chiral spinor, (ψc)L = PLψ

c = (ψR)c, that is charge conjugation and chiral
projection don’t commute.

There are now several equivalent ways to write a Dirac mass term for the field ψ:

−mψ̄ψ = −m (ψ̄LψR + ψ̄RψL) = −mψ̄LψR + h.c. (4.1.25)

= −mψ̄M,LψM,R (4.1.26)

= −m (χη + χ†η†) = −mχη + h.c. (4.1.27)

A Majorana mass term for the left-handed component can be written as

−1

2
M ψ̄M,LψM,L = −1

2
M
[
(ψL)cψL + ψ̄L(ψL)c

]
(4.1.28)

= −1

2
M (χχ+ χ†χ†) = −1

2
M χχ+ h.c. (4.1.29)

4.2 SUSY algrebra

Historically, there is a theorem by Coleman and Mandula stating that the only continu-
ous symmetries of the S matrix, satisfying a Lie algebra, are the generators of Poincaré
transformations, plus generators that commute with Poincaré transformations, i.e. internal
symmetries such as gauge symmetries,

G = GPoincaré ×Ginternal (4.2.1)

That is there is no non-trivial way to combine space time and internal symmetries.
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The loophole is that there can be symmetry generators not forming an ordinary Lie agebra
with commutation relations, but a graded Lie agebra with anti-commutation relations.
This is what happens for the SUSY generators. They satisfy the SUSY algebra

{Qα, Q
†
β̇
} = 2σµ

αβ̇
Pµ , (4.2.2)

{Qα, Qβ} = 0 , {Q†α̇, Q
†
β̇
} = 0 , (4.2.3)

[Qα, P
µ] = 0 , [Q†α̇, P

µ] = 0 , (4.2.4)

[Qα,M
µν ] = (σµν)α

βQβ , (4.2.5)

[Qα, gauge symmetry] = 0 . (4.2.6)

Qα (Q†α̇) is a left- (right-) handed spinor.
In a supersymmetric theory, particles fall into irreducible representations of the SUSY

algebra called supermultiplets. They must contain both fermionic and bosonic states
which are known as superpartners of each other. Consider a fermionic state |f〉 with mass
m. There will be a corresponding bosonic state |b〉 = Qα|f〉. We have

P 2|b〉 = P 2Qα|f〉 = QαP
2|f〉 = Qαm

2|f〉 = m2|b〉 . (4.2.7)

Since the mass operator P 2 commutes with Q,Q†, superpartners must be degenerate in mass.
Since Q,Q† also commute with gauge generators, the superpartners must also transform
under the same representation of the gauge group.

Consider the operator (−1)2s where s is the spin angular momentum. By the spin-
statistics theorem, this operator has eigenvalue +1 acting on a bosonic state and eigenvalue
−1 acting on a fermionic state. Any fermionic operator will turn a bosonic state into a
fermionic state and vice versa. Therefore (−1)2s must anticommute with every fermionic
operator in the theory, and in particular with Q and Q†. Now, consider a supermultiplet
with mass m. As P µ commutes with the SUSY generators, any combination of Q or Q†

acting on |i〉 must give another state |i′〉 with the same four-momentum eigenvalue. Now
one can take a trace over all such states of the operator (−1)2sP µ:∑

i

〈i|(−1)2sP µ|i〉 ∼
∑
i

〈i|(−1)2sQQ†|i〉+
∑
i

〈i|(−1)2sQ†Q|i〉

=
∑
i

〈i|(−1)2sQQ†|i〉+
∑
i

〈i|Q(−1)2sQ†|i〉

=
∑
i

〈i|(−1)2sQQ†|i〉 −
∑
i

〈i|(−1)2sQQ†|i〉

= 0. (4.2.8)

Now
∑

i〈i|(−1)2sP µ|i〉 = pµ Tr[(−1)2s] is just proportional to the number of bosonic degrees
of freedom nB minus the number of fermionic degrees of freedom nF in the trace, so that

nB = nF (4.2.9)
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must hold for a given pµ 6= 0 in each supermultiplet. Each supermultiplet therefore contains
an equal number of fermion and boson degrees of freedom.

So what are possible supermultiplets? There are two minimal possibilities. The first one
contains a single Weyl fermion with two degrees of freedom and a complex scalar field. This
is called a chiral supermultiplet. The second one contains a massless vector boson with
two degrees of freedom and a Weyl fermion. This is called a vector supermultiplet. In a
renormalizable theory, the spin-1 field is a gauge boson that transforms in the adjoint repre-
sentation of a gauge group. The fermion thus also transforms in the adjoint representation
and it is called a gaugino. Since the adjoint representation is a real representation, the
gaugino cannot be a chiral fermion, i.e. its left- and right handed components transform in
the same way under the gauge group, unlike all the fermions in the SM.

4.3 Chiral supermultiplets

The simplest SUSY model contains a single non-interacting chiral supermultiplet, with a
single left-handed two-component Weyl fermion ψ and a complex scalar field φ. The simplest
action we can write down for these fields just consists of kinetic energy terms for each:

S =

∫
d4x (Lscalar + Lfermion) , (4.3.1)

Lscalar = −∂µφ∗∂µφ, Lfermion = iψ†σµ∂µψ. (4.3.2)

This is called the massless, non-interacting Wess-Zumino model.
A supersymmetry transformation should turn the scalar boson field φ into something

involving the fermion field ψα. The simplest possibility for the transformation of the scalar
field is

δεφ = εψ, δεφ
∗ = ε†ψ†, (4.3.3)

where εα is an infinitesimal, anticommuting, two-component Weyl fermion object param-
eterizing the supersymmetry transformation. For global supersymmetry, εα is a constant,
satisfying ∂µε

α = 0. 1 Using eq. (4.3.3), we find that the scalar part of the Lagrangian
transforms as

δεLscalar = −∂µφ∗∂µδεφ− ∂µδεφ∗∂µφ = −ε∂µψ ∂µφ∗ − ε†∂µψ† ∂µφ. (4.3.4)

We would like for this to be canceled by δεLfermion, at least up to a total derivative, so that
the action will be invariant under the supersymmetry transformation. For this to have any
chance of happening, δεψ should be linear in ε† and in φ, and should contain one spacetime
derivative.

δεψα = −i(σµε†)α ∂µφ, δεψ
†
α̇ = i(εσµ)α̇ ∂µφ

∗. (4.3.5)

1The relation between the SUSY generators and this transformation is δεX = (εQ + ε†Q†)X. Because
the ε parameter is anticommuting, the SUSY algebra takes the form [εQ, ε†Q†] = 2εσµε†Pµ.
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With this guess, one immediately obtains

δεLfermion = −εσµσν∂νψ ∂µφ∗ + ψ†σνσµε† ∂µ∂νφ . (4.3.6)

This can be simplified by employing the Pauli matrix identities[
σµσν + σνσµ

]
α
β = −2ηµνδβα, (4.3.7)[

σµσν + σνσµ
]β̇
α̇ = −2ηµνδβ̇α̇, (4.3.8)

and using the fact that partial derivatives commute (∂µ∂ν = ∂ν∂µ). Equation (4.3.6) then
becomes

δεLfermion = ε∂µψ ∂µφ
∗ + ε†∂µψ† ∂µφ

−∂µ
(
εσνσµψ ∂νφ

∗ + εψ ∂µφ∗ + ε†ψ† ∂µφ
)
. (4.3.9)

The first two terms here just cancel against δεLscalar, while the remaining contribution is a
total derivative. So we arrive at

δεS =

∫
d4x (δεLscalar + δεLfermion) = 0, (4.3.10)

We are not quite finished in showing that the theory described by eq. (4.3.1) is supersym-
metric. We must also show that the supersymmetry algebra closes; in other words, that the
commutator of two supersymmetry transformations parameterized by two different spinors
ε1 and ε2 is another symmetry of the theory. Using eq. (4.3.5) in eq. (4.3.3), one finds

(δε2δε1 − δε1δε2)φ ≡ δε2(δε1φ)− δε1(δε2φ) = i(−ε1σµε†2 + ε2σ
µε†1) ∂µφ. (4.3.11)

This is a remarkable result; in words, we have found that the commutator of two supersym-
metry transformations gives us back the derivative of the original field.

All of this will be for nothing if we do not find the same result for the fermion ψ. Using
eq. (4.3.3) in eq. (4.3.5), we get

(δε2δε1 − δε1δε2)ψα = −i(σµε†1)α ε2∂µψ + i(σµε†2)α ε1∂µψ. (4.3.12)

This can be put into a more useful form by applying some identities

(δε2δε1 − δε1δε2)ψα = i(−ε1σµε†2 + ε2σ
µε†1) ∂µψα + iε1α ε

†
2σ

µ∂µψ − iε2α ε†1σµ∂µψ.

The last two terms vanish on-shell; that is, if the equation of motion σµ∂µψ = 0 following
from the action is enforced. The remaining piece is exactly the same spacetime translation
that we found for the scalar field.

The fact that the supersymmetry algebra only closes on-shell (when the classical equa-
tions of motion are satisfied) might be somewhat worrisome, since we would like the sym-
metry to hold even quantum mechanically. This can be fixed by a trick. We invent a new
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φ ψ F

on-shell (nB = nF = 2) 2 2 0

off-shell (nB = nF = 4) 2 4 2

Table 4.1: Counting of real degrees of freedom in the Wess-Zumino model.

complex scalar field F , which does not have a kinetic term. Such fields are called auxil-
iary, and they are really just book-keeping devices that allow the symmetry algebra to close
off-shell. The Lagrangian density for F and its complex conjugate is simply

Lauxiliary = F ∗F . (4.3.13)

The dimensions of F are [mass]2, unlike an ordinary scalar field, which has dimensions of
[mass]. Equation (4.3.13) implies the not-very-exciting equations of motion F = F ∗ =
0. However, we can use the auxiliary fields to our advantage by including them in the
supersymmetry transformation rules, to make the theory supersymmetric even off-shell.

We arrive at the Lagrangian of the free Wess-Zumino model,

Lfree = |∂µφ|2 + iψ†σ̄µ∂µψ + |F |2 (4.3.14)

It is invariant under the following set of transformations,

δφ = εψ , (4.3.15)

δψα = −i(σµε)α∂µφ+ εαF , (4.3.16)

δF = −iε†σ̄µ∂µψ. (4.3.17)

In retrospect, one can see why we needed to introduce the auxiliary field F in order to
get the supersymmetry algebra to work off-shell. On-shell, the complex scalar field φ has
two real propagating degrees of freedom, matching the two spin polarization states of ψ
(related to the fact, that the equations of motion are only first order in time derivatives).
Off-shell, however, the Weyl fermion ψ is a complex two-component object, so it has four real
degrees of freedom. (Going on-shell eliminates half of the propagating degrees of freedom
for ψ, because the Lagrangian is linear in time derivatives, so that the canonical momenta
can be re-expressed in terms of the configuration variables without time derivatives and are
not independent phase space coordinates.) To make the numbers of bosonic and fermionic
degrees of freedom match off-shell as well as on-shell, we had to introduce two more real
scalar degrees of freedom in the complex field F , which are eliminated when one goes on-shell.
This counting is summarized in Table 4.1.

4.3.1 Interactions of chiral multiplets

Now we add interactions to our model. We start with Lfree, but adding several copies
(“flavours”) of the fields φ, ψ, F labelled by an index i. For the interaction terms, we restrict
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ourselves to renormalizable interactions, i.e. allowing only terms with mass dimension up to
4, the most general possiblity is (for a more complete discussion see e.g. [13])

Lint = −1

2
W ijψiψj +W iFj + h.c. (4.3.18)

where W ij,W i are polynomials of the scalar fields. Applying the above SUSY transforma-
tions to Lint – note that Lfree was already supersymmetric by itself – one finds that it is
supersymmetric if and only if the conditions

• W ij is symmetry in i, j,

• the variation δW ij/δφk is totally symmetric in i, j, k,

• the variation δW ij/δφ∗k vanishes, i.e. W ij does not contain the complex conjugate of
the scalar field, i.e. it is a holomorphic function,

• W ij = δW i/δφj,

are all satisfied. In that case, one can write Wi and Wij as functional derivatives of the
superpotential, which reads in general2

W =
1

2
M ij φiφj +

1

6
yijk φiφjφk , (4.3.19)

where W i = δW/δφi, W
ij = δ2W/δφiδφj.

We can now write down the Lagrangian of the interacting Wess-Zumino model. Only
looking at the terms containing the auxiliary field F ,

Lfree + Lint ⊃ FiF
i∗ +W iFi +W ∗

i F
i∗ (4.3.20)

we note that we can use the equations motion

Fi = −W ∗
i , F i∗ = −W i, (4.3.21)

to remove the auxiliary fields and we arrive at

Lchiral = |∂µφi|2 + iψ†i σ̄
µ∂µψi −

1

2
(W ijψiψj + h.c.) +W iW ∗

i . (4.3.22)

Sometimes supersymmetry is formulated in terms of superfields. A chiral multiplet is
then written as

Φ = φ+
√

2θψ + θ2F (4.3.23)

with θ a constant Grassmann spinor. In this notation the Lagrangian is then given by

L =

∫
d2θW (Φ) (4.3.24)

where the integral basically projects onto the θ2 component of the superpotential. We will
mostly stick to component fields for the rest of this lecture.

2Up to a possible term linear in φ, which however is not relevant for the MSSM.
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Aµ λ D

on-shell (nB = nF = 2) 2 2 0

off-shell (nB = nF = 4) 3 4 1

Table 4.2: Counting of real degrees of freedom for each gauge supermultiplet.

4.4 Supersymmetric gauge interactions

A gauge supermultiplet contains a set of gauge fields Aaµ and the associated gaugino fields
λa, both of which transform under the adjoint representation of the gauge group,

Aaµ → Aaµ − ∂µΛa + g f abcAbµΛ
c, (4.4.1)

λa → λa + g f abcλbΛc, (4.4.2)

where the structure constants f abc vanish for an Abelian gauge group. As in the chiral case,
the counting of degrees of freedom is subtle. On shell, we have two bosonic and two fermionic
degrees of freedom. But off-shell, the gauge boson has three and the gaugino four degrees
of freedom. We thus need to introduce an auxiliary field Da transforming in the adjoint as
well,

Da → Da + g f abcDbDc. (4.4.3)

We arrive at the Lagrangian

Lgauge = −1

4
F a
µνF

µνa + iλ†aσ̄µDµλ
a +

1

2
DaDa, (4.4.4)

where
Dµλ

a = ∂µλ
a − g f abcAbµλc . (4.4.5)

(Showing that this Lagrangian is indeed supersymmetric and deriving the required SUSY
transformation properties is subtle and slightly tedious. We will skip it here.)

4.4.1 Coupling chiral and gauge multiplets

To describe supersymmetric gauge interactions of the members of chiral supermultiplets, we
proceed in two steps. First, we replace the ordinary derivatives in the chiral supermultiplet
Lagrangian by covariant derivatives,

Lchiral = |Dµφi|2 + iψ†i σ̄
µDµψi + . . . (4.4.6)

where

Dµφi = ∂µφi + igAaµ(T aφ)i , (4.4.7)

Dµψi = ∂µψi + igAaµ(T aψ)i . (4.4.8)
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Second, we have to add additional renormalizable terms compatible with the gauge symmetry
and describing the interactions of the chiral supermultiplet with the gaugino and auxiliary
fields,

L = Lchiral + Lgauge −
√

2g(φ∗T aψ)λa −
√

2gλ†a(ψ†T aφ) + g(φ∗T aφ)Da. (4.4.9)

One can show that this Lagrangian is supersymmetric with somewhat generalised SUSY
transformations. In particular the supersymmetry transformation laws for the matter fields
are modified to include gauge-covariant rather than ordinary derivatives. Note that the
interaction strengths are fixed to be gauge couplings by the requirements of supersymmetry,
even though they are not gauge interactions from the point of view of an ordinary field
theory.

Finally, one can remove the auxiliary field Da by using its equation of motion,

Da = −g(φ∗T aφ). (4.4.10)

4.5 Summary

A renormalizable supersymmetric theory is specified by just three ingredients,

• the gauge group,

• the gauge representations of the chiral supermultiplets, and

• the superpotential.

All interactions and masses are then fixed. This has many interesting implications. For
example, the scalar potential reads

V (φ, φ∗) = F ∗iFi +
1

2

∑
a

DaDa = W ∗
i W

i +
1

2

∑
a

g2
a(φ
∗T aφ)2, (4.5.1)

so it is fixed once one has fixed the gauge and Yukawa interactions. This will play an
important role in the Higgs sector of the MSSM.

One also finds that many vertices are related. In terms of the fermion-sfermion Yukawa
couplings yijk and the supersymmetric sfermion mass term Mij, the quartic and trilinear
sfermion vertices are given by yijny∗kln and M∗

iny
jkn, respectively. This is precisely what

eliminates the quadratically divergent corrections to scalar masses that lead to the hierarchy
problem in non-SUSY theories.

Further reading: [13]
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4.6 Soft SUSY breaking

The spectrum of known particles is manifestly non-supersymmetric. To turn the MSSM in-
tro a realistic theory, we thus have to add SUSY breaking. From a theoretical point of view,
it would be most attractive to have a fundamentally supersymmetric theory, with supersym-
metry being spontaneously broken at low energies. How this might come about is a very
active field of research, but there is no unambiguous, preferred mechanism. For low energy
phenomenology, one can simply parametrize the ignorance about the exact mechanism of
SUSY breaking by writing down all possible SUSY breaking terms involving the low energy
fields. An important clue as to the nature of supersymmetry breaking can be obtained by
returning to the motivation provided by the hierarchy problem. Supersymmetry forced us
to introduce two complex scalar fields for each Standard Model Dirac fermion, which is just
what is needed to enable a cancellation of the quadratically divergent (Λ2

UV) pieces for the
higgs mass correction. This sort of cancellation also requires that the associated dimen-
sionless couplings should be related (for example λS = |λf |2). The necessary relationships
between couplings indeed occur in unbroken supersymmetry. Now, if broken supersymmetry
is still to provide a solution to the hierarchy problem even in the presence of supersymmetry
breaking, then the relationships between dimensionless couplings that hold in an unbro-
ken supersymmetric theory must be maintained. Otherwise, there would be quadratically
divergent radiative corrections to the Higgs scalar masses of the form

∆m2
H =

1

8π2
(λS − |λf |2)Λ2

UV + . . . . (4.6.1)

We are therefore led to consider “soft” supersymmetry breaking. This means that the
effective Lagrangian of the MSSM can be written in the form

L = LSUSY + Lsoft, (4.6.2)

where LSUSY contains all of the gauge and Yukawa interactions and preserves supersymmetry
invariance, and Lsoft violates supersymmetry but contains only mass terms and coupling
parameters with positive mass dimension. Without further justification, soft supersymmetry
breaking might seem like a rather arbitrary requirement. Fortunately, we will see later that
theoretical models for supersymmetry breaking do indeed yield effective Lagrangians with
just such terms for Lsoft.

The possible soft supersymmetry-breaking terms in the Lagrangian of a general theory
are

Lsoft = −
(

1

2
Ma λ

aλa +
1

6
aijkφiφjφk +

1

2
bijφiφj + tiφi

)
+ c.c.− (m2)ijφ

j∗φi, (4.6.3)

Lmaybe soft = −1

2
cjki φ

∗iφjφk + c.c. (4.6.4)

They consist of gaugino masses Ma for each gauge group, scalar squared-mass terms (m2)ji
and bij, and (scalar)3 couplings aijk and cjki , and “tadpole” couplings ti. The last of these
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requires φi to be a gauge singlet, and so ti does not occur in the MSSM. One might wonder
why we have not included possible soft mass terms for the chiral supermultiplet fermions,
like L = −1

2
mijψiψj + c.c. Including such terms would be redundant; they can always be

absorbed into a redefinition of the superpotential and the terms (m2)ij and cjki .
In the special case of a theory that has chiral supermultiplets that are singlets or in the

adjoint representation of a simple factor of the gauge group, then there are also possible soft
supersymmetry-breaking Dirac mass terms between the corresponding fermions ψa and the
gauginos

L = −Ma
Diracλ

aψa + c.c. (4.6.5)

This is not relevant for the MSSM with minimal field content, which does not have adjoint
representation chiral supermultiplets.

The terms in Lsoft clearly do break supersymmetry, because they involve only scalars and
gauginos and not their respective superpartners. In fact, the soft terms in Lsoft are capable
of giving masses to all of the scalars and gauginos in a theory, even if the gauge bosons and
fermions in chiral supermultiplets are massless (or relatively light). The gaugino masses Ma

are always allowed by gauge symmetry. The (m2)ij terms are allowed for i, j such that φi, φ
j∗

transform in complex conjugate representations of each other under all gauge symmetries;
in particular this is true of course when i = j, so every scalar is eligible to get a mass in
this way if supersymmetry is broken. The remaining soft terms may or may not be allowed
by the symmetries. The aijk, bij, and ti terms have the same form as the yijk, M ij, and Li

terms in the superpotential, so they will each be allowed by gauge invariance if and only if
a corresponding superpotential term is allowed.
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Chapter 5

Minimal Supersymmetric Standard
Model

5.1 Field content and superpotential

Since we are looking for the supersymmetric extension of the SM with the minimal field
content, we start by fixing the gauge group: it is the same as in the SM, SU(3)c×SU(2)L×
U(1)Y . We thus require three vector supermultiplets containing the following gauge and
gaugino fields:

• The gluon g and the gluino g̃ which transform as (8, 1)0;

• The W±,0 and the winos W̃±,0 which transform as (1, 3)0;

• The B0 and the bino B̃0 which transform as (1, 1)0.

After EWSB, the W 0 and B0 fields mix into the massive Z0 and the massless photon. Their
superpartners mix as well into the neutralinos and charginos, but since supersymmetry is
not an exact symmetry in the MSSM, this mixing depends on SUSY breaking as we will
discuss later.

Having fixed the gauge sector, we need to specify the chiral supermultiplets needed to
accomodate the SM particle content. A first relevant observation is that none of the fermions
transform in the adjoint of any of the gauge group factors, so cannot be identified with any
of the gauginos. It turns out that the simplest thing to do is to postulate a seperate chiral
supermultiplet for each of the SM fermion and scalar fields.

It is conventional to write all fields as left-handed (Remember that hermitian conjuga-
tion turns right handed fields into left handed ones). This is natural if one thinks about an
underlying GUT, where the complete GUT multiplet is left-handed. Notice that the sub-
scripts L and R are just labels indicating the chirality of the field’s fermionic superpartner.
Even though one speaks about “left- and right-handed squarks”, scalars of course don’t have
chirality. The sleptons and squarks are collectively denoted as sfermions.

Finally, the Higgs doublet is part of a chiral supermultiplet containing two SU(2)L dou-
blet Weyl fermions called higgsinos.
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Names spin 0 spin 1/2 SU(3)C , SU(2)L, U(1)Y

squarks, quarks Q (ũL d̃L) (uL dL) ( 3, 2 , 1
6
)

(×3 families) u ũ∗R u†R ( 3, 1, −2
3
)

d d̃∗R d†R ( 3, 1, 1
3
)

sleptons, leptons L (ν̃ ẽL) (ν eL) ( 1, 2 , −1
2
)

(×3 families) e ẽ∗R e†R ( 1, 1, 1)

Higgs, higgsinos Hd (H0
d H−d ) (H̃0

d H̃−d ) ( 1, 2 , −1
2
)

Hu (H+
u H0

u) (H̃+
u H̃0

u) ( 1, 2 , +1
2
)

Table 5.1: Chiral supermultiplets in the Minimal Supersymmetric Standard Model. The
spin-0 fields are complex scalars, and the spin-1/2 fields are left-handed two-component
Weyl fermions.

Having specified the field content, we can proceed to write down the most general super-
potential compatible with all the symmetries. We will write it in terms of superfields, to avoid
notational clutter. You can equally well replace each superfield by its scalar component.

W = Li Φi +
1

2
M ij ΦiΦj +

1

6
yijk ΦiΦjΦk , (5.1.1)

We can write it in terms of squark, slepton, and Higgs fields as

W = −Y ij
d H Qid̄j − Y ij

l H Liēj

+
1

2
λijk LiLj ēk + λ′ijk LiQj d̄k +

1

2
λ′′ijk ūid̄j d̄k , (5.1.2)

where all of the SU(3)C colour and SU(2)L weak isospin gauge indices are suppressed. i, j
are family indices and labels the three generations. This superpotential has two immediate
and serious problems.

Firstly, the superpotential gives rise to Yukawa couplings for charged leptons and down-
type quarks. But there is no corresponding term for the up-type quarks. Recall the Yukawa
Lagrangian of the SM: we had

LY = −Y ij
u q̄iL H̃ ujR − Y

ij
d q̄iLH djR − Y

ij
l l̄iLH ejR + h.c. , (5.1.3)

where H̃ = iσ2H
∗. The root of our problem is that we cannot use H̃ in the superpotential

as it has to be a holomorphic function and must not contain the complex conjugates of the
scalar fields if we want our theory to be supersymmetric. We can remedy this problem by
doubling the Higgs sector of the SM. We introduce Hu and Hd as in the table above.

Now the superpotential reads,

W = Y ij
u HuQ

iūj − Y ij
d HdQ

id̄j − Y ij
l HdL

iēj + µHuHd

+ µ′iLiHu +
1

2
λijk LiLj ēk + λ′ijk LiQj d̄k +

1

2
λ′′ijk ūid̄j d̄k . (5.1.4)
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Figure 5.1: Proton decay induced by non-zero coefficients λijk.

Note that by introducing a second Higgs doublet, we have also solved a problem that was
hidden so far: while the gauginos transform under a real representation of the gauge group
and thus have no impact on the cancellation of gauge anomalies in the SM, the Higgsinos
are chiral fermions. A single higgsino transforming as (1, 2) 1

2
would in fact spoil the anomaly

cancellation that is so delicately balanced among quarks and leptons in the SM. Adding the
second Higgs (and higgsino) doublet with opposite hypercharge, all gauge anomalies cancel
between the two doublets and the theory is consistent again.

The second problem is due to unwanted terms. We can assign baryon and lepton number
to the squarks and sleptons just as to the quarks and leptons, i.e. B = 1

3
for Q and B = −1

3

for U and D, L = 1 for L and L = −1 for E. Then the first two terms in the second
line violate lepton number and the last term violates baryon number. When constructing
the Lagrangian from the superpotential, by supersymmetry we will unavoidably generate
baryon and lepton number violating interactions involving quarks and leptons. This is very
problematic because both B and L are (accidentally) conserved to a very high precision in
the SM and their is no experimental sign of a violation of any of them.

To avoid these problematic terms, in the MSSM one postulates that the theory be in-
variant under a discrete symmetry called R-parity defined for each particle as

PR = (−1)3(B−L)+2s (5.1.5)

where s is the particle’s spin. Demanding invariance under this symmetry, the second line
in (5.1.4) is forbidden, while the first line is allowed.

WMSSM = Y ij
u HuQ

iūj − Y ij
d HdQ

id̄j − Y ij
l HdL

iēj + µHuHd (5.1.6)

R-parity has far-reaching consequences for phenomenology. It turns out that PR = +1
for all SM fields (gauge bosons, quarks, leptons, and the Higgs), while PR = −1 for the
squarks, sleptons, gauginos, and Higgsinos. Consquently, in a theory conserving R-parity,
every interaction vertex has to contain an even number of “sparticles”. This implies that

• The lightest SUSY particle (LSP) is stable (and could form the dark matter!);

• All other sparticles have to decay to final states involving an odd number of LSPs;

• In collider experiments, sparticles can only be produced in pairs.
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Figure 5.2: Proton decay induced by a non-zero coefficient κijkl.

The dimensionful couplings in the supersymmetric part of the MSSM Lagrangian are all
dependent on µ. µ provides for higgsino fermion mass terms

− Lhiggsino mass = µ(H̃+
u H̃

−
d − H̃

0
uH̃

0
d) + c.c., (5.1.7)

as well as Higgs squared-mass terms in the scalar potential

− Lsupersymmetric Higgs mass = |µ|2
(
|H0

u|2 + |H+
u |2 + |H0

d |2 + |H−d |
2
)
. (5.1.8)

Since eq. (5.1.8) is non-negative with a minimum at H0
u = H0

d = 0, we cannot under-
stand electroweak symmetry breaking without including a negative supersymmetry-breaking
squared-mass soft term for the Higgs scalars. However, we can already see a puzzle: we ex-
pect that µ should be roughly of order 102 or 103 GeV, in order to allow a Higgs VEV of
order 174 GeV without too much miraculous cancellation between |µ|2 and the negative soft
squared-mass terms that we have not written down yet. But why should |µ|2 be so small
compared to, say, M2

P, and in particular why should it be roughly of the same order as m2
soft?

The scalar potential of the MSSM seems to depend on two types of dimensionful parameters
that are conceptually quite distinct, namely the supersymmetry-respecting mass µ and the
supersymmetry-breaking soft mass terms. Yet the observed value for the electroweak break-
ing scale suggests that without miraculous cancellations, both of these apparently unrelated
mass scales should be within an order of magnitude or so of 100 GeV. This puzzle is called
“the µ problem”. Several different solutions to the µ problem have been proposed, involving
extensions of the MSSM of varying intricacy. They all work in roughly the same way; the
µ term is required or assumed to be absent at tree-level before symmetry breaking, and
then it arises from the VEV(s) of some new field(s). These VEVs are in turn determined
by minimizing a potential that depends on soft supersymmetry-breaking terms. In this way,
the value of the effective parameter µ is no longer conceptually distinct from the mechanism
of supersymmetry breaking; if we can explain why msoft � MP, we will also be able to
understand why µ is of the same order.

5.1.1 MSSM as an effective theory

So far, we have discussed only renormalizable supersymmetric Lagrangians. However, when
any realistic supersymmetric theory is extended to include gravity, the resulting supergravity
theory is non-renormalizable as a quantum field theory. It is therefore clear that, in principle,
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non-renormalizable interactions must be present in any low-energy effective description of
the MSSM. Fortunately, these can be neglected for most phenomenological purposes, because
non-renormalizable interactions have couplings of negative mass dimension, proportional to
powers of 1/MP (or perhaps 1/ΛUV, where ΛUV is some other cutoff scale associated with new
physics). This means that their effects at energy scales E ordinarily accessible to experiment
are typically suppressed by powers of E/MP as we have seen before.

Although these terms are very suppressed at low energies, they can still dominate very
rare processes (like proton decay). In general this is indeed the case. One operator of
dimension 5 which is particularly dangerous is

L5D = κijklQiQjQkLl (5.1.9)

which lead to proton decay. The coefficient needs to be smaller than 10−8/MP for the proton
to be stable enough. R parity does not forbid this term, which is very problematic. One
needs a more powerful symmetry. One possibility is a larger discrete R symmetry. An R
symmetry is a symmetry which does not commute with SUSY, implying that the different
component fields have different charges and that the superpotential has R charge 2. This is
the exception to the rule that all internal symmetries commute with SUSY. The maximal
R symmetry for N = 1 SUSY is a global U(1). Particularly interesting is a Z4 R symmetry
under which all matter superfields have charge 1 and a Higgs chiral multiplet has charge 0.

One can immediately see that this symmetry forbids the QQQL term as well as all other
R parity violating terms (in fact R parity is a subgroup). This symmetry also forbids the µ
term. After SUSY breaking this is broken to R parity (the soft gaugino mass terms break
any R symmetry down to R parity) and a µ term can be induced. So effectively at low scales
we do have R parity - at high scales however the symmetry is larger, which is necessary for
a viable theory.

5.1.2 Soft supersymmetry breaking in the MSSM

To complete the description of the MSSM, we need to specify the soft supersymmetry break-
ing terms. For the MSSM, we have:

LMSSM
soft = −1

2

(
M3g̃g̃ +M2W̃W̃ +M1B̃B̃ + c.c.

)
−
(
ũ au Q̃Hu − d̃ ad Q̃Hd − ẽ ae L̃Hd + c.c.

)
−Q̃†m2

Q Q̃− L̃†m2
L L̃− ũm2

u ũ
† − d̃m2

d
d̃
†
− ẽm2

e ẽ
†

−m2
HuH

∗
uHu −m2

Hd
H∗dHd − (bHuHd + c.c.) . (5.1.1)

In eq. (5.1.1), M3, M2, and M1 are the gluino, wino, and bino mass terms. Here, and from
now on, we suppress the adjoint representation gauge indices on the wino and gluino fields,
and the gauge indices on all of the chiral supermultiplet fields. The second line in eq. (5.1.1)
contains the (scalar)3 couplings [of the type aijk in eq. (4.6.3)]. Each of au, ad, ae is a
complex 3 × 3 matrix in family space, with dimensions of [mass]. They are in one-to-one

48



correspondence with the Yukawa couplings of the superpotential. The third line of eq. (5.1.1)
consists of squark and slepton mass terms of the (m2)ji type in eq. (4.6.3). Each of m2

Q, m2
u,

m2
d
, m2

L, m2
e is a 3 × 3 matrix in family space that can have complex entries, but they

must be hermitian so that the Lagrangian is real. (To avoid clutter, we do not put tildes on
the Q in m2

Q, etc.) Finally, in the last line of eq. (5.1.1) we have supersymmetry-breaking

contributions to the Higgs potential; m2
Hu

and m2
Hd

are squared-mass terms of the (m2)ji
type, while b is the only squared-mass term of the type bij in eq. (4.6.3) that can occur in
the MSSM.1 We expect roughly

M1, M2, M3, au, ad, ae ∼ msoft, (5.1.2)

m2
Q, m2

L, m2
u, m2

d
, m2

e, m
2
Hu , m

2
Hd
, b ∼ m2

soft, (5.1.3)

with a characteristic mass scale msoft that is not much larger than 1000 GeV. The expression
eq. (5.1.1) is the most general soft supersymmetry-breaking Lagrangian of the form eq. (4.6.3)
that is compatible with gauge invariance and matter parity conservation in the MSSM.

Unlike the supersymmetry-preserving part of the Lagrangian, the above LMSSM
soft introduces

many new parameters that were not present in the ordinary Standard Model. A careful count
reveals that there are 105 masses, phases and mixing angles in the MSSM Lagrangian that
cannot be rotated away by redefining the phases and flavour basis for the quark and lepton
supermultiplets, and that have no counterpart in the ordinary Standard Model. Thus, in
principle, supersymmetry breaking (as opposed to supersymmetry itself) appears to introduce
a tremendous arbitrariness in the Lagrangian.

5.1.3 Hints of an Organizing Principle

Fortunately, there is already good experimental evidence that some powerful organizing
principle must govern the soft supersymmetry breaking Lagrangian. This is because most of
the new parameters in eq. (5.1.1) imply flavor mixing or CP violating processes of the types
that are severely restricted by experiment.

For example, suppose that m2
e is not diagonal in the basis (ẽR, µ̃R, τ̃R) of sleptons whose

superpartners are the right-handed parts of the Standard Model mass eigenstates e, µ, τ . In
that case, slepton mixing occurs, so the individual lepton numbers will not be conserved,
even for processes that only involve the sleptons as virtual particles. A particularly strong
limit on this possibility comes from the experimental bound on the process µ → eγ, which
could arise from the one-loop diagram shown in Figure 5.3a. The symbol “×” on the slepton
line represents an insertion coming from −(m2

e)21µ̃
∗
RẽR in LMSSM

soft . The result of calculating
this diagram gives approximately,

BR(µ→ eγ) '

(
|m2

µ̃∗RẽR
|

m2
˜̀
R

)2(
100 GeV

m˜̀
R

)4

10−6 (5.1.1)

for mB̃ ' m˜̀
R

. This result is to be compared to the present experimental upper limit
BR(µ→ eγ)exp < 1.2×10−11. So, if the right-handed slepton squared-mass matrix m2

e were

1The parameter called b here is often seen elsewhere as Bµ or m2
12 or m2

3.
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Figure 5.3: Some of the diagrams that contribute to the process µ− → e−γ in models with
lepton flavor-violating soft supersymmetry breaking parameters (indicated by ×). Diagrams
(a), (b), and (c) contribute to constraints on the off-diagonal elements of m2

e, m2
L, and ae,

respectively.

“random”, with all entries of comparable size, then the prediction for BR(µ → eγ) would
be too large even if the sleptons and bino masses were at 1 TeV. There are even stronger
flavour constraints than this.

All of these potentially dangerous flavor-changing and CP-violating effects in the MSSM
can be evaded if one assumes (or can explain!) that supersymmetry breaking is suitably
“universal”. Consider an idealized limit in which the squark and slepton squared-mass
matrices are flavour-blind, each proportional to the 3× 3 identity matrix in family space:

m2
Q = m2

Q1, m2
u = m2

u1, m2
d

= m2
d
1, m2

L = m2
L1, m2

e = m2
e1. (5.1.2)

Supersymmetric contributions to flavor-changing neutral current processes will be very small
in such an idealized limit. There are other options, e.g. all scalar superpartners could be
very heavy (’split SUSY’), but then one gives up on the solution to the hierarchy problem.
Making the further assumption that the (scalar)3 couplings are each proportional to the
corresponding Yukawa coupling matrix,

au = Au0 yu, ad = Ad0 yd, ae = Ae0 ye, (5.1.3)

will ensure that only the squarks and sleptons of the third family can have large (scalar)3

couplings.
Finally, one can avoid disastrously large CP-violating effects by assuming that the soft

parameters do not introduce new complex phases. This is automatic for m2
Hu

and m2
Hd

, and
for m2

Q, m2
u, etc. if eq. (5.1.2) is assumed; if they were not real numbers, the Lagrangian

would not be real. One can also fix µ in the superpotential and b in eq. (5.1.1) to be
real, by appropriate phase rotations of fermion and scalar components of the Hu and Hd

supermultiplets. If one then assumes that

Im(M1), Im(M2), Im(M3), Im(Au0), Im(Ad0), Im(Ae0) = 0, (5.1.4)

then the only CP-violating phase in the theory will be the usual CKM phase found in the
ordinary Yukawa couplings.
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The MSSM with these flavour- and CP-preserving relations imposed has far fewer pa-
rameters than the most general case. Besides the usual Standard Model gauge and Yukawa
coupling parameters, there are 3 independent real gaugino masses, only 5 real squark and
slepton squared mass parameters, 3 real scalar cubic coupling parameters, and 4 Higgs mass
parameters (one of which can be traded for the known electroweak breaking scale).

The soft-breaking universality relations can be presumed to be the result of some specific
model for the origin of supersymmetry breaking, although there is no consensus among
theorists as to what the specific model should actually be. In any case, they are indicative of
an assumed underlying simplicity or symmetry of the Lagrangian at some very high energy
scale Q0. If we used this Lagrangian to compute masses and cross-sections and decay rates
for experiments at ordinary energies near the electroweak scale, the results would involve
large logarithms of order ln(Q0/mZ) coming from loop diagrams. As is usual in quantum
field theory, the large logarithms can be conveniently resummed using renormalization group
(RG) equations, by treating the couplings and masses appearing in the Lagrangian as running
parameters. Therefore, eqs. (5.1.2)-(5.1.4) should be interpreted as boundary conditions on
the running soft parameters at the scale Q0, which is likely very far removed from direct
experimental probes. We must then RG-evolve all of the soft parameters, the superpotential
parameters, and the gauge couplings down to the electroweak scale where humans perform
experiments.

At the electroweak scale, eqs. (5.1.2) and (5.1.3) will no longer hold, even if they were
exactly true at the input scale Q0. However, to a good approximation, key flavor- and
CP-conserving properties remain. This is because, as we will see in section ?? below, the
dominant RG corrections due to gauge interactions will respect the form of eqs. (5.1.2) and
(5.1.3), while RG corrections due to Yukawa interactions are quite small.

One good reason to believe that a high scale is indeed present in the theory is the
celebrated apparent unification of gauge couplings in the MSSM. The 1-loop RG equations
for the Standard Model gauge couplings g1, g2, g3 are

βga ≡
d

dt
ga =

1

16π2
bag

3
a, (b1, b2, b3) =

 (41/10, −19/6, −7) Standard Model

(33/5, 1, −3) MSSM
(5.1.5)

where t = ln(Q/Q0), with Q the RG scale. The MSSM coefficients are larger because of the
extra MSSM particles in loops. The normalization for g1 here is chosen to agree with the
canonical covariant derivative for grand unification of the gauge group SU(3)C × SU(2)L ×
U(1)Y into SU(5) or SO(10). Thus in terms of the conventional electroweak gauge couplings
g and g′ with e = g sin θW = g′ cos θW , one has g2 = g and g1 =

√
5/3g′. The quantities

αa = g2
a/4π have the nice property that their reciprocals run linearly with RG scale at

one-loop order:

d

dt
α−1
a = − ba

2π
(a = 1, 2, 3) (5.1.6)

Figure 5.4 compares the RG evolution of the α−1
a , including two-loop effects, in the Standard

Model (dashed lines) and the MSSM (solid lines). Unlike the Standard Model, the MSSM
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Figure 5.4: Two-loop renormal-
ization group evolution of the
inverse gauge couplings α−1

a (Q)
in the Standard Model (dashed
lines) and the MSSM (solid
lines). In the MSSM case, the
sparticle masses are treated as
a common threshold varied be-
tween 500 GeV and 1.5 TeV, and
α3(mZ) is varied between 0.117
and 0.121.
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includes just the right particle content to ensure that the gauge couplings can unify, at a
scale MU ∼ 2 × 1016 GeV. This unification is of course not perfect; α3 tends to be slightly
smaller than the common value of α1(MU) = α2(MU) at the point where they meet, which is
often taken to be the definition of MU . However, this small difference can easily be ascribed
to threshold corrections due to whatever new particles exist near MU . While the apparent
approximate unification of gauge couplings at MU might be just an accident, it may also be
taken as a strong hint in favor of a grand unified theory (GUT).

More generally, one needs to evolve superpotential parameters and soft terms using their
renormalization group (RG) equations, in order to translate a set of predictions at an input
scale into physically meaningful quantities that describe physics near the electroweak scale.
More details can be found in the SUSY primer.2

5.2 Theory of supersymmetry breaking

In the MSSM, supersymmetry breaking is simply introduced explicitly. But this is only
an effective description of an underlying model in which supersymmetry is spontaneously
broken. By definition, this means that the vacuum state |0〉 is not invariant under super-
symmetry transformations, so Qα|0〉 6= 0 and Q†α̇|0〉 6= 0. Now, in global supersymmetry, the
Hamiltonian operator H is related to the supersymmetry generators through the algebra,

H = P 0 =
1

4
(Q1Q

†
1 +Q†1Q1 +Q2Q

†
2 +Q†2Q2). (5.2.1)

If supersymmetry is unbroken in the vacuum state, it follows that H|0〉 = 0 and the vacuum
has zero energy. Conversely, if supersymmetry is spontaneously broken in the vacuum state,

2In practice there are a number of spectrum calculators on the market, which do the work for you...
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Figure 5.5: Scalar potentials for (a) unbroken supersymmetry, (b) spontaneously broken
supersymmetry, and (c) metastable supersymmetry breaking, as a function of an order pa-
rameter φ.

then the vacuum must have positive energy, since

〈0|H|0〉 =
1

4

(
‖Q†1|0〉‖2 + ‖Q1|0〉‖2 + ‖Q†2|0〉‖2 + ‖Q2|0〉‖2

)
> 0 (5.2.2)

If fermion condensates can be neglected, then 〈0|H|0〉 = 〈0|V |0〉, where V is the scalar
potential. Therefore, supersymmetry will be spontaneously broken if the expectation value
of Fi and/or Da does not vanish in the vacuum state.

If any state exists in which all Fi and Da vanish, then it will have zero energy, implying
that supersymmetry is not spontaneously broken in the true ground state. Conversely, one
way to guarantee spontaneous supersymmetry breaking is to look for models in which the
equations Fi = 0 andDa = 0 cannot all be simultaneously satisfied for any values of the fields.
Then the true ground state necessarily has broken supersymmetry, as does the vacuum state
we live in (if it is different). However, another possibility is that the vacuum state in which
we live is not the true ground state (which may preserve supersymmetry), but is instead a
higher energy metastable supersymmetry-breaking state with lifetime at least of order the
present age of the universe. Finite temperature effects can indeed cause the early universe
to prefer the metastable supersymmetry-breaking local minimum of the potential over the
supersymmetry-breaking global minimum. Scalar potentials for the three possibilities are
illustrated qualitatively in Figure 5.5.

Regardless of whether the vacuum state is stable or metastable, the spontaneous breaking
of a global symmetry always implies a massless Nambu-Goldstone mode with the same
quantum numbers as the broken symmetry generator. In the case of global supersymmetry,
the broken generator is the fermionic charge Qα, so the Nambu-Goldstone particle ought
to be a massless neutral Weyl fermion, called the goldstino. The goldstino is the fermionic
component of the supermultiplet whose auxiliary field obtains a VEV.

The above remarks apply to the breaking of global supersymmetry. However, taking
into account gravity, supersymmetry must be promoted to a local symmetry. The resulting
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locally supersymmetric theory is called supergravity. In supergravity, the spin-2 graviton
has a spin-3/2 fermion superpartner called the gravitino, which we will denote Ψ̃α

µ. The
gravitino has odd R-parity (PR = −1). As long as supersymmetry is unbroken, the graviton
and the gravitino are both massless, each with two spin helicity states. Once supersymmetry
is spontaneously broken, the gravitino acquires a mass by absorbing (“eating”) the goldstino,
which becomes its longitudinal (helicity ±1/2) components. This is called the super-Higgs
mechanism, and it is analogous to the ordinary Higgs mechanism for gauge theories.

Importantly the scalar potential in supergravity is modified by Planck suppressed contri-
butions, but does not necessarily have a positive vacuum energy once supergravity is broken.
This is of course crucial with regards to the cosmological constant.

5.2.1 Fayet-Iliopoulos (D-term) supersymmetry breaking

Supersymmetry breaking with a non-zeroD-term VEV can occur through the Fayet-Iliopoulos
mechanism. If the gauge symmetry includes a U(1) factor, one can introduce a term linear
in the auxiliary field of the corresponding gauge supermultiplet,

LFI = −κD, (5.2.1)

where κ is a constant with dimensions of [mass]2. This term is gauge-invariant and super-
symmetric by itself. If we include it in the Lagrangian, then D may be forced to get a
non-zero VEV.

V = κD − 1

2
D2 − gD

∑
i

qi|φi|2. (5.2.2)

Here the qi are the charges of the scalar fields φi under the U(1) gauge group in question.
The presence of the Fayet-Iliopoulos term modifies the equation of motion to

D = κ− g
∑
i

qi|φi|2. (5.2.3)

Now suppose that the scalar fields φi that are charged under the U(1) all have non-zero
superpotential masses mi. Then the potential will have the form

V =
∑
i

|mi|2|φi|2 +
1

2
(κ− g

∑
i

qi|φi|2)2. (5.2.4)

Since this cannot vanish, supersymmetry must be broken
In the MSSM, one might imagine that the D term for U(1)Y has a Fayet-Iliopoulos term

as the principal source of supersymmetry breaking. Unfortunately, this cannot work, because
the squarks and sleptons do not have superpotential mass terms. So, at least some of them
would just get non-zero VEVs in order to make eq. (5.2.3) vanish. That would break color
and/or electromagnetism, but not supersymmetry.

One could instead attempt to trigger supersymmetry breaking with a Fayet-Iliopoulos
term for some other U(1) gauge symmetry, however this is also problematic phenomenolog-
ically.

54



5.2.2 O’Raifeartaigh (F -term) supersymmetry breaking

Models where spontaneous supersymmetry breaking is ultimately due to a non-zero F -term
VEV are called O’Raifeartaigh models. The idea is to pick a set of chiral supermultiplets
Φi ⊃ (φi, ψi, Fi) and a superpotential W in such a way that the equations Fi = −δW ∗/δφ∗i =
0 have no simultaneous solution.

The simplest example with a supersymmetry breaking global minimum has three chiral
supermultiplets Φ1,2,3, with superpotential

W = −kΦ1 +mΦ2Φ3 +
y

2
Φ1Φ2

3. (5.2.1)

Note that W contains a linear term, with k having dimensions of [mass]2. Such a term is
allowed if the corresponding chiral supermultiplet is a gauge singlet. In fact, a linear term is
necessary to achieve F -term breaking at tree-level in renormalizable superpotentials, since
otherwise setting all φi = 0 will always give a supersymmetric global minimum with all
Fi = 0. The scalar potential following from eq. (5.2.1) is

Vtree−level = |F1|2 + |F2|2 + |F3|2, (5.2.2)

F1 = k − y

2
φ∗23 , F2 = −mφ∗3, F3 = −mφ∗2 − yφ∗1φ∗3. (5.2.3)

Clearly, F1 = 0 and F2 = 0 are not compatible, so supersymmetry must indeed be broken.
The O’Raifeartaigh superpotential determines the mass scale of supersymmetry breaking√
F1 in terms of a dimensionful parameter k put in by hand. This appears somewhat artificial,

since k will have to be tiny compared to M2
P in order to give the right order of magnitude

for the MSSM soft terms. It may be more plausible to have a mechanism that can instead
generate such scales naturally. This can be done in models of dynamical supersymmetry
breaking, in which the small mass scales associated with supersymmetry breaking arise by
dimensional transmutation. In other words, they generally feature a new asymptotically free
non-Abelian gauge symmetry with a gauge coupling g that is perturbative at MP and gets
strong in the infrared at some smaller scale Λ ∼ e−8π2/|b|g20MP, where g0 is the running gauge
coupling at MP with negative beta function −|b|g3/16π2. Just as in QCD, it is perfectly
natural for Λ to be many orders of magnitude below the Planck scale. Supersymmetry
breaking may then be best described in terms of the effective dynamics of the strongly
coupled theory. Supersymmetry is still broken by the VEV of an F field, but it may be the
auxiliary field of a composite chiral supermultiplet built out of fields that are charged under
the new strongly coupled gauge group.

5.2.3 The need for a separate supersymmetry-breaking sector

It is now clear that spontaneous supersymmetry breaking (dynamical or not) requires us
to extend the MSSM. The ultimate supersymmetry-breaking order parameter cannot be-
long to any of the MSSM supermultiplets; a D-term VEV for U(1)Y does not lead to an
acceptable spectrum, and there is no candidate gauge singlet whose F -term could develop a
VEV. Therefore one must ask what effects are responsible for spontaneous supersymmetry
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Figure 5.6: The presumed schematic structure for supersymmetry breaking.

breaking, and how supersymmetry breakdown is “communicated” to the MSSM particles. It
is very difficult to achieve the latter in a phenomenologically viable way working only with
renormalizable interactions at tree-level, even if the model is extended to involve new super-
multiplets including gauge singlets. First, on general grounds it would be problematic to give
masses to the MSSM gauginos, because supersymmetry never has any (scalar)-(gaugino)-
(gaugino) couplings that could turn into gaugino mass terms when the scalar gets a VEV.
Second, at least some of the MSSM squarks and sleptons would have to be unacceptably
light, and should have been discovered already. This can be understood from the existence
of sum rules. In particular the supertrace of the tree-level squared-mass eigenvalues, defined
in general by a weighted sum over all particles with spin j:

STr(m2) ≡
∑
j

(−1)2j(2j + 1)Tr(m2
j), (5.2.1)

satisfies the sum rule STr(m2) = 0 for spontaneously broken SUSY. This would imply e.g.
(assuming no flavour violation) that

m2
ẽ1

+m2
ẽ2

= 2m2
e, (5.2.2)

which is of course ruled out by experiment.
For these reasons, we expect that the MSSM soft terms arise indirectly or radiatively,

rather than from tree-level renormalizable couplings to the supersymmetry-breaking order
parameters. Supersymmetry breaking evidently occurs in a “hidden sector” of particles that
have no (or only very small) direct couplings to the “visible sector” chiral supermultiplets
of the MSSM. However, the two sectors do share some interactions that are responsible for
mediating supersymmetry breaking from the hidden sector to the visible sector, resulting in
the MSSM soft terms. (See Figure 5.6.) In this scenario, the tree-level squared mass sum
rules need not hold, even approximately, for the physical masses of the visible sector fields,
so that a phenomenologically viable superpartner mass spectrum is, in principle, achievable.
As a bonus, if the mediating interactions are flavor-blind, then the soft terms appearing in
the MSSM will automatically obey conditions like eqs. (5.1.2), (5.1.3) and (5.1.4).

There have been two main competing proposals for what the mediating interactions might
be, gravity and gauge mediation.
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5.2.4 Planck-scale-mediated supersymmetry breaking

The most studied possibility is that the mediating interactions are gravitational. More
precisely, they are associated with the new physics, including gravity, that enters near the
Planck scale. In this “gravity-mediated”, or Planck-scale-mediated supersymmetry breaking
(PMSB) scenario, if supersymmetry is broken in the hidden sector by a VEV 〈F 〉, then the
soft terms in the visible sector should be roughly

msoft ∼ 〈F 〉/MP . (5.2.3)

This framework should be analysed with an effective theory with Planck scale suppressed
higher dimensional operators. To specify such a non-renormalisable theory, one needs in ad-
dition to the superpotential the real Kähler potential K, and the holomorphic gauge kinetic
function fab. Let X be some chiral superfield whose F term auxiliary field breaks supersym-
metry and talks to the MSSM only via these Planck suppressed operators. With

W = WMSSM −
1

MP

(
1

6
yXijkXΦiΦjΦk +

1

2
µXijXΦiΦj

)
+ . . . , (5.2.4)

K = Φ∗iΦi +
1

MP

(
njiX + njiX

∗)Φ∗iΦj −
1

M2
P

kjiXX
∗Φ∗iΦj + . . . , (5.2.5)

fab =
δab
g2
a

(
1− 2

MP

faX + . . .
)
. (5.2.6)

One can then generally write the resulting supersymmetry-breaking Lagrangian as

Lsoft = − F

2MP

faλ
aλa − F

6MP

yXijkφiφjφk −
F

2MP

µXijφiφj −
F

MP

njiφjW
i
MSSM + c.c.

−|F |
2

M2
P

(kij + nipn
p
j)φ
∗jφi, (5.2.7)

where φi and λa are the scalar and gaugino fields in the MSSM sector, yXijk, kji , n
j
i , n

j
i and

fa are dimensionless couplings while µXij has the dimension of mass. This translates into
the MSSM soft terms as follows,

Ma =
F

MP

fa, (5.2.8)

aijk =
F

MP

(yXijk + nipy
pjk + njpy

pik + nkpy
pij), (5.2.9)

bij =
F

MP

(µXij + nipµ
pj + njpµ

pi), (5.2.10)

(m2)ij =
|F |2

M2
P

(kij + nipn
p
j). (5.2.11)

Note that couplings of the form Lmaybe soft in eq. (4.6.4) do not arise.
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In principle, the parameters fa, k
i
j, n

j
i , y

Xijk and µXij ought to be determined by the
fundamental underlying theory. In general, this need not lead to flavour blind terms. How-
ever, it has been popular to assume a “minimal” form for the normalization of kinetic terms
and gauge interactions such that the soft terms in LMSSM

soft are all determined by just four
parameters:

m1/2 = f
〈F 〉
MP

, m2
0 = (k + n2)

|〈F 〉|2

M2
P

, A0 = (α + 3n)
〈F 〉
MP

, B0 = (β + 2n)
〈F 〉
MP

.(5.2.12)

In terms of these, the parameters appearing in eq. (5.1.1) are:

M3 = M2 = M1 = m1/2, (5.2.13)

m2
Q = m2

u = m2
d

= m2
L = m2

e = m2
0 1, m2

Hu = m2
Hd

= m2
0, (5.2.14)

au = A0yu, ad = A0yd, ae = A0ye, (5.2.15)

b = B0µ, (5.2.16)

at a renormalization scale Q ≈MP. It is a matter of some controversy whether the assump-
tions going into this parameterization are well-motivated on purely theoretical grounds, but
from a phenomenological perspective they are clearly very nice and extraordinarily predic-
tive. These soft terms should be viewed as RG boundary conditions at the scale MP. The
RG evolution of the soft parameters down to the electroweak scale will then allow us to
predict the entire MSSM spectrum in terms of just five parameters m1/2, m2

0, A0, B0, and µ
(plus the already-measured gauge and Yukawa couplings of the MSSM). A popular approx-
imation is to start this RG running from the unification scale MU ≈ 2 × 1016 GeV instead
of MP. The reason for this is more practical than principled; the apparent unification of
gauge couplings gives us a strong hint that we know something about how the RG equations
behave up to MU , but unfortunately gives us little guidance about what to expect at scales
between MU and MP. The errors made in neglecting these effects are proportional to a loop
suppression factor times ln(MP/MU). These corrections hopefully can be partly absorbed
into a redefinition of m2

0, m1/2, A0 and B0 at MU , but in many cases will lead to other
important effects that are difficult to anticipate.

The framework described in the previous two paragraphs has been the subject of the
bulk of phenomenological and experimental studies of supersymmetry, and has become a
benchmark scenario for experimental collider search limits. It is sometimes referred to as the
minimal supergravity (MSUGRA) or Constrained Minimal Supersymmetric Standard Model
(CMSSM) scenario for the soft terms.

5.2.5 Gauge-mediated supersymmetry breaking models

A second possibility is that the flavor-blind mediating interactions for supersymmetry break-
ing are the ordinary electroweak and QCD gauge interactions. In this gauge-mediated su-
persymmetry breaking (GMSB) scenario, the MSSM soft terms come from loop diagrams
involving some messenger particles. The messengers are new chiral supermultiplets that
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Figure 5.7: loop induced soft masses.

couple to a supersymmetry-breaking VEV 〈F 〉, and also have SU(3)C ×SU(2)L×U(1)Y in-
teractions, which provide the necessary connection to the MSSM. In contrast to Planck-scale
mediation, GMSB can be understood entirely in terms of loop effects in a renormalizable
framework. Gaugino masses arise at one-loop while scalar masses arise at two-loop. Roughly,
one estimates for the MSSM soft terms

msoft ∼
αa
4π

〈F 〉
Mmess

(5.2.17)

where the αa/4π is a loop factor for Feynman diagrams involving gauge interactions, and
Mmess is a characteristic scale of the masses of the messenger fields. So if Mmess and

√
〈F 〉

are roughly comparable, then the scale of supersymmetry breaking can be as low as about√
〈F 〉 ∼ 104 GeV (much lower than in the gravity-mediated case!) to give msoft of the right

order of magnitude. There is still gravitational communication between the MSSM and the
source of supersymmetry breaking, of course, but that effect is now relatively unimportant
compared to the gauge interaction effects.

These soft terms are automatically falvour blind. The soft masses should now be inter-
preted as RG boundary conditions at the messenger scale, which will typically be much below
the GUT scale. Messengers with masses far below the GUT scale will affect the running
of gauge couplings and might therefore be expected to ruin the apparent unification shown
in Figure 5.4. However, if the messengers come in complete multiplets of the SU(5) global
symmetry that contains the Standard Model gauge group, and are not very different in mass,
then approximate unification of gauge couplings will still occur when they are extrapolated
up to the same scale MU (but with a larger unified value for the gauge couplings at that
scale).

5.2.5.1 The gravitino

We have seen that extending SUSY to a local symmetry implied the existence of the gravitino,
the superpartner of the graviton. We also learned that in supergravity the cosmological con-
stant can be zero even for broken supersymmetry. Requiring that the cosmological constant
be zero (at tree level), the gravitino mass m3/2 is given by

m3/2 '
〈F 〉√
3MP

. (5.2.18)
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It is therefore directly proportional to the SUSY breaking scale and quite different for gravity
or gauge mediation. In the Planck-scale-mediated supersymmetry breaking case, the grav-
itino mass is comparable to the masses of the MSSM sparticles. Therefore m3/2 is expected
to be at least of order 100 GeV or so. Its interactions will be of gravitational strength, so
the gravitino will not play any role in collider physics, but it can be important in cosmology.
If it is the LSP, then it is stable and its primordial density could easily exceed the critical
density, causing the universe to become matter-dominated too early. Even if it is not the
LSP, the gravitino can cause problems unless its density is diluted by inflation at late times,
or it decays sufficiently rapidly.

In contrast, gauge-mediated supersymmetry breaking models predict that the gravitino
is much lighter than the MSSM sparticles as long as Mmess � MP. This can be seen by
comparing eqs. (5.2.17) and (5.2.18). The gravitino is almost certainly the LSP in this case,
and all of the MSSM sparticles will eventually decay into final states that include it. Naively,
one might expect that these decays are extremely slow. However, this is not necessarily
true, because the gravitino inherits the non-gravitational interactions of the goldstino it
has absorbed. This means that the gravitino, or more precisely its longitudinal (goldstino)
components, can play an important role in collider physics experiments.
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Chapter 6

Mass spectrum of the MSSM

6.1 Electroweak symmetry breaking

Let us now consider electroweak symmetry breaking in the MSSM. There are two complex
Higgs doublets Hu = (H+

u , H
0
u) and Hd = (H0

d , H
−
d ) rather than just one in the ordinary

Standard Model. The classical scalar potential for the Higgs scalar fields in the MSSM is
given by

V = (|µ|2 +m2
Hu)(|H0

u|2 + |H+
u |2) + (|µ|2 +m2

Hd
)(|H0

d |2 + |H−d |
2)

+ [b (H+
u H

−
d −H

0
uH

0
d) + c.c.]

+
1

8
(g2 + g′2)(|H0

u|2 + |H+
u |2 − |H0

d |2 − |H−d |
2)2 +

1

2
g2|H+

u H
0∗
d +H0

uH
−∗
d |

2. (6.1.1)

The terms proportional to |µ|2 come from F -terms while the terms proportional to g2 and
g′2 are the D-term contributions. Finally, the terms proportional to m2

Hu
, m2

Hd
and b are soft

terms. The full scalar potential of the theory also includes many terms involving the squark
and slepton fields that we can ignore here, since they do not (should not) get VEVs, which
is likely because they have large positive squared masses1.

We now have to demand that the minimum of this potential should break electroweak
symmetry down to electromagnetism SU(2)L × U(1)Y → U(1)EM. We can use the freedom
to make gauge transformations to simplify this analysis. First, the freedom to make SU(2)L
gauge transformations allows us to rotate away a possible VEV for one of the weak isospin
components of one of the scalar fields, so without loss of generality we can take H+

u = 0
at the minimum of the potential. Then one can check that a minimum of the potential
satisfying ∂V/∂H+

u = 0 must also have H−d = 0. This is good, because it means that at
the minimum of the potential electromagnetism is necessarily unbroken, since the charged
components of the Higgs scalars cannot get VEVs. After setting H+

u = H−d = 0, we are left

1There are in fact regions in the MSSM parameter space in which CCB vacua can occur, in particular
for large A-terms.
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to consider the scalar potential

V = (|µ|2 +m2
Hu)|H0

u|2 + (|µ|2 +m2
Hd

)|H0
d |2 − (bH0

uH
0
d + c.c.)

+
1

8
(g2 + g′2)(|H0

u|2 − |H0
d |2)2. (6.1.2)

CP cannot be spontaneously broken by the Higgs scalar potential, since the VEVs and b
can be simultaneously chosen real, as a convention. This means that the Higgs scalar mass
eigenstates can be assigned well-defined eigenvalues of CP, at least at tree-level.

In order for the MSSM scalar potential to be viable, we must first make sure that the
potential is bounded from below for arbitrarily large values of the scalar fields, so that V
will really have a minimum. The scalar quartic interactions in V will stabilize the potential
for almost all arbitrarily large values of H0

u and H0
d . However, for the special directions in

field space |H0
u| = |H0

d |, the quartic contributions to V are identically zero. Such directions
in field space are called D-flat directions, because along them the part of the scalar potential
coming from D-terms vanishes. In order for the potential to be bounded from below, we
need the quadratic part of the scalar potential to be positive along the D-flat directions.
This requirement amounts to

2b < 2|µ|2 +m2
Hu +m2

Hd
. (6.1.3)

Requiring further that one linear combination of H0
u and H0

d has a negative squared mass
near H0

u = H0
d = 0 gives

det

|µ|2 +m2
Hu

−m2
12

−m2
12 |µ|2 +m2

Hd

 =
(
|µ|2 +m2

Hu

) (
|µ|2 +m2

Hd

)
− b2 < 0 . (6.1.4)

If this inequality is not satisfied, then H0
u = H0

d = 0 will be a stable minimum of the potential
(or there will be no stable minimum at all), and electroweak symmetry breaking will not
occur.

In models derived from the MSUGRA or GMSB boundary conditions, m2
Hu

= m2
Hd

is
supposed to hold at tree level at the input scale. This has to be evolved down to the
electroweak scale. The RG equations for the soft Higgs squared-mass parameters m2

Hu
and

m2
Hd

are

16π2 d

dt
m2
Hu = 3Xt − 6g2

2|M2|2 −
6

5
g2

1|M1|2 +
3

5
g2

1S, (6.1.5)

16π2 d

dt
m2
Hd

= 3Xb +Xτ − 6g2
2|M2|2 −

6

5
g2

1|M1|2 −
3

5
g2

1S (6.1.6)

with

Xt = 2|yt|2(m2
Hu +m2

Q3
+m2

u3
) + 2|at|2, (6.1.7)

Xb = 2|yb|2(m2
Hd

+m2
Q3

+m2
d3

) + 2|ab|2, (6.1.8)

S = m2
Hu −m

2
Hd

+ Tr[m2
Q −m2

L − 2m2
u + m2

d
+ m2

e]. (6.1.9)
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So the RG evolution of m2
Hu

naturally pushes it to negative or small values m2
Hu

< m2
Hd

at the
electroweak scale, due to the large top Yukawa. So in these models electroweak symmetry
breaking is actually driven by quantum corrections; this mechanism is therefore known as
radiative electroweak symmetry breaking.

Having established the conditions necessary for H0
u and H0

d to get non-zero VEVs, we
can now require that they are compatible with the observed phenomenology of electroweak
symmetry breaking, SU(2)L × U(1)Y → U(1)EM. Let us write2

vu = 〈H0
u〉, vd = 〈H0

d〉. (6.1.10)

These VEVs are related to the known mass of the Z0 boson and the electroweak gauge
couplings:

v2
u + v2

d = v2 = 2m2
Z/(g

2 + g′2) ≈ (174 GeV)2. (6.1.11)

The ratio of the VEVs is traditionally written as

tan β ≡ vu/vd. (6.1.12)

The value of tan β is not fixed by present experiments, but it depends on the Lagrangian
parameters of the MSSM in a calculable way. Now one can write down the conditions
∂V/∂H0

u = ∂V/∂H0
d = 0 under which the potential eq. (6.1.2) will have a minimum satisfying

eqs. (6.1.11) and (6.1.12):

m2
Hu + |µ|2 − b cot β − (m2

Z/2) cos(2β) = 0, (6.1.13)

m2
Hd

+ |µ|2 − b tan β + (m2
Z/2) cos(2β) = 0. (6.1.14)

These conditions can be rewritten as:

sin(2β) =
2b

m2
Hu

+m2
Hd

+ 2|µ|2
, (6.1.15)

m2
Z =

|m2
Hd
−m2

Hu
|√

1− sin2(2β)
−m2

Hu −m
2
Hd
− 2|µ|2 (6.1.16)

= −2(m2
Hu + |µ|2) +O(1/ tan2 β). (6.1.17)

As an aside, this highlights the “µ problem” already mentioned earlier. Without mirac-
ulous cancellations, all of the input parameters ought to be within an order of magnitude or
two of m2

Z . However, in the MSSM, µ is a supersymmetry-respecting parameter appearing
in the superpotential, while b, m2

Hu
, m2

Hd
are supersymmetry-breaking parameters. This has

lead to a widespread belief that the MSSM must be extended at very high energies to include
a mechanism that relates the effective value of µ to the supersymmetry-breaking mechanism
in some way.

2often a factor 1/
√

2 is included in this definition, with v = 246 GeV.
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Even if the value of µ is set by soft supersymmetry breaking, the cancellation needed
by eq. (6.1.17) is often remarkable when evaluated in specific model frameworks, after con-
straints from direct searches for the Higgs bosons and superpartners are taken into account.
Typical viable solutions for the MSSM have −m2

Hu
and |µ|2 each much larger than m2

Z , so
that significant cancellation is needed.

To quantify the measure of fine-tuning, one possibility is to consider the sensitivity of
the weak scale, or equivalently the Z mass, to changes in the fundamental parameters ai of
the theory (in MSUGRA ai = m1/2,m0, ...),

∆ = max
i

∂ lnm2
Z

∂ ln ai
=

ai
m2
Z

∂m2
Z

∂ai
. (6.1.18)

The larger the parameter ∆, the larger the fine-tuning in the parameters ai required to re-
produce the correct Z mass. Note that the question which value of ∆ is deemed “acceptable”
is completely subjective. Also it of course depends on what one thinks are the fundamental
parameters and correlations can be very important.

Typically the fundamental parameters are defined at the high scale and running can be
very important. The µ parameter is exceptional because it does not run much. We can
therefore take µEW ' µGUT and find ∆µ ' 2µ2/m2

Z . This implies

|µ| .

{
200 GeV for ∆ < 10 ,

650 GeV for ∆ < 100 .
(6.1.19)

This bound should be taken with a grain of salt since there could be correlations between
µ and the other soft terms. Barring this caveat, naturalness implies that the Higgsino-like
fermions should be among the lightest sparticles. Doing a scan over the viable parameter
space in MSUGRA requiring the correct Higgs mass etc. the fine tuning is around ∆ ∼
102 − 103. To obtain a more natural theory one would need to go beyond this, and we will
look at the NMSSM as an example.

6.1.0.2 The Higgs sector

The Higgs scalar fields in the MSSM consist of two complex SU(2)L-doublet, or eight real,
scalar degrees of freedom. When the electroweak symmetry is broken, three of them are
the would-be Nambu-Goldstone bosons G0, G±, which become the longitudinal modes of
the Z0 and W± massive vector bosons. The remaining five Higgs scalar mass eigenstates
consist of two CP-even neutral scalars h0 and H0, one CP-odd neutral scalar A0, and a
charge +1 scalar H+ and its conjugate charge −1 scalar H−. (Here we define G− = G+∗

and H− = H+∗. Also, by convention, h0 is lighter than H0.) The gauge-eigenstate fields can
be expressed in terms of the mass eigenstate fields as:H0

u

H0
d

 =

vu
vd

+
1√
2
Rα

h0

H0

+
i√
2
Rβ0

G0

A0

 (6.1.20)
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H+
u

H−∗d

 = Rβ±

G+

H+

 (6.1.21)

where the orthogonal rotation matrices

Rα =

 cosα sinα

− sinα cosα

 , (6.1.22)

Rβ0 =

 sin β0 cos β0

− cos β0 sin β0

 , Rβ± =

 sin β± cos β±

− cos β± sin β±

 , (6.1.23)

are chosen so that the quadratic part of the potential has diagonal squared-masses:

V =
1

2
m2
h0(h

0)2 +
1

2
m2
H0(H0)2 +

1

2
m2
G0(G0)2 +

1

2
m2
A0(A0)2

+m2
G± |G+|2 +m2

H±|H+|2 + . . . , (6.1.24)

Then, provided that vu, vd minimize the tree-level potential,3 one finds that β0 = β± = β,
and m2

G0 = m2
G± = 0, and

m2
A0 = 2b/ sin(2β) = 2|µ|2 +m2

Hu +m2
Hd

(6.1.25)

m2
h0,H0 =

1

2

(
m2
A0 +m2

Z ∓
√

(m2
A0 −m2

Z)2 + 4m2
Zm

2
A0 sin2(2β)

)
, (6.1.26)

m2
H± = m2

A0 +m2
W . (6.1.27)

The masses of A0, H0 and H± can in principle be arbitrarily large since they all grow
with b/ sin(2β). In contrast, the mass of h0 is bounded above. At tree-level

mh0 < mZ | cos(2β)| (6.1.28)

If this tree-level inequality were robust, the lightest Higgs boson of the MSSM would have
been discovered at LEP2. However, the tree-level formula for the squared mass of h0 is
subject to quantum corrections that are relatively drastic. The largest such contributions
typically come from top and stop loops, as shown in fig. 6.1.0.2.

In the simple limit of top squarks that have a small mixing in the gauge eigenstate basis
and with masses mt̃1

, mt̃2
much greater than the top quark mass mt, one finds a large positive

one-loop radiative correction to eq. (6.1.26):

∆(m2
h0) =

3

4π2
cos2α y2

tm
2
t ln
(
mt̃1

mt̃2
/m2

t

)
. (6.1.29)

3It is often more useful to expand around VEVs vu, vd that do not minimize the tree-level potential, for
example to minimize the loop-corrected effective potential instead. In that case, β, β0, and β± are all slightly
different.
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Figure 6.1: Leading corrections to MSSM higgs mass.

Top-squark mixing (to be discussed in section 6.1.3) can result in a further large positive
contribution to m2

h0 . This shows that mh0 can exceed the LEP bounds. Including these and
other important corrections one can obtain only a weaker, but still very interesting, bound

mh0 . 135 GeV (6.1.30)

in the MSSM. This assumes that all of the sparticles that can contribute to m2
h0 in loops

have masses that do not exceed 1 TeV.
An interesting case, often referred to as the “decoupling limit”, occurs when mA0 � mZ .

Then mh0 can saturate the upper bounds just mentioned, with m2
h0 ≈ m2

Z cos2(2β)+ loop
corrections. The particles A0, H0, and H± will be much heavier and nearly degenerate,
forming an isospin doublet that decouples from sufficiently low-energy experiments. The
angle α is very nearly β − π/2, and h0 has the same couplings to quarks and leptons and
electroweak gauge bosons as would the physical Higgs boson of the ordinary Standard Model
without supersymmetry.

In the MSSM, the masses and CKM mixing angles of the quarks and leptons are deter-
mined not only by the Yukawa couplings of the superpotential but also the parameter tan β.
This is because the top, charm and up quark mass matrix is proportional to vu = v sin β
and the bottom, strange, and down quarks and the charge leptons get masses proportional
to vd = v cos β. At tree-level,

mt = ytv sin β, mb = ybv cos β, mτ = yτv cos β. (6.1.31)

These relations hold for the running masses rather than the physical pole masses, which are
significantly larger for t, b. Including those corrections, one can relate the Yukawa couplings
to tan β and the known fermion masses and CKM mixing angles. It is now clear why
we have not neglected yb and yτ , even though mb,mτ � mt. To a first approximation,
yb/yt = (mb/mt) tan β and yτ/yt = (mτ/mt) tan β, so that yb and yτ cannot be neglected if
tan β is much larger than 1. In fact, there are good theoretical motivations for considering
models with large tan β. For example, models based on the GUT gauge group SO(10)
can unify the running top, bottom and tau Yukawa couplings at the unification scale; this
requires tan β to be very roughly of order mt/mb.

Note that if one tries to make sin β too small, yt will be nonperturbatively large. Re-
quiring that yt does not blow up above the electroweak scale, one finds that tan β & 1.2
or so, depending on the mass of the top quark, the QCD coupling, and other details. In
principle, there is also a constraint on cos β if one requires that yb and yτ do not become
nonperturbatively large. This gives a rough upper bound of tan β . 65.
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6.1.1 The gluino

The gluino is a color octet fermion, so it cannot mix with any other particle in the MSSM,
even if R-parity is violated. In this regard, it is unique among all of the MSSM sparticles. The
one-loop RG equations for the three gaugino mass parameters in the MSSM are determined
by the same quantities bMSSM

a that appear in the gauge coupling RG,

βMa ≡
d

dt
Ma =

1

8π2
bag

2
aMa (ba = 33/5, 1, −3) (6.1.32)

for a = 1, 2, 3. In models with MSUGRA boundary conditions a rough prediction is

M3 : M2 : M1 ≈ 6 : 2 : 1 (6.1.33)

near the TeV scale. It is therefore reasonable to suspect that the gluino is considerably
heavier than the lighter neutralinos and charginos.

6.1.2 Neutralinos and charginos

The higgsinos and electroweak gauginos mix with each other because of the effects of elec-
troweak symmetry breaking (as can be seen in the mass matrix below). The neutral higgsinos

(H̃0
u and H̃0

d) and the neutral gauginos (B̃, W̃ 0) combine to form four mass eigenstates called

neutralinos. The charged higgsinos (H̃+
u and H̃−d ) and winos (W̃+ and W̃−) mix to form

two mass eigenstates with charge ±1 called charginos. We will denote4 the neutralino and
chargino mass eigenstates by Ñi (i = 1, 2, 3, 4) and C̃±i (i = 1, 2). By convention, these are
labeled in ascending order, so that mÑ1

< mÑ2
< mÑ3

< mÑ4
and mC̃1

< mC̃2
. The lightest

neutralino, Ñ1, is usually assumed to be the LSP, unless there is a lighter gravitino or unless
R-parity is not conserved, because it is the only MSSM particle that can make a good dark
matter candidate (the sneutrino is already excluded by direct detection). Whether it really
is the LSP of course depends on the RG boundary conditions whicha are assumed.

In the gauge-eigenstate basis ψ0 = (B̃, W̃ 0, H̃0
d , H̃

0
u), the neutralino mass part of the

Lagrangian is

Lneutralino mass = −1

2
(ψ0)TMÑψ

0 + c.c., (6.1.34)

where

MÑ =


M1 0 −g′vd/

√
2 g′vu/

√
2

0 M2 gvd/
√

2 −gvu/
√

2

−g′vd/
√

2 gvd/
√

2 0 −µ
g′vu/

√
2 −gvu/

√
2 −µ 0

 . (6.1.35)

4Other common notations use χ̃0
i or Z̃i for neutralinos, and χ̃±i or W̃±i for charginos.
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The entries M1 and M2 in this matrix come directly from the MSSM soft Lagrangian, while
the entries −µ are the supersymmetric higgsino mass terms. The terms proportional to g, g′

are the result of Higgs-higgsino-gaugino couplings with the Higgs scalars replaced by their
VEVs.

The mass matrix MÑ can be diagonalized by a unitary matrix N to obtain mass eigen-
states:

Ñi = Nijψ
0
j , (6.1.36)

so that

N∗MÑN−1 =


mÑ1

0 0 0

0 mÑ2
0 0

0 0 mÑ3
0

0 0 0 mÑ4

 (6.1.37)

has real positive entries on the diagonal.
In general, the parameters M1, M2, and µ in the equations above can have arbitrary

complex phases. A redefinition of the phases of B̃ and W̃ always allows us to choose a
convention in which M1 and M2 are both real and positive. The phase of µ within that
convention is then really a physical parameter and cannot be rotated away. However, if µ is
not real, then there can be potentially disastrous CP-violating effects in low-energy physics.
Therefore, it is usual to assume that µ is real in the same set of phase conventions that make
M1, M2, b, 〈H0

u〉 and 〈H0
d〉 real and positive.

In models with gaugino mass unification, the neutralino masses and mixing angles depend
on only three unknown parameters as M2 ∼ 2M1.

Often electroweak symmetry breaking effects can be viewed as a small perturbation on
the neutralino mass matrix. If

mZ � |µ±M1|, |µ±M2|, (6.1.38)

then the neutralino mass eigenstates are very nearly a “bino-like” Ñ1 ≈ B̃; a “wino-like”
Ñ2 ≈ W̃ 0; and “higgsino-like” Ñ3, Ñ4 ≈ (H̃0

u ± H̃0
d)/
√

2, with mass eigenvalues:

mÑ1
= M1 + . . . (6.1.39)

mÑ2
= M2 + . . . (6.1.40)

mÑ3
,mÑ4

= |µ|+ . . . (6.1.41)

The above labeling of Ñ1 and Ñ2 assumes M1 < M2 � |µ|. This limit, leading to a bino-like
neutralino LSP, often emerges from MSUGRA boundary conditions. So while this seems
very natural from this perspective, current collider bounds push the neutralino masses into
a regime in which it is hard to obtain the correct relic abundance of dark matter for a bino
LSP. We will come back to this later.
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Analogously to the neutralinos, we can write the part of the Lagrangian involving charginos
as

L ⊃ −1

2
(ψ+)T

 M2 gvu/
√

2

gvd/
√

2 µ

ψ− + h.c. (6.1.42)

where ψ+ = (W̃+, H̃+
u , ) and ψ− = (W̃−, H̃−d ). Diagonalizing this mass matrix with a bi-

unitary rotation, we obtain two chargino mass eigenstates. In the limit of heavy sparticles,
one chargino is higgsino-like with mass close to |µ| the other one wino-like with mass close
to |M2|. In this limit, both charginos will be close in mass to three of the neutralinos.

6.1.3 The squarks and sleptons

As before the low energy particle spectrum is determined by evolving the mass parameters
from the high to the low scale and then diagonalising the mass matrices. The squark RGEs
look e.g. like

16π2 d

dt
m2
Q3

= Xt +Xb −
32

3
g2

3|M3|2 − 6g2
2|M2|2 −

2

15
g2

1|M1|2 +
1

5
g2

1S. (6.1.43)

In principle, any scalars with the same electric charge, R-parity, and color quantum num-
bers can mix with each other. This means that with completely arbitrary soft terms, the
mass eigenstates of the squarks and sleptons of the MSSM should be obtained by diagonaliz-
ing three 6× 6 squared-mass matrices for up-type squarks, down-type squarks, and charged
sleptons. Fortunately, the general hypothesis of flavor-blind soft parameters predicts that
most of these mixing angles are very small, as long as the Yukawa couplings are small.

Let us therefore first consider the spectrum of first- and second-family squarks and slep-
tons. In this case only the terms proportional to gauge couplings are relevant in the running,
increasing the mass at low energies because of the minus sign. In many models, including
both MSUGRA, their running squared masses can be conveniently parameterized, to a good
approximation, as:

m2
Q1

= m2
Q2

= m2
0 +K3 +K2 +

1

36
K1, (6.1.44)

m2
u1

= m2
u2

= m2
0 +K3 +

4

9
K1, (6.1.45)

m2
d1

= m2
d2

= m2
0 +K3 +

1

9
K1, (6.1.46)

m2
L1

= m2
L2

= m2
0 +K2 +

1

4
K1, (6.1.47)

m2
e1

= m2
e2

= m2
0 + K1. (6.1.48)

A key point is that the same K3, K2 and K1 appear everywhere, since all of the chiral
supermultiplets couple to the same gauginos with the same gauge couplings. The different
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coefficients in front of K1 just correspond to the various values of weak hypercharge squared
for each scalar.

If the input scale is approximated by the apparent scale of gauge coupling unification
Q0 = MU ≈ 2× 1016 GeV, one finds that numerically

K1 ≈ 0.15m2
1/2, K2 ≈ 0.5m2

1/2, K3 ≈ 5m2
1/2. (6.1.49)

for Q near the electroweak scale. Here m1/2 is the common gaugino mass parameter at the
unification scale. Note that K3 � K2 � K1; this is a direct consequence of the relative
sizes of the gauge couplings g3, g2, and g1. In general, one therefore expects that the squarks
should be considerably heavier than the sleptons

For the third generation squarks and sleptons the Yukawa couplings and the a terms
are non-negligible and tend to make these states a bit lighter because of the plus sign.
These terms also induce mixing between the left- and right handed states. Putting these all
together, we have a squared-mass matrix for the top squarks, which in the gauge-eigenstate
basis (t̃L, t̃R) is given by

Lstop masses = −
(
t̃∗L t̃∗R

)
m2

t̃

t̃L
t̃R

 (6.1.50)

where

m2
t̃

=

 m2
Q3

+m2
t + ∆ũL v(a∗t sin β − µyt cos β)

v(at sin β − µ∗yt cos β) m2
u3

+m2
t + ∆ũR

 . (6.1.51)

This hermitian matrix can be diagonalized by a unitary matrix to give mass eigenstates t̃1
and t̃2.

6.1.4 Summary: the MSSM sparticle spectrum

Figure 6.2 shows the RG running of scalar and gaugino masses in a typical model based on
the MSUGRA boundary conditions imposed at Q0 = 2 × 1016 GeV. [The parameter values
used for this illustration were m0 = 200 GeV, m1/2 = −A0 = 600 GeV, tan β = 10, and
sign(µ)= +.] The running gaugino masses are solid lines labeled by M1, M2, and M3. The
dot-dashed lines labeled Hu and Hd are the running values of the quantities (µ2+m2

Hu
)1/2 and

(µ2 +m2
Hd

)1/2, which appear in the Higgs potential. The other lines are the running squark
and slepton masses, with dashed lines for the square roots of the third family parameters
m2
d3

, m2
Q3

, m2
u3

, m2
L3

, and m2
e3

(from top to bottom), and solid lines for the first and second

family sfermions. Note that µ2 + m2
Hu

runs negative because of the effects of the large top
Yukawa coupling as discussed above, providing for electroweak symmetry breaking. At the
electroweak scale, the values of the Lagrangian soft parameters can be used to extract the
physical masses, cross-sections, and decay widths of the particles, and other observables such
as dark matter abundances and rare process rates. In practice this can be done with the
help of spectrum calculators.
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Figure 6.2: RG evolution of scalar and gaugino mass parameters in the MSSM with
MSUGRA boundary conditions imposed at Q0 = 2 × 1016 GeV. The parameter µ2 + m2

Hu

runs negative, provoking electroweak symmetry breaking.
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Names Spin PR Gauge Eigenstates Mass Eigenstates

Higgs bosons 0 +1 H0
u H0

d H+
u H−d h0 H0 A0 H±

ũL ũR d̃L d̃R (same)

squarks 0 −1 s̃L s̃R c̃L c̃R (same)

t̃L t̃R b̃L b̃R t̃1 t̃2 b̃1 b̃2

ẽL ẽR ν̃e (same)

sleptons 0 −1 µ̃L µ̃R ν̃µ (same)

τ̃L τ̃R ν̃τ τ̃1 τ̃2 ν̃τ

neutralinos 1/2 −1 B̃0 W̃ 0 H̃0
u H̃0

d Ñ1 Ñ2 Ñ3 Ñ4

charginos 1/2 −1 W̃± H̃+
u H̃−d C̃±1 C̃±2

gluino 1/2 −1 g̃ (same)

goldstino
(gravitino)

1/2
(3/2)

−1 G̃ (same)

Table 6.1: The particles in the Minimal Supersymmetric Standard Model (with sfermion
mixing for the first two families assumed to be negligible).
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Chapter 7

Direct SUSY searches

While the indirect searches for sparticles are sensitive in principle to very high mass scales,
they typically do not allow to put firm bounds on sparticle masses. First, they are always
sensitive to a combination of masses and couplings; Second, there can be several loop con-
tributions from different sparticles that can interfere and even cancel each other. Moreover,
after a discovery of new physics in one of the precision observables indirectly sensitive to
sparticles, it might be difficult to identify the particle responsible for the deviation. Direct
searches refer to the production and subsequent decay of sparticles in collider experiments.
While they are limited in reach by the available center-of-mass energy, they would allow a
more unambiguous identification of new particles.

7.1 LEP bounds

The LEP e+e− collider operated at CERN until the year 2000 with a maximum center-of-
mass energy of 209 GeV. Compared to hadron colliders like the LHC, there are two main
advantages of SUSY searches at lepton colliders:

• the full center-of-mass energy is available in a single “partonic” collision;

• the initial state is known precisely, making for a much cleaner experimental environ-
ment.

Figure 7.1: Feynman diagrams for chargino production at LEP (or ILC).
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For the production of sparticles at colliders, we first need to recall two crucial conse-
quences of R-parity:

• sparticles can only be produced in pairs;

• the final decay products of all sparticles (the decays can proceed in several steps)
always contain 1 sparticle, namely the LSP. It is often assumed (and we will assume
it as well in the following) that the LSP is the lightest neutralino.

Keeping these conditions in mind, there are two ways how sparticles can be produced at
a lepton collider:

• s-channel exchange of a Z boson (for all sparticles with electroweak quantum numbers,
i.e. all but the gluino) or a photon (for all charged sparticles, i.e. charginos, sfermions,
and the charged Higgs);

• t-channel exchange of a sparticle (slepton, sneutrino, chargino, or neutralino).

For the t-channel exchange to be relevant, the exchanged sparticle should not be too heavy.
Concerning the decays, the implication of R-parity is that the final state always contains

exactly two LSPs (which we assume to be the lightest neutralino). Since it is electrically
neutral and stable, they escape the detector without being detected. Still, they can be traced
indirectly by looking at the kinematics of all “visible” particles. Assuming all particles have
been detected and their energies and 3-momenta measured correctly, energy and momentum
conservation implies ∑

i

Ei =
√
s ,

∑
i

~pi = ~0 , (7.1.1)

in the lab system. Consequently, one can define missing energy /E =
√
s −

∑
iEi and

missing momentum /~p = −
∑

i ~pi which, if nonzero, indicate the presence of particles that
have escaped detection. This occurs also in the SM, in decays involving neutrinos, but the
missing energy in SUSY decay chains is typically much larger.

An example is the decay of two pair-produced sleptons: they could decay to two leptons
and two LSPs, leading to a signature with two leptons and missing energy. Charginos can
decay e.g. to an LSP and an off-shell W boson which could further decay to two leptons,
leading to a signature with four leptons and missing energy. If the W boson decays to
quarks, what is actually observed experimentally is a jet of hadrons, since quarks cannot
appear freely.

Roughly speaking, the SUSY searches at LEP have constrained all charginos, squarks
and sleptons to have masses above about half the center-of-mass energy, i.e. above 100 GeV.
These limits can only be avoided in special cases, e.g. a sparticle that is nearly degenerate
with the LSP, such that the visible decay products are very “soft”.

74



7.2 LHC bounds

Since 2010, the LHC experiments ATLAS and CMS have strongly improved the lower bounds
on sparticle masses1. The LHC is a pp collider with a center-of-mass energy of 7 TeV (2010–
2011), 8 TeV (2012), and, starting now (2015), 13 TeV2.

A complication with respect to a lepton collider is that the colliding hadrons are composite
particles. What we are actually interested in are reactions with large momentum transfers
where new particles are produced. Fortunately, such processes can be factorized into the
hard scattering of a pair of partons (quarks, antiquarks, or gluons), convoluted with parton
distribution functions (pdfs) describing the structure of the proton. The cross section for
the production of a high invariant mass final state Y in pp collisions can then be written as

dσ(p(P1) + p(P2)→ Y +X) =∫ 1

0

dx1

∫ 1

0

dx2

∑
i1,i2

fi1(x1)fi2(x2)dσ(i1(x1P1) + i2(x2P2)→ Y ) (7.2.1)

where X includes the hadronized remnants of the colliding protons, i1,2 are the colliding
partons, x1,2 their momentum fractions in terms of the original proton momenta P1,2,
and fi(x) are the pdfs. The invariant mass of the state Y (which can be one or several
particles) is given by the parton center-of-mass energy

√
ŝ, given by ŝ = x1x2s in terms of

the pp center-of-mass energy
√
s.

An important feature is that the largest momentum fractions are carried by the valence
quarks u, d and the gluons. Consequently, the production of a heavy particle not far from
the energy threshold will have a larger cross section if it can be iniated by these partons.

Typical MSSM production cross sections at the 8 TeV LHC are shown in fig. 7.2. One
can observe the following qualitative features:

• Production of (first generation) squarks and gluinos have the largest cross sections as
these processes profit from the large pdfs at high momentum fraction of the valence
quarks and gluons. They can proceed via s-channel exchange of quarks or gluons or
t-channel exchange of squarks or gluinos and are enhanced by the strong coupling
constant. In the case of squarks, this plot sums over all flavours but the stop.

• Production of third generation squarks is suppressed. This is mostly3 due to the fact
that the diagram with production from quark-antiquark annihilation via a t-channel
gluino exchange is absent in the stop case (or, rather, extremely suppressed due to the
small top quark pdf).

• Production of electroweakinos is even more suppressed due to the absence of gluon-
initiated processes and due to the smallness of the weak gauge couplings.

1The most up-to-date bounds can be found on the public websites of ATLAS and CMS, which is also
where the exclusion plots in this section are taken from.

2The original design energy is 14 TeV.
3In addition, the stop cross section is smaller in the plot compared to q̃q̃∗ because, in the latter case, a

sum over all non-stop flavours is shown.
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Figure 7.2: Sparticle production cross sections at the 8 TeV LHC (plot taken from the
Prospino web site).
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Figure 7.3: Combined bounds in the MSUGRA parameter plane m0 −m1/2 and translated
into the gluino squark plane from different search channels.

• Slepton production is smallest. Charged sleptons or sneutrinos can only be produced
via s-channel photon, Z, or W exchange.

As in the case of LEP, conservation of R-parity implies that all production and decay
chains of sparticles end with two LSPs, leading to missing momentum. However, an impor-
tant difference is that the total momentum before the collision is not known in a hadron
collider, as what matters is the kinematics of the partonic collision. For this reason, one
considers the missing transverse momentum,

/~pT = −
∑
i

(~pT )i (7.2.2)

where the transverse momentum vector ~pT is the projecction of the 3-vector onto the plane
orthogonal to the beam direction. Both in the partonic and in the hadronic system, the
total transverse energy vanishes. Unfortunately, at the LHC, one often refers to the absolute
value of this vector, |/~pT |, as missing transverse energy, denoted by /ET , Emiss

T , or simply
MET, even though this quantity corresponds to an energy only in the special case of massless
invisible particles (like neutrinos).

The observable signals for supersymmetry at hadron colliders are n leptons + m jets +
/ET , where either n or m might be 0. In general there are many different search channels.
There are important Standard Model backgrounds to these signals, especially from processes
involving production of W and Z bosons that decay to neutrinos, which provide the /ET .
Therefore it is important to identify specific signal region cuts for which the backgrounds
can be reduced. Of course, the optimal choice of cuts depends on which sparticles are being
produced and how they decay, facts that are not known in advance.

The latest limits on the CMSSM parameters are shown in figure 7.3 in the m0 − m1/2

plane and translated into the gluino squark plane. The bound does not depend strongly on
the fixed parameters.

Thinking about the MSSM more generally, it is hard to give a clear-cut exclusion bound
on a given sparticle since the cross-section and branching ratios depend on many of the
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Figure 7.4: ATLAS bound on the gluino vs. first/second-generation squark mass in a sim-
plified model.

other MSSM parameters like squark masses etc. For this reason, experimental results are
often presented in terms of simplified models. In simplified models, typically only a single
production channel and decay mode is considered and the branching ratio of the decay mode
is assumed to be 100%. Then, exclusion bounds can be given as a function of a small numbers
of parameters.

Exclusion limits for a simplified phenomenological MSSM scenario with only strong pro-
duction of gluinos and first- and second-generation squarks (of common mass), with direct
decays to quarks and lightest neutralinos. Three values of the lightest neutralino mass are
considered: 0, 395 GeV and 695 GeV. Exclusion limits are obtained by using the signal
region with the best expected sensitivity at each point.

7.2.1 Heavy Higgs searches

Searches for the additional Higgs states H0, A0 and H± – collectively referred to as “heavy”
Higgses in the following – are different from the other sparticle searches since the Higgs bosons
are even under R-parity, i.e. they can be singly produced. To understand the dominant
production and decay modes, it is instructive to consider the couplings to quarks. At tree-
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level, one has

L ⊃
3∑
i=1

mui√
2v
ūiui

(
sinα

sin β
H +

1

tan β
iA

)
(7.2.3)

+
mdi√

2v
d̄idi

(
cosα

cos β
H + tan β iA

)
+ h.c. . (7.2.4)

In the decoupling limit, cosα/ cos β → tan β and sinα/ sin β → −1/ tan β. We see that
the couplings to down-type quarks are enhanced and the ones of up-type quarks suppressed
with respect to the SM-like couplings of the light Higgs. The strongest bounds at LHC come
from the process gg → Φ0 → τ+τ−, (with Φ0 = H0 or A0), where the gluons couple to the
Higgses through a t or b quark loop.

The discussion of the production and subsequent decay of a heavy particle simplifies
considerably if the particle is produced on-shell and its decay width (the inverse lifetime
Γ = 1/τ) is small compared to its mass. This is fulfilled to an excellent approximation for
Higgs bosons. Then, one can approximate the cross section by a production cross section
times a branching ratio,

σ(gg → Φ0 → τ+τ−) ≈ σ(gg → Φ0)× BR(Φ0 → τ+τ−) , (7.2.5)

where BR(i) = Γi/Γ. This is called the narrow width approximation. Concerning the
production cross section, at large tan β it is dominated by a b quark loop, since the Φ0

coupling is proportional to tan β, as discussed above. Thus, the production cross section is
∝ tan2 β. While the coupling to τ leptons is also proportional to tan β, this does not lead
to an additional enhancement, as what matters is the branching ratio. At large tan β, the
total width is dominated by the decays to τ+τ− and bb̄, both of which are ∝ tan β, so the
enhancement factor cancels in the ratio Γτ+τ−/Γ.

The resulting bound in the mA0-tan β plane (recall mA0 ≈ mH0 in the decoupling limit)
obtained by CMS is shown in fig. 7.5 for some choice of the other MSSM parameters (to
which the bound is not very sensitive).

Further reading: section 3 of [14]
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