Exercises week 5:

Problem 1:
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Using the relationship for symmetric

matrices
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[Notice a subtlety here with
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The two matrix relationships can be proven

via the series expansion of the matrices:
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But in the trace, the terms can be reshuffled
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geometric series:
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Notice that this in principle assumes that
the eigenvalues of M are smaller than one,
but this requirement can be removed by just
rescaling M
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The other relation can be shown by
diagonalizing M with an orthonormal O
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where m are the eigenvalues of M.
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The last relation follows from the series
expansion in matrices and the relation
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Problem 3:
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The right hand side is totally antisymmetric
and has to be proportional to the
Levi-Civita symbol. The prefactor is fixed by
contraction (see lecture)
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Using this relationship, we find
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Notice that this is not a tensor relation
and should be understood elementwise.

On the right hand side, the two free indices g
have to be the same, the prefactor is the
number of combinations for 3 out of 4.
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which is a tensor relation.



Problem 4:
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The right side is totally antisymmetric again.
The proportionality is fixed by
contraction with Qr*vw\/di
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This result is intuitively clear:
For every spacetime point one can go into
the free falling frame. The metric reads
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In any case, in the free falling frame
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and hence in all frames since the relation

IS @ covariant.




