Exercises week 5:
Problem 1:

$$
\begin{aligned}
P_{\mu} V_{v}-\nabla_{v} V_{\mu}= & \partial_{\mu} V_{v}-\partial_{v} V_{\mu} \\
& -\Gamma_{\mu \nu}^{\rho} V_{\rho}+\Gamma_{v \mu}^{\rho} V_{\rho}
\end{aligned}
$$

$\Gamma_{\mu \nu}^{-\lambda}$ is symmetric in $\mu$ and $v$

$$
\Rightarrow P_{\nu} V_{\nu}-\mathbb{V} V_{\mu}=\partial_{\mu} V_{\nu}-\partial_{\nu} V_{\mu}
$$

Problem 2:

$$
\begin{aligned}
\Gamma_{\mu \lambda} & =\frac{1}{2} g^{\mu \rho}[\sum_{\frac{\partial g_{\rho \mu}}{\partial \times \lambda}+} \underbrace{\frac{\partial g_{\lambda \rho}}{\partial \alpha \mu}-\frac{\partial \mu_{\mu} \lambda}{\partial \times \rho}}_{=0}] \\
& =\frac{1}{2} g^{\mu \rho} \frac{\partial g_{\rho \mu}}{\partial x^{\lambda}}
\end{aligned}
$$

Using the relationship for symmetric matrices

$$
\partial T_{r} \log \mu=T_{r} \mu^{-1} \partial \mu
$$

and $\log \operatorname{det} M=t r \log M$

$$
\begin{aligned}
& \Rightarrow T_{r} M^{-1} \partial M=\partial \log d e t M \\
& \Rightarrow \frac{1}{2} g^{r g} \frac{\partial g \rho M}{\partial x^{\lambda}}=\frac{1}{2} \partial_{\lambda} \log (g)=\frac{1}{\sqrt{g}} \partial_{\lambda} \sqrt{g}
\end{aligned}
$$

[Notice a subtlety here with

$$
\log (-g)=\log g+\log (-1)=\log +\text { cons }
$$

The two matrix relationships can be proven via the series expansion of the matrices:

$$
\begin{gathered}
\log (1-x)=-\sum_{n>0} \frac{1}{n} x^{n} \quad(|x|<1) \\
\log M=\log \left(11-(\mu 1-M) \mid=-\sum_{n>0}!_{n}^{\prime}(11-M)^{n}\right. \\
\left(M^{n}\right)^{\prime}=M^{\prime} M^{n-1}+M M^{\prime} M^{n-2} \ldots M^{n-1} M^{\prime}
\end{gathered}
$$

But in the trace, the terms can be reshuffled

$$
\Rightarrow \partial \operatorname{Tr} \log M=\operatorname{Tr} \sum_{n \geqslant 0}(11-M)^{n} \partial M
$$

geometric series:

$$
\begin{aligned}
\frac{1}{1-x} & =\sum_{n \geqslant 0} x^{u} \\
\partial T_{r} \log M & =T_{r} M^{-1} \partial M
\end{aligned}
$$

Notice that this in principle assumes that the eigenvalues of M are smaller than one, but this requirement can be removed by just rescaling M

$$
\log M=\log \epsilon M / \epsilon=\log \epsilon M-\log \epsilon
$$

The other relation can be shown by diagonalizing M with an orthonormal O

$$
O \bar{M} b^{\top}=M
$$

$$
\text { C) } \begin{aligned}
& \log \operatorname{det} M=\log \operatorname{det} O \bar{M} O^{\top} \\
& =\log \operatorname{det} \bar{M} \\
& =\log \pi_{i} m_{i}
\end{aligned}
$$

where $m_{i}$ are the eigenvalues of $M$.

$$
\begin{aligned}
\Rightarrow & \log \pi_{i} m_{i}=\sum_{i} \log m_{i}=\operatorname{Tr}_{r} \log \bar{M} \\
& =\operatorname{Tr} O(\log M) o^{\top}=T_{r} \log \left(O \bar{M} 0^{\top}\right) \\
& =T_{r} \log M
\end{aligned}
$$

The last relation follows from the series expansion in matrices and the relation

$$
O \bar{M}_{O}^{u}=\left(\text { OM }^{\top} O^{\top}\right)^{n}
$$

Problem 3:

$$
\epsilon_{\mu v \lambda k} / r_{g}=\epsilon^{\alpha \beta \gamma \delta} g_{\alpha \mu} g_{\beta v} g_{\gamma \lambda} g_{k} / r / g
$$

The right hand side is totally antisymmetric and has to be proportional to the Levi-Civita symbol. The prefactor is fixed by contraction (see lecture)

$$
\epsilon_{\mu \nu \lambda k} / r_{g}=-r_{g} \epsilon^{r v \lambda k}
$$

Using this relationship, we find

$$
\epsilon^{\mu \nu \lambda \lambda} \epsilon_{\mu \nu \lambda_{j} / g}=-\epsilon^{\mu \nu \lambda k} \epsilon^{\mu \nu \lambda \rho}
$$

Notice that this is not a tensor relation and should be understood elementwise.

On the right hand side, the two free indices $k, \rho$ have to be the same, the prefactor is the number of combinations for 3 out of 4 .

$$
\rightarrow \epsilon^{\mu \nu \lambda k} \epsilon_{\mu \nu \lambda \rho / g}=-6 \delta_{\rho}^{k}
$$

which is a tensor relation.

Problem 4:

$$
\begin{aligned}
\nabla_{\alpha}\left(\epsilon^{\mu \nu \lambda \lambda} / \sqrt{g}\right) & =\epsilon^{\mu \nu k \lambda} \partial_{\alpha} \frac{1}{\sqrt{g}} \\
& +\Gamma_{\alpha \rho}^{\mu} \epsilon^{j v k \lambda} / \sqrt{g} \\
& +\Gamma_{\alpha \alpha}^{v} \epsilon^{r j \beta \lambda} / r_{g} \\
& +\Gamma_{\alpha \rho \rho}^{\alpha^{\mu \nu \lambda}} / \sqrt{g} \\
& +\Gamma_{\alpha \rho} \epsilon^{\mu \nu k \rho} / \sqrt{g}
\end{aligned}
$$

The right side is totally antisymmetric again.
The proportionality is fixed by contraction with $\epsilon_{\mu v k \lambda} / \delta_{y}$

$$
\begin{aligned}
& -\sqrt{g} 24 \partial_{\alpha} \frac{1}{r_{g}}-4 \Gamma^{\mu_{\alpha \mu}} \cdot 6 \\
& =-24 \sqrt{g} \partial_{\alpha} \frac{1}{\sqrt{g}}-24 \frac{1}{\sqrt{g}} \partial_{\alpha} r_{g}=0
\end{aligned}
$$

This result is intuitively clear:
For every spacetime point one can go into the free falling frame. The metric reads

$$
\begin{aligned}
& g_{\mu v}(y)=g_{\mu v}(x)+(y-x)^{\alpha} \partial_{\alpha} g_{\mu v}
\end{aligned}
$$

In any case, in the free falling frame

$$
\begin{aligned}
& \Gamma_{\alpha \beta}^{\mu}=0 \text { and } \partial_{\lambda} g_{\mu}=0 \\
\Rightarrow & \nabla_{\alpha}\left(\epsilon^{\mu \nu k} / r g\right)=0
\end{aligned}
$$

and hence in all frames since the relation is a covariant.

