exercises - week 3
Problem 1:
For a general symmetric matrix, there are orthonormal transformations, such that:

$$
S^{\prime}=O S O^{T}
$$

S^{\prime} diagonal.
Use D with diagonal elements of absolute values of S'

$$
\begin{aligned}
& S^{\prime \prime}=D^{-1 / 2} S^{1} D^{-1 / 2} \\
&=\left(\begin{array}{cc}
1 & \\
& 0 \\
& D^{-1 / 2} O
\end{array}\right)^{D^{\top} D^{-1 / 2}} \\
&=(\underbrace{\left(D^{-1 / 2}\right.}_{\Omega} 0) S(\underbrace{D^{-1 / 2} O}_{\Lambda^{\top}})^{\top} \\
& g_{\mu v}^{\prime}=\Lambda_{m}^{\beta} \Lambda_{r}^{\alpha} g_{\alpha \beta}
\end{aligned}
$$

In physics: The coordinate transformations will not change the signature of the metric.

Uniqueness?

$$
\begin{aligned}
& P g P^{\top}=\eta \quad \text { Minkowski } \\
& \Lambda y \Omega^{\top}=\eta
\end{aligned}
$$

Any $P^{\prime}=1 P$ with 1 correct trofo will give

$$
P_{g}^{\prime} P^{\top}=q
$$

Problem 2:

$$
\begin{aligned}
& \frac{\partial}{\partial \lambda}\left(\left(\frac{d s}{d \lambda}\right)^{2}\right)=0 \\
& \frac{\partial}{\partial \lambda}\left(\operatorname{gav}_{\sigma v} \frac{\partial x^{\mu}}{\partial \lambda} \frac{\partial x^{v}}{\partial \lambda}\right) \\
& =\frac{\partial x \rho}{\partial \lambda} \frac{\partial g_{\mu}}{\partial \times \rho} \frac{\partial \times x}{\partial \lambda} \frac{\partial \lambda^{2}}{\partial x}+2 g_{\mu} \cdot \frac{\partial^{2} \times r}{\partial \lambda^{2}} \frac{\partial x^{v}}{\partial \lambda} \\
& \frac{\partial^{2} x}{\partial \lambda^{2}}+\Gamma_{v \lambda}^{\lambda} \frac{\partial x^{x} \partial x^{\prime}}{\partial \lambda} \frac{x^{\prime}}{\partial \lambda}=0 \text { (} \\
& =\left(\Gamma_{\mu \beta}^{\alpha} g_{\alpha \nu}+\Gamma_{v g_{\mu-\alpha}^{\alpha}}\right)-2 g_{\mu \nu} \Gamma_{\alpha \beta}^{r} \frac{\partial x^{\nu} \partial x^{\alpha} \partial x^{\rho}}{\partial \lambda} \frac{\partial^{\rho}}{\partial \lambda} \\
& x \frac{\partial x \partial x^{2}+2 x^{2}}{\partial \lambda} \frac{1}{\partial \lambda} \frac{1}{\partial \lambda}
\end{aligned}
$$

$$
\begin{aligned}
& =0 \quad \Rightarrow \quad\left(\frac{\partial S}{\partial \lambda}\right)^{2}=\text { const } \\
& d S^{L} \alpha d \lambda^{2}=\frac{\sqrt{T} \alpha}{} \\
& d S^{L}=-d \lambda^{L} \quad \frac{d x H}{\partial \lambda} \rightarrow \frac{d x^{\lambda}}{\partial \tau} \cdot \text { court }
\end{aligned}
$$

So for the geodesic, the path parameter is alwasy proportional to the proper time.
It is fixed by the initial conditions and the normalization

$$
\frac{\partial x^{+}}{\partial \lambda} \frac{\partial y}{\partial \lambda} r=-1
$$

will lead to a geodesic parameterized by the proper time.
problem 3:

$$
\begin{aligned}
& S_{z}=\frac{1}{2} \int d \lambda g_{\mu v}\left(x^{\mu}(\lambda)\right) \frac{d x^{\lambda}}{d \lambda}(\lambda) \frac{d x^{v}}{d \lambda}(\lambda) \\
& \left.S_{E}\right|_{g(x)} \quad x^{\mu}(\lambda) \rightarrow \mathbb{R}
\end{aligned}
$$

Eubr-Lagrange:

$$
\begin{aligned}
& \frac{\partial \mathcal{L}}{\partial x^{\lambda}}-\frac{d}{d \lambda} \frac{\partial R}{\partial\left(\frac{\partial x^{n}}{\lambda \lambda}\right)} \\
& \frac{\partial g_{r \nu}}{\partial x^{\alpha}} \frac{2 x^{n}}{\partial \lambda} \frac{d x^{v}}{\partial \lambda}-\frac{d}{l \lambda}\left(2 g_{r-} \frac{\partial x^{h}}{\partial \lambda}\right) \\
& \frac{\partial g_{\mu}}{\partial x^{\alpha}} \frac{\partial x^{N}}{\partial \lambda} \frac{\partial x^{\alpha}}{\partial \lambda}-2 \frac{\partial g_{1} \alpha}{\partial x^{\beta}} \frac{\partial x^{\beta}}{\partial x} \frac{\partial x^{\wedge}}{\partial \lambda} \\
& -2 g_{r v} \frac{\partial x^{2} n}{\partial x^{2}} \\
& \frac{\partial g_{\mu \nu}}{\partial x^{\alpha}}=\Gamma^{\beta}{ }_{\alpha v} g_{\mu \beta}+\Gamma_{\mu^{\alpha} g_{\beta v}} \\
& \Gamma^{\mu}{ }_{\alpha \beta}=\frac{1}{2} g^{\mu v}\left\{\begin{array}{l}
\left.\frac{\partial g_{\alpha v}}{\partial x^{\prime}}+\frac{\partial g_{\alpha v}}{\partial x_{\alpha}} \frac{\lambda q_{\alpha}}{\partial x^{v}}\right\}
\end{array}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& C-2 \frac{d x^{2} \mu}{d \lambda^{2}} g_{\mu v}-2 \Gamma^{\mu}{ }_{\alpha \beta} \frac{\partial x^{\alpha} \partial x^{\beta}}{\partial x \partial x} g_{N \nu}=0
\end{aligned}
$$

problem 4:

$$
S_{c}=\int d \lambda \sqrt{-g \mu \frac{d x^{2}}{\frac{1}{\lambda} \frac{d x^{2}}{1 \lambda}}}=\int d \lambda^{\prime} \sqrt{-\int_{1-2 x^{2} \lambda^{2} \lambda^{\prime}}^{d x}}
$$

Eub-Lagringe:

Check how it transform under reparameterizations:

$$
\frac{\partial}{\partial \lambda} \rightarrow \frac{\partial \lambda}{\partial \lambda} \frac{\partial}{\partial \lambda^{\prime}}
$$

Consider again the e.o.m of problem 3:

$$
\begin{aligned}
& \frac{\partial g_{\mu \nu}}{\partial x^{\alpha}} \frac{2 x^{h}}{\partial \lambda} \frac{d x^{\nu}}{\partial \lambda}-\frac{d}{d \lambda}\left(2 g_{\mu x} \frac{\partial x^{\dagger}}{\partial \lambda}\right) \\
& \frac{\partial \mu}{\partial x^{\alpha}} \frac{\partial x^{n}}{\partial \lambda^{\prime}} \frac{\partial x^{v}}{\partial \lambda^{\prime}}\left(\frac{\rho \lambda^{\prime}}{\partial x^{\prime}}\right)^{2}-\frac{\partial \lambda^{\prime}}{\partial \lambda} \frac{\partial}{\partial \lambda^{\prime}}\left(\left.2 g m^{\prime} \frac{\partial \lambda^{n}}{\partial \lambda^{\prime}} \frac{\partial \lambda}{\lambda} \right\rvert\,\right. \\
& \text { C) } \cdots+\frac{\partial \lambda^{\prime}}{\partial \lambda} \alpha y_{r \nu} \frac{\partial \lambda}{(\lambda \lambda)^{\prime}} \frac{\partial x}{\partial x^{\prime}}
\end{aligned}
$$

c) not reparameterization invariant
back to problem 4:

$$
-\frac{1}{2} \frac{\frac{\partial g_{0 \nu}}{\partial x^{\alpha}} \frac{\partial x^{\mu} x^{\mu} x^{\omega}}{\partial \lambda}}{\sqrt{\partial x}}-\frac{d}{d \lambda}\left[\frac{-g \mu \alpha \frac{d x^{\wedge}}{d \lambda}}{\sqrt{ }}\right]
$$

$\frac{\partial \lambda^{\prime}}{\partial \lambda}($

$$
)^{\prime}-\frac{d J^{\prime}}{\partial \lambda^{\prime}} \frac{d}{d \lambda^{\prime}} \cdot\left[\frac{-g-\frac{d x^{n}}{\partial \lambda^{\prime}}}{\sqrt{g_{r u} \frac{\frac{d x}{2 \lambda^{\prime} \frac{\alpha x}{\partial x^{\prime}}}}{}}}\right.
$$

So this equation is reparameterization invariant just as the action.

For a solution to the geodesic equation, the λ derivative on the square root vanishes.
\rightarrow a solution to the geodesic equation also solves the e.o.m of action (4).

On the other hand, any reparameterization of a solution to the geodesic equation, will solve the e.o.m from (4) but not the e.o.m from (3).

