exercises - week 3

Problem 1:
For a general symmetric matrix, there are
orthonormal transformations, such that:

S= 080T
St diagonal.

Use D with diagonal elements of absolute

values of S'
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In physics: The coordinate transformations
will not change the signature of the metric.



Uniqueness?
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Problem 2:
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So for the geodesic,

the path parameter

Is alwasy proportional

to the proper time.

It is fixed by the initial
conditions and the normalization
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will lead to a geodesic parameterized by the
proper time.

problem 3:
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problem 4:
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Check how it transform under
reparameterizations:
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Consider again the e.o.m of problem 3:
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S not reparameterization invariant



back to problem 4
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So this equation is reparameterization
invariant just as the action.

For a solution to the geodesic equation,
the)_derivative on the square root
vanishes.

— a solution to the geodesic equation
also solves the e.o.m of action (4).

On the other hand, any reparameterization
of a solution to the geodesic equation, will

solve the e.o.m from (4) but not the e.o.m

from (3).



