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There is a factor 8 between the radiation

in the plane compared to the radiation

orthogonal to the plane of the binary

system.
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One of the standard arguments is that

the monopole vanishes for the system

and the radiation does not depend

on the coordinate system chosen!
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Fourier transform:
ET (1) = cl(w)

the support of these function is basically

w = 0 and hence there Is no radiation
produced.

The same argument can also be applied
in ED.
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So the ED radiation is also not

coordinate dependent even if the monopole
(the total charge of the system)
does not vanish.



