## Exercises, week 9

## 1 Kruskal coordiantes

Starting from the isotropic metric in standard form

$$
\begin{equation*}
d \tau^{2}=\left[1-\frac{2 G M}{r}\right] d t^{2}-\left[1-\frac{2 G M}{r}\right]^{-1} d r^{2}-r^{2} d \Omega^{2} \tag{1}
\end{equation*}
$$

show that using Kruskal coordinates, defined by ( $T$ is an arbitrary constant)

$$
\begin{align*}
r^{\prime 2}-t^{\prime 2} & =T^{2}\left(\frac{r}{2 G M}-1\right) \exp \frac{r}{2 G M} \\
\frac{2 r^{\prime} t^{\prime}}{r^{\prime 2}+t^{\prime 2}} & =\tanh \frac{t}{2 M G} \tag{2}
\end{align*}
$$

the metric reads

$$
\begin{equation*}
d \tau^{2}=\left(\frac{32 G^{3} M^{3}}{r T^{2}}\right) \exp \left(\frac{-r}{2 G M}\right)\left(d t^{\prime 2}-d r^{2}\right)-r^{2} d \Omega^{2} \tag{3}
\end{equation*}
$$

The $r$ in the last term is understood as beeing a function of $r^{\prime}$ and $t^{\prime}$. What is the domain of the coordinates $r^{\prime}$ and $t^{\prime}$ for $r>0$ ? What happened to the singularities at $r=0$ and $r=2 G M$ ? Is the metric singular in these points?

## 2 Geodesics in a Schwarzschild background

Starting from the Schwarzschild metric

$$
\begin{equation*}
d \tau^{2}=A(r) d t^{2}-B(r) d r^{2}-r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right) \tag{4}
\end{equation*}
$$

determine all non-vanishing Christoffel symbols. Using the Christoffel symbols, write down the four geodesic equations.

## 3 Geodesics in a Schwarzschild background 2

Starting from the Schwarzschild metric (4), write down explicitly the action of the geodesic equation

$$
\begin{equation*}
S=\frac{1}{2} \int d \lambda \frac{d x^{\mu}}{d \lambda} \frac{d x^{\nu}}{d \lambda} g_{\mu \nu} \tag{5}
\end{equation*}
$$

by inserting the metric.
Derive the geodesic equation using the Euler-Lagrange equations on the resulting action for $r(\lambda), t(\lambda), \theta(\lambda)$ and $\phi(\lambda)$.

