Exercises, week 5

1 Covariant curl

Show that the covariant curl actually is equal the ordinary curl for a symmetric affine connection

$$
\begin{equation*}
\nabla_{\mu} V_{\nu}-\nabla_{\nu} V_{\mu}=\partial_{\mu} V_{\nu}-\partial_{\nu} V_{\mu} \tag{1}
\end{equation*}
$$

2 Covariant divergence

Show that the covariant divergence can be rewritten in the following form

$$
\begin{equation*}
\nabla_{\mu} V^{\mu}=\frac{1}{\sqrt{g}} \partial_{\mu}\left(\sqrt{g} V^{\mu}\right) \tag{2}
\end{equation*}
$$

For this relation, you have to show

$$
\begin{equation*}
\Gamma_{\mu \lambda}^{\mu}=\frac{1}{2} g^{\mu \nu} \frac{d g_{\mu \nu}}{d x^{\lambda}}=\frac{1}{\sqrt{g}} \partial_{\lambda}(\sqrt{g}) \tag{3}
\end{equation*}
$$

Remember that for a symmetric matrix M we have

$$
\begin{equation*}
\operatorname{tr} \partial \log M=\operatorname{tr} M^{-1} \partial M \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\log \operatorname{det} M=\operatorname{tr} \log M \tag{5}
\end{equation*}
$$

For a bonus, consider how (4) would generalize without the trace.

3 Levi-Civita 1

We have seen that the following two expressions are tensors in GR

$$
\begin{equation*}
\epsilon^{\mu \nu \kappa \lambda} / \sqrt{g} \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\epsilon_{\mu \nu \kappa \lambda} / \sqrt{g} \equiv \epsilon^{\alpha \beta \gamma \delta} g_{\alpha \mu} g_{\beta \nu} g_{\gamma \kappa} g_{\delta \lambda} / \sqrt{g} \tag{7}
\end{equation*}
$$

Calculate the following contraction

$$
\begin{equation*}
\epsilon^{\mu \nu \kappa \lambda} \epsilon_{\mu \nu \kappa \alpha} / g=-6 \delta_{\alpha}^{\lambda} \tag{8}
\end{equation*}
$$

4 Levi-Civita 2

We want to calculate

$$
\begin{equation*}
\nabla_{\alpha}\left(\epsilon^{\mu \nu \kappa \lambda} / \sqrt{g}\right) \tag{9}
\end{equation*}
$$

This is suspected to vanish, since in the free falling frame, the first derivatives of $g_{\mu \nu}$ vanish and the covariant derivative becomes the ordinary derivative. Show this explicitly by using the fact that ϵ / \sqrt{g} is a tensor and the definition of the corresponding covariant derivative (using the results of problems 2 and 3 above).

