Exercises, week 10

1 Gauge fixing in ED

There is a strong analogy how gauge fixing works in gravitational waves compared to EM waves. Using the gauge potential A

$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} \,, \tag{1}$$

show that the equation of motion (EoM) for A_{μ} derived from the Maxwell equation is of the form

$$\Box A_{\mu} - \partial_{\nu}\partial_{\mu}A^{\nu} = S_{\mu}.$$
⁽²⁾

How does the EoM look in Lorenz gauge $(\partial_{\mu}A^{\mu} = 0)$?

Now use a plane wave Ansatz for A_{μ}

$$A_{\mu} = \epsilon_{\mu} \exp(ik_{\lambda}x^{\lambda}) + c.c. \qquad (3)$$

What does the EoM imply for the momentum k? How does a gauge transformation change the polarization vector ϵ . Show that there is a residual gauge degree of freedom when the equation of motion is enforced. How many physical degrees of freedom are there?

2 Helicity in ED

The helicity of a degree of freedom can be determined by performing a rotation around the direction of flight. A degree of freedom f has helocity h when the rotation with angle α leads to a factor

$$f(x) \to \exp(i\alpha h)f(x)$$
 (4)

Now consider the four-vector A_{μ} . Assume a plane wave Ansatz and a mode with momentum $\vec{k} \parallel z$. Please construct 4 linear combinations out of the 4 degrees of freedom A_{μ} with definite helicity.

3 Helicity in GR

Please construct the helicity eigenstates out of the modes h_{\times} and h_{+} in TT gauge.