Vectors and tensors

We have seen that the coordinates
transform according to
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In general any quantity that transforms as
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Is called a contravariant vector.

In contrast there are also covariant vectors
that transform as
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Notice that these Lorentz trafos are inverse
to each other in the sense
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It follows that the contraction of contravariant
and covariant vectors are scalars (invariant).
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Contravariant vectors can be transformed
into covariant vectors using the metric
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Another example for a scalar is the
line element
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The differential e/t
is contraviariant. '/ = _/_\/: x Y

The derivative operator is covariant:

o kY o ‘AVJ

T T A dxv T L g

54
oA xl ://D/‘*
Vv
Q/u = A'A. OV

We can use this to contruct covariant vector
fields out of scalar fields.
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There are also quantities with several
indices. These are tensors. The indices can
be either covariant or contravariant.
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New tensors can be constructed from old ones
via

A) linear combination T(ﬂ ~ a/dx; + éﬂ;
B) (outer) product T = V‘-(U/s
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C) contraction A“ - T‘,@ﬁ
D) differentiation ‘E 2 — Dp(A A ()(,y

There are a couple of special tensors:

(1) Minkowski metric
g
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(i1) The levi civita tensor

o8\ § J
& Fé = [4 & ;ﬁmiﬁ\z\:o{ox&?

l

1 -~ Cg" odd /QJUU_\
" O oHea a4

/ 8/ VA v Ak
é%é\ ’/t‘/\“v~~/\~A e

; éu &5 (f}‘ﬁf"A): é-o(/fbx



For the proof notice that the RHS is totally

antisymmetric and that for (2, §=0123

the expression is the determihé&nt.

(iii) zero tensors




comments:
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Since

Wand vl"’are tensors, they can be used

to lower and rdise indices.

Notice that the order of the indices is important
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Electrodynamics

Maxwell's equations are:
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In order to check the transformation
properties we construct the following tensor:
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The Maxwell equations then read
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