Generation of gravitational waves
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Consider the Fourier transformation of the

source \
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Next, we use the wave zone approximation

meaning the observer is quite far away from
the source
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Notice that if we identify
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So in the wave zone approximation,
the weak field limit leads to a plane wave.

Now to simplify, let's consider a single mode
with a frequency (>
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We can then use the wave zone approximation
to calculate the energy flux per solid angle
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that can be expressed in terms of the
source:
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Remember that the energy-momentum
tensor is conserved, i.e.
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or in Fourier space:
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This way, the flux can be written as
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where A IS the projection tensor on the
transverse traceless part.
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P is the projection on the transverse plane
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This is the power emitted from a single mode
with frequency

If you would observe the system forever,
one can also calculate the total
energy radiated for the full spectrum.
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