
Minkowski space has 

so it will be true in any representation of 
flat space.

For example in spherical coordinates:

because of the pseudo
forces

but 
because it is a tensor

Is the opposite also true? If R

does this mean that the space is (locally)
equivalent to Minkowski space?

Actually, if R      =0 and the signature of 
the metric is the one of Minkowski, this is 
in fact true.



Let's start in an arbitrary point X.

These matrices can be enhanced to
fields via parallel transport (remember R     =0)

Then one has:

(notice that alpha is not a GR index, it just
 enumerates the different vectors that achieve
 the Minkowski metric)



Curvature:

In order to describe the dynamics of the 
metric, we need a 'kinetic term' for the metric.

Usually, kinetic terms contain second 
derivatives or two simple derivatives, e.g.

Hence we would like to construct a term
involving second derivatives of the metric
in a covariant way:



Therefore we consider:

Notice that the zeroth and first order terms
are symmetric in    and    .

In order to eliminate them, we can form
the antisymmetric combination again: 

Where R     is again the Riemann-Christoffel
tensor. 



Comments:

Notice that since R       is a tensor, it cannot
be made to vanish by a coordinate 
transformation.

In every point, g0 can be made the Minkowski
metric and    g0 can be transformed away,
but the second derivatives can only put 
partially in a more convenient form, because
these are the degrees of freedom that 
enter the Riemann tensor, and it cannot be
be removed fully (if the space is non-flat).

Notice that the construction of R via the 
commutator of the covariant derivative
does not resort to parallel transport, S   is 
just any vector/field.



So we have seen that 

This can be generalized for the commutator
acting on different tensor structures:

For a covariant vector one finds:

Symmetries:

Generalizations:

A similar formula holds for any tensor, e.g.

In order to study the symmetries under
exchange of indices one has to construct
the fully covariant form:



The fully covariant form can be evaluated
to be:

In general this tensor would have D
arbitrary entries. 

If all the symmetries are imposed, one ends 
up with 

The following properties are then more evident:

A) symmetry:

B) antisymmetry:

C) cyclicity:



Contractions:

Due to the symmetries, R    only allows one
non-trivial contraction, the Ricci tensor:

The final contraction gives the curvature
(Ricci) scalar

So the number of independent degrees of 
freedom is

In particular, in 1D there is no 'curvature'.
A line is always flat and curvature requires
2 dimensions



Counting the degrees of freedom suggests
that in 2D, the Riemann tensor might be
expressed in terms of the Ricci scalar!
(both have 1 d.o.f.)


