Minkowski space has Q/\r% - o

so it will be true in any representation of
flat space.

For example in spherical coordinates:
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A o  because of the pseudo
forces

but
R/\ ok = O because it is a tensor

. N
Is the opposite also true? If R, [, =o
does this mean that the space is (locally)
equivalent to Minkowski space?

Actually, if R>\M=O and the signature of
the metric is the one of Minkowski, this is
in fact true.



Let's start in an arbitrary point X.
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These matrices can be enhanced to \
fields via parallel transport (remember R’M =0)

- = H v
W dh () = Al 4 Tl by = o
(notice that alpha is not a GR index, it just

enumerates the different vectors that achieve
the Minkowski metric)

Then one has:
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Curvature:

In order to describe the dynamics of the
metric, we need a 'kinetic term' for the metric.

Usually, kinetic terms contain second
derivatives or two simple derivatives, e.q.
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Hence we would like to construct a term
involving second derivatives of the metric
In a covariant way:
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Therefore we consider:
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Notice that the zeroth and first order terms
are symmetric in . and ~..

In order to eliminate them, we can form
the antisymmetric combination again:
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Where Ré ’ IS again the Riemann-Christoffel
tensor.



Comments:

Notice that since R’,,_ is a tensor, it cannot
be made to vanish by a coordinate
transformation.
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In every point, g0 can be made the Minkowski
metric and g0 can be transformed away,
but the second derivatives can only put
partially in a more convenient form, because
these are the degrees of freedom that

enter the Riemann tensor, and it cannot be
be removed fully (if the space is non-flat).

Notice that the construction of R via the
commutator of the covariant derivative
does not resort to parallel transport, S\ is
just any vector/field.



Generalizations:

So we have seen that
A . A ?
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This can be generalized for the commutator
acting on different tensor structures:
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For a covariant vector one finds:
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A similar formula holds for any tensor, e.q.
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Symmetries:

In order to study the symmetries under
exchange of indices one has to construct
the fully covariant form:
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The fully covariant form can be evaluated
to be:
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The following properties are then more evident:

A) symmetry:
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B) antisymmetry: 2~ ~ Ry == Ry,
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C) cyclicity: A

(134)
az)\},vn'* Q}\va + Q/\VK/-: o

In general this tensor would have D' ~)5«
arbitrary entries.

If all the symmetries are imposed, one ends
up with
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So the number of independent degrees of
freedom is
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In particular, in 1D there is no 'curvature’.
A line is always flat and curvature requires
2 dimensions
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Contractions:

Due to the symmetries, RY, only allows one
non-trivial contraction, the Ricci tensor:
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The final contraction gives the curvature
(Ricci) scalar
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Counting the degrees of freedom suggests

that in 2D, the Riemann tensor might be

expressed in terms of the Ricci scalar!

(both have 1 d.o.f.)
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