Storage

In HEP,

on the Grid,

and in the Computing Center

Yves Kemp GridKa-School, HEP session Karlsruhe 2.9.2009

>HEP has always been major storage user

Bubble chambers ... (HERA, BaBar, Belle, Tevatron, RHIC...)

> With LHC: HEP is going into a new dimension

- LHC has pushed Data Grid technologies
- Vendors embracing HEP datacenters, good clients:-)

> Future: Not clear whether HEP still has a key position

- Data mining, data warehousing, ... rapidly growing capacity needs in industry
- Other science (e.g. XFEL@DESY) similar data rates expected than HEP
- First lesson: HEP should stick to industry standards!

The LHC data challenge and the LHC Grid

(you know the numbers, no need to bring them up again)

Hosting CPUs and storage in one single/very few places impossible

- Technology: Dimension just far beyond current state of art
- Network: Is slow and expensive
- Security: Need at least a second place and copy in case the first one breaks
- Politics: Did not want to put all money into one large center LHC Computing Model
- That was back in 1990ths... guess how things are today
- > Two things come together ...
 - The Computing Grid with its (theoretically) flat hierarchy
 - A tiered layer of data centers with clear hierarchy Tier2
- ... to create the LHC Grid
 - An heretical question: Would one still build the Life Grid like this today?"

Lab m

UK

Germany

France

CERN Tier

Tier 0

CERN

Uni

Lab c

DES

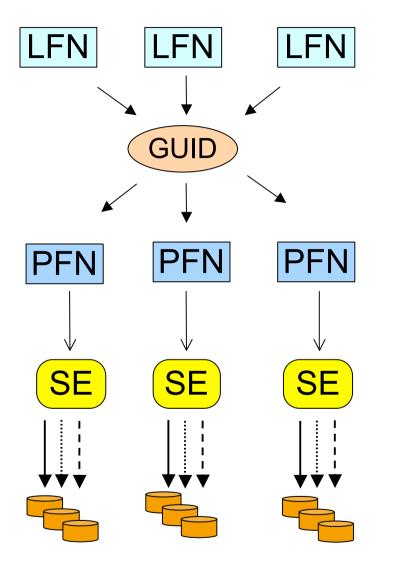
Uni n

Uni x

Fier 1

USA

The LHC


Computing

Centre

ectional

Lab

Coming from the Grid view to the local view

"Filename" on the Grid

- Global Unique Identifier (GUID)
- guid:3a69a819-2023-4400-a2a1-f581ab942044
- Easier with Logical File Name (LFN)
 - Ifn:/grid/myexp/kemp/ExitingDataset.dat
 - Ifn:/grid/myexp/myboss/DataWithBadDetector.dat
- > Physical File Name (PFN)
 - A Path on the SE: also called Storage URL (SURL)
 - /storage/grid/experiments/cms/kemp/ver04/run2342/results/data/file124.dat
 - Files can be replicated to several SEs
- Up to here: Correspondence governed by catalogues
 - Like LFC
- From the PFN to the transport URL (TURL)
 - The transport protocol: (gsi)dcap, gsifp, xrootd
 - The SE (SRM) will tell you
 - ... and you will access the data on the hardware....

The "Ideal" storage: Attributes to storage

> Fast:

- Fast in getting the meta-data ("Is -I")
- Fast in getting the first desired bit / random reads
- Fast in getting a sustained stream
- Fast in writing the data
- > Huge
- > Unique, consistent and easy:
 - Unique namespace (no "/tmp", "/afs/...", "/grid/cms/...", "/home", "srm://pnfs..."
 - Consistent access methods throughout the whole storage
 - Easy access to the data
- > Accessible from everywhere
 - And fast ;-)

> Cheap

- Purchase
- Running costs
- cooling, electricity, space consumption, ...

Harry Potter tm Trunk with Dressing Up Set.

Some more attributes...

Secure (data integrity)

- Authentication and authorization (no one else can temper your data)
- Backup (even you cannot temper your data by mistake)
- Robust media/technology & backup (even a disaster cannot temper your data)
- Simple manageability, stable running, good support
 - Little administration costs, good vendor support
 - Little disturbances by downtimes / maintenance
- > Migration

. . . .

- If a newer / better system becomes available: No vendor lock-in
- Long term availability
 - Of your data
 - Of the storage system
 - Of the protocols

Conclusion:

"The One Ideal" storage does not exist Compromises, and different products for different purposes

Some technology: Media

- RAM and NVRAM (e.g. battery powered DRAM (+disks))
 - Yes: RAM-Disks do exist: Databases!
 - Sometimes used as Meta-Data disks for fileservers in HEP
- > Solid State Disks
 - Have emerged in the last year, become less and less expensive
 - Serious competitor to Hard-Drives in some future
 - Different access behavior than traditional "spindle disks"
- > Hard Disk Drives (with magnetic spindles)
 - Established technology
 - High density, and increasing
 - Streaming performance very good
 - Random access / seek time relatively slow w.r.t. streaming
 - Different connections / qualities: P-ATA, S-ATA, SCSI, SAS, FC, ...

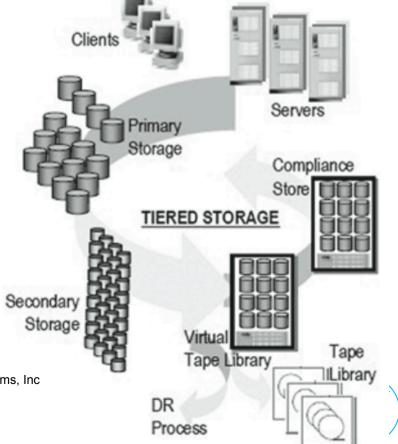
Wikimedia Commons

More technology

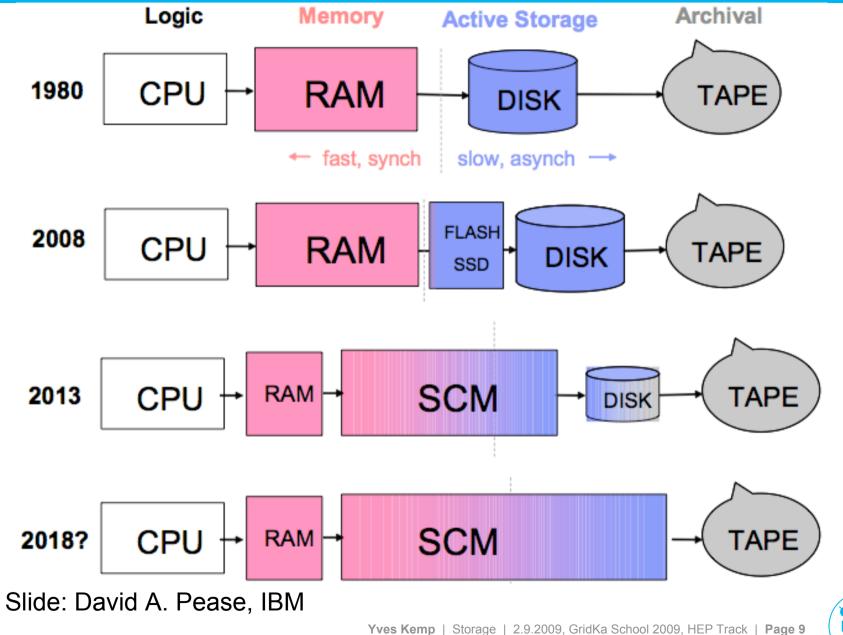
Tapes

- "Will disappear soon": Sentence true since (at least) 10 years :-)
- And still tape is the working horse for storing data at CERN, FZK, DESY and elsewhere
- Lowest media cost (~50 EUR / TB), Green-IT (no electricity when not accessed)
- Best scaling storage system available, difficult to handle (administration, access,)
- > Optical media (CD, DVD, ...)
 - Play only a minor role in large scale data storage

Putting them together:


> Tiered storage

- Migration from active disks to offline storage
- Automatically, transparent to users


-Copyright 1994-2009 Sun Microsystems, Inc -www.storageconsortium.de

Yves Kemr

Storage Class Memory

One interesting thing about RAID and data security

RAID: Redundant Array of Independent|Inexpensive Disks

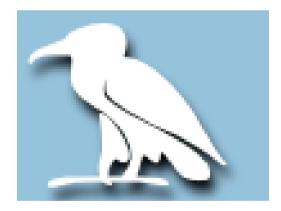
- RAID-0: Stripe information among >1 disks
- RAID-1: Mirror information on 2 disks
- RAID-5: Capacity of N disks, using N+1 disks, one disk used for checksums
- RAID-6: Capacity of N disks, using N+2 disks, two disks used for checksums
- RAID-10/50... combinations of the above
- > HDD error rate between 10⁻¹⁶ and 10⁻¹⁴
 - Results in reading error every 10-1000 TB
- > RAID-5 is secure ... unless you store more than ~10 TB:-)
 - RAID-6 is somewhat more secure

> Absolute security does not exist! Some data will get lost!

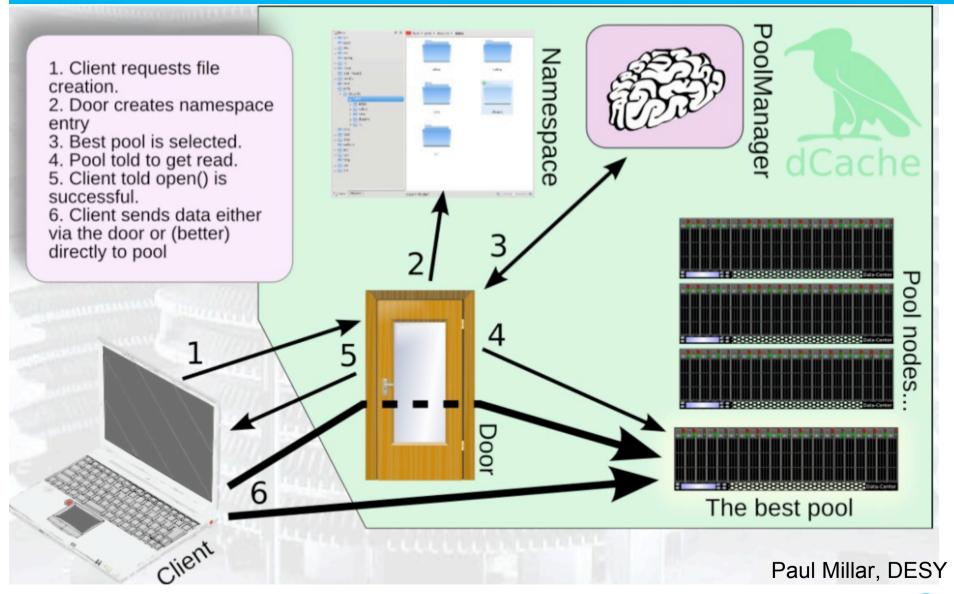
Also tapes (I.e. backup) can fail!

Yves Kemp | Storage | 2.9.2009, GridKa School 2009, HEP Track | Page 10

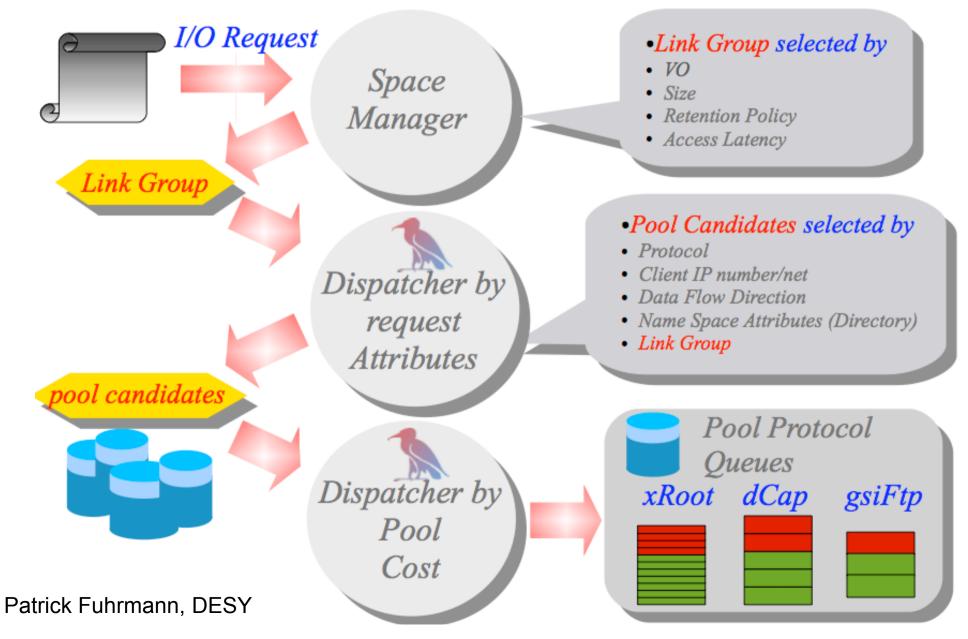
Different storage places in the NAF


- > OK, what is the optimal workplace on the NAF?
 - No single answer, but you get my personal recommendations for free :-)
- > AFS /afs/naf.desy.de/...: Network file system
 - Login files, small data amounts (like plot.root) (total <1 GB)
 - Source files for code (exclude libs or bins: Check HowTo with your VO admins)
 - There are group volumes for SW releases. Check with your VO admins
 - Compilation can be slow (Atlas-CMT problem), usually OK
 - Not available on Grid-WNs (not directly, and I will not tell you how)
 - Backup
- /tmp: Local file system
 - Is local, quite large, no quota, somewhat fast
 - Cleaned up every 10 days

- > /scratch/... (Currently Lustre file system)
 - Fast cluster file system, available everywhere in NAF but not externally, no backup, (currently) no quota or ACLs
 - Using InfiniBand as interconnect, low latency and high bandwidth
 - Currently optimized for large files, bad for unpacking source code and compilation
 - Useful for temporary storage of "hot data"
 - Storage of often-used personal NTuples
- > dCache / SE
 - Central (Grid) Import/Export system, well integrated into experiment's workflows
 - Large data sets, shared by many people and accessible from everywhere
 - Not "filesystem-like": No compilation etc.
 - Backup / Archive possible (not done yet)


dCache in a nutshell

- dCache was introduced as a disk cache for tapes
 - Combine large but slow tape systems with small but fast file servers
 - Remember the "tiered-storage" plot???
- > Today can manage up to 10 PB of data
 - But also "Tier-3-like" installations, with O(100 TB) of data
- > Speaks many languages
 - (grid-)ftp
 - dcap, gsidcap
 - Xrootd protocol
 - http
 - SRM as a meta-language
- > Other systems (CASTOR, DPM, ...) have similar setup


Workflow : writing files

dCache a coarse view inside

Request Flow

Network protocol providing abstraction layer

>What SRM does:

- Negotiates transfer proto
- File pinning / unpinning
- Space management
- Name-space operations
- Permission management

>Two file attributes:

- Access Latency is: online, nearline, (offline)
- Retention Policy is: replica, (output), custodial.

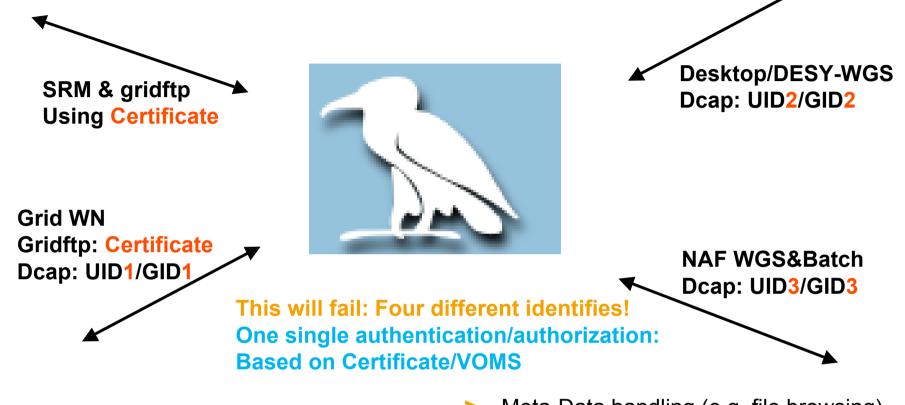
>What SRM does not do:

- Data transfer
- Configuring data placement
 / policy engines
- Provisioning

http://iris-ict.eu/joomla/images/stories/storage7.jpg

dCache: Pools and Doors

Pools: Hold the data


- Poolgroup: Group of pools:-) (e.g. all pools from mcdisk, data09disk,...)
- Poolnode: A computer with pools on it (usually fileserver, or attached to SAN)
- Replicates: One file can have several copies on different pools (of the same poolgroup).
 Can be done automatically, useful for increasing performance

> Doors: Connect you with your data

- Several doors, for each protocol: (gsi)dcap, (gsi)ftp, http(s), xrootd, …
- Can have more than one / protocol
- Ask SRM for the door with protocol $X \rightarrow$ You will get the best matching door
- You communicate with this best matching door ...
- > Getting/Putting the data
 - Either your client is redirected to the pool, and gets/puts data directly
 - ((Or the access goes via the door, good for firewalls, bad for speed))

Authentication/Authorization

- Protocols
 - Gridftp (same as before)
 - Gsidcap: Same as dcap, but with GSI authz
- E.g. ROOT supports gsidcap

- Meta-Data handling (e.g. file browsing)
 - /pnfs/ needs dcap (not gsidcap!)
 - dcTools developed at DESY by summer student Malte Nuhn
 - On NAF: ini dctools -> dcls -l /pnfs/desy.de/ilc
- SRM tools also OK, but slower
- http based solution under development

Speed discussion

> Hepix storage task force: dCache similar speed than other products

- DPM, XROOTD server and dCache: No seizable difference in performance
- Will take dCache as an example in the following
- > dCache has movers, and they might get queued if too many
 - To protect the system against overload
 - You might have to wait :-) (We see this, and can optimize things up to some point)
- SRM is slow. People know this. Unfortunately, there is not much we can do about it...
- Communication overhead (doors, pools,...)
 - (~0.5 s communication / file open) + (~0.5 s GSI security / session)
 - dCache developers try to lower both overheads
- > Data transfer is very fast
 - In streaming mode, near to wire speed ((gsi)dcap and gsiftp)

How fast a system must be?

> Example math:

- One job: 10 events/s
- One event (AOD): 150 kByte
- \rightarrow 1,5 MByte/s/job (CPU limited....)
- 5 million events per dataset
- Want to compute this in 1 hour
- > 5*10⁷ / 10 / 3600 = 140 jobs in parallel
- > 140 jobs * 1,5 MByte = 210 MByte/s aggregate bandwidth
 - We have tested Lustre with 500 MByte/s (one server!)
 - dCache: Data distributed over different pools. Now: ~100 MByte/s/poolnode, soon: up to 1 GByte/s/poolnode
- > Numbers can/will/should change!

M. Schumacher on Ferrari, 2005 Wikimedia commons

No conclusion here (except that this is an incomplete talk with a lot of personal opinions)

Any questions? Suggestions?

One question to you: We are always looking for benchmark applications. If you got a physics analysis application and are willing to spend some time rerunning your app against several storage technologies and different configurations, please contact us!

Yves.Kemp@desy.de

