Homework Exercises for QCD and Collider Physics IV Lecturer: H. Jung

summer term 2007

Exercises for Lecture 2 (7. May 2007)

- show that a four-vector can be expressed in terms of $m_{t}=\sqrt{p+t^{2}+m^{2}}$ and rapidity $y=\frac{1}{2} \log \frac{E+p_{z}}{E-p_{z}}$ as:

$$
p^{\mu}=\left(p_{x}, p_{y}, p_{z}, E\right)=\left(p_{t} \sin \phi, p_{t} \cos \phi, m_{t} \sinh y, m_{t} \cosh y\right)
$$

- calculate the Matrix element for
$q \bar{q} \rightarrow q \bar{q}$
$q \bar{q}^{\prime} \rightarrow q \bar{q}^{\prime}$
$g g \rightarrow q \bar{q}$
- show that the cross section for jet production in hadron collision can be written as:

$$
\frac{d^{2} \sigma}{d y d^{2} P_{T}}=\frac{1}{16 \pi^{2} s} \sum \int \frac{d x_{1}}{x_{1}} \frac{d x_{2}}{x_{2}} f_{i}\left(x_{1}, \mu^{2}\right) f_{j}\left(x_{2}, \mu^{2}\right) \bar{\sum}|\mathcal{M}(i j \rightarrow k l)|^{2} \frac{1}{1+\delta_{k l}} \delta(\hat{s}+\hat{t}+\hat{u})
$$

express phase space in terms of y and p_{t}.

- prove the following relation:

$$
\frac{d \sigma}{d 2 p_{t}^{2}}=\frac{d \sigma}{d t} \frac{\hat{s}}{\hat{t}-\hat{u}}
$$

and show that $p_{t}^{2}=\frac{\hat{u} \hat{t}}{\hat{s}}$

