Homework Exercises for QCD and Collider Physics II

Summer 2006

Exercises for Lecture 1 (19. April 2006)

- The variance is defined as:

$$
V(f)=\int(f-E(f))^{2} d G=\left(\frac{1}{b-a} \int_{a}^{b}(f(u)-E(f))^{2} d u\right)
$$

Show that one obtains for
if x, y uncorrelated
$V(c x+y)=c^{2} V(x)+V(y)$
if x, y correlated
$V(c x+y)=c^{2} V(x)+V(y)+2 c E[(y-E(y))(x-E(x))]$

- Write a small program, that simulates radioactive decay: $d N=-N \alpha d t$ which results in $N=N_{0} e^{-\alpha t}$.
The probability that nucleus undergoes radioactive decay in time Δt is p :
$p=\alpha \Delta t($ for $\alpha \Delta t \ll 1)$
show results after 3000 sec for:
$N_{0}=100, \alpha=0.01 s^{-1}, \Delta t=1 s$
$N_{0}=5000, \alpha=0.03 \mathrm{~s}^{-1}, \Delta t=1 \mathrm{~s}$
- The expectation value is defined as:

$$
E(f)=\int f(u) d G(u)=\left(\frac{1}{b-a} \int_{a}^{b} f(u) d u\right)=\frac{1}{N} \sum_{i=1}^{N} f\left(u_{i}\right) .
$$

A simple example for $d G(u)$ is uniformly distributed u in $[a, b]: d G(u)=d u /(b-a)$. Using the definition of $E(x)$, show that one obtains:

$$
E(c x+y)=c E(x)+E(y)
$$

- Write a small program, that simulates Buffon's needle (Buffon 1777):
pattern of parallel lines with distance d, randomly throw needle with length d onto stripes, count hit, when needle crosses stripes and count miss, if not. The probability for hit is: $\frac{d \cos (\alpha)}{d}=\cos (\alpha)$ and all angles are equally likely, giving a probability:

$$
\frac{\int_{0}^{\pi / 2} \cos (\alpha) d \alpha}{\pi / 2}=\frac{2}{\pi}
$$

- Write a small program simulation Compton scattering, using

$$
\frac{d \sigma}{d \Omega}=\frac{\alpha_{e m}^{2}}{2 m^{2}}\left(\frac{k^{\prime}}{k}\right)^{2}\left(\frac{k^{\prime}}{k}+\frac{k}{k^{\prime}}-\sin ^{2} \theta\right)
$$

with $k^{\prime}=\frac{k}{1+(k / m)(1-\cos \theta)}$. The angular distribution of the photon is:

$$
\sigma(\theta, \phi) d \theta d \phi=\frac{\alpha_{e m}^{2}}{2 m^{2}}\left(\left(\frac{k^{\prime}}{k}\right)^{3}+\left(\frac{k}{k^{\prime}}\right)-\left(\frac{k^{\prime}}{k}\right)^{2} \sin ^{2} \theta\right) \sin \theta d \theta d \phi
$$

The azimuthal angle is generated by: $\phi=2 \pi R_{1}$. Use now the approximate function:

$$
d \sigma^{a} d \theta d \phi=\frac{\alpha_{e m}^{2}}{2 m^{2}}\left(1+\frac{k}{m} u\right)^{-1} d u d \phi
$$

with $u=(1-\cos \theta)$, and obtain:

$$
u=\frac{m}{k}\left[\left(1+2 \frac{k}{m}\right)^{R_{2}}-1\right] .
$$

At the weight (accept/reject) events with $\frac{\sigma}{\sigma^{a}}$. Plot the photon scattering angle for 2 different values of the incoming photon energy, $E_{\gamma}=0.0005 \mathrm{GeV}$ and $E_{\gamma}=1 \mathrm{GeV}$

