Homework Exercises for QCD and Collider Physics

2005/2006

Exercises for Lecture 13 & 14 (15. & 22. Feb 2006)

Diffraction:

• calculate $x_{I\!\!P}=1-\frac{p'^+}{p^+}$ but using information of the system M_X , with vectors defined as: $k_i=(\sqrt{\frac{m^2+p_t^2}{2}}e^y,\sqrt{\frac{m^2+p_t^2}{2}}e^{-y},p_t)$ and obtain:

$$x_{I\!P} = \sum \frac{E_{t\,i}e^{y_i}}{2E}$$

Photon Structure:

 \bullet calculate y and x_{γ} using the 4-vectors given in the lecture:

$$q = (yp_e^-, \bar{y}p_p^+, q_t)$$

$$p_{\gamma} = (x_{\gamma}yp_e^-, \bar{x}_{\gamma}\bar{y}p_p^+, p_{\gamma t})$$

$$g = (\bar{x}_gp_e^-, x_gp_p^+, g_t)$$

$$g_2 = (\bar{x}_g^-, x_g^-, x_g^-, x_g^-, p_p^+, q_t^-)$$

and neglect all transverse momenta. Calculate y and x_{γ} to:

$$y = \frac{\sum_{i} (E - p_z)_i}{2E_e}$$

$$x_{\gamma} = \frac{\sum_{i} (E - p_z)_i}{2yE_e}$$