Homework Exercises for QCD and Collider Physics

2005/2006

Exercises for Lecture 11 (1. Feb 2006)

Kinematics:

- Calculate limits on z in case of a heavy quark: $Q \rightarrow Q^{\prime}+g$, with $Q=\left(p^{+}, p^{-}, 0\right)$, $Q^{\prime}=\left((1-z) p^{+},{p^{-^{\prime}}}^{2} k_{t}\right)$ and $g=\left(z p^{+}, k^{-},-k_{t}\right)$. Prove that $z<1-\frac{m^{2}}{Q^{2}}$ with $Q^{\prime 2}=m^{2}$ and Q^{2} being the invariant mass of the 4 -vector Q^{\prime} and Q.
- Calculate $k^{2}=-\frac{k_{t}^{2}+x m^{2}}{1-x}$ with m being the remnant mass and $q=\left(0, q^{-}, 0\right), k=$ $\left(x p^{+}, k^{-}, k_{t}\right)$ and $p=\left(p^{+}, 0,0\right)$ and $p=k+p_{\text {rem }}$, with $p_{\text {rem }}^{2}=m_{r e m}^{2}$.

Crossing symmetries:

- use crossing symmetry arguments (Halzen/Martin p238) to show that the matrix-element for $\gamma^{*} \rightarrow q \bar{q} g$ can be obtained from the QCDC matrix element, and that it is:

$$
|M|^{2} \sim\left(\frac{t}{s}+\frac{s}{t}+\frac{2 Q^{2} u}{s t}\right)
$$

Lund string model:

- assume constant force: $\frac{d p}{d t}=-\kappa$, of a relativistic particle with 4 -vector $p=(E, p)$. Show that the velocity is $d x / d t=d E / d p$ and construct $\frac{d E}{d x}=-\kappa$. Use the solution to the time dependence of the equations for p and E to constrcut:

$$
m^{2}=\kappa^{2}\left[\left(x_{0}-x\right)^{2}-\left(t_{0}-t\right)^{2}\right]
$$

using $m^{2}=E^{2}-p^{2}$, and $p_{0}=\kappa t_{0}, E_{0}=\kappa x_{0}$.

