

"Multiple Interactions and Underlying Events" DESY miniworkshop 18 – 19 May 2007

LUND UNIVERSITY

Monte Carlo Provocateur Intro: Programs and Problems Torbjörn Sjöstrand CERN/PH and

Department of Theoretical Physics, Lund University

MI = Multiple Interactions MB = Minimum Bias UE = Underlying event

A nonperturbative approach

Event with s_c soft cut pomerons

 t_c triple-pomeron vertices (single diffraction)

 l_c pomeron loops (double diffraction)

 h_c hard cut pomerons

has cross section

$$\sigma(s_c, t_c, l_c, h_c) = \frac{(2\chi_{\text{soft}})^{s_c}}{s_c!} \frac{(-2\chi_{tp})^{t_c}}{t_c!} \frac{(-2\chi_{\text{loop}})^{l_c}}{l_c!} \exp\left(-2\chi(b, s)\right) \frac{(2\chi_{\text{hard}})^{h_c}}{h_c!}$$
$$\chi_i(b, s) = \frac{\sigma_i(s)}{8\pi b_i} \exp\left(-\frac{b^2}{4b_i}\right) \implies \int 2\chi_i(b, s) \, \mathrm{d}^2 b = \sigma_i(s)$$

- closed framework with many relations but also many parameters
- a cut Pomeron \Rightarrow two fragmenting low- p_{\perp} chain of hadrons
- can explain rapidity plateau, multiplicity fluctuations, forward–backward correlations, etc.

but

- perturbative QCD jet production plays no natural role
- \implies not relevant for Tevatron/LHC energies (?)
- \implies need to add hard pomerons from perturbation theory

A perturbative approach

TS & M. van Zijl (1987) - still basis for most experimental studies

• all activity in MB & UE of perturbative origin

$$\frac{\mathrm{d}\sigma}{\mathrm{d}p_{\perp}^2}\Big|_{\mathrm{QCD}} \times \left(\frac{p_{\perp}^2}{p_{\perp 0}^2 + p_{\perp}^2}\right)^2 \left(\frac{\alpha_{\mathrm{S}}(p_{\perp 0}^2 + p_{\perp}^2)}{\alpha_{\mathrm{S}}(p_{\perp}^2)}\right)^2$$

 $\Rightarrow p_{\perp 0} \approx 1.5 - 2 \text{ GeV}$

- Poissonian number of interactions at fixed impact parameter
- Evolution in sequence of decreasing $p_{\perp} \Rightarrow$ corrections
- double Gaussian matter distribution ⇒ b dep. ⇔ pedestal effect; height tunable but saturation p⊥ scale predicted
- colour (re)arrangement for reduced string length to describe $\langle p_{\perp} \rangle (n_{\text{charged}})$
- simplify process description after first interaction
- virtuality-ordered showers & string fragmentation
- MB & UE unified, diffraction not (too many uncertainties)
- once HERA PDF: $p_{\perp 0}(s) = p_{\perp 0}(s_0)(s/s_0)^{\epsilon}$, $\epsilon \approx 0.08$ (DL)

Programs

name	\sim year	features
(Orsay)	1982	cut Pomerons, unitarized (unpublished)
ISAJET	1982	cut Pomerons, no diff
PYTHIA4	1986	pert. MI, MB&UE unified, diff. separate
HERWIG	1988	UA5 nonpert. parametrization, no diff
DTUJET	1990	pert. MI and cut Pomerons, unitarized
PHOJET	1995	pert. MI and cut Pomerons, unitarized (PYTHIA)
JIMMY	1996	HERWIG add-on, pert. MI for UE, no MB, no diff
(IVAN)	2002	HERWIG add-on, pert. and nonpert. MI
PYTHIA6	2004	PYTHIA4 upgrade: interleaved MI + ISR, new PDF
SHERPA	2006	PYTHIA scheme + CKKW
PYTHIA8	2007	PYTHIA6 upgrade: interleaved MI + ISR + FSR

The weak strong-interactions assumption

Interactions between the two incoming hadrons

- can be cleanly separated into a set of uncorrelated hard interactions,
- each embedded in its separate initial-and final-state showering,
- with confinement forces acting inside each set of colour charges,
- to give hadronization exactly like in e^+e^- .

Based on the principle of the drunkard, the lost keys and the lamppost

What if "new" collective effects are non-negligible?

Possible counterarguments:

- intertwined hard interactions? (next slide)
- close-packing in initial-state, especially at small x?
- rescattering between outgoing partons? (beginning of QG plasma)
- colour charges/strings closely packed ⇒ coherent effects? (colour ropes? colour reconnection!)
- produced hadrons closely packed ⇒ coherent effects?
 (interacting hadron gas? collective flow?)

Missing topologies: intertwined hard interactions

expected to be small ... (Paver & Treleani) ...but what consequences neglect?

expected to be small ... (Snigirev; Skands & TS) ... but again what consequences neglect?

Both of these are doable!

Initiators and Remnants

• PDF after preceding MI/ISR activity:

- 0) Squeeze range 0 < x < 1 into $0 < x < 1 \sum x_i$ (ISR: $i \neq i_{current}$)
- 1) Valence quarks: scale down by number already kicked out
- 2) Introduce companion quark q/\overline{q} to each kicked-out sea quark \overline{q}/q , with x based on assumed $g \rightarrow q\overline{q}$ splitting
- 3) Gluon and other sea: rescale for total momentum conservation

Certainly not perfect, but maybe good enough?

Colour correlations

long strings to remnants \Rightarrow much n_{ch} /interaction \Rightarrow few interactions \Rightarrow little $p_{\perp pert}$ $\Rightarrow \langle p_{\perp} \rangle (n_{ch}) \sim$ flat PYTHIA4 simplification: after hardest interaction stretch further strings between scattered gluons $\Rightarrow \langle p_{\perp} \rangle (n_{ch})$ flattens out

short strings (more central)

- \Rightarrow less $n_{\rm Ch}$ /interaction
- \Rightarrow more interactions
 - \Rightarrow more $p_{\perp pert}$
- $\Rightarrow \langle p_{\perp} \rangle (n_{\mathsf{Ch}})$ rising

Studied in many variants of PYTHIA:

1987:

2004:

FIG. 27. Average transverse momentum of charged particles in $|\eta| < 2.5$ as a function of the multiplicity. UA1 data points (Ref. 49) at 900 GeV compared with the model for different assumptions about the nature of the subsequent (nonhardest) interactions. Dashed line, assuming $q\bar{q}$ scatterings only; dotted line, gg scatterings with "maximal" string length; solid line gg scatterings with "minimal" string length.

Look at the <p_T> of particles in the "transverse" region (p_T > 0.5 GeV/c, |η| < 1) versus the number of particles in the "transverse" region: <p_T> vs Nchg.

 Shows <p_T> versus N_{chg} in the "transverse" region (p_T > 0.5 GeV/c, |η| < 1) for "Leading Jet" and "Back-to-Back" events with 30 < E_T(jet#1) < 70 GeV compared with "min-bias" collisions.

KITP Collider Workshop February 17, 2004 2007 (Skands & Wicke): also top mass determinations affected

Any other independent program/approach with possibility to check this?

Impact-parameter and Pomeron pictures

- No reason except laziness for simple universal Gaussian
 * JIMMY proton EM form factor ≈ double Gaussian
 * "true" form or representing averaged "hot spots"?
- (x, b) correlations, e.g.
 - \star large-x partons more central?
 - * valence quarks more central?
- Are separate hard and soft pomerons required?
 - \star how to merge consistently? with smooth transition?
 - * different energy dependence?
 - * different impact-parameter profile?
 - \star how to test for it experimentally?
- Does eikonalization uniquely predict diffractive cross section?
 - * diffraction from soft colour exchanges?
 - (Buchmüller & Hebecker, Ingelman & Rathsman)
 - * in any scenario, how many parameters & unproven assumptions?
 - * numerics unstable, e.g. colour flow choice
 - $\Rightarrow p_{\perp 0}$ value $\Rightarrow \sigma_{jet} \Rightarrow eikonal \chi(b,s) \Rightarrow \sigma_{diffraction}$

Low- p_{\perp} regularization

- $p_{\perp 0}$ regularization scale ≈ 2 GeV unexpectedly large $\Rightarrow r_0 = 0.1$ fm average colour screening separation?
 - * any support for existence of such a scale?
 - * Gustafson & Miu: effectively arises with unintegrated PDF's
 - \star non-universality for x and flavour? (cf. impact parameter)
- energy dependence p_{⊥0}(s) = p_{⊥0}(s₀)(s/s₀)^ϵ, ϵ ≈ 0.08 not based on any sound theory
 ★ Gustafson & Miu: p_{⊥0}(s) should flatten out
- ⇒ MI model based on unintegrated PDF's (& CCFM showers) highly desirable!
- Typically primordial $k_{\perp} \sim 2$ GeV needed for W/Z p_{\perp} spectrum missing understood BFKL/CCFM showering? missing not understood showering? nontrivial nonperturbative/collective effects? any relationship to $p_{\perp 0} \sim 2$ GeV?

What cross-section to unitarize?

Accuracy requires "correct" starting $d\sigma_{jet}/dp_{\perp}dy$ at all $p_{\perp} \gtrsim p_{\perp 0}/2$. Higher-order corrections e.g. from

- higher-order ME's and PDF's, or
- K-factors (fix or in α_s scale choice)
- showering effects

Watch out: NLO PDF's ill-behaved at small $x \& Q^2$ from compensating In(1/x) terms in NLO ME's. Tune QWT: $p_{\perp 0} = 1.1$ GeV. Tune QKT: K = 1.8 (at all p_{\perp} !). Benchmark $\hat{\sigma}$ (NLO) \otimes PDF(NLO) vs. $\hat{\sigma}$ (LO) \otimes PDF(LO) \otimes showers vs. $\hat{\sigma}$ (LO) \otimes PDF(NLO) \otimes showers vs. $\hat{\sigma}$ (LO) \otimes PDF(NLO) \otimes showers vs. jet + minijet data (where possible) Alternative: improved LO PDF's e.g. Thorne LO* relaxed p sum rule

Robert Thorne (ATLAS mtg, 14 Dec 2006):

Conclusions

PYTHIA has sufficiently many parameters that decent tunes to much Tevatron data can be achieved, but also some successful predictions.

HERWIG standalone fails \Rightarrow minijet scenario success.

HERWIG+JIMMY has fewer (but many!) parameters, can describe a lot but misses out on connection MB \Leftrightarrow UE

PHOJET should be better studied: can it be tuned to Tevatron data? Different energy dependence than PYTHIA. Could probe role of soft pomeron.

SHERPA does away with PYTHIA showering parameters (e.g. PARP(67)) by CKKW \Rightarrow more predictive?

Some "obvious" improvements should be addressed. + Explore non-obvious variants, in particular unintegrated PDF's.

"real theory" has been largely decoupled from experiment for last 20 years \Rightarrow time to popularize progress in useful form?

For experimental discussion

Need more experimentalists who understand, analyze and communicate: fixed-target \rightarrow ISR \rightarrow **RHIC(pp)** \rightarrow Sp \overline{p} S \rightarrow **Tevatron** \rightarrow LHC with special responsibility for running experiments

Need reproducible data, not necessarily corrected but with fully specified comparison procedures (HZtool \rightarrow Rivet)

Examples of useful distributions:

- charged multiplicity distributions
- flavour composition
- \bullet single-particle and jet p_{\perp} spectra
- $\langle p_{\perp} \rangle (n_{\text{charged}})$
- p_{\perp} spectra of Drell-Yan pairs as a function of mass and energy
- jet profiles (mass, angular shape, substructure, ...)
- underlying-event activity
- number of minijets as a function of cone size and jet energy
- forward-backward and other correlations