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Chapter 1

Introduction

This writeup is based on a series of lectures on QCD and Collider physics and QCD and MC
given in the years 2005 – 2015 at University Hamburg/DESY, at University of Antwerp and
at IFJ PAN Cracow. The full writeup, lecture notes, exercises and solutions can be found at
https://www.desy.de/ jung/QCD and Monte Carlo lectures.html, where also
more details and calculations are given.
The aim is to introduce the basic concepts of QCD and how this can be used for comparison
with measurements at the past and present high energy particle colliders, HERA and the
LHC. Since events produced at high energy collisions contain many particles, most of the
calculations cannot be performed analytically. Even for the calculation of integrals,
numerical methods have to be applied and for complicated multidimensional integrals the
Monte Carlo method is best suited. The basics of the MC method will be discussed in
chapter 2. The basics of QCD and the naive quark parton model will be discussed in
Chapter 2, with its extension to include QCD effects, where the parton evolution equations
will be discussed.
While the basic concepts and methods did not change in the last few years, the experimental
results and the interest to understand the measurements has changed: LHC has started and
the experiments have published already within one year a large number of measurements,
many of them confirming the predictions coming from QCD or more generally from the
Standard Model of Particle Physics, but also some which came as a big surprise.
A warning is needed here: although the lecture will cover Monte Carlo methods, it will not
be a description how to run a given Monte Carlo event generator, nor it will describe the
detailed implementation of QCD processes in Monte Carlo generators. The lectures will
provide the basics to understand the principles of Monte Carlo event simulation and basic
QCD calculations.
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Chapter 2

Monte Carlo methods

The general case of a process A+B → anything to be calculated is given in fig. 2.1. A more
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Figure 2.1: General case of scattering A+B → anything

detailed figure of the process to be studied is shown in fig 2.2, where on the left side is
shown the lowest order process for jet production in hadron hadron collisions and on the
right side the process is shown including multiparton radiation, which is the subject of this
lecture. It becomes clear, that with many partons1 involved in the calculation this cannot be
done analytically, and numerical methods are needed, one of them is the Monte Carlo
method.

2.1 Random Numbers
Monte Carlo method refers to any procedure, which makes use of random numbers and
uses probability statistics to solve the problem2. The Monte Carlo method was invented and

1Partons are used as a generic name for quarks and gluons
2The name comes from a saga, that the first true random numbers were obtained by recording the results of

the roulette game in the casino of Monte Carlo.
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Figure 2.2: Left: lowest order process for jet production in hadron hadron collisions. Right:
Process for jet production including multiparton radiation and hadronization

developed in the 1930’s for the calculation of nuclear decays, but nowadays is widely used
in any calculation of complicated processes for the simulation of natural phenomena,
simulation of the experimental apparatus, simulation of the underlying physics process but
also in economy for risk analysis etc.
Monte Carlo methods make use of random numbers. An example of a random number is 3
or 4. There is nothing like a random number. Any number can appear to be random. Only if
we have a sequence of numbers, where each number has nothing to do with the other
numbers in the series, we can say the numbers appear to be random.
In the following we consider random numbers always only in the interval [0, 1]. In a
uniform distribution of random numbers in this interval [0, 1] all numbers have the same
chance to appear, note that 0.00000034 has the same chance to appear as 0.5.
Random numbers can be obtained by several methods:

• using a truly chaotic system like roulette, lotto or 6-49

• using a process which is inherently random

• generating ”random numbers” on a computer

Examples for random numbers obtained from chaotic processes are using atmospheric
noise [1] or using quantum physics which is intrinsically random [2].
Random numbers generated on a computer are never really random, since they always are
determined according to some algorithm [3]. They may appear random to someone, who
does not know the algorithm. The randomness of random numbers can be checked by
several test, which will be discussed later. Random numbers, which are generated on a
computer are called pseudo-random numbers. Sometime quasi-random numbers are discussed.
Such random numbers are by intention not random but are designed to be as uniform as
possible in order to minimize the uncertainties in integration procedures.
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A simple random number generator (so called multiplicative congruential linear random
number generator) can be build as follows [4][p 40ff] and [5][Vol II,p 9]. From an initial
number I0 we generate a series of random numbers Rj according to:

Ij = mod(aIj−1 + c,m)

Rj =
Ij
m

(2.1)

with a being an multiplicative and c a additive constant and m the modulus3. With this
procedure one obtains a series of number Rj in the interval (0, 1) (note that the values 0 and
1 are excluded). This random number generator will be tested in the exercise. In fig 2.3 the
correlation of 2 random numbers is shown on the left side. The right side shows the same
correlation for another random number generator RANLUX [6–8], which will be used later
in the calculations. It is obvious, that the multiplicative congruential linear random number
generator produces random numbers, which show correlations and does therefore not
satisfy quality criteria for a good random number generator; the RANLUX generator seems
to be better.
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Figure 2.3: Left: correlation of two successive random numbers obtained according to 2.1.
Right: correlation of two random numbers obtained with RANLUX [8]

Several criteria on the randomness of a series of pseudo random numbers can be applied to
test the quality of the random number generator [5][Vol II,p 59]:

• statistical test (test uniformity of distribution, frequency test, equi-distribution test)
Divide the interval (0, 1) into k-subintervals with length 1/k. Count how many
random numbers fall into the k’s interval [9]. Calculate:

χ2 =
k∑
i=1

(Ni −N/k)2

N/k
(2.2)

3the modulus function is defined as mod(i1, i2) = i1 − INT (i1/i2) · i2
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with N random numbers Ri. If the random numbers are uniformly distributed, then
Eq. 2.2 is a χ2 distribution with k − 1 degrees of freedom and should give
χ2/(ndf) ∼ 1, with ndf being the number of degrees of freedom.

• serial test (pairs of successive random numbers should be distributed in an
independent way (see fig. 2.3)). The sun comes up just about as often as it goes down, in the
long run, but this does not make its motion random [5][Vol II,p 60].
Count pairs of random numbers (Y2j , Y2j+1) = (q, r) for any 0 ≤ j ≤ n and apply a χ2

test as above.

• sequence up-down test
Count the number of runs, where the random numbers are increasing Yj+1 > Yj .
Example: take the sequence 1298536704 and insert vertical lines for Yj+1 > Yj ,
resulting in |129|8|5|367|0|4|. Count the number of runs-up with length k. The number
of runs-up and the number of runs-down should be similar, but they should not be
adjacent: often a long run will be followed by a short one.

• gap test
Choose two numbers α, β with 0 ≤ α < β ≤ 1. Generate r + 1 random numbers. The
probability that the first r random numbers are outside (α, β) is Pr = p(1− p)r with
p = β − α being the probability for the r + 1 event to be inside (α, β).

• Random walk test
Choose 0 ≤ α ≤ 1 and generate a large number of random variables. Count how often
Yi < α and call it r. We expect a binominal distribution for r with p = α. The same test
can be performed for Yi > (1− α).

Practical criteria for random numbers can be formulated as follows [3]:

• Long period

• Repeatability
for testing and development one needs to repeat calculations. Repeatability also
allows to repeat only part of the job, without re-doing the whole.

• Long disjoint sequences
for long procedures one needs to be able to perform independent sub-calculations
which can be added later.

• Portability
not only the code should be portable but also the results should be the same,
independent on which platform the calculations are done.

• Efficiency
generation of random numbers should be fast.

To test a random number generator, a series of tests have to be performed. Even if a Random
Number generator passes all n -tests, one cannot assume that it also passes the n+ 1-test.
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2.2 Statistics and Probabilities
A very good overview on statistics and probabilities is given in [4, 10], which was used for
the discussion in this chapter. In an experiment where the outcome depends on a single
variable x one can ask what is the probability to find values of x in the interval [x, x+ dx].
This is given by f(x)dx with f(x) being the probability density function p.d.f (not to be
confused with the pdf which is used for the parton density function to be discussed later).
Since we assume, there is an experiment with some outcome, the probability to find x
anywhere must be unity, that is: ∫ ∞

−∞
f(x)dx = 1 (2.3)

The p.d.f has to satisfy in addition:

f(∞) = f(−∞) = 0 (2.4)

The expectation value (mean values or average value) of a function h(x) is defined as:

E[h] =

∫ +∞

−∞
h(x)f(x)dx =

∫
h(x)dG(x) =

1

b− a

∫
h(x)dx (2.5)

with f(x) being the probability density function. In the right part of the equation we used
the special case dG(x) = dx/(b− a) for a uniform distribution. In case of discrete
distributions we have:

E[h] =

∞∑
i

h(xi)f(xi) (2.6)

A special case is the expectation value of x (or the mean on the distribution)

E[x] =

∫ +∞

−∞
f(x)xdx

def
= 〈x〉 (2.7)

From the definition of the expectation value we see that E[h] is a linear operator:

E[cg(x) + h(x)] =

∫
(cg(x) + h(x)) f(x)dx

= c

∫
g(x)dx+

∫
h(x)f(x)dx

= cE[g] + E[h] (2.8)

with c being a constant. Similarly we can see that the expectation value of the expectation
value E[E[g]] is simply E[g]:

E [E[g(x)]] =

∫ (∫
g(x)f(x)dx

)
f(x′)dx′

= E[g(x)]

∫
f(x′)dx′

= E[g(x)] (2.9)
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because
∫
f(x′)dx′ = 1 by definition of the p.d.f

The variance σ2 measures the spread of a distribution and can be defined as the mean
quadratic deviation from the mean value. The square-root of σ2 is also called the standard
deviation. The variance V [h] is defined as:

V [h] = σ2 = E
[
(h(x)− E[h(x)])2

]
=

∫
(h(x)− E[h(x)])2 f(x)dx (2.10)

From the definition, the variance V [cg(x) + h(x)] can be calculated:

V [cg(x) + h(x)] =

∫
(cg(x) + h(x)− E[cg(x) + h(x)])2 f(x)dx

=

∫
(cg(x) + h(x)− cE[g(x)]− E[h(x)])2 f(x)dx

=

∫
((c(g − E[g]) + (h− E[h]))2 f(x)dx

=

∫ (
c2(g − E[g])2 + 2c(g − E[g])(h− E[h]) + (h− E[h])2)

)
f(x)dx

= c2V [g] + 2cE[(g − E[g])(h− E[h])] + V [h]

= c2V [g] + V [h] + 2cE[g · h− gE[h]− hE[g] + E[g]E[h]]

= c2V [g] + V [h] + 2c (E[g · h]− E[g]E[h]− E[h]E[g] + E[g]E[h])

V [cg(x) + h(x)] = c2V [g] + V [h] + 2c (E[g · h]− E[g]E[h]) (2.11)

In the case that g(x) and h(x) are uncorrelated, we have E[g · h] = E[g]E[h] and the
expression simplifies to:

V [cg(x) + h(x)] = c2V [g] + V [h] (2.12)

A special case is the variance of x:

V [x] = E
(
(x− 〈x〉)2

)
=

∫
(x− E[x])2 f(x)dx

= E
[
x2 − 2x〈x〉+ 〈x〉2

]
= E[x2]− 2E[x]〈x〉+ 〈x〉2

V [x] = E[x2]− 〈x〉2

V [x] = E[x2]− E[x]2 (2.13)

where the relation E[x] = 〈x〉 has been applied.
Consider independent random numbers x1 and x2 with variances V [x1] = σ2

1 and
V [x2] = σ2

2 and mean values µ1 and µ2. The expectation value of the sum of x1 and x2 is:

E[x1 + x2] = E[x1] + E[x2]

= µ1 + µ2 (2.14)
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The variance of the sum is (using x = x1 + x2):

σ2 = 〈x− 〈x〉〉
= E[(x− 〈x〉)2]

= E[(x− µ1 − µ2)2]

= E[(x− µ1 + x2 − µ2)2]

= E[(x1 − µ1)2︸ ︷︷ ︸
σ2
1

+2 (x1 − µ1)(x2 − µ2)︸ ︷︷ ︸
0

+ (x2 − µ2)2︸ ︷︷ ︸
σ2
2

]

σ2 = σ2
1 + σ2

2 (2.15)

because E[x1] = µ1, since x1 and x2 are independent. The general form is then:

σ2 =

N∑
i=1

σ2
i (2.16)

Consider now a sample of xi where all xi follow the same probability density function f(x),
having the same variance σ2 and the same µ. The mean of the sample is defined as:

x̄ =
1

N

N∑
i=1

xi (2.17)

The expectation value E[x̄] is given by:

E[x̄] = E

[
1

N

N∑
i=1

xi

]

=
1

N
E

[
N∑
i=1

xi

]

=
1

N
NE[xi]

E[x̄] = E[x] = 〈x〉 (2.18)

resulting in the expectation value of the mean being the mean itself. To obtain above, the
features of the linearity of the operator are applied.
The variance of the mean is:

V [x̄] = V

[
1

N

N∑
i=1

xi

]

=
1

N2
V
[∑

xi

]
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=
1

N2

∑
σ2
i

=
1

N2
Nσ2

V [x̄] =
1

N
σ2 (2.19)

or in the familiar form as the standard deviation of the mean:

σN =
σ√
N

(2.20)

2.3 Random Numbers from arbitrary distributions
Given a sequence of random numbers uniformly distributed in [0, 1] the next step is to
determine a sequence of random numbers x1, x2 . . . distributed according to a probability
density function p.d.f.
The task is to find a suitable function x(r) which gives the same sequence of random
numbers when evaluated with uniformly distributed values r. The probability to obtain a
value r in the interval [r, r + dr] is u(r)dr and this should be equal to the probability to find
x in [x, x+ dx] which is f(x)dx (see fig 2.4):

u(r′)dr′ = f(x′)dx′∫ r

−∞
u(r′)dr′ =

∫ x

−∞
f(x′)dx′

(2.21)

Using a random number R uniform in [0, 1] with R =
∫ r
−∞ u(r′)dr′ we obtain:

R =

∫ x

−∞
f(x′)dx′ = F (x)

with f(x) = dF (x)
dx being the probability density function p.d.f (as defined before) with:∫ ∞

−∞
f(x)dx = 1

f(∞) = f(−∞) = 0

Examples (assuming we have random numbers Rj uniformly distributed in [0, 1]):

• linear p.d.f: f(x) = 2x.
The primitive function F (x) is:

F (x) =

∫ x

0
f(t)dt =

∫ x

0
2tdt = x2

R = F (x) = x2

xj =
√
Rj
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Figure 2.4: Illustration of a(r)dr = f(x)dx. Picture from [4] [p14]

For any uniformly distributed random numbers Rj , the xj values are distributed
according to the function f(x) = 2x, when calculated as xj =

√
Rj

• exponential p.d.f: f(x, λ) = λ exp(−λx).
The primitive function F (x) is:

F (x) =

∫ x

0
f(t)dt =

∫ x

0
λe(−λt)dt = λ

−1

λ
e(−λt)

∣∣∣∣x
0

= 1− e−λx

−R+ 1 = e−λx

log(1−R) = −λx

xj =
−1

λ
log(Rj)

The values xj can be generated from a uniform distribution of random numbers Rj
with xj = −1

λ log(1−Rj) = −1
λ log(Rj) since for a uniform distribution the probability

of occurrence of 1−Rj is the same as for Rj

• p.d.f: f ′(x) = 1/x in the range [xmin, xmax]
The normalization integral is: ∫ xmax

xmin

1

t
dt = log

xmax
xmin

(2.22)
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Since this function f ′(x) is not normalized to unity, the normalization factor has to be
included:

f(x) =
f ′(x)

log xmax
xmin

=
1

x

1

log xmax
xmin

(2.23)

The primitive function F (x) is then:

F (x) =

∫ x

xmin

f(t)dt

=
1

log xmax
xmin

∫ x

xmin

1

t
dt =

1

log xmax
xmin

log
x

xmin

R =
log x

xmin

log xmax
xmin

log

(
xmax
xmin

)R
= log

(
x

xmin

)
(2.24)

The values xj can be generated from a uniform distribution of random numbers Rj

with xj = xmin

(
xmax
xmin

)Rj

.

• brute force or hit and miss method:
If there is no easy way to find an analytically integrable function, which can be
inverted one can use the hit-and-miss method. Assume we want to generate random
numbers according to a function f(x) in the interval [a, b]. The procedure is then the
following: determine the maximum value, the function f(x) can reach in [a, b], which
is fmax. Then select xi uniformly in the range [a, b] with xi = a+ (b− a)Ri with Ri in
(0, 1). Use another random variable Rj also in (0, 1). Decide according to the
following, if the pair Ri, Rj of random numbers is accepted or rejected.

if f(xi) < Rj · fmax  reject
if f(xi) > Rj · fmax  accept

The accepted random numbers xi follow then exactly the distribution of the function
f(x). The only disadvantage of this method is, that depending on the function f(x), it
can be rather inefficient.

• improvements of the hit and miss method.
Find a function g(x) which is similar to f(x) but which is integrable and invertible, i.e.
G(x) =

∫
g(x)dx and G−1(x) must exist. Then choose a constant such that always

c · g(x) > f(x) for all x. Generate x according to the function g(x) with the methods
described above. Generate another random variable Rj and apply the hit and miss
method as above:

if f(xi) < Rj · c · g(x)  reject
if f(xi) > Rj · c · g(x)  accept
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The accepted distribution of variables xi will follow the original function f(x).

2.4 Law of Large Numbers and Central Limit Theorem
The law of large numbers is fundamental for all the considerations above [4, 10, 11]. The law
says, that for uniformly distributed random values ui in the interval [a, b] the sum of the
probability density functions converges to the true estimate of the mean of the function
f(x):

1

N

N∑
i=1

f(ui) 
1

b− a

∫ b

a
f(u)du (2.25)

The law of large numbers has been applied in the sections before implicitly. The function
f(x) must satisfy certain conditions: it must be integrable, and it must be finite in the whole
range of [a, b]. The left hand side of eq.(2.25) is just a Monte Carlo estimate of the integral on
the right hand side and the law of large numbers says that the Monte Carlo estimate of the
integral is a consistent estimate of the true integral as the size of the random sample
becomes large. At this stage, nothing is said, how large ”large” has to be.
The law of large numbers tells that for infinitely large numbers the Monte Carlo estimate of
the integral converges to the true estimate of the integral. The Central Limit Theorem tells
us how the convergence goes for finite number of N . The Central Limit Theorem says that
the sum of a large number of random variables follows a normal distribution (that is the
sum of random variables is Gauss distributed) no matter according to which p.d.f the
individual random variables were generated, only the number N must be large enough and
the random variables must have finite expectation values and variances. An example of the
application of the Central Limit Theorem is the construction of a Random Number
generator for Gaussian distributed random numbers, which will be done in the exercises:

• take a sum of uniformly distributed random numbers Ri:

Rn =
n∑
i=1

Ri

The expectation value and the variance are calculated according to the rules in
eq.(2.8,2.11):

E[R1] =

∫
udu =

1

2

V [R1] =

∫ (
u− 1

2

)2

du =
1

12

E[Rn] =
n

2

V [Rn] =
n

12
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According to the Central Limit Theorem the sum of random values is Gauss
distributed. To obtain a distribution centered around 0 with σ = 1 we take:∑

i xi −
∑

i µi√∑
i σ

2
i

→ N (0, 1)

For example we sum n = 12 random numbers (many times N →∞) and we obtain a
”normal” (Gauss) distribution N [11]:

N (0, 1)→ Rn − n/2√
n/12

= R12 − 6

2.5 Monte Carlo Integration
Already in the previous sections we had to deal with the problem to obtain a reliable
estimate of the true value of an integral [9]:

I =

∫ b

a
f(x)dx

The integral I is directly connected to the expectation value of the function f(x) with the x
values distributed according to a probability density function g(x).

E[f ] =

∫ ∞
−∞

f(x)g(x)dx

where the p.d.f. g(x) must be defined such, that it vanishes outside the range of (a, b). In the
case of uniformly distributed x this reduces to g(x) = 1/(b− a) for a < x < b (and g(x) = 0
otherwise) which gives:

E[f ] =

∫ ∞
−∞

f(x)g(x)dx =
1

b− a

∫ b

a
f(x)dx

The Monte Carlo estimate of the integral is then:

I ≈ IMC = (b− a)
1

N

N∑
i=1

f(xi) (2.26)

and the variance is:

V [IMC ] = σ2
I = V

[
(b− a)

1

N

N∑
i=1

f(xi)

]
(2.27)

=
(b− a)2

N2
V

[
N∑
i=1

f(xi)

]
(2.28)

=
(b− a)2

N
V [f ] (2.29)
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The variance depends on the number of times the integrand is evaluated, but also on the
variance of f : V [f ].
Applying the definition of the variance eq.(2.11), the variance V [f ] becomes (with
f̄ =

∫
fdx = 1/N

∑
fi and assuming g(x) being uniform):

V [f ] =

∫
(f − f̄)2gdx =

∫
(f2 − 2ff̄ + f̄2)gdx (2.30)

=

∫
f2gdx− f̄2 (2.31)

=
∑ f2

i

N
−
(∑

fi
N

)2

(2.32)

(2.33)

Then the V [I] becomes:

V [I] =
1

N
(b− a)2

(
1

N

∑
f2
i −

(∑
fi

N

)2
)

With this we can estimate the uncertainty of a Monte Carlo integration (use this in the
exercises).
The Monte Carlo integration gives a probabilistic uncertainty band: we can only give a
probability that the MC estimate lies within a certain range of the true values [3].
To further improve the accuracy of the Monte Carlo integration, several approaches exist:

• importance sampling
If an approximate function g(x) exists then the integral I can be estimated to:

I =

∫ b

a
f(x)dx =

∫ b

a

f(x)

g(x)
g(x)dx

=

∫
h(x)g(x)dx

= E

[
f(x)

g(x)

]
provided g(x) is normalized and integrable in [a, b]. Thus the integration reduces to
calculating the expectation value of E[f/g], if the values of x are distributed according
the p.d.f g(x). The values of x can be generated according to the methods discussed in
the previous sections and we obtain:

I =
1

N

∑ f(xi)

g(xi)
(2.34)
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We assume that g(x) is a p.d.f normalized to 1 in the integration range. For example
using g(x) = (1/x)1/ log

(
xmax
xmin

)
(see eq.(2.23)) gives then:

I =
log
(
xmax
xmin

)
N

∑ f(xi)
1
xi

. (2.35)

The variance is then given by:

V

[
f(x)

g(x)

]
= E

[(
f(x)

g(x)
− E

[
f(x)

g(x)

])2
]

(2.36)

A danger in this method is when g(x) becomes zero or approaches zero quickly [3].

• subtraction method (control variates) [3]
Find a function g(x) which is close to the true function f(x):∫ b

a
f(x)dx =

∫ b

a
g(x)dx+

∫ b

a
(f(x)− g(x)) dx

This method also reduces the variances and is especially successful if the function
f(x) has a divergent part. This method is often used in NLO QCD calculations.

• stratified sampling
divide the integration region into subintervals:∫ b

a
f(x)dx =

∫ c

a
f(x)dx+

∫ b

c
f(x)dx (2.37)

Then the integral is:

I =
c− a
n/2

∑
1

fi +
b− c
n/2

∑
2

fi (2.38)

with the variance (if we take c− a = b− c = (a− b)/2):

V [I] = V [I1] + V [I2]

=
(b− a)2

N

(∑
1 f

2
i

N
+

∑
2 fi
N

− 2

[(∑
1 fi
N

)2

+

(∑
2 fi
N

)2
])

We obtain a smaller variance, since the fluctuations in each interval are smaller.

• brute force method
The accept-reject method also works for MC integration. Defining I0 as the area in
[a, b] and fmax as the maximum of the function f(x) in this range. With a random
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number Ri we generate xi and another random number Rj is used to accept or reject
the pair of random numbers i, j according to:

if f(xi) < Rj · fmax  reject
if f(xi) > Rj · fmax  accept

We count the number of trails with N0 and the number of accepted events with N .
Then we obtain:

I =

∫ b

a
f(x)dx

= I0
N

N0

The variance V [r] = (δ(N))2 = σ2 is (using binomial statistics with E[r] = N0P and
V [r] = N0P (1− P ) with P = N/N0):

V [r] = N(1− P )

With this we can calculate the uncertainty of the integral estimate δ(I) as:

δI

I
=

I0σ/N0

I0N/N0
=

√
N(1− P )

N2
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Chapter 3

Parton evolution equation

Here we will derive the evolution equation for the parton densities in the collinear (small t)
limit, the so called DGLAP evolution equations (named after the authors Dokshitzer,
Gribov, Lipatov, Altarelli, Parisi [12–15]). The expression for the deep inelastic scattering
cross section (or the structure function F2) including O(αs) corrections is given by:

σγ
∗p

σ0
=
F2

x
=

∑
e2
q

∫
dξ

ξ

(
q(ξ, µ2)

[
δ

(
1− x

ξ

)
+
αs
2π
Pqq

(
x

ξ

)
log

(
Q2

µ2

)]
+g(ξ, µ2)

[
αs
2π
Pqg

(
x

ξ

)
log

(
Q2

µ2

)])
(3.1)

The cross section for small transverse momenta (or at small t) is divergent, and therefore
gives a dominant contribution to the total cross section. For the price of a scale dependent
parton density we have moved the divergent behavior into the bare (and not observable)
parton densities, with the result that then the expression were finite (a procedure called
renormalization). Since the γp cross section σγ

∗p (or equivalently the structure function F2)
as an observable cannot depend on the arbitrary scale µ2, we tmust require, that it is
µ2-scale independent. This is satisfied by the requirement

∂F2

∂µ2
= 0

Using eq.(3.1) (for simplicity we treat here only the quark part, the gluon part is treated
similarly) we obtain:

δF2

δµ2
=

∫
dξ

ξ

(
∂q(ξ, µ2)

∂µ2

[
δ

(
1− x

ξ

)
+
αs
2π
Pqq

(
x

ξ

)
log

(
Q2

µ2

)]
(3.2)

+q(ξ, µ2)
αs
2π
Pqq

(
x

ξ

)
∂

∂µ2

[
logQ2 − logµ2

])
=

∂q(x, µ2)

∂µ2
+

∫
dξ

ξ

αs
2π
Pqq

(
x

ξ

)
log

Q2

µ2

∂q(ξ, µ2)

∂µ2
(3.3)

23
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Figure 3.1: The structure function F2(x,Q2) as a function ofQ2 as measured in DIS scattering
e+ p→ e′ +X at HERA [16].
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+

∫
dξ

ξ
q(ξ, µ2)

αs
2π
Pqq

(
x

ξ

)(
− 1

µ2

)
Now we collect all terms of O(αs) (note the second term in eq.(3.3 ) is of O(α2

s) and
therefore does not contribute) and obtain:

dqi(x, µ
2)

d logµ2
=

αs
2π

∫ 1

x

dξ

ξ

[
qi(ξ, µ

2)Pqq

(
x

ξ

)]
(3.4)

Including also the gluon part we obtain:

dqi(x, µ
2)

d logµ2
=

αs
2π

∫ 1

x

dξ

ξ

[
qi(ξ, µ

2)Pqq

(
x

ξ

)
+ g(ξ, µ2)Pqg

(
x

ξ

)]
(3.5)

and similarly for the gluons

dg(x, µ2)

d logµ2
=

αs
2π

∫ 1

x

dξ

ξ

[∑
i

qi(ξ, µ
2)Pgq

(
x

ξ

)
+ g(ξ, µ2)Pgg

(
x

ξ

)]
(3.6)

The splitting functions are given by:

Pqq =
4

3

(
1 + z2

1− z

)
(3.7)

Pgq =
4

3

(
1 + (1− z)2

z

)
(3.8)

Pqg =
1

2

(
z2 + (1− z)2

)
(3.9)

Pgg = 6

(
1− z
z

+
z

1− z
+ z(1− z)

)
(3.10)

Eq.3.5 and 3.6 are the DGLAP evolution equations in leading order of αs. They describe the
evolution of the parton density with the scale µ2. By knowing the parton density at any
scale µ2, these equations predict the parton density at any other scale. Although we cannot
calculate the parton densities from first principles, these equations allow us to predict the
parton densities at any scale, once they are determined at another scale. In Fig. 3.1-3.2 is
shown the comparison of the measurement of the structure function F2(x,Q2) with the
prediction from a DGLAP evolution. The prediction agrees with the measurement
remarkably well over several orders of magnitude in x and Q2. This is a real triumph of the
theory.

3.1 Conservation and Sum Rules
In the following we investigate further the evolution equations.
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3.1.1 Flavor Conservation

The scale dependent quark density as a function of the bare parton density q0 and the scale
dependent divergent part (κ→ 0) can be written as:

q(x, µ2) =

∫ 1

x

dξ

ξ
q0(ξ)

[
δ(1− x

ξ
) +

αs

2π
Pqq

(
x

ξ

)
log

µ2

κ2
+ . . .

]
(3.11)

=

∫ 1

x

dξ

ξ
q0(ξ)q̂(z, µ2) + . . . (3.12)

=

∫ 1

x
dξ

∫ 1

0
dzδ(x− zξ)q0(ξ)q̂(z, µ2) + . . . (3.13)

with

q̂(z, µ2) = δ(1− z) +
αs

2π
Pqq (z) log

µ2

κ2
(3.14)

where we have used z = x
ξ and δ(1− z)dz = δ(1− x

ξ )dz = ξδ(ξ − x)dz.
However, this is not the full expression in O(αs), since we have not yet included virtual
gluon radiation, self-energy insertions on the quark leg and vertex corrections. One can
calculate the virtual corrections explicitly, but here we use the argument of conservation of
quark (and baryon) number: the integral over z of the quark distribution cannot vary with
µ2: ∫ 1

0
dz q̂(z, µ2) = 1 (3.15)

For this we redefine the splitting function as:

Pqq(z) = P̂qq(z) + k · δ(1− z) (3.16)

With this we get:∫
dz

[
δ(1− z) +

αs

2π

(
P̂qq(z) + k · δ(1− z)

)
log

µ2

κ2

]
= 1

With log µ2

κ2
6= 0 we obtain ∫ 1

0
dz
αs

2π

(
P̂ (z) + k · δ(1− z)

)
= 0

Some of the splitting functions are divergent for z → 1 and we cannot perform the integral
easily. However we note, that z → 1 reduces to no-emission and this has a final state similar
to a virtual contribution to the no-emission diagram. To treat this singularity formally we
introduce a ” + ” distribution (similar to the δ function which is only defined inside an
integral): ∫ 1

0
dx

f(x)

(1− x)+
=

∫ 1

0
dx
f(x)− f(1)

(1− x)
(3.17)
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or in general [17]: ∫ 1

0
dxf(x) [F (x)]+ =

∫ 1

0
dx (f(x)− f(1))F (x)

with
∫ 1

0
dx [F (x)]+ = 0

We now use the expression for the quark splitting P̂qq(z) = 1+z2

(1−z)+ :∫ 1

0
dzPqq(z) =

∫ 1

0
dz

[
1 + z2

(1− z)+
+ k · δ(1− z)

]
(3.18)

=

∫ 1

0
dz

1 + z2 − 2

1− z
+ k (3.19)

= k +

∫ 1

0
dz
−(1− z2)

1− z
(3.20)

= k −
∫ 1

0
dz

(1 + z)(1− z)
1− z

(3.21)

= k −
∫ 1

0
dz(1 + z) = k − 3

2
(3.22)

where in eq.(3.19) the expression f(z)− f(1) = (1− z)2 − 2 has been used. Thus we obtain:

Pqq(z) =
1 + z2

(1− z)+
+

3

2
δ(1− z) (3.23)

With this expression for Pqq we ensure that soft singularities are properly cancelled. This
expression is essential to ensure that the sum rules are fulfilled (here for the proton case)
independent of µ2: ∫ 1

0
dxuv(x, µ

2) = 2∫ 1

0
dx dv(x, µ

2) = 1

In Fig. 3.3 the different diagrams which contribute to F2(x,Q2) at O(αs) are shown.

3.2 Solution of DGLAP equations
Several methods exist to solve the DGLAP equations, here we only consider a numerical
solution of the integro-differential equations. We first consider a solution of the evolution
equation at small x and then discuss the more general case.
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Figure 3.3: The different diagrams which contribute to F2(x,Q2) atO(αs). Note that atO(αs)
only the interference diagram of O(α0

s ) and the virtual contribution together with the real
O(αs) diagram contribute, while the virtual diagram squared would give O(α2

s ).

3.2.1 Double Leading Log approximation for small x

In this section we consider only the limit of small x. In this limit, only the gluon density
contributes with the splitting function Pgg(x)→ 6/x. All other contributions are small and
can be neglected. With this the evolution equation eq.(3.6) becomes:

dg(x, µ2)

d logµ2
=

αs
2π

∫ 1

x

dξ

ξ

[
g(ξ, µ2)Pgg

(
x

ξ

)]
(3.24)

This equation can be integrated to give:

xg(x, µ2) = xg(x, µ2
0) +

αs

2π

∫ µ2

µ20

dµ
′2

µ′2

∫ 1

x

dξ

ξ
xg(ξ, µ2′)P (

x

ξ
) (3.25)

= xg(x, µ2
0) +

3αs

π

∫ µ2

µ20

dµ
′2

µ′2

∫ 1

x

dξ

ξ
ξg(ξ, µ2′) (3.26)

This equation is an integral equation of Fredholm type

φ(x) = f(x) + λ

∫ b

a
K(x, y)φ(y)dy

and can be solved by iteration (Neumann series):

φ0(x) = f(x)

φ1(x) = f(x) + λ

∫ b

a
K(x, y)f(y)dy

φ2(x) = f(x) + λ

∫ b

a
K(x, y1)f(y1)dy1 + λ2

∫ b

a

∫ b

a
K(x, y1)K(y1, y2)f(y2)dy2dy1

This can be written in a compact form:

φn(x) =

n∑
i=0

λiui(x) (3.27)
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with

u0(x) = f(x)

u1(x) =

∫ b

a
K(x, y)f(y)dy

un(x) =

∫ b

a
· · ·
∫ b

a
K(x, y1)K(y1, y2) · · ·K(yn−1, yn)f(yn)dy1 · · · dyn

with the solution:

φ(x) = lim
n→∞

qn(x) = lim
n→∞

n∑
i=0

λiui(x) (3.28)

Applying this method to solve the evolution equation for the gluon density at small x
eq.(3.26) with xg(x, µ2

0) = xg0(x) = C, we obtain:

xg1(x, t) =
3αs
π
C

∫ t

t0

d log t′
∫ 1

x
d log ξ =

3αs
π

log
t

t0
log

1

x
C (3.29)

xg2(x, t) =
1

2

1

2

(
3αs
π

log
t

t0
log

1

x

)2

C (3.30)

...

xgn(x, t) =
1

n!

1

n!

(
3αs
π

log
t

t0
log

1

x

)n
C (3.31)

xg(x, t) = lim
n→∞

∑
n

1

n!

1

n!

(
3αs
π

log
t

t0
log

1

x

)n
C (3.32)

Using the modified Bessel function:

I0(z) =
∞∑
k=0

(1
4z

2)k

(k!)2
∼ ez (3.33)

We identify

z = 2

√
3αs

π
log

t

t0
log

1

x

to obtain:

xg(x, t) ∼ C exp

(
2

√
3αs
π

log
t

t0
log

1

x

)
(3.34)

This result has been obtained by taking the limit of double leading logarithms:

• small x limit in the splitting function which leads to log 1/x

• small t limit to obtain evolution equation, which leads to log t.

The DLL solution of the evolution equations results in a rapid rise of the gluon density at
small x, however only so-called contributions from strongly ordered (decreasing) values of
x and strongly ordered (increasing) values of t are considered.
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t = 10 GeV2.
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3.2.2 From evolution equation to parton branching

In the previous section we have seen how to solve the evolution equation iteratively. By
performing the small x limit, we avoided the difficulties with the soft divergencies at large
x; we did not need to use the plus-prescription of the splitting function. Here we now
discuss a different way to treat the soft limit. The divergency of a soft real emission is
cancelled by virtual contributions, that is, we can define a ”resolvable” branching, which is
a splitting of one into two partons, where at least in principle we can resolve the splitting.
The ”non-resolvable” branching consist of a contribution without branching and the virtual
contributions. A detailed discussion of the parton evolution can be found in [18].
We define a ”Sudakov” form factor ∆s:

∆s(t) = exp

(
−
∫ zmax

x
dz

∫ t

t0

αs
2π

dt′

t′
P̃ (z)

)
(3.35)

and use the evolution equation with the ”+” prescription (using t = µ2):

t
∂

∂t
f(x, t) =

∫
dz

z

αs
2π
P+(z) f

(x
z
, t
)

Inserting the explicit expression for P+ we obtain:

t
∂

∂t
f(x, t) =

∫ 1

0

dz

z

αs
2π
P (z) f

(x
z
, t
)
− αs

2π
f(x, t)

∫ 1

0
dzP (z) (3.36)

where we have used the definition in eq.(3.17):∫ 1

0
dz
f(z)

z
P+(z) =

∫ 1

0
dz

(
f(xz )

z
− f(x)

)
P (z)

=

∫ 1

0
dz
f(xz )

z
P (z)− f(x)

∫ 1

0
dzP (z)

Using

∂e−a(x)

∂x
= −e−a(x)∂a(x)

∂x

we obtain:

∂∆s

∂t
= −∆s

[
1

t

∫
dz
αs

2π
P (z)

]
(3.37)

 
t

∆s

∂∆s

∂t
= −

∫
dz
αs

2π
P (z) (3.38)

Inserting this into eq.(3.36) we obtain:

t
∂

∂t
f(x, t) =

∫
dz

z

αs
2π
P (z) f

(x
z
, t
)

+ f(x, t)
t

∆s

∂∆s

∂t
(3.39)
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Multiplying eq.(3.39) with 1/∆s and using ∂
∂t

f
∆s

= 1
∆s

∂f
∂t −

f
∆2

s

∂∆s
∂t we obtain:

t

∆s

∂f(x, t)

∂t
− t

∆2
s

f(x, t)
∂∆s

∂t
=

∫
dz

z

1

∆s

αs
2π
P (z) f

(x
z
, t
)

(3.40)

t
∂

∂t

f(x, t)

∆s
=

∫
dz

z

1

∆s

αs
2π
P (z) f

(x
z
, t
)

(3.41)

which is the DGLAP evolution equation in a form using the Sudakov form factor ∆s as
defined in eq.(3.35).
We can now integrate eq.(3.41) to obtain:

f(x, t) = f(x, t0)∆(t) +

∫
dt′

t′
∆(t)

∆(t′)

αs(t
′)

2π

∫
dz

z
P (z)f(

x

z
, t′) (3.42)

where we have used∫ t

t0

∂

∂t′
f(x, t′)

∆s
dt′ =

∫
dt′

t′
1

∆s

αs

2π

∫
dz

z
P (z)f(

x

z
, t′) (3.43)

From eq.(3.42) we can now interpret the Sudakov form factor as being the probability for
evolution without any resolvable branching from t0 to t.
What did we gain ? We needed to treat the singularity at z → 1. For this, we now introduce
a upper cut-off zcut = 1− ε(µ). Branchings with z > zcut are now classified as unresolved:
they involve the emission of undetectable partons [18]. The Sudakov form factor sums
virtual and real corrections to all orders; the virtual corrections affect the non-branching
probability are included via unitarity: the resolvable branching probability gives via
unitarity the sum of virtual and unresolvable contributions.
Eq.(3.42) can now be solved by iteration, in the same way as before. The starting function f0

is just the first term in eq.(3.42). The first iteration f1 involves one branching:

f0(x, t) = f(x, t0)∆(t)

f1(x, t) = f(x, t0)∆(t) +
αs

2π

∫ t

t0

dt′

t′
∆(t)

∆(t′)

∫ 1

x

dz

z
P̃ (z)f(x/z, t0)∆(t′) (3.44)

The iteration is illustrated in fig.3.5 The term f0 in eq.(3.44) is illustrated in the left part of
Fig. 3.5: the evolution from t0 to t without any resolvable branching. The term f1 in eq.(3.44)
is shown in the right part of Fig. 3.5: there is evolution from t0 to t′ without any resolvable
branching, then at t′ the branching happens, where the splitting is given by the splitting
function P (z); then the evolution continues without any resolvable branching from t′ to t.
The full solution of the integral equation by iteration is then:

f0(x, t) = f(x, t0)∆(t)

f1(x, t) = f(x, t0)∆(t) +
αs

2π

∫ t

t0

dt′

t′
∆(t)

∆(t′)

∫
dz

z
P̃ (z)f(x/z, t0)∆(t′)
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Figure 3.5: Schematic representation of the first branchings in an iterative procedure to solve
the evolution equation

= f(x, t0)∆(t) + log
t

t0
A⊗∆(t)f(x/z, t0)

f2(x, t) = f(x, t0)∆(t) + log
t

t0
A⊗∆(t)f(x/z, t0) +

1

2
log2 t

t0
A⊗A⊗∆(t)f(x/z, t0)

f(x, t) = lim
n→∞

fn(x, t) = lim
n→∞

∑
n

1

n!
logn

(
t

t0

)
An ⊗∆(t)f(x/z, t0) (3.45)

where A =
∫
dz
z P̃ (z) is a symbolic representation of the integral over z and ⊗ indicates that

a convolution has to be performed. The eq.(3.45) shows the solution of the DGLAP
evolution equation is a resummation to all orders in αs log t.1

The Sudakov form factor can be interpreted in terms of a probability: it is a poisson
distribution with zero mean P (0, p) = e−p. If the poisson distribution gives the probability
to observe n emissions, then P (0, p) gives the probability for no emission and is the
so-called ”non-branching probability”. The one-branching probability is given in terms of
Poisson statistics by: P (1, p) = pe−p, which is exactly the first iteration of the evolution
equation:

f(x, t) = f(x, t0)∆s(t) +

∫
dz

∫
dx′
∫
dt′

t′
· ∆s(t)

∆s(t′)

αs
2π
P̃ (z)×

×f
(
x′, t0

)
∆s(t

′)δ(x− zx′) (3.46)

where delta function has been introduced to make the different integration steps visible.

1It is interesting to note, that only the 1/(1− z) part of the splitting functions is needed in the Sudakov form
factor. This simplifies the solution process.
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Figure 3.6: Sudakov form factor as a function of the lower scale pt for gluon and quark
splitting functions using αs = 0.2. The upper scale is set to tmax = 100(200) GeV.

We have introduced a cut to avoid the divergency when z → 1 via zcut = 1− ε(µ), but we
have not yet specified how this can be calculated. To some extend the value of zcut is a
matter of choice, here we give an argument based on the virtualities of the partons involved.
We work in a frame, were all energies are much larger than the starting scale of the
evolution Q0. We use light-cone variables for the partons: p+ = 1/

√
2(E + pz) and we define

z =
p+
b

p+
a

being the splitting variable for a process a→ b+ c. The light-cone vector satisfies:
p2
a = 2p+

a p
−
a − k2

ta. We work in a frame, where kta = 0 and ktb = −ktc = kt. Using
conservation of the ”+” and ”-” components of the light-cone vectors we obtain:

p−a = p−b + p−c

p2
a

2p+
a

=
p2
b + k2

tb

2p+
b

+
p2
c + k2

tc

2p+
c

 p2
a =

p2
b + k2

t

z
+
p2
c + k2

t

1− z
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where for the last expression we have used p+
b = zp+

a and p+
c = (1− z)p+

a . This equation can
be rewritten to give:

k2
t = z(1− z)p2

a − (1− z)p2
b − zp2

c

 0 < (1− z)Q2
b − zQ2

c (3.47)

where we have defined Q2
a = −p2

a and Q2
b = −p2

b and Q2
c = p2

c and Q2
c > Q2

0, thus that parton
a and b are spacelike partons while parton c is timelike. Using (1 + x)−m = 1−mx+ · · · we
obtain from Eq.(3.47):

z < 1− Q2
0

Q2
b

+ · · · (3.48)

where we have used Q2
c > Q2

0.
In Fig. 3.6 the Sudakov form factor is shown for quark and gluon splittings for different
scales tmax as a function of the lower scale pt. The probability for quarks not to undergo any
branching (the sudakov form factor gives the no-branching probability) is much higher
than the corresponding one for gluons.

3.3 Solution of evolution equation with Monte Carlo method
AS described above, the evolution equations Eqs.(3.42) are integral equations of the
Fredholm type

f(x) = f0(x) + λ

∫ b

a
K(x, y)f(y)dy

and can be solved by iteration as a Neumann series

f1(x) = f0(x) + λ

∫ b

a
K(x, y)f0(y)dy

f2(x) = f0(x) + λ

∫ b

a
K(x, y1)f0(y1)dy1 + λ2

∫ b

a

∫ b

a
K(x, y1)K(y1, y2)f0(y2)dy2dy1

· · · (3.49)

using the kernel K(x, y), with the solution

f(x) = lim
n→∞

n∑
i=0

fi(x). (3.50)

In a Monte Carlo (MC) solution [19–21] we evolve from t0 to a value t′ obtained from the
Sudakov factor ∆s(t

′) (for a schematic visualisation of the evolution see fig. 3.7). Note that
the Sudakov factor ∆s(t

′) gives the probability for evolving from t0 to t′ without resolvable
branching. The value t′ is obtained from solving for t′:
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Figure 3.7: Evolution by iteration

R = ∆s(t
′), (3.51)

for a random number R in [0, 1].
If t′ > t then the scale t is reached and the evolution is stopped, and we are left with just the
first term without any resolvable branching. If t′ < t then we generate a branching at t′

according to the splitting function P̃ (z′), as described below, and continue the evolution
using the Sudakov factor ∆s(t

′′, t′). If t′′ > t the evolution is stopped and we are left with
just one resolvable branching at t′. If t′′ < t we continue the evolution as described above.
This procedure is repeated until we generate t’s which are larger than t. By this procedure
we sum all kinematically allowed contributions in the series

∑
fi(x, p) and obtain an MC

estimate of the parton distribution function.
With the Sudakov factor ∆s and using

∂

∂t′
∆s(t, t

′) =
∂

∂t′
∆s(t)

∆s(t′)
=

∆s(t)

∆s(t′)

[
1

t′

] ∫ zmax

dzP̃ (z),

we can write the first iteration of the evolution equation as

f1(x, t) = f0(x, t)

+

∫ 1

x

dz′

z′

∫ t

t0

d∆s(t, t
′)P̃ (z′)f0(x/z′, t′)

[∫ zmax

dzP̃ (z)

]−1

. (3.52)

The integrals can be solved by a Monte Carlo method [11]: z is generated from

∫ z

zmin

dz′P̃ (z′) = R1

∫ zmax

zmin

dz′P̃ (z′), (3.53)
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with R1 being a random number in [0, 1], and t′ is generated from

R2 =

∫ x

−∞
f(x′)dx′ = F (x)

=

∫ t

t′

∂

∂t′′

(
∆s(t)

∆s(t′′)

)
dt′′

= ∆s(t, t
′) (3.54)

solving for t′, using z from above and another random number R2 in [0,1].
This completes the calculation on the first splitting. This procedure is repeated until t′ > t
and the evolution is stopped.
With z′ and t′ selected according to the above the first iteration of the evolution equation
yields

xf1(x, t) = xf0(x)∆s(t)

+
∑
i

P̃ (z′i)x
′
if0(x′i, t

′
i)

[∫ zmax

dzP̃ (z)

]−1

, (3.55)

with x′i = x/zi.
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