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SYMMETRIe STATES IN QUANTUM GEOMETRY

M. BOJOWALD AND H. A. KASTRUP
Institute for Theoretical Physics, RWTH Aachen, D-52056 Aachen, Germany

E-mail: bojowald@physik.rwth-aachen.de

In the kinematical sector of loop quantum gravity, states are represented as
functions on the space A of generalized connections with gauge group G = SU(2) on
aspace manifold E, All these states can be decomposed in terms of the spin network
basis which are special states associated with graphs in E. Given a symmetry group
S acting on E, we can ask for states which are symmetrie with respect to that action
and therefore can be used to study the full theory in a simpler regime. However, as
the decomposition into spin networks shows, no non-trivial ordinary state can be
exactly symmetrie: the discrete structure of space breaks any continuous symmetry.
Nevertheless, we can look for symmetrie generalized states which is automatie in
our definition.!
Definition. Asymmetrie state is a distribution on A whose support contains only
connections being invariant under the action of the symmetry group.

In order to describe symmetrie states more explicitly, we need more information
about invariant connections. All we need here is the fact (which is well-known

. from the example of an SU(2)-connection which is invariant und er the rotation
group) that an invariant connection can be decomposed into a reduced connection
and scalar fields whieh are functions on the reduced manifold B := ~/S.2,3 So we
arrive at a convenient representation of symmetrie states as functions on the space
of generalized connections and scalar fields on the reduced manifold. A basis for
these states is given by spin network states with Riggs field vertiees in the reduced
manifold with gauge group G. We can use these states either as redueed models by
restricting all considerations to them, or as distributional states in the full theory.
In the latter Interpretation, our symmetrie states are idealized states, but can be
approximated by ordinary (weave) states.

Spherically symmetrie states are described by spin networks with Riggs field
vertices in a one-dimensional (radial) manifold B which immediately implies that a
spherical surface (represented by a single point in B, the radius) intersects a given
spin network state in only one point. Quantizing the area along the lines of the full
theory" then leads t6 the area spectrum (, is the Immirzi parameter and lp the
Planck length)

.! 7>.T
J E 21VO (1)

whieh for large values of j is equidistant and eompatible with the Bekenstein
spectrum" for the horizon area of spherically symmetrie black holes. On the con-
trary, the full area spectrum in loop quantum gravity has an exponentially decreas-
ing level distance.? We ean interpret the large differenee of the two spectra in the
spherically symmetrie and the non-symmetric regime as a level splitting familiar
from the spectroscopy of atoms: breaking the spherical symmetry leads to a split-
ting of the levels resulting in an almost dense speetrum. A necessary requirement
for this to happen is a huge degeneracy of the levels in the spherically symmet-
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rie sector whieh is also expected from thermodynamical eonsiderations (black hole
entropy). However, in quantum geometry spherically symmetrie states are distribu-
tional and so their degeneracy is not well defined whieh prohibits a simple eounting
of states.

In specializing the framework to homogeneous or even isotropie states we have
the basics of loop quantum cosmology," In this ease, the reduced manifold is a
single point and so homogeneous states are defined purely in terms of sealar fields
(point holonomies). For Bianehi models (anisotropie) we have three independent
point holonomies, whereas for isotropie models there is only one point holonomy
(however, in this ease the eoneept of spin networks has to be generalized in order to
deseribe all states"}. Again, we ean observe the phenomenon of level splitting, this
time for the volume operator.? For isotropie states, the operator simplifies so much
that the eomplete volume speetrum can be computed explieitly (Va is an arbitrary
constant entering via a homogeneous auxiliary metrie):

Vj = l'!Vo-t l~Jj(j + ~)(j + 1) j E ~No. (2)

The faet that homogeneous states are distributional also implies that there is a
discrepancy between minisuperspace quantizations and approximations (weaves) in
the full theory: even small inhomogeneous perturbations eause a transition to the
full volume speetrum. This is in contrast to the treatment of inhomogeneities in
more standard quantum cosmological models where symmetrie and slightly per-
turbed geometries are smoothly connected.

In cosmologieal models there is a familiar procedure to study intrinsie dynamics
by introducing the volume as internal time. The volume quantization in quantum
geometry suggests that such a proeedure in loop quantum cosmology leads to a
discrete time. This can in faet be made more precise: using a quantization of the
Hamiltonian constraint for cosmological models'' and transforming to a dreibein
representation leads to an interpretation of the Wheeler-De Witt equation as a dis-
crete time evolution equation" (rather than differential equation). In these models,
one ean also show that the physical volume speetrum is identical to the kinematical
one; in particular, it is diserete.

M. B. is grateful to the DFG-Graduierten-Kolleg 'Starke und elektroschwache
Wechselwirkung bei hohen Energien' for a PhD fellowship and travel grants.
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QUANTUM THEORY AND THERMODYNAMICS OF
SCHWARZSCHILD BLACK HOLES

HANS A. KASTRUP
Institute for Theoretical Physics, RWTH Aachen, 52056 Aachen, Germany

E-mail: kastrup@physik.rwth-aachen.de

Starting from a symplectic reduction of the pure Schwarzschild gravitational system
in D ~ 4 space-tirne dimensions and an ensuing quantization in terms of the
group SU(l, 1) yields a universal spectrum AD-2 <X n + k,n = 0,1, ... ,k E (O,lJ
fixed, of the horizon area, and, because AD-2(M) is a function of the mass M,
a corresponding spectrum of M. Attributing the Z(2)-valued degree of freedom
"orientation" to each basic area quantum yields a degeneracy of the Ievels.which,
combined with the mass spectrum, implies the Bekenstein entropy and the Hawking
temperature, up to a constant.

1 Mass spectrum in D space-time dimensions

As early as 1974 Bekenstein [lJ - using Bohr-Sommerfeld-type arguments - sug-
gested that the quantum mass spectrum of a Schwarzschild black hole in 4 space-
time dimensions may be obtained by interpreting the area A of the horizon as an
action variable which gets quantized like the angular momentum, namely propor-
tional to a positive integer n = 0,1, .... As A oc M2 this implies a mass spectrum
M ocFn. In the meantirne many authors have suggested different ways of obtaining
such a spectrum".

A Dirac-type symplectic reduction of spherieally symmetrie (Schwarzschild)
classieal pure Einstein gravity [4,5, 7J in D space-time dimensions leads to two
canonically conjugate observables: mass M and the proper time T of an observer
at asymptotieally Hat spatial infinity. Quantizing the reduced phase space in the
usual way - the mass operator !VI being the Hamilton operator - and imposing ap-
propriate boundary conditions on the wave functions [6,3J with respect to T yields
the mass levels

Mn = (XD (n + k)(D-3)/(D-2) mp,D , n = 0, 1, ... , (XD = 0(1) , (1)

where k E (O,lJ is a fixed constant (see below) and mp,D Planck's constant in
D-dimensional space-time. For D = 4 the old Bekenstein result is obtained. The
mass spectrum (1) is equivalent to the horizon area spectrum

AD-2 = (n + k) aD-2 , (2)

where aD-2 is the basie "Planck-sized" spherical horizon area element.
The Hilbert spaces associated with such systems maybe obtained from a

group theoretieal quantization of the reduced phase space by using the area AD-2

and a canonieally conjugate angle coordinate as variables [7J. The resulting Hilbert
spaces are those of the positive discrete series of the unitary representations of the
group SOt(1,2) or one of its (infinitely many) covering groups. The number k
characterizes the representation.

a A list of those papers is provided in Refs. [2,3J
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2 Level degeneracy due to the degree of freedom "orientation"

In order to obtain the well-discussed thermodynamical properties of Schwarzschild
black holes (Bekenstein entropy, Hawking temperature etc.) the levels (1) or (2)
must have the appropriate degeneracy dn. A relation like dn = gn, 9 > 1, serves
that purpose. The main question then is:

Which degrees of freedom are responsible for such a degeneracy ?
In Ref. [3] I suggested that the geometrical Z(2)-valued property orientation

is the degree of freedom responsible for the required degeneracy! As spheres have
two possible orientations it appears reasonable to attribute two Ising-type degrees
of freedom to each basic area quantum aD-2. This means that the n-th level (1) -
or (2) - has the degeneracy

~=~. W
'\

_he well-known properties of the Ising model suggest to expect [3]a phase transition
at very low (Hawking) temperatures, i.e. in the elassical limit Ti -+ 0 or /and at
very large masses, associated with a "spontaneous orientation" which essentially
reduces the originally huge number of possible microscopic orientations to just two
macroscopic elassical ones!

3 Quantum statistics

The spectrum (1) combined with the degeneracy (3) leads - up to an overall nor-
malization factor - to the Bekenstein entropy and to the Hawking temperature.
The canonical partition function of the system has the very interesting property
[8,3] that it is the same as the grand canonical partition function of the primitive
droplet nueleation model for 1st order phase transitions in D - 2 space dimensions.
This constitutes another elose relationship to condensed matter physics.

I thank J. Bekenstein, M. Bojowald, N. Düchting, S. Mukhanov and T. Strobl
for stimulating discussions and critical questions at the various stages of the work
mentioned here.
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