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Abstract

A classical effective field theory, the Color Glass Condensate (CGC), provides
a unified treatment of high parton density effects in both DIS and hadron-
hadron collisions at very high energies. The validity and limitations of %k
factorization can be studied in this effective theory. Multi-parton correlations
in the effective theory are described by universal dipole and multipole opera-
tors. The evolution of these operators with energy provides a sensitive test of
multi-parton dynamics in QCD at high energies.

1 Introduction

In the Bjorken limit of QCD, Q2 — 00, § — 00, TBj ~ QQ /s = fixed, we have a powerful framework
to compute a large number of processes to high accuracy. Underlying this machinery is the Operator
Product Expansion (OPE), where cross-sections are identified as a convolution of short distance “co-
efficient functions” which are process dependent and long distance parton distribution functions which
are universal. The evolution of the parton distribution functions with x and @Q? is described by splitting
functions, which determine the probability of “parent” partons to split into a pair of “daughter” partons.
Both coefficient functions and splitting functions for DIS inclusive cross-sections are now available to
Next-Next-Leading-Order (NNLO) accuracy [1].

While this is a tremendous achievement, the contribution of high Q) processes to the total cross-
section is very small. The bulk of the cross-section can perhaps be better understood in the Regge
asymptotic limit: xg; — 0, s — o0, Q? = fixed. The BFKL renormalization group equation [3]
describes the leading ag In(1/z) behavior of gluon distributions in this limit. The solutions of the BFKL
equation predict that gluon distributions grow very rapidly with decreasing z. In the Regge asymptotics,
since the transverse size of the partons is fixed, this growth of distributions will lead to the overlapping of
partons in the transverse plane of the hadron. In this regime, contributions that were power suppressed in
the BFKL scheme become important. These are recombination and screening effects which slow down
the growth of gluon distributions leading ultimately to a saturation of these distributions [4, 5]. Such
effects must appear at small = because the occupation number ! of partons in QCD be at most of order
1/as.

Thus qualitatively, the competition between Bremsstrahlung and recombination/screening effects
becomes of the same order when
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where R is the radius of the target. This relation is solved self-consistently when ) = Q4(x). The scale
Qs(z) is termed the saturation scale and it grows as one goes to smaller values of . When Q? < Q?,
higher twist effects are important; at sufficiently small x, Q2 > AéCD, which makes feasible a weak
coupling analysis of these effects. At HERA, reasonable fits of small x inclusive and diffractive data

IThis corresponds to the number of partons per unit transverse area, per unit transverse momentum, per unit rapidity, in
light cone gauge. This condition has its gauge invariant counterpart in the requirement that the field strength squared not exceed
1 / as.



for z < 1072 are obtained in saturation models with Q?(z) ~ Q32 (z¢/x)*, with Q3 = 1 GeV? and
ro = 3 - 10~%. Detailed estimates suggest that the saturation scale for gluons is Q(x) ~ 1.4 GeV at
x ~ 10~ [7]. The applicability of weak coupling techniques at these scales is dubious. Nevertheless,
they cannot be ruled out since the effective scale at which the coupling runs can be larger than the
estimate. Leading twist evolution of “shadowed” distributions at the saturation scale can extend out to
significantly large values of x. A hint of this possibility is suggested by the fact that geometrical scaling-
the dependence of cross-sections on the dimensionless ratio Q%/Q? alone-extends out to Q% = 450
GeV? at HERA [8].

The possibility that weak coupling may apply at high energies is good news. Some of the remark-
able regularities in high energy scattering data may be understood in a systematic way. The OPE, for
instance, is no longer a good organizing principle since its usefulness is predicated on the twist expan-
sion. In the next section, we will discuss an effective field theory approach which may provide a more
efficient organizing principle at high parton densities.

2 The Color Glass Condensate

The physics of high parton densities can be formulated as a classical effective theory [6] because there
is a Born-Oppenheimer separation between large x and small x modes [9] which are respectively the
slow and fast modes in the effective theory. Large x partons are static sources of color charge for the
dynamical wee (small x) parton fields. The generating functional of wee partons has the form
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where the wee parton action has the form

S[A, p] = Tl /d4x Fil, + NL /d%&dmé(m) Tr (p(21)U—0o,00[A7]) . 3)
(&

In Eq. (2), p is a two dimensional classical color charge density and W p] is a weight functional of
sources (which sits at momenta k™ > AT: note, z = kT/P, ). The sources are coupled to the
dynamical wee gluon fields (which in turn sit at k™ < A™T) via the gauge invariant term which is the
second term on the RHS of Eq. (3). Here U_ « denotes a path ordered exponential of the gauge field
A~ in the 2™ direction. The first term in Eq. (3) is the QCD field strength tensor squared — thus the wee
gluons are treated in full generality in this effective theory, which is formulated in the light cone gauge
A* = 0. The source j is an external source — derivatives taken with respect to this source (with the
source then put to zero) generate correlation functions in the usual fashion.

The argument for why the sources are classical is subtle and follows from a coarse graining of the
effective action. The weight functional for a large nucleus is a Gaussian in the source density [6, 11],
with a small correction for SU(/V,) coming from the /N, — 2 higher Casimir operators [10]. The variance
of the Gaussian, the color charge squared per unit area ui, proportional to A'/3, is a large scale — and
is the only scale in the effective action 2. Thus for u? > A(QQCD, as(p%) < 1, and one can compute the
properties of the theory in Eq. (2) in weak coupling.

The saddle point of the action in Eq. (3) gives the classical distribution of gluons in the nucleus.
The Yang-Mills equations can be solved analytically to obtain the classical field of the nucleus as a
function of p: A (p) [6, 11, 12]. One can determine, for Gaussian sources, the occupation number
¢ = dN/mR?/dk? dy (the number of partons per unit transverse momentum, per unit rapidity y, where
y = In(1/2)) of wee partons in the classical field of the nucleus. One finds for k| > Q?, the Weizsicker-
Williams spectrum ¢ ~ Qg / ki; for k; < @, one obtains a complete resummation to all orders in k|,

2113 is simply related in the classical theory to the saturation scale Q2 via the relation Q2 = as N2 In(Q2/ AQQCD)



which gives ¢ ~ % In(Qs/k1). (The behavior at low k; can, more accurately, be represented as
%F(O, z) where I is the incomplete Gamma function and z = k2 /Q? [13]).

A high energy hadron is a Color Glass Condensate for the following reasons [2]. The ‘color’ is
obvious since the parton degrees of freedom are colored. It is a glass because the sources, static on
time scales much larger than time scales characteristic of the system, induce a stochastic (space-time
dependent) coupling between the partons under quantum evolution — this is analogous to a spin glass.
Finally, the matter is a condensate because the wee partons have large occupation numbers (of order
1/ag) and have momenta peaked about Q5. These properties are enhanced by quantum evolution in .
The classical field retains its structure — while the saturation scale grows: Qs(z’) > Qs(z) for 2/ < x.

Small fluctuations about the effective action in Eq. (3) give large corrections of order g In(1/x)
(see Ref. [14]). The Gaussian weight functional is thus fragile under quantum evolution of the sources.
A Wilsonian renormalization group (RG) approach systematically treats these corrections [15]. In par-
ticular, the change of the weight functional W p| with z is described by the IMWLK- non-linear RG
equations [15]. These equations form an infinite hierarchy of ordinary differential equations for the gluon
correlators (A1 Ay -+ Ay)y, where Y = In(1/z) is the rapidity. The JIMWLK equation for an arbitrary
operator (O) is
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where o = (Vi)*1 p. Here x is a non-local object expressed in terms of path ordered (in rapidity)
Wilson lines of « [2]. This equation is analogous to a (generalized) functional Fokker-Planck equation,
where Y is the "time” and x is a generalized diffusion coefficient. It illustrates the stochastic properties
of operators in the space of gauge fields at high energies. For the gluon density, which is proportional
to a two-point function {(a®(z)a®(y1)), one recovers the BFKL equation in the limit of low parton
densities.

3 Dipoles in the CGC

In the limit of large N, and large A (@2 A'Y/3 > 1), the IMWLK hierarchy closes for the two point
correlator of Wilson lines because the expectation value of the product of traces of Wilson lines factorizes
into the product of the expectation values of the traces:

(Te(VaVHTe(V.V))) — (Te(V V) (Te(V.V))) (5)

where V, = Pexp ( [dz"a(z",x l)T“). Here P denotes path ordering in x~ and 7'* is an adjoint
SU(3) generator. In Mueller’s dipole picture, the cross-section for a dipole scattering off a target can be
expressed in terms of these 2-point dipole operators as [16, 17]

Caan(@rL) = 2 / @b Ny (2, 71,b). ©)

where Ny = 1— N% (Tr(V, VJ ))y, the imaginary part of the forward scattering amplitude. Note that the

size of the dipole, ¥y = &, — ¥/, and the impact parameter, b= (Z1 +v1)/2. The IMWLK equation
for the two point Wilson correlator is identical in the large A, large N, mean field limit to an equation
derived independently by Balitsky and Kovchegov — the Balitsky-Kovchegov equation [18], which has

the operator form
ONy  agN,
— = K Ny —NEL . 7
FYa — KprkL @ {NVy v} (7)
Here Kprkr, is the well known BFKL kernel. When N < 1, the quadratic term is negligible and one has

BFKL growth of the number of dipoles; when /N is close to unity, the growth saturates. The approach to




unity can be computed analytically [19]. The B-K equation is the simplest equation including both the
Bremsstrahlung responsible for the rapid growth of amplitudes at small = as well as the repulsive many
body effects that lead to a saturation of this growth.

A saturation condition which fixes the amplitude at which this change in behavior is significant,
say N = 1/2, determines the saturation scale. One obtains Q% = Q2 exp(A\Y), where A = cag with ¢ ~
4.8. The saturation condition affects the overall normalization of this scale but does not affect the power
. In fixed coupling, the power A is large and there are large pre-asymptotic corrections to this relation-
which die off only slowly as a function of Y. BFKL running coupling effects change the behavior of the
saturation scale completely—one goes smoothly at large Y to Q2 = Q3 exp(1/2boc(Y + Yp)) where bg
is the coefficient of the one-loop QCD S-function. The state of the art computation of ()5 is the work of
Triantafyllopoulos, who obtained s by solving NLO-resummed BFKL in the presence of an absorptive
boundary (which corresponds to the CGC) [20]. The pre-asymptotic effects are much smaller in this case
and the coefficient A\ ~ 0.25 is very close to the value extracted from saturation model fits to the HERA
data [21]. Fits of CGC inspired models to the HERA data have been discussed elsewhere [22] and will
not be discussed here.

4 Hadronic scattering and %, factorization in the CGC

Collinear factorization is the pQCD mechanism to compute hard scattering. At collider energies, a new
window opens up where A3op < M? < s, where M is the invariant mass of the final state. In prin-
ciple, cross-sections in this window can be computed in the collinear factorization language—however,
one needs to sum up large logarithmic corrections in s/M?2. An alternative formalism is that of & -
factorization [23,24], where one has a convolution of k£, dependent “un-integrated” gluon distributions
from the two hadrons with the hard scattering matrix. In this case, the in-coming partons from the
wavefunctions have non-zero k. Levin et al. [25] suggested that at high energies the typical &k is the
saturation scale ()s. The rapidity dependence of the unintegrated distributions is given by the BFKL or
BK equations. However, unlike the structure functions, it has not been proven that these unintegrated
distributions are universal functions.

At small z, both the collinear factorization and &k, factorization limits can be understood in a
systematic way in the framework of the Color Glass Condensate. The expectation value of an operator
O can be computed as

(O)y = / [dpa] [dps) W, [p1] W [02] O(p1. p2) ®)

where Y = In(1/zF) and zp = 21 — 2. Quantum information, to leading logarithms in z, is contained
in the source functionals W, (,,)[p1(p2)] of the two hadrons. The operator O corresponding to the final
state is expressed in terms of gauge fields A*[p1, p2](x). Inclusive gluon production in the CGC is
computed by solving the Yang-Mills equations [D,,, F*|* = J"* for A*[p1, p2], where the current is
given by J” = p1 6(x7)6"t + po §(xT)d”~ with initial conditions determined by the Yang-Mills fields
of the two hadrons before the collision. These are obtained self-consistently by matching the solutions of
the Yang-Mills equations on the light cone [26]. Since we have argued in Section 2 that we can compute
the Yang-Mills fields in the nuclei before the collision, the classical problem is in principle completely
solvable. Quantum corrections not enhanced by powers of ag In(1/x) can be computed systematically.
Those terms enhanced by powers of g In(1/z) are absorbed into the weight functionals W [p1 o].

Hadronic scattering in the CGC can therefore be studied through a systematic power counting in
the density of sources in powers of p; 2/ ki;l,? This power counting is more relevant at high energies
than whether the incoming projectile is a hadron or a nucleus. In addition, one can study the applicability
of collinear and &, factorization at small x in this approach.

The power counting is applicable as well to a proton at small x. The relevant quantity here is ),
which, as one may recall, is enhanced both for large A and small z. Aslong as k| > Qs > Aqcp,
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one can consider the proton or nucleus as being dilute. To lowest order in p,1/k? and pye/k?, one
can compute inclusive gluon production analytically [26]. At large transverse momenta, @), < kJ,
the scattering can be expressed in a k| -factorized form. The inclusive cross-section is expressed as the
product of two unintegrated (k£ dependent) distributions times the matrix element for the scattering. The
comparison of this result to the collinear pQCD gg — gg process and the k, factorized gg — g was
performed in Ref. [27]. At this order, the result is equivalent to the pQCD result first derived by Gunion
and Bertsch [28]. This result for gluon production is substantially modified, as we shall discuss shortly,
by high parton density effects either because the target is a large nucleus or because small values of x are
being probed in the hadron (as in forward pp scattering).

k., factorization is a good assumption at large momenta for quark pair-production. This was
worked out in the CGC approach by Francois Gelis and myself [29]. The result for inclusive quark pair
production can be expressed in k| factorized form as

d0'1 x / kou_ koJQJ_
dypdyqd?p1 d?q . (2m)? (2m)?

_ 2
Tr (‘ma;(k‘hkz;q,p)‘ )

2 1.2 ’
lek2L

(k1L + kot —p1L —qu)

X ¢1(k11)p2(kay) )

where ¢ and ¢9 are the unintegrated gluon distributions in the projectile and target respectively (with
2
the gluon distribution defined as G (z, Q?) = fOQ d(k%) ¢(x, kL))

The matrix element Tr <‘m;b+ (k1,k2;q,p) ‘2) is identical to the result derived in the k | —factori-

zation approach [23,24]. In the limit |k (|, |ks.| — O, Tr (}m;;r(kl, ko; q,p)f)/(kikﬂ) is well
defined—after integration over the azimuthal angles in Eq. (9), one obtains the usual matrix element
|M lggﬂqq, recovering the lowest order pQCD collinear factorization result.

4.1 Gluon and quark production in forward pp and p A collisions

Many analytical results are available when one of the hadrons is dilute and the other is dense. This
may correspond to either pA collisions or forward pp collisions. One solves the Yang—Mills equations
[D,,, F*] = J¥ with the light cone sources J** = 0" 6(x ™) p§(x1)+0"~ 0(x™") p4 (L), to determine
the gluon field produced-to lowest order in the source density of one projectile (p,/ k‘i < D)and to all
orders (pa/ ki ~ 1) in the source density of the other. The inclusive gluon production cross-section,
in this framework, was first computed by Kovchegov and Mueller [30] and shown to be & factorizable
in Ref. [31,34]. The “unintegrated” gluon distribution in the dense system however is here replaced by
the gluon “dipole™ distribution Ny we discussed previously. It is no longer a leading twist object but
includes all twists enhanced by high parton density effects. The well known “Cronin” effect observed in
Deuteron-Gold collisions at RHIC is obtained in this formalism and can be simply understood in terms
of the multiple scattering of a parton from the projectile with those in the target. The energy evolution
of the dipole distribution is given by the BK equation, leading to a suppression of the Cronin effect at
high densities due to the shadowing of nuclear distributions. This prediction appears to be confirmed
by the RHIC data. The “dipole” operators extracted from DIS can therefore be used to predict inclusive
hadron production in pp and pA collisions. One can similarly compute Drell-Yan and photon production
in forward pp and pA collisions [33,35].

Unlike gluon production, neither quark pair-production nor single quark production is strictly &
factorizable. The pair production cross-section can however still be written in &, factorized form as a
product of the unintegrated gluon distribution in the proton times a sum of terms with three unintegrated
distributions, ¢g 4, @qq,¢ and @yq 4. These are respectively proportional to 2-point (dipole), 3-point and
4-point correlators of the Wilson lines we discussed previously. Again, these operators include all twist
contributions. For instance, the distribution ¢4 4 is the product of fundamental Wilson lines coupled to



a qq pair in the amplitude and adjoint Wilson lines coupled to a gluon in the complex conjugate ampli-
tude. For large transverse momenta or large-mass pairs, the 3-point and 4-point distributions collapse
to the unintegrated gluon distribution, and we recover the previously discussed k| -factorized result for
pair production in the dilute/pp-limit. Single quark distributions are straightforwardly obtained and de-
pend only on the 2-point quark and gluon correlators and the 3-point correlators. For Gaussian sources,
as in the McLerran-Venugopalan-model, these 2-,3- and 4-point functions can be computed exactly as
discussed in Ref. [32].

The situation gets complicated when one enters a regime where both projectiles are dense—as de-
fined in our power counting. k factorization breaks down decisively and analytical approaches are likely
not possible. Nevertheless, numerical techniques have been developed, which allow the computation of
final states, at least to leading logs in x [38].

The results for gluon and quark production in forward pp and pA or dA collisions (for a review,
see Ref. [37]), coupled with the previous results for inclusive and diffractive [33-36] distributions in
DIS, suggest an important new paradigm. At small x in DIS and hadron colliders, previously interesting
observables such as quark and gluon densities are no longer the only observables to capture the relevant
physics. Instead, they should be complemented by dipole and multipole correlators of Wilson lines that
seem ubiquitous in all high energy processes and are similarly gauge invariant and process independent.
The renormalization group running of these operators may be a powerful and sensitive harbinger of new
physics.
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