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1.1 Introduction
The high-precision data from HERA and the anticipated data from LHC open the possibility for a precise
determination of parton distributions. This, however, requires an improvement in the theoretical descrip-
tion of DIS and hard hadronic scattering processes, as well as an improvement of the techniques used to
extract parton distributions from the data.

The determination of perturbative QCD corrections has undergone substantial progress recently.
The key ingredient of a complete next-to-next-to-leading order (NNLO) prediction in perturbative QCD
are the recently calculated three-loop splitting functions which govern the scale dependence of PDFs.
Extensions in the accuracy of the perturbative predictions yet beyond NNLO are given by the three-loop
coefficient functions for F2, while the coefficient functions for FL at this order are actually required to
complete the NNLO predictions. Section 2 briefly discusses the recent results and their phenomenolog-
ical implications. Certain mathematical aspects, which are important in the calculation of higher order
corrections in massless QCD are presented in section 3. In particular, algebraic relations in Mellin-N
space are pointed out, which are of importance for harmonic sums, harmonic polylogarithms and multiple
ζ-values.

These calculation of the PDF evolution to NNLO in perturbative QCD are used in section 4 to
provide an update and extension of a set of benchmark tables for the evolution of parton distributions of
hadrons. These benchmark tables were first presented in the report of the QCD/SM working group at the
2001 Les Houches workshop, but based on approximate NNLO splitting functions, which are superseded
by the exact results which are now available. In addition, section 4 now includes also reference tables
for the case of polarized PDF evolution.

Whereas in principle the x-shapes of PDFs at low scales can be determined from first principles
using non-perturbative methods, in practice at present this is only possible using models (briefly touched
in in section 5). Therefore, an accurate determination of PDFs requires a global QCD fit to the data,
which is the subject of sections 6–8.

Section 6 discusses in particular the impact on parton fits of NNLO corrections on the one hand,
and of the inclusion of Drell-Yan data and future LHC data on the other hand. It then presents values
for a benchmark fit together with a table of correlation coefficients for the parameter obtained in the
fit. This benchmark fit is then re-examined in sec. 7, along with a comparison between PDFs and the
associated uncertainty obtained using the approaches of Alekhin and the MRST group. The differences
between these benchmark partons and the actual global fit partons are also discussed, and used to explore
complications inherent in extracting PDFs with uncertainties. Finally, in section 8 the stability of PDF
determinations in NLO global analyses is re-investigated and the results of the CTEQ PDF group on this
issue are summarized.

An alternative approach to a completely bias-free parameterization of PDFs is presented in sec-
tion 9. There, a neural network approach to global fits of parton distribution functions is introduced
and work on unbiased parameterizations of deep-inelastic structure functions with faithful estimation of
their uncertainties is reviewed together with a summary of the current status of neural network parton
distribution fits.
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2 Precision Predictions for Deep-Inelastic Scattering 2

With high-precision data from HERA and in view of the outstanding importance of hard scattering pro-
cesses at the LHC, a quantitative understanding of deep-inelastic processes is indispensable, necessitating
calculations beyond the standard next-to-leading order of perturbative QCD.

In this contribution we review recent results for the complete next-to-next-to-leading order (NNLO,
N2LO) approximation of massless perturbative QCD for the structure functions F 1, F 2, F 3 and FL in
DIS. These are based on the second-order coefficient functions [1–5], the three-loop splitting functions
which govern the evolution of unpolarized parton distributions of hadrons [6, 7] and the three-loop co-
efficient functions for FL = F 2 − 2xF1 in electromagnetic (photon-exchange) DIS [8, 9]. Moreover
we discuss partial N3LO results for F2, based on the corresponding three-loop coefficient functions also
presented in Ref. [9]. For the splitting functions P and coefficient functions C we employ the convention

P (αs) =
∑

n=0

(αs

4π

)n+1
P (n) , C(αs) =

∑

n=0

(αs

4π

)n
C(n) (1)

for the expansion in the running coupling constant αs. For the longitudinal structure function FL the
third-order corrections are required to complete the NNLO predictions, since the leading contribution to
the coefficient function CL is of first order in the strong coupling constant αs.

In the following we briefly display selected results to demonstrate the quality of precision pre-
dictions for DIS and their effect on the evolution. The exact (analytical) results to third order for the
quantities in Eq. (1) are too lengthy, about O(100) pages in normalsize fonts and will not be reproduced
here. Also the method of calculation is well documented in the literature [5–7, 9–11]. In particular, it
proceeds via the Mellin transforms of the functions of the Bjorken variable x,

A(N) =

1∫

0

dx xN−1A(x) . (2)

Selected mathematical aspects of Mellin transforms are discussed in section 3.

2.1 Parton evolution
The well-known 2nf − 1 scalar non-singlet and 2× 2 singlet evolution equations for nf flavors read

d

d lnµ 2
f

q ins = P i
ns ⊗ q ins , i = ±, v , (3)

for the quark flavor asymmetries q±ns and the valence distribution qv
ns, and

d

d lnµ 2
f

(
qs

g

)
=

(
Pqq Pqg

Pgq Pgg

)
⊗
(
qs

g

)
(4)

for the singlet quark distribution qs and the gluon distribution g, respectively. Eqs. (3) and (4) are gov-
erned by three independent types of non-singlet splitting functions, and by the 2 × 2 matrix of singlet
splitting functions. Here ⊗ stands for the Mellin convolution. We note that benchmark numerical solu-
tions to NNLO accuracy of Eqs. (3) and (4) for a specific set of input distributions are given in section 4.
Phenomenological QCD fits of parton distributions in data analyses are extensively discussed in sec-
tions 6–8. An approach based on neural networks is described in section 9.

Let us start the illustration of the precision predictions by looking at the parton evolution and at
large Mellin-N (large Bjorken-x) behavior. Fig. 1 shows the stability of the perturbative expansion which
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Fig. 1: On the left we show the perturbative expansion of P v
ns(N), and on the right the resulting perturbative

expansion of the logarithmic scale derivative d ln q ns/d lnµ 2
f is displayed for a model input. See the text for

details.

is very benign and indicates, for αs
<∼ 0.2, corrections of less than 1% beyond NNLO. On the left we

show the results for the perturbative expansion of Pns in Mellin space, cf. Eqs. (1), (2). We employ four
active flavors, nf = 4, and an order-independent value for the strong coupling constant,

αs(µ
2
0 ) = 0.2 , (5)

which corresponds to µ 2
0 ' 25 . . . 50 GeV2 for αs(M

2
Z ) = 0.114 . . . 0.120 beyond the leading order. On

the right of Fig. 1 the perturbative expansion of the logarithmic derivative, cf. Eqs. (1), (3), is illustrated
at the standard choice µr = µf of the renormalization scale. We use the schematic, but characteristic
model distribution,

xq ns(x, µ
2
0 ) = x 0.5(1− x)3 . (6)

The normalization of q ns is irrelevant at this point, as we consider the logarithmic scale derivative only.
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Fig. 2: The three-loop gluon-quark (left) and gluon-gluon (right) splitting functions together with the leading
small-x contribution (dotted line).

Next, let us focus on the three-loop splitting functions at small momentum fractions x, where the
splitting functions P ig in the lower row of the 2 × 2 matrix in Eq. (4), representing g→ i splittings, are
most important. In Fig. 2 we show, again for nf = 4, the three-loop splitting functions P (2)

qg and P (2)
gg



together with the leading small-x term indicated separately for x < 0.01. In the present singlet case the
leading logarithmic small-x limits ∼ x−1 lnx of Refs. [12, 13] are confirmed together with the general
structure of the BFKL limit [14–16]. The same holds for the leading small-x terms ln4 x in the non-
singlet sector [17, 18], with the qualification that a new, unpredicted leading logarithmic contribution is
found for the color factor dabcdabc entering at three loops for the first time.

It is obvious from Fig. 2 (see also Refs. [5–7, 11]) that the leading x→ 0-terms alone are insuf-
ficient for collider phenomenology at HERA or the LHC as they do not provide good approximations
of the full results at experimentally relevant small values of x. Resummation of the small-x terms and
various phenomenological improvements are discussed in detail in [19].
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Fig. 3: The perturbative expansion of the scale derivatives (4) of the singlet distributions (7).

In the same limit of small x, it is instructive to look at the evolution of parton distributions. Again,
we choose the reference scale of Eq. (5), nf = 4 and the sufficiently realistic model distributions

xqs(x, µ
2
0 ) = 0.6 x−0.3(1− x)3.5 (1 + 5.0 x 0.8 )

xg(x, µ 2
0 ) = 1.6 x−0.3(1− x)4.5 (1− 0.6 x 0.3 ) (7)

irrespective of the order of the expansion to facilitate direct comparisons of the various contributions.
Of course, this order-independence does not hold for actual data-fitted parton distributions like those in
sections 6–8. In Fig. 3 we display the perturbative expansion of the scale derivative for the singlet quark
and gluon densities at µ 2

f = µ 2
0 for the initial conditions specified in Eqs. (5) and (7). For the singlet

quark distribution the total NNLO corrections, while reaching 10% at x = 10 −4, remain smaller than
the NLO results by a factor of eight or more over the full x-range. For the gluon distribution already
the NLO corrections are small and the NNLO contribution amounts to only 3% for x as low as 10 −4.
Thus, we see in Fig. 3 that the perturbative expansion is very stable. It appears to converge rapidly at
x > 10−3, while relatively large third-order corrections are found for very small momenta x <∼ 10−4.

2.2 Coefficient functions
While the previous considerations were addressing the evolution of parton distributions, we now turn to
the further improvements of precision predictions due to the full third-order coefficient functions for the
structure functions F2 and FL in electromagnetic DIS [8, 9]. The results for FL complete the NNLO
description of unpolarized electromagnetic DIS, and the third-order coefficient functions for F 2 form, at
not too small values of the Bjorken variable x, the dominant part of the next-to-next-to-next-to-leading
order (N3LO) corrections. Thus, they facilitate improved determinations of the strong coupling αs from
scaling violations.
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Fig. 4: The three-loop non-singlet coefficient function c (3)
2,ns(x) in the large-x (left) and the small-x (right) region,

multiplied by (1−x) for display purposes.

Let us start with the three-loop coefficient functions for F2 in the non-singlet case. In Fig. 4 we
display the three-loop non-singlet coefficient function c (3)

2,ns(x) for nf = 4 flavors. We also show the
soft-gluon enhanced terms Dk dominating the large-x limit,

Dk =
ln 2k−1(1− x)

(1− x)+
, (8)

and the small-x approximations obtained by successively including enhanced logarithms lnk x. However
the latter are insufficient for an accurate description of the exact result. The dashed band in Fig. 4 shows
the uncertainty of previous estimates [20] mainly based on the calculation of fixed Mellin moments [21–
23]. For a detailed discussion of the soft-gluon resummation of the the Dk terms, we refer to [19].
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Fig. 5: The perturbative expansion of the logarithmic scale derivative of the non-singlet structure function F2,ns.
The results up to NNLO are exact, while those at N3LO are very good approximations. The N4LO corrections
have been estimated by various methods.

Building on the coefficient functions, it is interesting to study the perturbative expansion of the
logarithmic scale derivative for the non-singlet structure function F2,ns. To that end we use in Fig. 5



again the input shape Eq. (6) (this time for F2,ns itself) irrespective of the order of the expansion, nf = 4
flavors and the reference scale of Eq. (5). The N4LO approximation based on Padé summations of the
perturbation series can be expected to correctly indicate at least the rough size of the four-loop correc-
tions, see Ref. [9] for details. From Fig. 5 we see that the three-loop results for F 2 can be employed
to effectively extend the main part of DIS analyses to the N3LO at x > 10−2 where the effect of the
unknown fourth-order splitting functions is expected to be very small. This has, for example, the po-
tential for a ‘gold-plated’ determination of αs(MZ) with an error of less than 1% from the truncation of
the perturbation series. On the right hand side of Fig. 5 the scale uncertainty which is conventionally
estimated by

∆ḟ ≡ 1

2

(
max [ḟ(x, µ2

r)]−min [ḟ(x, µ2
r)]
)
, (9)

is plotted, where the scale varies µr ∈ [Q/2, 2Q].
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Fig. 6: The perturbative expansion up to three loops (N3LO) of the quark (left) and gluon (right) contributions to
singlet structure function F2.

In the singlet case, we can study the quark and gluon contributions to the structure function F2. In
Fig. 6 we plot the perturbative expansion up to N3LO of the quark and gluon contributions to structure
function F2,s at the scale (5) using the distributions (7). All curves have been normalized to the leading-
order result F LO

2,s = 〈e2〉 qs . Fig. 6 nicely illustrates the perturbative stability of the structure function
F2.

Finally, we address the longitudinal structure function FL at three loops. In the left part of Fig. 7
we plot the singlet-quark and gluon coefficient functions cL,q and cL,g for FL up to the third order for
four flavors and the αs-value of Eq. (5). The curves have been divided by as = αs/(4π) to account
for the leading contribution being actually of first order in the strong coupling constant αs. Both the
second-order and the third-order contributions are rather large over almost the whole x-range. Most
striking, however, is the behavior at very small values of x, where the anomalously small one-loop parts
are negligible against the (negative) constant two-loop terms, which in turn are completely overwhelmed
by the (positive) new three-loop corrections xc(3)

L,a ∼ lnx+ const , which we have indicated in Fig. 7.

To assess the effect for longitudinal structure function FL, we convolute in Fig. 7 on the right
the coefficient functions with the input shapes Eq. (7) for nf = 4 flavors and the reference scale of
Eq. (5). A comparison of the left and right plots in Fig. 7 clearly reveals the smoothening effect of the
Mellin convolutions. For the chosen input conditions, the (mostly positive) NNLO corrections to the
flavor-singlet FL amount to less than 20% for 5 · 10−5 < x < 0.3. In data fits we expect that the parton
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Fig. 7: The perturbative expansion to N2LO of the longitudinal singlet-quark and gluon coefficient functions to
third order multiplied by x for display purposes (left) and of the quark and gluon contributions to singlet structure
function FL (right).

Table 1: Number of alternating and non-alternating harmonic sums in dependence of their weight, [28].

Number of

Weight Sums a-basic sums Sums ¬{−1} a-basic sums Sums i > 0 a-basic sums

1 2 2 1 1 1 1

2 6 3 3 2 2 1

3 18 8 7 4 4 2

4 54 18 17 7 8 3

5 162 48 41 16 16 6

6 486 116 99 30 32 9

7 1458 312 239 68 64 18

distributions, in particular the gluon distribution, will further stabilize the overall NNLO/NLO ratio.
Thus, at not too small scales, FL is a quantity of good perturbative stability, for the x-values accessible
at HERA, see Ref. [8] for more details.

3 Mathematical Structure of Higher Order Corrections 3

The QCD anomalous dimensions and Wilson coefficients for structure functions are single scale quan-
tities and may be expressed in simple form in Mellin space in terms of polynomials of harmonic sums

3Contributing authors: J. Blümlein, H. Böttcher, A. Guffanti, V. Ravindran



and ration functions of the Mellin variable. Unlike the case in various calculations using representations
in momentum-fraction (z-) space the use of multiple nested harmonic sums leads to a synchronization in
language. Furthermore, significant simplifications w.r.t. the number of functions needed can be achieved.
This is due to algebraic [24,25] relations between these quantities, which in a similar way are also present
between harmonic polylogarithms [26] and multiple ζ-values [27]. These relations result from the the
specific index pattern of the objects considered and their multiplication relation and do not refer to fur-
ther more specific properties. In Table 1 we illustrate the level of complexity which one meets in case
of harmonic sums. To three-loop order weight w=6 harmonic sums occur. The algebraic relations for
the whole class of harmonic sums lead to a reduction by a factor of ∼ 4 (column 3). As it turns out,
physical pseudo-observables, as anomalous dimensions and Wilson-coefficients in the MS scheme, to
2-, resp. 3-loop order depend on harmonic sums only, in which the index {−1} never occurs. The
algebraic reduction for this class is illustrated in column 5. We also compare the complexity of only non-
alternating harmonic sums and their algebraic reduction, which is much lower. This class of sums is,
however, not wide enough to describe the above physical quantities. In addition to the algebraic relations
of harmonic sums structural relations exist, which reduces the basis further [28]. Using all these relations
one finds that 5 basic functions are sufficient to describe all 2-loop Wilson coefficients for deep-inelastic
scattering [29] and further 8 [30] for the 3-loop anomalous dimensions. Their analytic continuations to
complex values of the Mellin variable are given in [31, 32]. These functions are the (regularized) Mellin
transforms of :

ln(1 + x)

1 + x
,

Li2(x)

1± x ,
S1,2(x)

1± x ,
Li4(x)

x± 1
,

S1,3(x)

1 + x
,

S2,2(x)

x± 1
,

Li22(x)

1 + x
,

S2,2(−x)− Li22(−x)/2

x± 1
. (10)

It is remarkable, that the numerator-functions in (10) are Nielsen integrals [33] and polynomials thereof,
although one might expect harmonic polylogarithms [26] outside this class in general. The representation
of the Wilson coefficients and anomalous dimensions in the way described allows for compact expres-
sions and very fast and precise numerical evaluation well suited for fitting procedures to experimental
data.

3.1 Two-loop Processes at LHC in Mellin Space
Similar to the case of the Wilson coefficients in section 3 one may consider the Wilson coefficients
for inclusive hard processes at hadron colliders, as the Drell–Yan process to O(α2

s) [34–36], scalar or
pseudoscalar Higgs-boson production to O(α3

s) in the heavy-mass limit [37–42], and the 2-loop time-
like Wilson coefficients for fragmentation [43–45]. These quantities have been analyzed in [46,47] w.r.t.
their general structure in Mellin space. The cross section for the Drell–Yan process and Higgs production
is given by

σ

(
ŝ

s
,Q2

)
=

∫ 1

x

dx1

x1

∫ 1

x/x1

dx2

x2
fa(x1, µ

2)fb(x2, µ
2)σ̂

(
x

x1x2
,
Q2

µ2

)
, (3.11)

with x = ŝ/s. Here, fc(x, µ2) are the initial state parton densities and µ2 denotes the factorization scale.
The Wilson coefficient of the process is σ̂ and Q2 is the time-like virtuality of the s-channel boson.
Likewise, for the fragmentation process of final state partons into hadrons in pp–scattering one considers
the double differential final state distribution

d2σH

dxd cos θ
=

3

8
(1 + cos2 θ)

dσHT
dx

+
3

4
sin2 θ

dσHL
dx

. (3.12)

Here,

dσHk
dx

=

∫ 1

x

dz

z

[
σ

(0)
tot

{
DH
S

(x
z
,M2

)
CS
k,q(z,Q

2/M2) +DH
g

(x
z
,M2

)
CS
k,q(z,Q

2/M2)
}
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+

Nf∑

p=1

σ(0)
p DH

NS,p

(x
z
,M2

)
CNS
k,q (z,Q2/M2)

]
. (3.13)

In the subsystem cross-sections σ the initial state parton distributions are included. DH
k denote the non-

perturbative fragmentation functions and CS,NS
k,i (z,Q2/M2) the respective time-like Wilson coefficients

describing the fragmentaion process for a parton i into the hadron H .

Although these Wilson coefficients are not directly related to the 2-loop Wilson coefficients for
deeply inelastic scattering, one finds for these functions at most the same set of basic functions as given
above. Again one obtains very fast and concise numerical programs also for these processes working in
Mellin space, which will be well suited for inclusive analyses of experimental collider data at LHC in
the future.

3.2 Non-Singlet Parton Densities at O(α3
s)

The precision determination of the QCD-scale ΛQCD and of the idividual parton densities is an important
issue for the whole physics programme at LHC since all measurements rely on the detailed knwoledge of
this parameter and distribution functions. In Ref. [48] first results were reported of a world data analysis
for charged lepton-p(d) scattering w.r.t. the flavor non-singlet sector at O(α3

s) accuracy. The flavor non-
singlet distributions xuv(x,Q2) and xdv(x,Q2) were determined along with fully correlated error bands
giving parameterizations both for the values and errors of these distributions for a wide range in x and
Q2. In Figure 8 these distributions including their error are shown. The value of the strong coupling
constant αs(M2

Z) was determined as 0.1135 + 0.0023− 0.0026 (exp.) The full analysis is given in [49],
including the determination of higher twist contributions in the large x region both for F p

2 (x,Q2) and
F d2 (x,Q2).

3.3 Scheme-invariant evolution for unpolarzed DIS structure functions
The final HERA-II data on unpolarized DIS structure functions, combined with the present world data
from other experiments, will allow to reduce the experimental error on the strong coupling constant,
αs(M

2
Z), to the level of 1% [52]. On the theoretical side the NLO analyzes have intrinsic limitations

which allow no better than 5% accuracy in the determination of αs [53]. In order to match the expected
experimental accuracy, analyzes of DIS structure functions need then to be carried out at the NNLO-
level. To perform a full NNLO analysis the knowledge of the 3-loop β-function coefficient, β2, the 2-
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resp. 3-loop Wilson coefficients and the 3-loop anomalous dimensions is required. With the calculation
of the latter [6, 7], the whole scheme-independent set of quantities is known, thus allowing a complete
NNLO study of DIS structure functions.

Besides the standard approach solving the QCD evolution equations for parton densities in the MS
scheme it appears appealing to study scheme-invariant evolution equations [54]. Within this approach
the input distributions at a scale Q2

0 are measured experimentally. The only parameter to be determined
by a fit to data is the QCD-scale ΛQCD. To perform an analysis in the whole kinematic region the non-
singlet [48] contribution has to be separated from the singlet terms of two measured observables. In
practice these can be chosen to be F2(x,Q2) and ∂F2(x,Q2)/∂ ln(Q2) or F2(x,Q2) and FL(x,Q2)
if the latter structure function is measured well enough. Either ∂F2(x,Q2)/∂ ln(Q2) or FL(x,Q2)
play a role synonymous to the gluon distribution while F2(x,Q2) takes the role of the singlet-quark
distribution compared to the standard analysis. These equations do no longer describe the evolution
of universal quantities depending on the choice of a scheme but of process-dependent quantities which
are observables and thus factorization scheme-indedependent. Since the respective evolution kernels
are calculated in perturbation theory the dependence on the renormalization scale remains and becomes
smaller with the order in the coupling constant included.

Physical evolution kernels have been studied before in [55–57]. The 3-loop scheme-invariant
evolution equations were solved in the massless case in [54]. This analysis is extended including the
heavy flavor contributions at present [49]. The large complexity of the evolution kernels can only be
handeled in Mellin space since in z-space various inverse and direct Mellin convolutions would be re-
quired numerically, causing significant accuracy and run-time problems. The inclusion of the heavy
flavor contributions is possible using the parameterizations [58].

In Fig. 8 we present the scheme invariant evolution for the structure functions F2 and ∂F2/∂t
to NNLO with t = −2/β0 ln(αs(Q

2)/αs(Q
2
0)). The input distribution at the reference scale are not

extracted from data, but rather built up as a convolution of Wilson coefficients and PDFs, the latter being
parametrised according to [59].

Scheme-invariant evolution equations allow a widely un-biased approach to determine the initial
conditions for QCD evolution, which in general is a source of systematic effects which are difficult to
control. On the other hand, their use requires to consider all correlations of the input measurements in



a detailed manner experimentally. At any scale Q2 mappings are available to project the observables
evolved onto the quark-singlet and the gluon density in whatever scheme. In this way the question
whether sign changes in the unpolarized gluon distribution in the MS scheme do occur or do not occur
in the small x region can be answered uniquely. As in foregoing analyses [48, 60] correlated error
propagation throughout the evolution is being performed.

4 Updated reference results for the evolution of parton distributions 4

In this contribution we update and extend our benchmark tables, first presented in the report of the
QCD/SM working group at the 2001 Les Houches workshop [59], for the evolution of parton distribu-
tions of hadrons in perturbative QCD. Since then the complete next-to-next-to-leading order (NNLO)
splitting functions have been computed [6,7], see also section 2. Thus we can now replace the NNLO re-
sults of 2001 which were based on the approximate splitting functions of Ref. [61]. Furthermore we now
include reference tables for the polarized case treated in neither Ref. [59] nor the earlier study during the
1995/6 HERA workshop [62]. Since the spin-dependent NNLO splitting functions are still unknown, we
have to restrict ourselves to the polarized leading-order (LO) and next-to-leading-order (NLO) evolution.

As in Ref. [59], we employ two entirely independent and conceptually different FORTRAN pro-
grams. At this point, the x-space code of G.S. is available from the author upon request, while the Mellin-
space program of A.V. has been published in Ref. [63]. The results presented below correspond to a di-
rect iterative solution of the NmLO evolution equations for the parton distributions fp(x, µ2

f ) ≡ p(x, µ2
f ),

where p = qi, q̄i , g with i = 1, . . . , Nf ,

dfp(x, µ
2
f )

d lnµ2
f

=

m∑

l=0

a l+1
s (µ2

r )

∫ 1

x

dy

y

∑

p′
P

(l)
pp′

(
x

y
,
µ2

f

µ2
r

)
fp′(y, µ

2
f ) (4.14)

with the strong coupling, normalized as as ≡ αs/(4π), given in terms of

d as

d lnµ2
r

= βNmLO(as) = −
m∑

l=0

a l+2
s βl (4.15)

with β0 = 11−2/3Nf etc. µr and µf represent the renormalization and mass-factorization scales in the
MS scheme. The reader is referred to Refs. [59, 63] for the scale dependence of the splitting functions
P (l) and a further discussion of our solutions of Eqs. (4.14) and (4.15).

For the unpolarized case we retain the initial conditions as set up at the Les Houches meeting: The
evolution is started at

µ2
f,0 = 2 GeV2 . (4.16)

Roughly along the lines of the CTEQ5M parametrization [64], the input distributions are chosen as

xuv(x, µ2
f,0) = 5.107200 x0.8 (1− x)3

xdv(x, µ2
f,0) = 3.064320 x0.8 (1− x)4

xg (x, µ2
f,0) = 1.700000x−0.1(1− x)5 (4.17)

xd̄ (x, µ2
f,0) = .1939875x−0.1(1− x)6

xū (x, µ2
f,0) = (1− x) xd̄ (x, µ2

f,0)

xs (x, µ2
f,0) = xs̄ (x, µ2

f,0) = 0.2x(ū + d̄ )(x, µ2
f,0)

where, as usual, qi,v ≡ qi − q̄i. The running couplings are specified by Eq. (4.15) and

αs(µ
2
r =2 GeV2) = 0.35 . (4.18)

4Contributing authors: G.P. Salam, A. Vogt



For simplicity initial conditions (4.17) and (4.18) are employed regardless of the order of the evolution
and the (fixed) ratio of the renormalization and factorization scales.

For the evolution with a fixed number Nf > 3 of quark flavours the quark distributions not spec-
ified in Eq. (4.17) are assumed to vanish at µ2

f,0, and Eq. (4.18) is understood to refer to the chosen
value of Nf . For the evolution with a variable Nf = 3 . . . 6, Eqs. (4.16) and (4.17) always refer to three
flavours. Nf is then increased by one unit at the heavy-quark pole masses taken as

mc = µf,0 , mb = 4.5 GeV2 , mt = 175 GeV2 , (4.19)

i.e., Eqs. (4.14) and (4.15) are solved for a fixed number of flavours between these thresholds, and the
respective matching conditions are invoked at µ2

f = m2
h , h = c, b, t. The matching conditions for the

unpolarized parton distributions have been derived at NNLO in Ref. [65], and were first implemented in
an evolution program in Ref. [66]. Note that, while the parton distributions are continuous up to NLO
due to our choice of the matching scales, αs is discontinuous at these flavour thresholds already at this
order for µr 6= µf , see Refs. [67, 68]. Again the reader is referred to Refs. [59, 63] for more details.

Since the exact NNLO splitting functions P (2) are rather lengthy and not directly suitable for use in
a Mellin-space program (see, however, Ref. [32]), the reference tables shown below have been computed
using the parametrizations (4.22)–(4.24) of Ref. [6] and (4.32)–(4.35) of Ref. [7]. Likewise, the operator
matrix element ÃS,2

hg entering the NNLO flavour matching is taken from Eq. (3.5) of Ref. [63]. The
relative error made by using the parametrized splitting functions is illustrated in Fig. 10. It is generally
well below 10−4, except for the very small sea quark distributions at very large x.

Eqs. (4.16), (4.18) and (4.19) are used for the (longitudinally) polarized case as well, where
Eq. (4.17) replaced by the sufficiently realistic toy input [63]

xuv = +1.3 x0.7 (1− x)3 (1 + 3x)

xdv = −0.5 x0.7 (1− x)4 (1 + 4x)

xg = +1.5 x0.5 (1− x)5

xd̄ = xū = −0.05 x0.3 (1− x)7

xs = xs̄ = +0.5 xd̄ . (4.20)

As Eq. (4.17) in the unpolarized case, this input is employed regardless of the order of the evolution.

As in Ref. [59], we have compared the results of our two evolution programs, under the conditions
specified above, at 500 x-µ2

f points covering the range 10−8 ≤ x ≤ 0.9 and 2 GeV2 ≤ µ2
f ≤ 106 GeV2.

A representative subset of our results at µ2
f = 104 GeV4, a scale relevant to high-ET jets and close to

m2
W, m2

Z and, possibly, m2
Higgs, is presented in Tables 2 – 6. These results are given in terms of the

valence distributions, defined below Eq. (4.17), L± ≡ d̄± ū, and the quark–antiquark sums q+≡ q−q̄
for q = s, c and, for the variable-Nf case, b.

For compactness an abbreviated notation is employed throughout the tables, i.e., all numbers a·10b

are written as ab. In the vast majority of the x-µ2
f points our results are found to agree to all five figures

displayed, except for the tiny NLO and NNLO sea-quark distributions at x = 0.9, in the tables. Entries
where the residual offsets between our programs lead to a different fifth digit after rounding are indicated
by the subscript ‘∗’. In these cases the number with the smaller modulus is given in the tables.

The approximate splitting functions [61], as mentioned above employed in the previous version
[59] of our reference tables, have been used in (global) NNLO fits of the unpolarized parton distributions
[51, 69], which in turn have been widely employed for obtaining NNLO cross sections, in particular for
W and Higgs production. The effect of replacing the approximate results by the full splitting functions
[6, 7] is illustrated in Figure 11. Especially at scales relevant to the above-mentioned processes, the
previous approximations introduce an error of less than 0.2% for x >∼ 10−3, and less than 1% even down
to x ' 10−5. Consequently the splitting-function approximations used for the evolution the parton
distributions of Refs. [51,69] are confirmed to a sufficient accuracy for high-scale processes at the LHC.
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four-momenta) resulting in (c) parton distributions at the starting scale Q2

0.

The unchanged unpolarized LO and NLO reference tables of Ref. [59] are not repeated here. Note
that the one digit of the first (FFN) αs value was mistyped in the header of Table 1 in that report 5 , the
correct value can be found in Table 3 below.

5 Non-perturbative x-shape of PDFs 6

The x-shape of parton density functions at a low scale Q2
0 is due to the dynamics of the bound state

proton and is hence an unsolved problem of non-perturbative QCD. Usually this is described by parame-
terizations of data using more or less arbitrary functional forms. More understanding can be obtained by
a recently developed physical model [70], which is phenomenologically successful in describing data.

The model gives the four-momentum k of a single probed valence parton (Fig. 12a) by assuming
that, in the nucleon rest frame, the shape of the momentum distribution for a parton of type i and mass
mi can be taken as a Gaussian fi(k) = N(σi,mi) exp

{
−
[
(k0 −mi)

2 + k2
x + k2

y + k2
z

]
/2σ2

i

}
, which

may be motivated as a result of the many interactions binding the parton in the nucleon. The width of
the distribution should be of order hundred MeV from the Heisenberg uncertainty relation applied to the
nucleon size, i.e. σi = 1/dN . The momentum fraction x of the parton is then defined as the light-cone
fraction x = k+/p+ and is therefore invariant under longitudinal boosts (e.g. to the infinite momentum
frame). Constraints are imposed on the final-state momenta to obtain a kinematically allowed final state,
which also ensures that 0 < x < 1 and fi(x)→ 0 for x→ 1.

The sea partons are obtained using a hadronic basis for the non-perturbative dynamics of the bound
state proton and considering hadronic fluctuations

|p〉 = α0|p0〉+ αpπ0 |pπ0〉+ αnπ+|nπ+〉+ . . .+ αΛK |ΛK+〉+ . . . (5.21)

Probing a parton i in a hadron H of a baryon-meson fluctuation |BM〉 (Fig. 12b) gives a sea parton
with light-cone fraction x = xH xi of the target proton. The momentum of the probed hadron is given
by a similar Gaussian, but with a separate width parameter σH . Also here, kinematic constraints ensure
physically allowed final states.

Using a Monte Carlo method the resulting valence and sea parton x-distributions are obtained
without approximations. These apply at a low scale Q2

0 and the distributions at higher Q2 are obtained
using perturbative QCD evolution at next-to-leading order. To describe all parton distributions (Fig. 12c),

5We thank H. Böttcher and J. Blümlein for pointing this out to us.
6Contributing author: G. Ingelman



Table 2: Reference results for the Nf = 4 next-next-to-leading-order evolution for the initial conditions (4.16)–
(4.18). The corresponding value of the strong coupling is αs(µ

2
r = 104 GeV2) = 0.110141. The valence distri-

butions sv and cv are equal for the input (4.17). The notation is explained below Eq. (4.17) and in the paragraph
below Eq. (4.20).

NNLO, Nf = 4 , µ2
f = 104 GeV2

x xuv xdv xL− 2xL+ xsv xs+ xc+ xg

µ2
r = µ2

f

10−7 1.5287−4 1.0244−4 5.7018−6 1.3190+2 3.1437−5 6.4877+1 6.4161+1 9.9763+2

10−6 6.9176−4 4.4284−4 2.5410−5 6.8499+1 9.4279−5 3.3397+1 3.2828+1 4.9124+2

10−5 3.0981−3 1.8974−3 1.0719−4 3.3471+1 2.2790−4 1.6059+1 1.5607+1 2.2297+2

10−4 1.3722−2 8.1019−3 4.2558−4 1.5204+1 3.6644−4 7.0670+0 6.7097+0 9.0668+1

10−3 5.9160−2 3.4050−2 1.6008−3 6.3230+0 1.4479−4 2.7474+0 2.4704+0 3.1349+1

10−2 2.3078−1 1.2919−1 5.5688−3 2.2752+0 −5.7311−4 8.5502−1 6.6623−1 8.1381+0

0.1 5.5177−1 2.7165−1 1.0023−2 3.9019−1 −3.0627−4 1.1386−1 5.9773−2 9.0563−1

0.3 3.5071−1 1.3025−1 3.0098−3 3.5358−2 −3.1891−5 9.0480−3 3.3061−3 8.4186−2

0.5 1.2117−1 3.1528−2 3.7742−4 2.3867−3 −2.7215−6 5.7965−4 1.7170−4 8.1126−3

0.7 2.0077−2 3.0886−3 1.3434−5 5.4244−5 −1.0106−7 1.2936−5 3.5304−6 3.8948−4

0.9 3.5111−4 1.7783−5 8.651−9 2.695−8 −1.476−10 7.132−9 2.990−9 1.2136−6

µ2
r = 2µ2

f

10−7 1.3416−4 8.7497−5 4.9751−6 1.3020+2 2.1524−5 6.4025+1 6.3308+1 1.0210+3

10−6 6.2804−4 3.9406−4 2.2443−5 6.6914+1 6.5149−5 3.2602+1 3.2032+1 4.9626+2

10−5 2.9032−3 1.7575−3 9.6205−5 3.2497+1 1.5858−4 1.5570+1 1.5118+1 2.2307+2

10−4 1.3206−2 7.7673−3 3.9093−4 1.4751+1 2.5665−4 6.8388+0 6.4807+0 9.0162+1

10−3 5.8047−2 3.3434−2 1.5180−3 6.1703+0 1.0388−4 2.6695+0 2.3917+0 3.1114+1

10−2 2.2930−1 1.2857−1 5.4626−3 2.2492+0 −3.9979−4 8.4058−1 6.5087−1 8.0993+0

0.1 5.5428−1 2.7326−1 1.0072−2 3.9297−1 −2.1594−4 1.1439−1 5.9713−2 9.0851−1

0.3 3.5501−1 1.3205−1 3.0557−3 3.6008−2 −2.2632−5 9.2227−3 3.3771−3 8.5022−2

0.5 1.2340−1 3.2166−2 3.8590−4 2.4459−3 −1.9420−6 5.9487−4 1.7699−4 8.2293−3

0.7 2.0597−2 3.1751−3 1.3849−5 5.5722−5 −7.2616−8 1.3244−5 3.5361−6 3.9687−4

0.9 3.6527−4 1.8544−5 9.050−9 2.663−8 −1.075−10 6.713−9 2.377−9 1.2489−6

µ2
r = 1/2µ2

f

10−7 1.7912−4 1.2521−4 6.4933−6
∗ 1.2714+2 4.9649−5 6.2498+1 6.1784+1 9.2473+2

10−6 7.7377−4 5.1222−4 2.8719−5 6.7701+1 1.4743−4 3.2999+1 3.2432+1 4.6863+2

10−5 3.3184−3 2.0760−3 1.1977−4 3.3644+1 3.5445−4 1.6147+1 1.5696+1 2.1747+2

10−4 1.4184−2 8.4455−3 4.6630−4 1.5408+1 5.6829−4 7.1705+0 6.8139+0 8.9820+1
∗

10−3 5.9793−2 3.4418−2 1.6996−3 6.4042+0 2.2278−4 2.7892+0 2.5128+0 3.1336+1

10−2 2.3106−1 1.2914−1 5.7016−3 2.2876+0 −8.9125−4 8.6205−1 6.7377−1 8.1589+0

0.1 5.5039−1 2.7075−1 1.0031−2 3.8850−1 −4.7466−4 1.1332−1 5.9489−2 9.0795−1

0.3 3.4890−1 1.2949−1 2.9943−3 3.5090−2 −4.9304−5 8.9667−3 3.2670−3 8.4309−2

0.5 1.2026−1 3.1269−2 3.7428−4 2.3729−3 −4.1981−6 5.7783−4 1.7390−4 8.1099−3
∗

0.7 1.9867−2 3.0534−3 1.3273−5 5.4635−5 −1.5541−7 1.3275−5 3.9930−6 3.8824−4

0.9 3.4524−4 1.7466−5 8.489−9 3.030−8 −2.255−10 8.863−9 4.803−9 1.2026−6



Table 3: As Table 2, but for the variable-Nf evolution using the flavour matching conditions of Ref. [65, 67,
68]. The corresponding values for the strong coupling αs(µ

2
r = 104 GeV2) are given by 0.115818, 0.115605 and

0.115410 for µ2
r/µ

2
f = 0.5, 1 and 2, respectively. For brevity the small, but non-vanishing valence distributions

sv, cv and bv are not displayed.

NNLO, Nf = 3 . . . 5 , µ2
f = 104 GeV2

x xuv xdv xL− 2xL+ xs+ xc+ xb+ xg

µ2
r = µ2

f

10−7 1.5978−4 1.0699−5 6.0090−6 1.3916+2 6.8509+1 6.6929+1 5.7438+1 9.9694+3

10−6 7.1787−4 4.5929−4 2.6569−5 7.1710+1 3.5003+1 3.3849+1 2.8332+1 4.8817+2

10−5 3.1907−3 1.9532−3 1.1116−4 3.4732+1 1.6690+1 1.5875+1 1.2896+1 2.2012+2

10−4 1.4023−2 8.2749−3 4.3744−4 1.5617+1 7.2747+0 6.7244+0 5.2597+0 8.8804+1

10−3 6.0019−2 3.4519−2 1.6296−3 6.4173+0 2.7954+0 2.4494+0 1.8139+0 3.0404+1

10−2 2.3244−1 1.3000−1 5.6100−3 2.2778+0 8.5749−1 6.6746−1 4.5073−1 7.7912+0

0.1 5.4993−1 2.7035−1 9.9596−3 3.8526−1 1.1230−1 6.4466−2 3.7280−2 8.5266−1

0.3 3.4622−1 1.2833−1 2.9572−3 3.4600−2 8.8410−3 4.0134−3 2.1047−3 7.8898−2

0.5 1.1868−1 3.0811−2 3.6760−4 2.3198−3 5.6309−4 2.3752−4 1.2004−4 7.6398−3

0.7 1.9486−2 2.9901−3 1.2957−5 5.2352−5 1.2504−5 5.6038−6 2.8888−6 3.7080−4

0.9 3.3522−4 1.6933−5 8.209−9 2.574−8 6.856−9 4.337−9 2.679−9 1.1721−6

µ2
r = 2µ2

f

10−7 1.3950−4 9.0954−5 5.2113−6 1.3549+2 6.6672+1 6.5348+1 5.6851+1 1.0084+3

10−6 6.4865−4 4.0691−4 2.3344−5 6.9214+1 3.3753+1 3.2772+1 2.7818+1 4.8816+2

10−5 2.9777−3 1.8020−3 9.9329−5 3.3385+1 1.6015+1 1.5306+1 1.2601+1 2.1838+2

10−4 1.3452−2 7.9078−3 4.0036−4 1.5035+1 6.9818+0 6.4880+0 5.1327+0 8.7550+1

10−3 5.8746−2 3.3815−2 1.5411−3 6.2321+0 2.7012+0 2.3747+0 1.7742+0 3.0060+1

10−2 2.3063−1 1.2923−1 5.4954−3 2.2490+0 8.4141−1 6.5083−1 4.4354−1 7.7495+0

0.1 5.5279−1 2.7222−1 1.0021−2 3.8897−1 1.1312−1 6.2917−2 3.7048−2 8.5897−1

0.3 3.5141−1 1.3051−1 3.0134−3 3.5398−2 9.0559−3 3.8727−3 2.0993−3 8.0226−2

0.5 1.2140−1 3.1590−2 3.7799−4 2.3919−3 5.8148−4 2.2376−4 1.1918−4 7.8098−3

0.7 2.0120−2 3.0955−3 1.3462−5 5.4194−5 1.2896−5 5.0329−6 2.8153−6 3.8099−4

0.9 3.5230−4 1.7849−5 8.687−9 2.568−8 6.513−9 3.390−9 2.407−9 1.2188−6

µ2
r = 1/2µ2

f

10−7 1.8906−4 1.3200−4 6.9268−6 1.3739+2 6.7627+1 6.5548+1 5.5295+1 9.4403+2

10−6 8.1001−4 5.3574−4 3.0345−5 7.2374+1 3.5337+1 3.3846+1 2.7870+1 4.7444+2

10−5 3.4428−3 2.1524−3 1.2531−4 3.5529+1 1.7091+1 1.6065+1 1.2883+1 2.1802+2

10−4 1.4580−2 8.6744−3 4.8276−4 1.6042+1 7.4886+0 6.8276+0 5.3044+0 8.9013+1

10−3 6.0912−2 3.5030−2 1.7393−3 6.5544+0 2.8656+0 2.4802+0 1.8362+0 3.0617+1

10−2 2.3327−1 1.3022−1 5.7588−3 2.2949+0 8.6723−1 6.7688−1 4.5597−1 7.8243+0
∗

0.1 5.4798−1 2.6905−1 9.9470−3 3.8192−1 1.1124−1 6.7091−2 3.7698−2 8.4908−1

0.3 3.4291−1 1.2693−1 2.9239−3 3.4069−2 8.6867−3 4.3924−3 2.1435−3 7.8109−2

0.5 1.1694−1 3.0310−2 3.6112−4 2.2828−3 5.5537−4 2.7744−4 1.2416−4 7.5371−3

0.7 1.9076−2 2.9217−3 1.2635−5 5.2061−5 1.2677−5 7.2083−6 3.0908−6 3.6441−4

0.9 3.2404−4 1.6333−5 7.900−9 2.850−8 8.407−9 6.795−9 3.205−9 1.1411−6



Table 4: Reference results for the Nf = 4 (FFN) and the variable-Nf (VFN) polarized leading-order evolution of
the initial distributions (4.20), shown together with these boundary conditions. The respective values for αs(µ

2
r =

µ2
f =104 GeV2) read 0.117574 (FFN) and 0.122306 (VFN). The notation is the same as for the unpolarized case.

x xuv −xdv −xL− −2xL+ xs+ xc+ xb+ xg

Pol. input, µ2
f = 2 GeV2

10−7 1.6366−5 6.2946−6 7.9433−5 1.5887−3 −3.9716−4 0.0+0 0.0+0 4.7434−4

10−6 8.2024−5 3.1548−5 1.5849−4 3.1698−3 −7.9244−4 0.0+0 0.0+0 1.5000−3

10−5 4.1110−4 1.5811−4 3.1621−4 6.3241−3 −1.5810−3 0.0+0 0.0+0 4.7432−3

10−4 2.0604−3 7.9245−4 6.3052−4 1.2610−2 −3.1526−3 0.0+0 0.0+0 1.4993−2

10−3 1.0326−2 3.9716−3 1.2501−3 2.5003−2 −6.2507−3 0.0+0 0.0+0 4.7197−2

10−2 5.1723−2 1.9886−2 2.3412−3 4.6825−2 −1.1706−2 0.0+0 0.0+0 1.4265−1

0.1 2.4582−1 9.1636−2 2.3972−3 4.7943−2 −1.1986−2 0.0+0 0.0+0 2.8009−1

0.3 3.6473−1 1.1370−1 5.7388−4 1.1478−2 −2.8694−3 0.0+0 0.0+0 1.3808−1

0.5 2.5008−1 5.7710−2 6.3457−5 1.2691−3 −3.1729−4 0.0+0 0.0+0 3.3146−2

0.7 8.4769−2 1.1990−2 1.9651−6 3.9301−5 −9.8254−6 0.0+0 0.0+0 3.0496−3

0.9 4.4680−3 2.1365−4 9.689−10 1.9378−8 −4.8444−9 0.0+0 0.0+0 1.4230−5

LO, Nf = 4 , µ2
f = 104 GeV2

10−7 4.8350−5
∗ 1.8556−5 1.0385−4 3.5124−3 −1.2370−3 −7.1774−4 0.0+0 1.4116−2

10−6 2.3504−4 9.0090−5 2.0700−4 7.7716−3 −2.8508−3 −1.8158−3 0.0+0 4.2163−2

10−5 1.1220−3 4.2916−4 4.1147−4 1.6007−2 −5.9463−3 −3.8889−3 0.0+0 1.0922−1

10−4 5.1990−3 1.9818−3 8.0948−4 2.8757−2 −1.0331−2 −6.2836−3 0.0+0 2.4069−1

10−3 2.2900−2 8.6763−3 1.5309−3 4.0166−2 −1.2428−2 −4.7739−3 0.0+0 4.2181−1

10−2 9.1489−2 3.4200−2 2.4502−3 3.3928−2 −4.7126−3 7.5385−3 0.0+0 4.9485−1

0.1 2.6494−1 9.1898−2 1.5309−3 8.5427−3 3.3830−3 1.1037−2 0.0+0 2.0503−1

0.3 2.2668−1 6.2946−2 2.1104−4 6.6698−4 7.2173−4 1.7769−3 0.0+0 3.3980−2

0.5 9.7647−2 1.9652−2 1.4789−5 −1.8850−5 8.3371−5 1.5732−4 0.0+0 4.3802−3

0.7 1.9545−2 2.3809−3 2.7279−7 −4.1807−6 3.4543−6 4.8183−6 0.0+0 2.6355−4

0.9 4.1768−4 1.7059−5 5.494−11 −7.6712−9 4.1103−9 4.3850−9 0.0+0 9.8421−7

LO, Nf = 3 . . . 5 , µ2
f = 104 GeV2

10−7 4.9026−5 1.8815−5 1.0422−4 3.5315−3 −1.2447−3 −7.2356−4 −6.2276−4 1.3726−2

10−6 2.3818−4 9.1286−5 2.0774−4 7.8108−3 −2.8667−3 −1.8280−3 −1.5301−3 4.1011−2

10−5 1.1359−3 4.3445−4 4.1289−4 1.6070−2 −5.9705−3 −3.9060−3 −3.1196−3 1.0615−1

10−4 5.2567−3 2.0035−3 8.1206−4 2.8811−2 −1.0345−2 −6.2849−3 −4.5871−3 2.3343−1

10−3 2.3109−2 8.7537−3 1.5345−3 4.0125−2 −1.2390−2 −4.7174−3 −2.4822−3 4.0743−1

10−2 9.2035−2 3.4391−2 2.4501−3 3.3804−2 −4.6512−3 7.5994−3 6.4665−3 4.7445−1

0.1 2.6478−1 9.1762−2 1.5206−3 8.5181−3 3.3438−3 1.0947−2 6.5223−3 1.9402−1

0.3 2.2495−1 6.2376−2 2.0811−4 6.6195−4 7.0957−4 1.7501−3 9.2045−4 3.1960−2

0.5 9.6318−2 1.9353−2 1.4496−5 −1.8549−5 8.1756−5 1.5424−4 7.8577−5 4.1226−3

0.7 1.9147−2 2.3281−3 2.6556−7 −4.0936−6 3.3746−6 4.7024−6 2.4901−6 2.4888−4

0.9 4.0430−4 1.6480−5 5.285−11 −7.4351−9 3.9818−9 4.2460−9 2.6319−9 9.2939−7



Table 5: Reference results for the polarized next-to-leading-order polarized evolution of the initial distributions
(4.20) with Nf = 4 quark flavours. The corresponding value of the strong coupling is αs(µ

2
r = 104 GeV2) =

0.110902. As in the leading-order case, the valence distributions sv and cv vanish for the input (4.20).

Pol. NLO, Nf = 4, µ2
f = 104 GeV2

x xuv xdv xL− 2xL+ xs+ xc+ xg

µ2
r = µ2

f

10−7 6.7336−5 −2.5747−5 −1.1434−4 −5.2002−3 −2.0528−3 −1.5034−3 2.6955−2

10−6 3.1280−4 −1.1938−4 −2.3497−4 −1.0725−2 −4.2774−3 −3.1845−3 6.5928−2

10−5 1.4180−3 −5.3982−4 −4.8579−4 −1.9994−2 −7.8594−3 −5.6970−3 1.4414−1

10−4 6.2085−3 −2.3546−3 −9.8473−4 −3.1788−2 −1.1749−2 −7.5376−3 2.7537−1

10−3 2.5741−2 −9.7004−3 −1.8276−3 −3.8222−2 −1.1427−2 −3.6138−3 4.3388−1

10−2 9.6288−2 −3.5778−2 −2.6427−3 −2.6437−2 −1.2328−3 1.0869−2 4.8281−1

0.1 2.5843−1 −8.9093−2 −1.4593−3 −7.5546−3 3.4258−3 1.0639−2 2.0096−1

0.3 2.1248−1 −5.8641−2 −1.9269−4 −1.2210−3 3.5155−4 1.3138−3 3.4126−2

0.5 8.9180−2 −1.7817−2 −1.3125−5 −9.1573−5 1.9823−5 8.5435−5 4.5803−3

0.7 1.7300−2 −2.0885−3 −2.3388−7 −1.9691−6 1.8480−7 1.3541−6 2.9526−4

0.9 3.4726−4 −1.4028−5 −4.407−11 −4.247−9 −1.903−9 −1.683−9 1.2520−6

µ2
r = 2µ2

f

10−7 6.1781−5 −2.3641−5 −1.1137−4 −4.6947−3 −1.8092−3 −1.2695−3 2.2530−2

10−6 2.8974−4 −1.1068−4 −2.2755−4 −9.8528−3 −3.8580−3 −2.7838−3 5.7272−2
∗

10−5 1.3281−3 −5.0612−4 −4.6740−4 −1.8799−2 −7.2908−3 −5.1629−3 1.2975−1

10−4 5.8891−3 −2.2361−3 −9.4412−4 −3.0787−2 −1.1292−2 −7.1363−3 2.5644−1

10−3 2.4777−2 −9.3502−3 −1.7632−3 −3.8610−2 −1.1658−2 −3.9083−3 4.1725−1

10−2 9.4371−2 −3.5129−2 −2.6087−3 −2.8767−2 −2.3430−3
∗ 9.7922−3

∗ 4.7804−1

0.1 2.6008−1 −8.9915−2 −1.4923−3 −8.3806−3 3.1932−3 1.0585−2 2.0495−1

0.3 2.1837−1 −6.0497−2 −2.0143−4 −1.2157−3 3.9810−4 1.4042−3 3.5366−2

0.5 9.3169−2 −1.8699−2 −1.3954−5 −7.9331−5 3.0091−5 9.9849−5 4.7690−3

0.7 1.8423−2 −2.2357−3 −2.5360−7 −1.0062−6 7.6483−7 2.0328−6 3.0796−4

0.9 3.8293−4 −1.5559−5 −4.952−11 −1.955−9 −7.298−10 −4.822−10 1.3247−6

µ2
r = 1/2µ2

f

10−7 7.4443−5 −2.8435−5 −1.1815−4 −5.7829−3 −2.3341−3 −1.7739−3 3.2071−2

10−6 3.4143−4 −1.3016−4 −2.4482−4 −1.1668−2 −4.7305−3 −3.6168−3 7.5123−2

10−5 1.5256−3 −5.8002−4 −5.1085−4 −2.1193−2 −8.4295−3 −6.2295−3
∗ 1.5788−1

10−4 6.5726−3 −2.4891−3 −1.0409−3 −3.2697−2 −1.2166−2 −7.8952−3 2.9079−1

10−3 2.6766−2 −1.0070−2 −1.9171−3 −3.7730−2 −1.1160−2 −3.2890−3
∗ 4.4380−1

10−2 9.8073−2 −3.6370−2 −2.6942−3 −2.4056−2 −1.2354−4
∗ 1.1929−2 4.8272−1

0.1 2.5628−1 −8.8133−2 −1.4304−3 −6.9572−3 3.5561−3 1.0604−2 1.9831−1

0.3 2.0709−1 −5.6988−2 −1.8541−4 −1.3308−3 2.5993−4 1.1855−3 3.3524−2

0.5 8.5835−2 −1.7089−2 −1.2463−5 −1.1920−4 2.6972−6
∗ 6.4995−5 4.5044−3

0.7 1.6405−2 −1.9723−3 −2.1859−7
∗ −3.6817−6 −7.4795−7

∗ 3.4496−7 2.9100−4

0.9 3.2011−4 −1.2870−5 −4.000−11 −8.173−9 −3.886−9 −3.686−9 1.2230−6



Table 6: As Table 5, but for the variable-Nf evolution using Eqs. (4.16), (4.17) and (4.20). The corresponding
values for the strong couplingαs(µ

2
r =104 GeV2) are given by 0.116461, 0.116032 and 0.115663 for µ2

r/µ
2
f = 0.5,

1 and 2, respectively.

Pol. NLO, Nf = 3 . . . 5 , µ2
f = 104 GeV2

x xuv −xdv −xL− −2xL+ xs+ xc+ xb+ xg

µ2
r = µ2

f

10−7 6.8787−5
∗ 2.6297−5 1.1496−4 5.2176−3 −2.0592−3 −1.5076−3 −1.2411−3 2.5681−2

10−6 3.1881−4 1.2165−4 2.3638−4 1.0770−2 −4.2953−3 −3.1979−3 −2.4951−3 6.3021−2

10−5 1.4413−3 5.4856−4 4.8893−4 2.0077−2 −7.8934−3 −5.7228−3 −4.1488−3 1.3809−1

10−4 6.2902−3 2.3849−3 9.9100−4 3.1883−2 −1.1785−2 −7.5596−3 −4.8420−3 2.6411−1

10−3 2.5980−2 9.7872−3 1.8364−3 3.8224−2 −1.1416−2 −3.5879−3 −1.1723−3 4.1601−1

10−2 9.6750−2 3.5935−2 2.6452−3 2.6306−2 −1.1774−3 1.0917−2 8.1196−3 4.6178−1

0.1 2.5807−1 8.8905−2 1.4509−3 7.4778−3 3.4207−3 1.0591−2 6.1480−3 1.9143−1

0.3 2.1104−1 5.8186−2 1.9054−4 1.2026−3 3.4999−4 1.3015−3 7.2795−4 3.2621−2

0.5 8.8199−2 1.7601−2 1.2924−5 8.9668−5 1.9771−5 8.4378−5 5.2125−5 4.4207−3

0.7 1.7027−2 2.0531−3 2.2921−7 1.9243−6 1.8384−7 1.3298−6 1.2157−6 2.8887−4

0.9 3.3898−4 1.3676−5 4.284−11 4.260−9 −1.916−9 −1.701−9 −7.492−11 1.2435−6

µ2
r = 2µ2

f

10−7 6.2819−5
∗ 2.4035−5 1.1180−4 4.6896−3 −1.8050−3 −1.2637−3 −1.0544−3 2.1305−2

10−6 2.9408−4 1.1232−4 2.2855−4 9.8538−3 −3.8554−3 −2.7780−3 −2.2077−3 5.4411−2

10−5 1.3450−3 5.1245−4 4.6965−4 1.8815−2 −7.2936−3 −5.1597−3 −3.8359−3 1.2368−1

10−4 5.9485−3 2.2582−3 9.4866−4 3.0816−2 −1.1297−2 −7.1323−3 −4.7404−3 2.4503−1

10−3 2.4951−2 9.4134−3 1.7698−3 3.8618−2 −1.1654−2 −3.8925−3 −1.5608−3 3.9912−1

10−2 9.4706−2 3.5243−2 2.6108−3 2.8761−2 −2.3471−3 9.7827−3 7.5188−3 4.5698−1

0.1 2.5982−1 8.9780−2 1.4862−3 8.3807−3 3.1615−3 1.0522−2 6.1973−3 1.9561−1

0.3 2.1732−1 6.0165−2 1.9984−4 1.2086−3 3.9371−4 1.3919−3 7.6929−4 3.3906−2

0.5 9.2445−2 1.8539−2 1.3804−5 7.8411−5 2.9799−5 9.8805−5 5.7333−5 4.6166−3

0.7 1.8219−2 2.2090−3 2.5004−7
∗ 9.8927−7

∗ 7.5552−7 2.0057−6 1.4438−6 3.0231−4

0.9 3.7653−4 1.5285−5 4.855−11 2.005−9 −7.599−10 −5.171−10 3.809−10 1.3232−6

µ2
r = 1/2µ2

f

10−7 7.6699−5 2.9289−5 1.1912−4 5.8548−3 −2.3667−3 −1.8030−3 −1.4521−3 3.1009−2

10−6 3.5067−4 1.3364−4 2.4707−4 1.1806−2 −4.7934−3 −3.6731−3 −2.7846−3 7.2690−2

10−5 1.5611−3 5.9329−4 5.1593−4 2.1406−2 −8.5248−3 −6.3125−3 −4.4072−3 1.5274−1

10−4 6.6957−3 2.5346−3 1.0509−3 3.2903−2 −1.2252−2 −7.9608−3 −4.8402−3 2.8097−1

10−3 2.7125−2 1.0200−2 1.9310−3 3.7698−2 −1.1127−2 −3.2334−3 −7.5827−4 4.2756−1

10−2 9.8758−2 3.6602−2 2.6980−3 2.3675−2 5.1386−5 1.2092−2 8.6053−3 4.6241−1

0.1 2.5572−1 8.7847−2 1.4179−3 6.7523−3 3.5944−3 1.0578−2 6.0904−3 1.8838−1

0.3 2.0497−1 5.6318−2 1.8228−4 1.2965−3 2.6142−4 1.1713−3 6.8941−4 3.1884−2

0.5 8.4404−2 1.6775−2 1.2174−5 1.1604−4 2.8309−6 6.3682−5 4.7009−5 4.3221−3

0.7 1.6013−2 1.9215−3 2.1196−7
∗ 3.6047−6 −7.4260−7 3.1714−7 9.6419−7 2.8268−4

0.9 3.0848−4 1.2377−5 3.829−11 8.129−9 −3.873−9 −3.681−9 −6.816−10 1.2009−6
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Fig. 13: F2(x,Q2) from H1 compared to the model with ±50% variation of the width parameter σg of the gluon
distribution.

the model has only four shape parameters and three normalization parameters, plus the starting scale:

σu = 230 MeV σd = 170 MeV σg = 77 MeV σH = 100 MeV
α2

pπ0 = 0.45 α2
nπ+ = 0.14 α2

ΛK = 0.05 Q0 = 0.75 GeV
(5.22)

These are determined from fits to data as detailed in [70] and illustrated in Fig. 13. The model reproduces
the inclusive proton structure function and gives a natural explanation of observed quark asymmetries,
such as the difference between the up and down valence distributions and between the anti-up and anti-
down sea quark distributions. Moreover, its asymmetry in the momentum distribution of strange and
anti-strange quarks in the nucleon is large enough to reduce the NuTeV anomaly to a level which does
not give a significant indication of physics beyong the Standard Model.

Recent fits of PDF’s at very low x and Q2 have revealed problems with the gluon density, which
in some cases even becomes negative. The reason for this is that the DGLAP evolution, driven primarily
by the gluon at small x, otherwise gives too large parton densities and thereby a poor fit to F2 in the
genuine DIS region at larger Q2. It has been argued [71] that the root of the problem is the application
of the formalism for DIS also in the low-Q2 region, where the momentum transfer is not large enough
that the parton structure of the proton is clearly resolved. The smallest distance that can be resolved
is basically given by the momentum transfer of the exchanged photon through d = 0.2/

√
Q2, where

d is in Fermi if Q2 is in GeV2. This indicates that partons are resolved only for Q2 >∼ 1 GeV2. For
Q2 <∼ 1 GeV2, there is no hard scale involved and a parton basis for the description is not justified.
Instead, the interaction is here of a soft kind between the nearly on-shell photon and the proton. The
cross section is then dominated by the process where the photon fluctuates into a virtual vector meson
state which then interacts with the proton in a strong interaction. The quantum state of the photon can
be expressed as |γ〉 = C0|γ0〉 +

∑
V

e
fV
|V 〉 +

∫
m0
dm(· · · ). The sum is over V = ρ0, ω, φ . . . as in

the original vector meson dominance model (VDM), whereas the generalised vector meson dominance
model (GVDM) also includes the integral over a continuous mass spectrum (not written out explicitly
here).

Applied to ep at low Q2 this leads to the expression [71]

F2(x,Q2) =
(1− x)Q2

4π2α





∑

V=ρ,ω,φ

rV

(
m2
V

Q2 +m2
V

)2(
1 + ξV

Q2

m2
V

)

+ rC

[
(1− ξC)

m2
0

Q2 +m2
0

+ ξC
m2

0

Q2
ln (1 +

Q2

m2
0

)

]}
Aγ

Q2ε

xε
(5.23)

where the hadronic cross-section σ(ip → X) = Ais
ε + Bis

−η ≈ Ais
ε ≈ Ai(Q

2/x)ε has been used
for the small-x region of interest. The parameters involved are all essentially known from GVDM phe-
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longitudinal contribution of the continuum (ξC = 0) and excluding the continuous contribution altogether (setting
rC = 0) giving VDM.

nomenology. With ε = 0.091, ξ = 0.34, m0 = 1.5 GeV and Aγ = 71µb, this GVDM model gives a
good fit (χ2/d.o.f. = 87/66 = 1.3) as illustrated in Fig. 14. Using this model at very low Q2 in com-
bination with the normal parton density approach at larger Q2 it is possible to obtain a good description
of data over the full Q2 range [71]. This involves, however, a phenomenological matching of these two
approaches, since a theoretically well justified combination is an unsolved problem.

Neglecting the GVDM component when fitting PDF’s to data at small Q2 may thus lead to an
improper gluon distribution, which is not fully universal and therefore may give incorrect results when
used for cross section calculations at LHC.

6 Towards precise determination of the nucleon PDFs 7

The nucleon parton distribution functions (PDFs) available to the moment are extracted from the rather
limited set of experimental distributions (the deep-inelastic scattering (DIS) structure functions, the
Drell-Yan (DY) and jet production cross sections). Other high-energy processes potentially could pro-
vide additional constraints on PDFs, however insufficient theoretical understanding does not allow to use
those data without risk of having uncontrolled theoretical inaccuracies. Even for the case of the exist-
ing global fits of the PDFs performed by the MRST and CTEQ groups missing next-to-next-to-leading
(NNLO) order QCD corrections to the Drell-Yan and jet production cross sections are not small as com-
pared to the accuracy of the corresponding data used and therefore might give non-negligible effect. In
this section we outline progress in the QCD fits with consistent account of the NNLO corrections.

6.1 Impact of the NNLO evolution kernel fixation on PDFs
In order to allow account of the NNLO corrections in the fit of PDFs one needs analytical expressions
for the 3-loop corrections to the QCD evolution kernel. Until recent times these expressions were known
only in the approximate form of Ref. [61] derived from the partial information about the kernel, including
the set of its Mellin moments and the low-x asymptotics [12,22,23] However with the refined calculations
of Ref. [6, 7] the exact expression for the NNLO kernel has been available. These improvement is of
particular importance for analysis of the low-x data including the HERA ones due to general rise of
the high-order QCD correction at low x. We illustrate impact of the NNLO evolution kernel validation
on PDFs using the case of fit to the global DIS data [72–77]. The exact NNLO corrections to the DIS
coefficient functions are know [4, 78] that allowed to perform approximate NNLO fit of PDFs to these
data [69] using the approximate NNLO corrections to the evolution kernel of Ref. [61]. Taking into

7Contributing author: S. I. Alekhin
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account exact NNLO evolution kernel the analysis of Ref. [69] was updated recently to the exact NNLO
case [79].

The gluon distributions at small x obtained in these two variants of the fit are compared in Fig.15.
With the exact NNLO corrections the QCD evolution of gluon distribution at small x gets weaker and
as a result at small x/Q the gluon distribution obtained using the precise NNLO kernel is quite dif-
ferent from the approximate one. In particular, the approximate NNLO gluon distribution is negative
at Q2 . 1.3 GeV2, while the precise one remains positive even below Q2 = 1 GeV2. For the NLO
case the positivity of gluons at small x/Q is even worse than for the approximate NNLO case due to
the approximate NNLO corrections dampen the gluon evolution at small x too, therefore account of the
NNLO corrections is crucial in this respect. (cf. discussion of Ref. [80]). Positivity of the PDFs is not
mandatory beyond the QCD leading order, however it allows probabilistic interpretation of the parton
model and facilitates modeling of the soft processes, such as underlying events in the hadron-hadron col-
lisions at LHC. The change of gluon distribution at small x/Q as compared to the fit with approximate
NNLO evolution is rather due the change in evolution kernel than due to shift in the fitted parameters
of PDFs. This is clear from comparison of the exact NNLO gluon distribution to one obtained from the
approximate NNLO fit and evolved to low Q using the exact NNLO kernel (see Fig.15). In the vicinity
of crossover in the gluon distribution to the negative values its relative change due to variation of the
evolution kernel is quite big and therefore further fixation of the kernel at small x discussed in Ref. [81]
might be substantial for validation of the PDFs at low x/Q. For the higher-mass kinematics at LHC
numerical impact of the NNLO kernel update is not dramatic. Change in the Higgs and W/Z bosons
production cross sections due to more precise definition of the NNLO PDFs is comparable to the errors
coming from the PDFs uncertainties, i.e. at the level of several percent.

6.2 NNLO fit of PDFs to the combined DIS and Drell-Yan data
The DIS process provide very clean source of information about PDFs both from experimental and
theoretical side, however very poorly constrains the gluon and sea distributions at x & 0.3. The well
known way to improve precision of the sea distributions is to combine DIS data with the Drell-Yan ones.
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The cross section of process NN → l+l− reads

σDY ∝
∑

i

[qi(x1)q̄i(x2) + qi(x2)q̄i(x1)] + higher order terms,

where q(q̄)i are the quarks(antiquarks) distribution and x1,2 give the momentum fractions carried by
each of the colliding partons. The quark distributions are determined by the DIS data with the precision
of several percent in the wide region of x and therefore precision of the sea distribution extracted from
the combined fit to the DIS and DY data is basically determined by the latter. The Fermilab fixed-
target experiments provide measurements of the DY cross sections for the isoscalar target [82] and the
ratio of cross sections for the deuteron and proton targets [83] with the accuracy better than 20% at
x . 0.6. Fitting PDFs to these data combined with the global DIS data of Ref. [72–77] we can achieve
comparable precision in the sea distributions. Recent calculations of Ref. [84] allow to perform this fit
with full account of the NNLO correction. Using these calculations the DY data of Refs. [82, 83] were
included into the NNLO fit of Ref. [79] that leads to significant improvement in the precision of sea
distributions (see Fig. 16). Due to the DY data on the deuteron/proton ratio the isospin asymmetry of
sea is also improved. It is worth to note that the precision achieved for the total sea distribution is in
good agreement to the rough estimates given above. The value of χ2/NDP obtained in the fit is 1.1
and the spread of χ2/NDP over separate experiments used in the fit is not dramatic, its biggest value
is 1.4. We rescaled the errors in data for experiments with χ2/NDP > 1 in order to bring χ2/NDP
for this experiments to 1 and found that overall impact of this rescaling on the PDFs errors is marginal.
This proofs sufficient statistical consistency of the data sets used in the fit and disfavors huge increase
in the value of ∆χ2 criterion suggested by the CTEQ collaboration for estimation of errors in the global
fit of PDFs. A particular feature of the PDFs obtained is good stability with respect to the choice of
factorization/renormalization scale in the DY cross section: Variation of this scale from Mµ+µ−/2 to
2Mµ+µ− leads to variation of PDFs comparable to their uncertainties due to errors in data.
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6.3 LHC data and flavor separation of the sea at small x
Combination of the existing DIS and fixed-target DY data provide good constraint on the total sea quarks
distribution and allows separation of the ū- and d̄-quark distributions up to the values of x sufficient for
most practical applications at the LHC. At small x the total sea is also well constrained by the precise
HERA data on the inclusive structure functions, however ū/d̄ separation is poor in this region due to lack
of the deuteron target data at HERA. The problem of the sea flavor separation is regularly masked due
to additional constraints imposed on PDFs. In particular, most often the Regge-like behavior of the sea
isospin asymmetry x(d̄− ū) ∝ xaud is assumed with aud selected around value of 0.5 motivated by the
intercept of the meson trajectories. This assumption automatically provides constraint d̄ = ū at x → 0
and therefore leads to suppression of the uncertainties both in ū and d̄ at small x. If we do not assume
the Regge-like behavior of x(d̄ − ū) its precision determined from the NNLO fit to the combined DIS
and DY data of Section 1.2 is about 0.04 at x = 10−4 furthermore this constraint is defined rather by
assumption about the shape of PDFs at small x than by data used in the fit. The strange sea distribution
is known much worse than the non-strange ones. It is essentially defined only by the CCFR experiment
from the cross section of dimuon production in the neutrino nucleus collisions [85]. In this experiment
the strange sea distribution was probed at x = 0.01 ÷ 0.2 and the shape obtained is similar to one of
the non-strange sea with the strangeness suppression factor about 0.5. This is in clear disagreement with
the Regge-like constraint on x(d̄ − s̄) or x(ū − s̄) and therefore we cannot use even this assumption to
predict the strange sea at small x.

The LHC data on µ+µ− production cross section can be used for further validation of the sea dis-
tributions at small x. Study of this process at the lepton pair masses down to 15 GeV will allow to probe
PDFs at x down to 10−4, while with both leptons detected full kinematics can be reliably reconstructed.
In order to check impact of the foreseen LHC data on the sea flavor separation we generated sample
of pseudo-data for the process pp → µ+µ−X at

√
s = 14 TeV with integral luminosity of 10 1/fb

corresponding to the first stage of the LHC operation. In order to meet typical limitations of the LHC



Table 7: Values of the parameters obtained in the benchmark fit.

Valence au 0.718±0.085
bu 3.81±0.16
εu −1.56±0.46
γu 3.30±0.49
ad 1.71±0.20
bd 10.00±0.97
εd −3.83±0.23
γd 4.64±0.41

Sea AS 0.211±0.016
as −0.048±0.039
bs 2.20±0.20

Glue aG 0.356±0.095
bG 10.9±1.4

αs(MZ) 0.1132±0.0015

detectors only events with the lepton pair absolute rapidity less than 2.5 were accepted; other detector
effects were not taken into account. For generation of these pseudo-data we used PDFs obtained in the
dedicated version of fit [79] with the sea distributions parameterized as xSu,d,s = ηu,d,sx

a(1 − x)bu,d,s

with the constraints ηu = ηd = ηs and bs = (bu + bd)/2 imposed. These constraints are necessary for
stability of the fit in view of limited impact of the DIS data on the flavor separation and, besides, the
former one guarantees SU(3) symmetry in the sea distributions at small x. The generated pseudo-data
were added to the basic DIS data sample and the errors in PDFs parameters were re-estimated with no
constraints on the sea distributions imposed at this stage. Since dimuon data give extra information about
the PDFs products they allow to disentangle the strange distribution, if an additional constraint on the
non-strange sea distributions is set. The dashed curves in the lower panel of Fig.17 give the 1σ bands for
x(d̄− s̄) as they are defined by the LHC simulated data combined with the global DIS ones given (d̄− ū)
is fixed. One can see that d̄/s̄ (and ū/s̄) separation at the level of several percents would be feasible
down to x=10−4 in this case. The supplementary constraint on (d̄− ū) can be obtained from study of the
W -boson charge asymmetry. To estimate impact of this process we simulated the single W +- and W−-
production data similarly to the case of the µ+µ−-production and took into account this sample too. In
this case one can achieve separation of all three flavors with the precision better than 0.01 (see Fig.17).
Note that strange sea separation is also improved due to certain sensitivity of the W -production cross
section to the strange sea contribution. The estimates obtained refer to the ideal case of full kinematical
reconstruction of the W -bosons events. For the case of using the charge asymmetry of muons produced
from the W -decays the precision of the PDFs would be worse. Account of the backgrounds and the
detector effects would also deteriorate it, however these losses can be at least partially compensated by
rise of the LHC luminosity at the second stage of operation.

6.4 Benchmarking of the PDFs fit
For the available nucleon PDFs the accuracy at percent level is reached in some kinematical regions.
For this reason benchmarking of the codes used in these PDFs fits is becoming important issue. A
tool for calibration of the QCD evolution codes was provided by Les Houches workshop [59]. To allow
benchmarking of the PDFs errors calculation we performed a test fit suggested in Les Houches workshop
too. This fit reproduces basic features of the existing global fits of PDFs, but is simplified a lot to facilitate
its reproduction. We use for the analysis data on the proton DIS structure functions F2 obtained by the



BCDMS, NM, H1, and ZEUS collaborations and ratio of the deuteron and proton structure functions F2

obtained by the NMC. The data tables with full description of experimental errors taken into account
are available online8 . Cuts for the momentum transferred Q2 > 9 GeV2 and for invariant mass of the
hadronic system W 2 > 15 GeV2 are imposed in order to avoid influence of the power corrections and
simplify calculations. The contribution of the Z-boson exchange at large Q is not taken into account for
the same purpose. The PDFs are parameterized in the form

xpi(x, 1 GeV ) = Nix
ai(1− x)bi(1 + εi

√
x+ γix),

to meet choice common for many popular global fits of PDFs. Some of the parameters εi and γi are set
to zero since they were found to be consistent to zero within the errors. We assume isotopic symmetry
for sea distribution and the strange sea is the same as the non-strange ones suppressed by factor of 0.5.
Evolution of the PDFs is performed in the NLO QCD approximation within the MS scheme. The heavy
quarks contribution is accounted in the massless scheme with the variable number of flavors (the thresh-
olds for c- and b-quarks are 1.5 GeV and 4.5 GeV correspondingly). All experimental errors including
correlated ones are taken into account for calculation of the errors in PDFs using the covariance matrix
approach [86] and assuming linear propagation of errors. The results of the benchmark fit obtained with
the code used in analysis of Refs. [69,79] are given in Tables 7 and 8. The total number of the fitted PDF
parameters left is 14. The normalization parameters Ni for the gluon and valence quark distributions are
calculated from the momentum and fermion number conservation. The remaining normalization param-
eter AS gives the total momentum carried by the sea distributions. Important note is that in view of many
model assumptions made in the fit these results can be used mainly for the purposes of benchmarking
rather for the phenomenological studies.

7 Benchmark Partons from DIS data and a Comparison with Global Fit Partons 9

In this article I consider the uncertainties on partons arising from the errors on the experimental data
that are used in a parton analysis. Various groups [87], [88], [69], [89], [76], [90], [91] have concen-
trated on the experimental errors and have obtained estimates of the uncertainties on parton distributions
within a NLO QCD framework, using a variety of competing procedures. Here the two analyses, per-
formed by myself and S. Alekhin (see Sec. 6) minimise the differences one obtains for the central values
of the partons and the size of the uncertainties by fitting to exactly the same data sets with the same
cuts, and using the same theoretical prescription. In order to be conservative we use only DIS data —
BCDMS proton [73] and deuterium [74] fixed target data, NMC data on proton DIS and on the ratio
F n2 (x,Q2)/F p2 (x,Q2) [75], and H1 [76] and ZEUS [77] DIS data. We also apply cuts of Q2 = 9GeV2

and W 2 = 15GeV2 in order to avoid the influence of higher twist. We each use NLO perturbative
QCD in the MS renormalization and factorization scheme, with the zero-mass variable flavour number
scheme and quark masses of mc = 1.5GeV and mb = 4.5GeV. There is a very minor difference be-
tween αS(µ2) used in the two fitting programs due to the different methods of implementing heavy quark
thresholds (the differences being formally of higher order), as observed in the study by M. Whalley for
this workshop [92]. If the couplings in the two approaches have the same value at µ2 = M2

Z , then the
MRST value is ∼ 1% higher for Q2 ∼ 20GeV2.

We each input our parton distributions at Q2
0 = 1GeV2 with a parameterization of the form

xfi(x,Q
2
0) = Ai(1− x)bi(1 + εix

0.5 + γix)xai . (7.24)

The input sea is constrained to be 40% up and anti-up quarks, 40% down and anti-down quarks, and
20% strange and antistrange. No difference between ū and d̄ is input. There is no negative term for the
gluon, as introduced in [90], since this restricted form of data shows no strong requirement for it in order

8https://mail.ihep.ru/̃ alekhin/benchmark/TABLE
9Contributing author: R.S. Thorne.
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Fig. 18: Left plot: xdV (x, 20) from the MRST benchmark partons compared to that from the Alekhin benchmark
partons. Right plot: xg(x, 20) from the MRST benchmark partons compared to that from the Alekhin benchmark
partons.

to obtain the best fit. Similarly we are able to set εg, γg, εS and γS all equal to zero. Ag is set by the
momentum sum rule and AuV and AdV are set by valence quark number. Hence, there are nominally 13
free parton parameters. However, the MRST fitting program exhibited instability in the error matrix due
to a very high correlation between uV parameters, so εu was set at its best fit value of εu = −1.56, while
12 parameters were free to vary. The coupling was also allowed to vary in order to obtain the best fit. The
treatment of the errors on the data was exactly as for the published partons with uncertainties for each
group, i.e. as in [69] and [93]. This means that all detail on correlations between errors is included for
the Alekhin fit (see Sec. 6), assuming that these errors are distributed in the Gaussian manner. The errors
in the MRST fit are treated as explained in the appendix of [93], and the correlated errors are not allowed
to move the central values of the data to as great an extent for the HERA data, and cannot do so at all
for the fixed target data, where the data used are averaged over the different beam energies. The Alekhin
approach is more statistically rigorous. The MRST approach is more pragmatic, reducing the ability of
the data to move relative to the theory comparison by use of correlated errors (other than normalization),
and is in some ways similar to the offset method [91]. The danger of this movement of data relative to
theory has been suggested by the joint analysis of H1 and ZEUS data at this workshop (see [94]), where
letting the joint data sets determine the movement due to correlated errors gives different results from
when the data sets are compared to theoretical results.

7.1 Comparison Between the Benchmark Parton Distributions.
I compare the results of the two approaches to fitting the restricted data chosen for the benchmarking.
The input parameters for the Alekhin fit are presented in Sec. 6. Those for the MRST type fit are similar,
but there are some differences which are best illustrated by comparing the partons at a typical Q2 for the
data, e.g. Q2 = 20GeV2. A comparison is shown for the dV quarks and the gluon in Fig. 18.



From the plots it is clear that there is generally good agreement between the parton distributions.
The central values are usually very close, and nearly always within the uncertainties. The difference
in the central values is mainly due to the different treatment of correlated errors, and partially due to
the difference in the coupling definition. The uncertainties are similar in the two sets, but are generally
about 1.2 − 1.5 times larger for the Alekhin partons, due to the increased freedom in the use of the
correlated experimental errors. The values of αS(M2

Z) are quite different, αS(M2
Z) = 0.1132 ± 0.0015

compared to 0.1110 ± 0.0012. However, as mentioned earlier, one expects a 1% difference due to the
different threshold prescriptions — the MRST αS would be larger at Q2 ∼ 20GeV2, where the data are
concentrated, so correspondingly to fit the data it receives a 1% shift downwards for Q2 = M2

Z . Once
this systematic effect is taken into account, the values of αS(M2

Z) are very compatible. Hence, there is
no surprising inconsistency between the two sets of parton distributions.

7.2 Comparison of the Benchmark Parton Distributions and Global Fit Partons.
It is also illuminating to show the comparison between the benchmark partons and the published partons
from a global fit. This is done below for the MRST01 partons. For example, uV (x,Q2) and ū(x,Q2) are
shown in Fig. 19. It is striking that the uncertainties in the two sets are rather similar. This is despite the
fact that the uncertainty on the benchmark partons is obtained from allowing ∆χ2 = 1 in the fit while
that for the MRST01 partons is obtained from ∆χ2 = 50.10 This illustrates the great improvement in
precision which is obtained due to the increase in data from the relaxation of the cuts and the inclusion
of types of data other than DIS. For the uV partons, which are those most directly constrained by the
DIS data in the benchmark fit, the comparison between the two sets of partons is reasonable, but hardly
perfect — the central values differing by a few standard deviations. This is particularly important given
that in this comparison the treatment of the data in the fit has been exactly the same in both cases. There
is a minor difference in theoretical approach because of the simplistic treatment of heavy flavours in
the benchmark fit. However, this would influence the gluon and sea quarks rather than valence quarks.
Moreover, the region sensitive to this simplification would be Q2 ∼ m2

c (the lower charge weighting for
bottom quarks greatly reducing the effect near Q2 = m2

b ) which is removed by the Q2 cut of 9GeV2.
Indeed, introducing the variable flavour number scheme usually used for the MRST partons modifies
the benchmark partons only very minimally. Hence, if the statistical analysis is correct, the benchmark
partons should agree with the global partons within their uncertainties (or at most 1.5 times their un-
certainties, allowing for the effect of the correlated errors), which they do not. For the ū partons the
comparison is far worse, the benchmark partons being far larger at high x.

This disagreement in the high-x ū partons can be understood better if one also looks at the high-
x dV distribution shown in Fig. 20. Here the benchmark distribution is very much smaller than for
MRST01. However, the increase in the sea distribution, which is common to protons and neutrons, at
high-x has allowed a good fit to the high-x BCDMS deuterium data even with the very small high-x dV
distribution. In fact it is a better fit than in [93]. However, the fit can be shown to break down with the
additional inclusion of high-x SLAC data [72] on the deuterium structure function. More dramatically,
the shape of the ū is also completely incompatible with the Drell-Yan data usually included in the global
fit, e.g. [82, 95]. Also in Fig. 20 we see that the dV distributions are very different at smaller x. The
benchmark set is markedly inconsistent with NMC data on F n

2 (x,Q2)/F p2 (x,Q2) which is at small x,
but below the cut of Q2 = 9GeV2.

The gluon from the benchmark set is also compared to the MRST01 gluon in Fig. 21. Again there
is an enormous difference at high x. Nominally the benchmark gluon has little to constrain it at high x.
However, the momentum sum rule determines it to be very small in this region in order to get the best fit
to HERA data, similar to the gluon from [76]. As such, the gluon has a small uncertainty and is many
standard deviations from the MRST01 gluon. Indeed, the input gluon at high x is so small that its value
at higher Q2 is dominated by the evolution of uV quarks to gluons, rather than by the input gluon. Hence,

10Though it is meant to be interpreted as a one sigma error in the former case and a 90% confidence limit in the latter.
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Fig. 19: Left plot: xuV (x, 20) from the MRST benchmark partons compared to that from the MRST01 partons.
Right plot: xū(x, 20) from the MRST benchmark partons compared to that from the MRST01 partons with em-
phasis on large x.

the uncertainty is dominated by the quark parton input uncertainty rather than its own, and since the up
quark is well determined the uncertainty on the high-x gluon is small for the benchmark partons. The
smallness of the high-x gluon results in the benchmark partons producing a very poor prediction indeed
for the Tevatron jet data [96, 97], which are the usual data that constrain the high-x gluon in global fits.

It is also illustrative to look at small x. Here the benchmark gluon is only a couple of standard
deviations from the MRST01 gluon, suggesting that its size is not completely incompatible with a good
fit to the HERA small-x data at Q2 below the benchmark cut. However, the uncertainty in the benchmark
gluon is much smaller than in the MRST01 gluon, despite the much smaller amount of low-x data in the
fit for the benchmark partons. This comes about as a result of the artificial choice made in the gluon input
at Q2

0. Since it does not have the term introduced in [93], allowing the freedom for the input gluon to be
negative at very small x, the gluon is required by the fit to be valence-like. Hence, at input it is simply
very small at small x. At higher Q2 it becomes much larger, but in a manner driven entirely by evolution,
i.e. it is determined by the input gluon at moderate x, which is well constrained. In this framework the
small-x gluon does not have any intrinsic uncertainty — its uncertainty is a reflection of moderate x. This
is a feature of e.g. the CTEQ6 gluon uncertainty [89], where the input gluon is valence-like. In this case
the percentage gluon uncertainty does not get any larger once x reaches about 0.001. The alternative
treatment in [93] gives the expected increase in the gluon uncertainty as x → 0, since in this case the
uncertainty is determined largely by that in the input gluon at small x. The valence-like input form for a
gluon is an example of fine-tuning, the form being unstable to evolution in either direction. The artificial
limit on the small-x uncertainty is a consequence of this.
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Fig. 20: Left plot: xdV (x, 20) from the MRST benchmark partons compared to that from the MRST01 partons.
Right plot: xdV (x, 20) from the MRST benchmark partons compared to that from the MRST01 partons with
emphasis on small x.

7.3 Conclusions.
I have demonstrated that different approaches to fitting parton distributions that use exactly the same
data and theoretical framework produce partons that are very similar and have comparable uncertain-
ties. There are certainly some differences due to the alternative approaches to dealing with experimental
errors, but these are relatively small. However, the partons extracted using a very limited data set are
completely incompatible, even allowing for the uncertainties, with those obtained from a global fit with
an identical treatment of errors and a minor difference in theoretical procedure. This implies that the
inclusion of more data from a variety of different experiments moves the central values of the partons in
a manner indicating either that the different experimental data are inconsistent with each other, or that
the theoretical framework is inadequate for correctly describing the full range of data. To a certain extent
both explanations are probably true. Some data sets are not entirely consistent with each other (even
if they are seemingly equally reliable). Also, there are a wide variety of reasons why NLO perturba-
tive QCD might require modification for some data sets, or in some kinematic regions [98]. Whatever
the reason for the inconsistency between the MRST benchmark partons and the MRST01 partons, the
comparison exhibits the dangers in extracting partons from a very limited set of data and taking them se-
riously. It also clearly illustrates the problems in determining the true uncertainty on parton distributions.

8 Stability of PDF fits 11

One of the issues raised at the workshop is the reliability of determinations of parton distribution func-
tions (PDFs), which might be compromised for example by the neglect of NNLO effects or non-DGLAP
evolution in the standard analysis, or hidden assumptions made in parameterizing the PDFs at nonper-

11Contributing authors: J. Huston, J. Pumplin.
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turbative scales. We summarize the results of the CTEQ PDF group on this issue. For the full story
see [80].

8.1 Stability of PDF determinations
The stability of NLO global analysis was seriously challenged by an analysis [98] which found a 20%
variation in the cross section predicted for W production at the LHC — a critical “standard candle” pro-
cess for hadron colliders — when certain cuts on input data are varied. If this instability were confirmed,
it would significantly impact the phenomenology of a wide range of physical processes for the Teva-
tron Run II and the LHC. The CTEQ PDF group therefore performed an independent study of this issue
within their global analysis framework. In addition, to explore the dependence of the results on assump-
tions about the parameterization of PDFs at the starting scale Q0 = 1.3 GeV, we also studied the effect
of allowing a negative gluon distribution at small x— a possibility that is favored by the MRST NLO
analysis, and that is closely tied to the W cross section controversy.

The stability of the global analysis was investigated by varying the inherent choices that must be
made to perform the analysis. These choices include the selection of experimental data points based on
kinematic cuts, the functional forms used to parameterize the initial nonperturbative parton distribution
functions, and the treatment of αs.

The stability of the results is most conveniently measured by differences in the global χ2 for the
relevant fits. To quantitatively define a change of χ2 that characterizes a significant change in the quality
of the PDF fit is a difficult issue in global QCD analysis. In the context of the current analysis, we have
argued that an increase by ∆χ2 ∼ 100 (for ∼ 2000 data points) represents roughly a 90% confidence
level uncertainty on PDFs due to the uncertainties of the current input experimental data [89, 99–101].



Table 9: Comparisons of three fits with different choices of the cuts on input data at the Q and x values indicated.
In these fits, a conventional positive-definite gluon parameterization was used.

Cuts Qmin xmin Npts χ2
1926 χ2

1770 χ2
1588 σLHC

W ×B`ν [nb]

standard 2 GeV 0 1926 2023 1850 1583 20.02

intermediate 2.5 GeV 0.001 1770 – 1849 1579 20.10

strong 3.162 GeV 0.005 1588 – – 1573 20.34

Table 10: Same as Table 9 except that the gluon parameterization is extended to allow negative values.

Cuts Qmin xmin Npts χ2
1926 χ2

1770 χ2
1588 σLHC

W ×B`ν [nb]

standard 2 GeV 0 1926 2011 1845 1579 19.94

intermediate 2.5 GeV 0.001 1770 – 1838 1574 19.80

strong 3.162 GeV 0.005 1588 – – 1570 19.15

In other words, PDFs with χ2 − χ2
BestFit > 100 are regarded as not tolerated by current data.

The CTEQ6 and previous CTEQ global fits imposed “standard” cuts Q > 2 GeV and W >
3.5 GeV on the input data set, in order to suppress higher-order terms in the perturbative expansion
and the effects of resummation and power-law (“higher twist”) corrections. We examined the effect of
stronger cuts on Q to see if the fits are stable. We also examined the effect of imposing cuts on x, which
should serve to suppress any errors due to deviations from DGLAP evolution, such as those predicted
by BFKL. The idea is that any inconsistency in the global fit due to data points near the boundary of
the accepted region will be revealed by an improvement in the fit to the data that remain after those
near-boundary points have been removed. In other words, the decrease in χ2 for the subset of data that is
retained, when the PDF shape parameters are refitted to that subset alone, measures the degree to which
the fit to that subset was distorted in the original fit by compromises imposed by the data at low x and/or
low Q.

The main results of this study are presented in Table 9. Three fits are shown, from three choices of
the cuts on input data as specified in the table. They are labeled ‘standard’, ‘intermediate’ and ‘strong’.
Npts is the number of data points that pass the cuts in each case, and χ2

Npts
is the χ2 value for that subset

of data. The fact that the changes in χ2 in each column are insignificant compared to the uncertainty
tolerance is strong evidence that our NLO global fit results are very stable with respect to choices of
kinematic cuts.

We extended the analysis to a series of fits in which the gluon distribution g(x) is allowed to be
negative at small x, at the scale Q0 = 1.3 GeV where we begin the DGLAP evolution. The purpose of
this additional study is to determine whether the feature of a negative gluon PDF is a key element in the
stability puzzle, as suggested by the findings of [98]. The results are presented in Table 10. Even in this
extended case, we find no evidence of instability. For example, χ2 for the subset of 1588 points that pass
the strong cuts increases only from 1570 to 1579 when the fit is extended to include the full standard data
set.

Comparing the elements of Table 9 and Table 10 shows that our fits with g(x) < 0 have slightly
smaller values ofχ2: e.g., 2011 versus 2023 for the standard cuts. However, the difference ∆χ2 = 12
between these values is again not significant according to our tolerance criterion.



8.2 W cross sections at the LHC
The last columns of Tables 9 and 10 show the predicted cross section for W + + W− production at
the LHC. This prediction is also very stable: it changes by only 1.6% for the positive-definite gluon
parameterization, which is substantially less than the overall PDF uncertainty of σW estimated previously
with the standard cuts. For the negative gluon parameterization, the change is 4%–larger, but still less
than the overall PDF uncertainty. These results are explicitly displayed, and compared to the MRST
results in Fig. 22. We see that this physical prediction is indeed insensitive to the kinematic cuts used for

Fig. 22: Predicted total cross section of W+ + W− production at the LHC for the fits obtained in our stability
study, compared to the NLO results of Ref. [98]. The Q-cut values associated with the CTEQ points are given in
the two tables. The overall PDF uncertainty of the prediction is ∼ 5%.

the fits, and to the assumption on the positive definiteness of the gluon distribution.

We also studied the stability of the prediction for σW using the Lagrange Multiplier (LM) method
of Refs. [99–101]. Specifically, we performed a series of fits to the global data set that are constrained to
specific values of σW close to the best-fit prediction. The resulting variation of χ2 versus σW measures
the uncertainty of the prediction. We repeated the constrained fits for each case of fitting choices (param-
eterization and kinematic cuts). In this way we gain an understanding of the stability of the uncertainty,
in addition to the stability of the central prediction.

Figure 23 shows the results of the LM study for the three sets of kinematic cuts described in
Table 9, all of which have a positive-definite gluon distribution. The χ2 shown along the vertical axis is
normalized to its value for the best fit in each series. In all three series, χ2 depends almost quadratically
on σW . We observe several features:

– The location of the minimum of each curve represents the best-fit prediction for σLHC
W for the

corresponding choice of cuts. The fact that the three minima are close together displays the stability
of the predicted cross section already seen in Table 9.

– Although more restrictive cuts make the global fit less sensitive to possible contributions from
resummation, power-law and other nonperturbative effects, the loss of constraints caused by the
removal of precision HERA data points at small x and low Q results directly in increased un-
certainties on the PDF parameters and their physical predictions. This is shown in Fig. 23 by
the increase of the width of the curves with stronger cuts. The uncertainty of the predicted σW
increases by more than a factor of 2 in going from the standard cuts to the strong cuts.

Figure 24 shows the results of the LM study for the three sets of kinematic cuts described in
Table 10, all of which have a gluon distribution which is allowed to go negative.



Fig. 23: Lagrange multiplier results for the W

cross section (in nb) at the LHC using a positive-
definite gluon. The three curves, in order of de-
creasing steepness, correspond to the three sets of
kinematic cuts labeled standard/intermediate/strong
in Table 9.

Fig. 24: Lagrange multiplier results for the W cross sec-
tion (in nb) at the LHC using a functional form where
the gluon is not required to be positive-definite. The
three curves, in order of decreasing steepness, corre-
spond to the three sets of kinematic cuts labeled stan-
dard/intermediate/strong in Table 10.

We observe:

– Removing the positive definiteness condition necessarily lowers the value of χ2, because more
possibilities are opened up in the χ2 minimization procedure. But the decrease is insignificant
compared to other sources of uncertainty. Thus, a negative gluon PDF is allowed, but not required.

– The minima of the two curves occur at approximately the same σW . Allowing a negative gluon
makes no significant change in the central prediction — merely a decrease of about 1 %, which is
small compared to the overall PDF uncertainty.

– For the standard set of cuts, allowing a negative gluon PDF would expand the uncertainty range
only slightly. For the intermediate and strong cuts, allowing a negative gluon PDF would signifi-
cantly expand the uncertainty range.

We examined a number of aspects of our analysis that might account for the difference in conclu-
sions between our stability study and that of [98]. A likely candidate seems to be that in order to obtain
stability, it is necessary to allow a rather free parametrization of the input gluon distribution. This suspi-
cion is seconded by recent work by MRST [102], in which a different gluon parametrization appears to
lead to a best-fit gluon distribution that is close to that of CTEQ6. In summary, we found that the NLO
PDFs and their physical predictions at the Tevatron and LHC are quite stable with respect to variations
of the kinematic cuts and the PDF parametrization after all.

8.3 NLO and NNLO
In recent years, some preliminary next-to-next-leading-order (NNLO) analyses for PDFs have been car-
ried out either for DIS alone [103], or in a global analysis context [51] — even if all the necessary hard
cross sections, such as inclusive jet production, are not yet available at this order. Determining the parton
distributions at NNLO is obviously desirable on theoretical grounds, and it is reasonable to plan for hav-
ing a full set of tools for a true NNLO global analysis in place by the time LHC data taking begins. At
the moment, however, NNLO fitting is not a matter of pressing necessity, since the difference between
NLO and NNLO appears to be very small compared to the other uncertainties in the PDF analysis. This



Fig. 25: Left: mrst2002 NLO (solid) and NNLO (dotted); Right: mrst2004 NLO (solid) and NNLO (dotted);
Shaded region is uncertainty according to the 40 eigenvector sets of CTEQ6.1.

is demonstrated in Fig. 25, which shows the NLO and NNLO gluon distributions extracted by the MRST
group. The difference between the two curves is much smaller than the other uncertainties measured by
the 40 eigenvector uncertainty sets of CTEQ6.1, which is shown by the shaded region. The difference
is also much smaller than the difference between CTEQ and MRST best fits. Similar conclusions [104]
can be found using the NLO and NNLO fits by Alekhin.

9 The neural network approach to parton distributions 12

The requirements of precision physics at hadron colliders, as has been emphasized through this work-
shop, have recently led to a rapid improvement in the techniques for the determination of parton distri-
bution functions (pdfs) of the nucleon. Specifically it is now mandatory to determine accurately the un-
certainty on these quantities, and the different collaborations performing global pdf analysis [51,69,105]
have performed estimations of these uncertainties using a variety of techniques. The main difficulty is
that one is trying to determine the uncertainty on a function, that is, a probability measure in a space
of functions, and to extract it from a finite set of experimental data, a problem which is mathematically
ill-posed. It is also known that the standard approach to global parton fits have several shortcomings: the
bias introduced by choosing fixed functional forms to parametrize the parton distributions (also known as
model dependence), the problems to assess faithfully the pdf uncertainties, the combination of inconsis-
tent experiments, and the lack of general, process-independent error propagation techniques. Although
the problem of quantifying the uncertainties in pdfs has seen a huge progress since its paramount impor-
tance was raised some years ago, until now no unambiguous conclusions have been obtained.

In this contribution we present a novel strategy to address the problem of constructing unbi-
ased parametrizations of parton distributions with a faithful estimation of their uncertainties, based on
a combination of two techniques: Monte Carlo methods and neural networks. This strategy, introduced
in [106, 107], has been first implemented to address the marginally simpler problem of parametrizing
deep-inelastic structure functions F (x,Q2), which we briefly summarize now. In a first step we con-
struct a Monte Carlo sampling of the experimental data (generating artificial data replicas), and then we

12Contributing authors: L. Del Debbio, S. Forte, J. I. Latorre, A. Piccione, J. Rojo



train neural networks to each data replica, to construct a probability measure in the space of structure
functions P

[
F (x,Q2)

]
. The probability measure constructed in this way contains all information from

experimental data, including correlations, with the only assumption of smoothness. Expectation val-
ues and moments over this probability measure are then evaluated as averages over the trained network
sample,

〈
F
[
F (x,Q2)

]〉
=

∫
DFP

[
F (x,Q2)

]
F
[
F (x,Q2)

]
=

1

Nrep

Nrep∑

k=1

F
(
F (net)(k)(x,Q2)

)
. (9.25)

where F [F ] is an arbitrary function of F (x,Q2).

The first step is the Monte Carlo sampling of experimental data, generating Nrep replicas of the
original Ndat experimental data,

F
(art)(k)
i =

(
1 + r

(k)
N σN

)

F (exp)

i + r
s,(k)
i σstati +

Nsys∑

l=1

rl,(k)σsys,li


 , i = 1, . . . , Ndat , (9.26)

where r are gaussian random numbers with the same correlation as the respective uncertainties, and
σstat, σsys, σN are the statistical, systematic and normalization errors. The number of replicas Nrep has
to be large enough so that the replica sample reproduces central values, errors and correlations of the
experimental data.

The second step consists on training a neural network13 on each of the data replicas. Neural
networks are specially suitable to parametrize parton distributions since they are unbiased, robust ap-
proximants and interpolate between data points with the only assumption of smoothness. The neural
network training consist on the minimization for each replica of the χ2 defined with the inverse of the
experimental covariance matrix,

χ2(k)
=

1

Ndat

Ndat∑

i,j=1

(
F

(art)(k)
i − F (net)(k)

i

)
cov−1

ij

(
F

(art)(k)
j − F (net)(k)

j

)
. (9.27)

Our minimization strategy is based on Genetic Algorithms (introduced in [108]), which are specially
suited for finding global minima in highly nonlinear minimization problems.

The set of trained nets, once is validated through suitable statistical estimators, becomes the
sought-for probability measure P

[
F (x,Q2)

]
in the space of structure functions. Now observables with

errors and correlations can be computed from averages over this probability measure, using eq. (9.25).
For example, the average and error of a structure function F (x,Q2) at arbitrary (x,Q2) can be computed
as

〈
F (x,Q2)

〉
=

1

Nrep

Nrep∑

k=1

F (net)(k)(x,Q2), σ(x,Q2) =

√
〈F (x,Q2)2〉 − 〈F (x,Q2)〉2 . (9.28)

A more detailed account of the application of the neural network approach to structure functions can
be found in [107], which describes the most recent NNPDF parametrization of the proton structure
function14 .

Hence this strategy can be used also to parametrize parton distributions, provided one now takes
into account perturbative QCD evolution. Therefore we need to define a suitable evolution formalism.

13For a more throughly description of neural network, see [106] and references therein
14The source code, driver program and graphical web interface for our structure function fits is available at

http://sophia.ecm.ub.es/f2neural.
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Since complex neural networks are not allowed, we must use the convolution theorem to evolve parton
distributions in x−space using the inverse Γ(x) of the Mellin space evolution factor Γ(N), defined as

q(N,Q2) = q(N,Q2
0)Γ

(
N,αs

(
Q2
)
, αs

(
Q2

0

))
, (9.29)

The only subtlety is that the x-space evolution factor Γ(x) is a distribution, which must therefore be
regulated at x = 1, yielding the final evolution equation,

q(x,Q2) = q(x,Q2
0)

∫ 1

x
dy Γ(y) +

∫ 1

x

dy

y
Γ(y)

(
q

(
x

y
,Q2

0

)
− yq(x,Q2

0)

)
, (9.30)

where in the above equation q(x,Q2
0) is parametrized using a neural network. At higher orders in per-

turbation theory coefficient functions C(N) are introduced through a modified evolution factor, Γ̃(N) ≡
Γ(N)C(N). We have benchmarked our evolution code with the Les Houches benchmark tables [59] at
NNLO up to an accuracy of 10−5. The evolution factor Γ(x) and its integral are computed and interpo-
lated before the neural network training in order to have a faster fitting procedure.

As a first application of our method, we extract the nonsinglet parton distribution qNS(x,Q2
0) =

1
6

(
u+ ū− d− d̄

)
(x,Q2

0) from the nonsinglet structure function FNS
2 (x,Q2) as measured by the NMC

[75] and BCDMS [73, 74] collaborations. The preliminary results of a NLO fit with fully correlated
uncertainties [109] can be seen in fig. 26 compared to other pdfs sets. Our preliminary results appear
to point in the direction that the uncertainties at small x do not allow, provided the current experimental
data, to determine if qNS(x,Q2) grows at small x, as supported by different theoretical arguments as
well as by other global parton fits. However, more work is still needed to confirm these results. Only
additional nonsinglet structure function data at small x could settle in a definitive way this issue15 .

Summarizing, we have described a general technique to parametrize experimental data in an bias-
free way with a faithful estimation of their uncertainties, which has been successfully applied to structure
functions and that now is being implemented in the context of parton distribution. The next step will be
to construct a full set of parton distributions from all available hard-scattering data using the strategy
described in this contribution.
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[24] Blümlein, J. and Kurth, S., Phys. Rev. D60, 014018 (1999).
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[46] Blümlein, J. and Ravindran, V., Nucl. Phys. Proc. Suppl. 135, 24 (2004).
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[57] Blümlein, J. and Ravindran, V. and van Neerven, W. L., Nucl. Phys. B586, 349 (2000).
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[60] Blümlein, J. and Böttcher, H., Nucl. Phys. B636, 225 (2002).
[61] Van Neerven, W. L. and Vogt, A., Phys. Lett. B490, 111 (2000).
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