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Abstract

The HERA electron–proton collider has collected 100 pb−1 of data since its start-up in 1992, and recently
moved into a high-luminosity operation mode, with upgraded detectors, aiming to increase the total integrated
luminosity per experiment to more than 500 pb−1. HERA has been a machine of excellence for the study
of QCD and the structure of the proton. The Large Hadron Collider (LHC), which will collide protons with
a centre-of-mass energy of 14 TeV, will be completed at CERN in 2007. The main mission of the LHC is
to discover and study the mechanisms of electroweak symmetry breaking, possibly via the discovery of the
Higgs particle, and search for new physics in the TeV energy scale, such as supersymmetry or extra dimen-
sions. Besides these goals, the LHC will also make a substantial number of precision measurements and will
offer a new regime to study the strong force via perturbative QCD processes and diffraction. For the full LHC
physics programme a good understanding of QCD phenomena and the structure function of the proton is es-
sential. Therefore, in March 2004, a one-year-long workshop started to study the implications of HERA on
LHC physics. This included proposing new measurements to be made at HERA, extracting the maximum in-
formation from the available data, and developing/improving the theoretical and experimental tools. This report
summarizes the results achieved during this workshop.
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Preface

The workshop on ‘HERA and the LHC’ successfully brought together experimental and theory experts
working on electron–proton and proton–proton collider physics. It offered a forum to discuss the impact of
present and future measurements at HERA on the physics programme of the LHC. The workshop was launched
with a meeting at CERN in March 2004 and its first phase was terminated with a summary meeting in April
2005 at DESY. The workshop was very timely with on the one hand HERA-II, expected to deliver more than
500 pb−1 per experiment by 2007, ramping up to full strength, and on the other hand three years before the first
collisions at the LHC.

The following aims were defined as the charge to the workshop:

– To identify and prioritize those measurements to be made at HERA which have an impact on the physics
reach of the LHC.

– To encourage and stimulate transfer of knowledge between the HERA and LHC communities and estab-
lish an ongoing interaction.

– To encourage and stimulate theory and phenomenological efforts related to the above goals.

– To examine and improve theoretical and experimental tools related to the above goals.

– To increase the quantitative understanding of the implication of HERA measurements on LHC physics.

Five working groups were formed to tackle the workshop charge. Results and progress were presented and
discussed at six major meetings, held alternately at CERN and at DESY.

Working group one had a close look at the parton distribution functions (PDFs), their uncertainties and their
impact on the LHC measurements. The potential experimental and theoretical accuracy with which various
LHC processes such as Drell–Yan, the production of W’s, Z’s and dibosons, etc. can be predicted was studied.
Cross-section calculations and differential distributions were documented and some of these processes are used
as benchmark processes for PDF and other QCD uncertainty studies. In particular W and Z production at the
LHC has been scrutinized in detail, since these processes will be important standard candles. It is even planned
to use these for the luminosity determination at the LHC. The impact of PDFs on LHC measurements and the
accuracy with which the PDFs can be extracted from current and forthcoming data, particular the HERA-II data,
have been investigated, as well as the impact of higher order corrections, small-x and large-x resummations.
Initial studies have been started to provide a combined data set on structure function measurements from the
two experiments H1 and ZEUS. Arguments for running HERA at lower energies, to allow for the measurement
of the longitudinal structure function, and with deuterons, have been brought forward.

The working group on multi-jet final states and energy flows studied processes in the perturbative and
non-perturbative QCD region. One of the main issues of discussion during the workshop was the structure
of the underlying event and of minimum-bias events. New models were completed and presented during the
workshop, and new tunes on p–p data were discussed. A crucial test will be to check these generator tunes
with e–p andγ–p data from HERA, and thus check their universality. Other important topics tackled by this
working group concern the study of rapidity-gap events, multi-jet topologies and matrix-element parton-shower
matching questions. The understanding of rapidity gaps and in particular their survival probability is of crucial
importance to make reliable predictions for central exclusive processes at the LHC. HERA can make use of the
virtuality of the photon to study in detail the onset of multiple interactions. Similarly HERA data, because of its
handles on the event kinematics via the scattered electron, is an ideal laboratory to study multiple-scale QCD
problems and improve our understanding in that area such that it can be applied with confidence to the LHC
data. For example, the HERA data give strong indications that in order to get reliable and precise predictions,
the use of unintegrated parton distributions will be necessary. The HERA data should be maximally exploited
to extract those distributions.
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The third group studied heavy flavours at HERA and the LHC. Heavy quark production, in particular at
small momenta at the LHC, is likely to give new insight into low-x phenomena in general and saturation
in particular. The possibilities for heavy quark measurements at LHC were investigated. The charm and
bottom content of the proton are key measurements, and the anticipated precision achievable with HERA-II
is very promising. Furthermore, heavy quark production in standard QCD processes may form an important
background in searches for new physics at the LHC and has therefore to be kept as much as possible under
control. Again, heavy quark production results from mostly multi-scale processes where topics similar to those
discussed in working group two can be studied and tested. Important steps were taken for a better understanding
of the heavy quark fragmentation functions, which are and will be measured at HERA. The uncertainties of the
predicted heavy quark cross-section were studied systematically and benchmark cross-sections were presented,
allowing a detailed comparison of different calculations.

Diffraction was the topic of working group four. A good fraction of the work in this group went into
the understanding of the possibility of the exclusive central production of new particles such as the Higgs
pp→p+H+p at the LHC. With measurable cross-sections, these events can then be used to pin down the CP
properties of these new particles, via the azimuthal correlation of the two protons, and thus deliver an important
added value to the LHC physics programme. The different theoretical approaches to calculate cross-sections
for this channel have been confronted, and scrutinized. The Durham approach, though the one that gives
the most conservative estimate of the event cross-section, namely in the order of a few femtobarns, has now
been verified by independent groups. In this approach the generalized parton distributions play a key role.
HERA can determine generalized parton distributions, especially via exclusive meson production. Other topics
discussed in this group were the factorization breaking mechanisms and parton saturation. It appears that the
present diffractive dijet production at HERA does not agree with a universal description of the factorization
breaking, which is one of the mysteries in the present HERA data. Parton saturation is important for event
rates and event shapes at the LHC, which will get large contributions of events at very low-x. Furthermore, the
precise measurement of the diffractive structure functions is important for any calculation of the cross-section
for inclusive diffractive reactions at the LHC. Additionally, this working group has really acted as a very useful
forum to discuss the challenges of building and operating beam-line integrated detectors, such as Roman Pots,
in a hadron storage ring. The experience gained at HERA was transferred in detail to the LHC groups which
are planning for such detectors.

Finally, working group five on the Monte Carlo tools had very productive meetings on discussing and
organizing the developments and tunings of Monte Carlo programs and tools in the light of the HERA–LHC
connection. The group discussed the developments of the existing generators (e.g., PYTHIA, HERWIG) and
new generators (e.g., SHERPA), or modifications of existing ones to include p–p scattering (e.g., RAPGAP,
CASCADE). Many of the other studies like tuning to data, matrix-element and parton shower matching, etc.,
were done in common discussions with the other working groups. Validation frameworks have been compared
and further developed, and should allow future comparisons with new and existing data to be facilitated.

In all it has been a very productive workshop, demonstrated by the content of these proceedings. Yet the
ambitious programme set out from the start has not been fully completed: new questions and ideas arose in the
course of this workshop, and the participants are eager to pursue these ideas. Also the synergy between the
HERA and LHC communities, which has been built up during this workshop, should not evaporate. Therefore
this initiative will continue and we look forward to further and new studies in the coming years, and the plan to
hold a workshop once a year to provide the forum for communicating and discussion the new results.

We thank all the convenors for the excellent organization of their working groups and all participants for
their work and enthusiasm and contribution to these proceedings.

We are grateful to the CERN and DESY directorates for the financial support of this workshop and for the
hospitality which they extended to all the participants. We are grateful to D. Denise, A. Grabowksi and S. Platz
for their continuous help and support during all the meeting weeks. We would like to thank also B. Liebaug for
the design of the poster for this first HERA–LHC workshop.

Hannes Jung and Albert De Roeck
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M. Lublinsky 62, L. Lytkin 63, T. Mäki 52, L. Magnea64, F. Maltoni65, M. Mangano2, U. Maor45,
C. Mariotti 66, N. Marola52, A.D. Martin 19, A. Meyer35, S. Moch13, J. Monk30, A. Moraes21,
A. Morsch24, L. Motyka 11, E. Naftali45, P. Newman67, A. Nikitenko 68, F. Oljemark52, R. Orava52,
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Instanton-Induced Processes
An Overview

F. Schrempp
Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany

Abstract
A first part of this review is devoted to a summary of our extensive studies of
the discovery potential for instanton (I)-induced, deep-inelastic processes at
HERA. Included are some key issues about I-perturbation theory, an exploita-
tion of crucial lattice constraints and a status report about the recent I-search
results by the HERA collaborations H1 and ZEUS in relation to our predic-
tions. Next follows a brief outline of an ongoing project concerning a broad
exploration of the discovery potential for hard instanton processes at the LHC.
I then turn to an overview of our work on high-energy processes, involving
larger-sized instantons. I shall mainly focus on the phenomenon of satura-
tion at small Bjorken-x from an instanton perspective. In such a framework,
the saturation scale is associated with the conspicuous average instanton size,
〈ρ〉 ∼ 0.5 fm, as known from lattice simulations. A further main result is
the intriguing identification of the “Colour Glass Condensate” with the QCD
sphaleron state.

1 Setting the stage
Instantons represent a basic non-perturbative aspect of non-abelian gauge theories like QCD. They were
theoretically discovered and first studied by Belavin et al. [1] and ‘t Hooft [2], about 30 years ago.

Due to their rich vacuum structure, QCD and similar theories include topologically non-trivial
fluctuations of the gauge fields, which in general carry a conserved, integer topological charge Q. In-
stantons (Q = +1) and anti-instantons (Q = −1) represent the simplest building blocks of topologically
non-trivial vacuum structure. They are explicit solutions of the euclidean field equations in four dimen-
sions [1]. They are known to play an important rôle in the transition region between a partonic and a
hadronic description of strong interactions [3]. Yet, despite substantial theoretical evidence for the im-
portance of instantons in chiral symmetry breaking and hadron spectroscopy, their direct experimental
verification is lacking until now.
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Fig. 1: Contribution from three instantons (Q = +1) and two anti-instantons (Q = −1) to the Lagrangian (left))
and the topological charge density (right) in a lattice simulation [4] (after cooling). The euclidean coordinates x
and y are kept fixed while the dependence on z and t is displayed.
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It turns out, however, that a characteristic short distance manifestation of instantons can be ex-
ploited [5] for an experimental search: Instantons induce certain (hard) processes that are forbidden in
usual perturbative QCD. These involve all (light) quark flavours democratically along with a violation of
chirality, in accord with the general chiral anomaly relation [2]. Based on this crucial observation, deep-
inelastic scattering (DIS) at HERA has been shown to offer a unique opportunity [5] to discover such
instanton-induced processes. It is of particular importance that a theoretical prediction of both the cor-
responding rate [6–8] and the characteristic event signature [5, 10–12] is possible in this hard scattering
regime1. The instanton-induced cross section turns out to be in a measurable range [7,10]. Crucial infor-
mation on the region of validity for this important result, based on instanton-perturbation theory, comes
from a high-quality lattice simulation [8, 13]. Another interesting possible spin-dependent signature of
instantons in DIS, in form of a characteristic azimuthal spin asymmetry, has recently been discussed in
Ref. [14].

In a first part (Sect. 2), I shall review our extensive investigations of deep-inelastic processes
induced by small instantons. This includes a “flow-chart” of our calculations based on I-perturbation
theory [6, 7], an exploitation of crucial lattice constraints [8, 13] and a confrontation [12] of the recent
I-search results by the HERA collaborations H1 and ZEUS [15, 16] with our predictions. Next I shall
briefly outline in Sect. 3 an ongoing project [17] to investigate theoretically and phenomenologically
the discovery potential of hard instanton processes at the LHC. In Sect. 4, I then turn to an overview of
our work [18–21] on high-energy processes involving larger-sized instantons. I shall focus mainly on the
important theoretical challenge of the phenomenon of saturation at small Bjorken-x from an instanton
perspective. In such a framework we found [18–21] that the conspicuous average instanton size scale,
〈ρ〉 ∼ 0.5 fm, as known from lattice simulations [13], plays the rôle of the saturation scale. As a
further main and intriguing result, we were led to associate the “Colour Glass Condensate” [22] with
the QCD sphaleron state [23]. For another more recent approach to small-x saturation in an instanton
background with main emphasis on Wilson loop scattering and lacking direct lattice input, see Ref. [24].
The conclusions of this overview may be found in Sect. 5.

2 Small instantons in deep-inelastic scattering
2.1 Instanton-perturbation theory
Let us start by briefly summarizing the essence of our theoretical calculations [6, 7] based on so-called
I-perturbation theory. As we shall see below, in an appropriate phase-space region of deep-inelastic
scattering with generic hard scaleQ, the contributing I’s and I’s have small size ρ <∼O( 1

αs(Q)Q) and may
be self-consistently considered as a dilute gas, with the small QCD coupling αs(Q) being the expansion
parameter like in usual perturbative QCD (pQCD). Unlike the familiar expansion about the trivial vacuum
A

(0)
µ = 0 in pQCD, in I-perturbation theory the path integral for the generating functional of the Green’s

functions in Euclidean position space is then expanded about the known, classical one-instanton solution,
Aµ = A

(I)
µ (x) + . . .. After Fourier transformation to momentum space, LSZ amputation and careful

analytic continuation to Minkowski space (where the actual on-shell limits are taken), one obtains a
corresponding set of modified Feynman rules for calculating I-induced scattering amplitudes. As a
further prerequisite, the masses mq of the active quark flavours must be light on the scale of the inverse
effective I-size 1/ρeff , i. e. mq · ρeff � 1. The leading, I-induced, chirality-violating process in the
deep-inelastic regime of e±P scattering is displayed in Fig. 2 (left) for nf = 3 massless flavors. In the
background of an I (I ) (of topological charge Q = +1 (−1)), all nf massless quarks and anti-quarks
are right (left)-handed such that the I-induced subprocess emphasized in the dotted box of Fig. 2 (left)
involves a violation of chirality Q5 = # (qR + qR)−# (qL + qL) by an amount,

∆Q5 = 2nf Q, (1)

1For an exploratory calculation of the instanton contribution to the gluon-structure function, see Ref. [9].
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Fig. 2: (left): Leading, instanton-induced process in deep-inelastic e±P scattering for nf = 3 massless flavours.

(right): Structure of the total cross section σ(I)
q′ g for the chirality-violating “instanton-subprocess” q′ g

(I)⇒ X ac-
cording to the optical theorem. Note the illustration of the collective coordinates ρ, ρ and Rµ.

in accord with the general chiral anomaly relation [2]. Within I-perturbation theory, one first of all
derives the following factorized expression in the Bjorken limit of the I-subprocess variables Q ′ 2 and x′

(c. f. Fig. 2 (left)):

dσ
(I)
HERA

dx′dQ′ 2
'

dL(I)
q′g

dx′dQ′ 2
· σ(I)

q′g(Q
′, x′) for

{
Q′ 2 = −q′ 2 > 0 large,

0 ≤ x′ = Q′ 2
2p·q′ ≤ 1 fixed .

(2)

In Eq. (2), the differential luminosity, dL(I)
q′ g counts the number of q′ g collisions per eP collisions. It

is given in terms of integrals over the gluon density, the virtual photon flux, and the (known) flux of the
virtual quark q′ in the instanton background [7].

The essential instanton dynamics resides, however, in the total cross-section of the I-subprocess
q′ g

I⇒ X (dotted box of Fig. 2 (left) and Fig. 2 (right)). Being an observable, σ (I)
q′g(Q

′, x′) involves
integrations over all I and I -“collective coordinates”, i. e. the I (I ) sizes ρ (ρ ), the II distance four-
vector Rµ and the relative II color orientation matrix U .

σ
(I)
q′ g =

∫
d4R ei (p+q′)·R

∞∫

0

dρ

∞∫

0

dρ e−(ρ+ρ)Q′ D(ρ)D(ρ )

∫
dU e

− 4π
αs

Ω
“
U,R

2

ρρ
, ρ
ρ

”
{. . .} (3)

Both instanton and anti-instanton degrees of freedom enter here, since the I-induced cross-section re-
sults from taking the modulus squared of an amplitude in the single I-background. Alternatively and
more conveniently (c. f. Fig. 2 (right)), one may invoke the optical theorem to obtain the cross-section
(3) in Minkowski space as a discontinuity of the q ′ g forward elastic scattering amplitude in the II-
background [7]. The {. . .} in Eq. (3) abreviates smooth contributions associated with the external par-
tons etc. Let us concentrate on two crucial and strongly varying quantities of the I-calculus appearing in
Eq. (3): D(ρ), the (reduced) I-size distribution [2, 28], and Ω

(
U, R

2

ρρ ,
ρ
ρ

)
, the II interaction, associated

with a resummation of final-state gluons. Both objects are known within I-perturbation theory, formally
for αs(µr) ln(µr ρ)� 1 and R2

ρρ � 1 (diluteness), respectively, with µr being the renormalization scale.

In the II-valley approach [25], the functional form of ΩIĪ
valley is analytically known [26, 27] (formally)

for all values of R2/(ρρ̄). The actual region of validity of the valley approach is an important issue to
be addressed again later.

Most importantly, the resulting power-law behaviour for the I-size distribution,

D(ρ) ∝ ρβ0−5+O(αs), (4)
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Fig. 3: Illustration of the agreement of recent high-quality lattice data [8,13] for the instanton-size distribution (left)
and the normalized II-distance distribution (right) with the predictions from instanton-perturbation theory [8] for
ρ<∼ 0.35 fm and R/ρ>∼1.05, respectively. α3−loop

MS
with Λ

(nf=0)

MS
from the ALPHA collaboration [29] was used.

involving the leading QCD β-function coefficient, β0 = 11
3 Nc − 2

3 nf , (Nc = 3), generically spoils the
calculability of I-observables due to the bad IR-divergence of the integrations over the I (I )-sizes for
large ρ (ρ ) . Deep-inelastic scattering represents, however, a crucial exception: The exponential “form
factor” exp(−Q′(ρ+ρ )) that was shown [6] to arise in Eq. (3), insures convergence and small instantons
for large enough Q′, despite the strong power-law growth of D(ρ). This is the key feature, warranting
the calculability of I-predictions for DIS.

It turns out that for (large) Q′ 6= 0, all collective coordinate integrations in σ(I)
q′g of Eq. (3) may be

performed in terms of a unique saddle point:

U∗ ⇔ most attractive relative II orientation in color space,

ρ∗ = ρ∗ ∼ 4π

αs(
1
ρ∗ )

1

Q′
;

R∗ 2

ρ∗ 2

Q′ large∼ 4
x′

1− x′ (5)

This result underligns the self-consistency of the approach, since for large Q ′ and small (1 − x′) the
saddle point (5), indeed, corresponds to widely separated, small I’s and I’s.

2.2 Crucial impact of lattice results

The I-size distribution D(ρ) and the II interaction Ω
(
U, R

2

ρρ ,
ρ
ρ

)
form a crucial link between deep-

inelastic scattering and lattice observables in the QCD vacuum [8].

Lattice simulations, on the other hand, provide independent, non-perturbative information on the
actual range of validity of the form predicted from I-perturbation theory for these important functions
of ρ and R/ρ, respectively. The one-to-one saddle-point correspondence (5) of the (effective) collective
I-coordinates (ρ∗, R∗/ρ∗) to (Q′, x′) may then be exploited to arrive at a “fiducial” (Q′, x′) region for
our predictions in DIS. Let us briefly summarize the results of this strategy [8].

We have used the high-quality lattice data [8, 13] for quenched QCD (nf = 0) by the UKQCD
collaboration together with the careful, non-perturbative lattice determination of the respective QCD
Λ-parameter, Λ

(nf=0)

MS
= (238±19) MeV, by the ALPHA collaboration [29]. The results of an es-

sentially parameter-free comparison of the continuum limit [8] for the simulated (I + I)-size and the
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II-distance distributions with I-perturbation theory versus ρ and R/ρ, respectively, is displayed in
Fig. 3. The UKQCD data for the II-distance distribution provide the first direct test of the II inter-
action Ω

(
U, R

2

ρρ ,
ρ
ρ

)
from the II-valley approach via [8]

dnII
d4xd4R |UKQCD

?'
∞∫

0

d ρ

∞∫

0

d ρD(ρ)D(ρ)

∫
dU e

− 4π
αs

Ω
“
U,R

2

ρρ
, ρ
ρ

”
, (6)

and the lattice measurements of D(ρ).

From Fig. 3, I-perturbation theory appears to be quantitatively valid for

ρ · Λ(nf=0)

MS
<∼ 0.42

R/ρ >∼ 1.05

}
saddle point⇒





Q′/Λ
(nf )

MS
>∼ 30.8,

x′ >∼ 0.35,
(7)

Beyond providing a quantitative estimate for the “fiducial” momentum space region in DIS, the good,
parameter-free agreement of the lattice data with I-perturbation theory is very interesting in its own right.
Uncertainties associated with the inequalities (7) are studied in detail in Ref. [12].

2.3 Characteristic final-state signature
The qualitative origin of the characteristic final-state signature of I-induced events is intuitively explained
and illustrated in Fig. 4. An indispensable tool for a quantitative investigation of the characteristic final-
state signature and notably for actual experimental searches of I-induced events at HERA is our Monte-
Carlo generator package QCDINS [10].
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Fig. 4: Characteristic signature of I-induced events: One (current) jet along with a densely filled band of hadrons
in the (η, φ) plane. Each event has large hadron multiplicity, large total Et, u-d-s flavor democracy with 1 ss-
pair/event leading to K ′s,Λ′s . . .. An event from our QCDINS [10] generator (right) illustrates these features.

2.4 Status of searches at HERA
The results of dedicated searches for instanton-induced events by the H1 and ZEUS collaborations [15,
16], based on our theoretical work, have been finalized meanwhile. The H1 analysis was based on∫
Ldt ≈ 21 pb−1, while ZEUS used

∫
Ldt ≈ 38 pb−1, with somewhat differing kinematical cuts. Since

the upgraded HERA II machine is now performing very well, forthcoming searches based on a several
times higher luminosity might turn out most interesting. Let me briefly summarize the present status
from a theorist’s perspective.

While H1 indeed observed a statistically significant excess of events with instanton-like topology
and in good agreement with the theoretical predictions, physical significance could not be claimed, due
to remaining uncertainties in the standard DIS (sDIS) background simulation. The ZEUS collaboration
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Table 1: Comparison of implemented fiducial cuts that are required in principle to warrant the validity of I-
perturbation theory.

Fiducial Cuts H1 ZEUS
Q2 >∼ 113 GeV2 ? no yes
Q′ 2 >∼ 113 GeV2 ? yes yes
x′ >∼ 0.35 ? no no

obtained a conservative, background-independent upper limit on the instanton-induced HERA cross sec-
tion of 26 pb@95% CL, to be compared to our theoretical prediction of 8.9 pb for the given cuts. In both
experiments it was demonstrated that a decisive experimental test of the theoretical predictions based
on I-perturbation theory is well within reach in the near-future. In view of the present situation and the
interesting prospects for HERA II, let me proceed with a number of comments.

A first important task consists in reconstructing the instanton-subprocess variables (Q ′ 2, x′) from
Eq. (2) and in implementing the theoretically required fiducial cuts (cf. Eq. (7)). The actual status is
displayed in Table 1 for comparison. The implications of the lacking x′-cut both in the H1 and ZEUS
data are presumably not too serious, since QCDINS — with its default x′-cut — models to some extent
the sharp suppression of I-effects, apparent in the lattice data (cf. Fig. 3 (right)) for R/ρ <∼ 1.0 − 1.05,
i.e. x′<∼ 0.3 − 0.35. Yet, this lacking, experimental cut introduces a substantial uncertainty in the pre-
dicted magnitude of the I-signal that hopefully may be eliminated soon. The lacking Q2-cut in the H1
data is potentially more serious. As a brief reminder [6, 10], this cut assures in particular the dominance
of “planar” handbag-type graphs in σ(I)

HERA and all final-state observables. Because of computational
complications, the non-planar contributions are not implemented in the QCDINS event generator, corre-
sponding to unreliable QCDINS results for small Q2.

The main remaining challenge resides in the fairly large sDIS background uncertainties. The es-
sential reason is that the existing Monte Carlo generators have been typically designed and tested for
kinematical regions different from where the instanton signal is expected! Although the residual prob-
lematics is not primarily related to lacking statistics, the near-future availability of many more events
will allow to strengthen the cuts and thus hopefully to increase the gap between signal and background.
A common search strategy consists in producing I-enriched data samples by cutting on several discrimi-
nating observables, each one being sensitive to different basic instanton characteristics. An optimized set
may be found according to the highest possible

instanton separation power =
εI
εsDIS

, (8)

in terms of the sDIS and instanton efficiencies, with εI >∼ 5 − 10%. Substantial enhancements of the
instanton sensitivity were obtained, by means of various multivariate discrimination methods, involving
only a single cut on a suitable discriminant variable. In case of ZEUS, cuts on the Fisher discriminant
have been used to obtain instanton-enhanced subsamples.

Let me summarize the results obtained so far in form of a theorist’s ”unified plot” of the H1 and
ZEUS ”excess” versus the I-separation power. Any visible correlation of a rising experimental ”excess”
with the (Monte-Carlo) theoretical I-separation power in Fig. 5 would be an intriguing first signature for
a signal. The behaviour seen from the end of the ZEUS range into the H1 domain, might indeed suggest
some increase of the excess towards rising I-sparation power. The comparatively low I-separation power
of the ZEUS data (and thus perhaps also their negative excess?) is mainly due to the implementation of
the fiducial cut in Q2 that is lacking in case of H1.
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Fig. 5: A theorist’s ”unified plot” of the H1 and ZEUS ”excess” versus I-separation power. The H1 and ZEUS
data are seen to join smoothly. A first sign of a rising excess towards higher separation powers might be suspected.

3 Study of the discovery potential at the LHC
Given our extended experience with instanton physics both theoretically and experimentally at DESY, it
is natural to ask about the discovery potential for instanton-induced processes at the forthcoming LHC.
Indeed, a respective project has been set up around a theoretical PhD Thesis [17], but is still in a relatively
early stage.

3.1 Outline of the project
We attempt to do a broad study, focussing both on theoretical and phenomenological issues. Let me just
enumerate some interesting aspects that differ essentially from the familiar situation for spacelike hard
scattering in DIS at HERA.

Theoretically: The first and foremost task is to identify and calculate the leading I-subprocess at
the LHC within I-perturbation theory. Unlike HERA (Fig. 2 (left)), one starts from a g g-initial state at
the LHC. Hence, the rate will be enhanced by a factor ∝ 1

αe.m. αs
compared to γ∗ g scattering at HERA.

Then, the next crucial question is how to enforce some parton virtuality in the respective instanton-
induced g g-subprocess, such as to retain the applicability of I-perturbation theory.

An interesting possibility we are exploring is to enter the required virtuality through the final state
in case of the LHC! One may consider the fragmentation of one or even two outgoing quarks from
the g g-initiated I-instanton subprocess into a large E⊥ photon or W -boson and other particles. The
requirement of large E⊥ then enforces a timelike virtuality onto the outgoing parent quark.

Experimentally: Crucial criteria will be a good signature paired with the lowest possible back-
ground, as well as a good trigger. At the experimental front we forsee the collaboration of T. Carli/CERN,
who will be able to merge his actual knowledge of the LHC with many years of experience from searches
for instantons at HERA. After the theoretical calculations are under control, the next task is to adapt our
QCDINS event generator to the LHC, to work out characteristic event signatures, optimal observables,
fiducial cuts etc.

4 Instanton-driven saturation at small x
One of the most important observations from HERA is the strong rise of the gluon distribution at small
Bjorken-x [30]. On the one hand, this rise is predicted by the DGLAP evolution equations [31] at high
Q2 and thus supports QCD [32]. On the other hand, an undamped rise will eventually violate unitarity.
The reason for the latter problem is known to be buried in the linear nature of the DGLAP- and the
BFKL-equations [33]: For decreasing Bjorken-x, the number of partons in the proton rises, while their
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effective size ∼ 1/Q increases with decreasing Q2. At some characteristic scale Q2 ≈ Q2
s(x), the

gluons in the proton start to overlap and so the linear approximation is no longer applicable; non-linear
corrections to the linear evolution equations [34] arise and become significant, potentially taming the
growth of the gluon distribution towards a “saturating” behaviour.

From a theoretical perspective, eP -scattering at small Bjorken-x and decreasing Q2 uncovers a
novel regime of QCD, where the coupling αs is (still) small, but the parton densities are so large that
conventional perturbation theory ceases to be applicable, eventually. Much interest has recently been
generated through association of the saturation phenomenon with a multiparticle quantum state of high
occupation numbers, the “Colour Glass Condensate” that correspondingly, can be viewed [22] as a strong
classical colour field ∝ 1/

√
αs.

4.1 Why instantons?
Being extended non-perturbative fluctuations of the gluon field, instantons come to mind naturally in the
context of saturation, since

– classical non-perturbative colour fields are physically appropriate in this regime; I-interactions
always involve many non-perturbative gluons with multiplicity 〈ng〉 ∝ 1

αs
!

– the functional form of the instanton gauge field is explicitely known and its strength isA(I)
µ ∝ 1√

αs
as needed;

– an identification of the “Colour Glass Condensate” with the QCD-sphaleron state appears very
suggestive [20, 21] (cf. below and Sec 4.4).

– At high energies (x → 0), larger I-sizes (ρ >∼ 0.35 fm) are probed! Unlike DIS, now the sharply
defined average I-size 〈ρ〉 ≈ 0.5 fm (known from lattice simulations [13]) comes into play and
becomes a relevant and conspicuous length scale in this regime (cf. Fig. 6 (left)).

– An intriguing observation is that the I-size scale 〈ρ〉 coincides surprisingly well with the trans-
verse resolution ∆x⊥ ∼ 1/Q, where the small-x rise of the structure function F2(x,Q2) abruptly
starts to increase with falling ∆x⊥! This striking feature2 is illustrated in Fig. 6 (right), with the
power λ(Q) being defined via the ansatz F2(x,Q2) = c(Q)x−λ(Q) at small x. A suggestive
interpretation is that instantons are getting resolved for ∆x⊥<∼〈ρ〉.

– We know already from I-perturbation theory that the instanton contribution tends to strongly in-
crease towards the softer regime [5,7,10]. The mechanism for the decreasing instanton suppression
with increasing energy is known since a long time [35,36]: Feeding increasing energy into the scat-
tering process makes the picture shift from one of tunneling between adjacent vacua (E ≈ 0) to
that of the actual creation of the sphaleron-like, coherent multi-gluon configuration [23] on top of
the potential barrier of height [5, 37] E = msph ∝ 1

αsρeff.
.

4.2 From instanton-perturbation theory to saturation
The investigation of saturation becomes most transparent in the familiar colour-dipole picture [38] (cf.
Fig. 7 (left)), notably if analyzed in the so-called dipole frame [39]. In this frame, most of the energy is
still carried by the hadron, but the virtual photon is sufficiently energetic, to dissociate before scattering
into a qq̄-pair (a colour dipole), which then scatters off the hadron. Since the latter is Lorentz-contracted,
the dipole sees it as a colour source of transverse extent, living (essentially) on the light cone. This colour
field is created by the constituents of the well developed hadron wave function and – in view of its high
intensity, i.e. large occupation numbers – can be considered as classical. Its strength near saturation
is O(1/

√
αs). At high energies, the lifetime of the qq-dipole is much larger than the interaction time

2I wish to thank A. Levy for the experimental data in Fig. 6 (right)
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Fig. 7: Illustration of the color dipole picture, its associated variables, the factorization property and the structure
of the dipole cross section in an instanton approach.

between this qq-pair and the hadron and hence, at small xBj, this gives rise to the familiar factorized
expression of the inclusive photon-proton cross sections,

σL,T (xBj, Q
2) =

∫ 1

0
dz

∫
d2 r |ΨL,T (z, r)|2 σDP(r, . . .). (9)

Here, |ΨL,T (z, r)|2 denotes the modulus squared of the (light-cone) wave function of the virtual photon,
calculable in pQCD, and σDP(r, . . .) is the qq-dipole - nucleon cross section. The variables in Eq. (9) are
the transverse (qq)-size r and the photon’s longitudinal momentum fraction z carried by the quark. The
dipole cross section is expected to include in general the main non-perturbative contributions. For small
r, one finds within pQCD [38, 40] that σDP vanishes with the area πr2 of the qq-dipole. Besides this
phenomenon of “colour transparency” for small r = |r|, the dipole cross section is expected to saturate
towards a constant, once the qq-separation r exceeds a certain saturation scale rs (cf. Fig. 7 (right)).
While there is no direct proof of the saturation phenomenon, successful models incorporating saturation
do exist [41] and describe the data efficiently.

Let us outline more precisely our underlying strategy:

– We start from the large Q2 regime and appropriate cuts such that I-perturbation theory is strictly
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valid. The corresponding, known results on I-induced DIS processes [6] are then transformed into
the colour-dipole picture.

– The guiding question is: Can background instantons of size ∼ 〈ρ〉 give rise to a saturating, geo-
metrical form for the dipole cross section,

σ
(I)
DP(r, . . .)

r>∼ 〈ρ〉∼ π〈ρ〉2. (10)

– With the crucial help of lattice results, the qq̄-dipole size r is next carefully increased towards
hadronic dimensions. Thanks to the lattice input, IR divergencies are removed and the original
cuts are no longer necessary.

4.3 The simplest process: γ∗ + g
(I)→ qR + qR

Let us briefly consider first the simplest I-induced process, γ∗ g ⇒ qRqR, with one flavour and no final-
state gluons. More details may be found in Ref. [20]. Already this simplest case illustrates transparently
that in the presence of a background instanton, the dipole cross section indeed saturates with a saturation
scale of the order of the average I-size 〈ρ〉.

We start by recalling the results for the total γ∗N cross section within I-perturbation theory from
Ref. [6],

σL,T (xBj, Q
2) =

1∫

xBj

dx

x

(xBj

x

)
G
(xBj

x
, µ2
)∫

dt
dσ̂γ

∗g
L,T (x, t,Q2)

dt
; (11)

dσ̂γ
∗g
L

dt
=

π7

2

e2
q

Q2

αem

αs

[
x(1− x)

√
tu
R(
√−t)−R(Q)

t+Q2
− (t↔ u)

] 2

, (12)

with a similar expression for dσ̂γ
∗ g
T /d t. Here, G

(
xBj, µ

2
)

denotes the gluon density and L, T refers to
longitudinal and transverse photons, respectively.

Note that Eqs. (11), (12) involve the resolution dependent length scale

R(Q) =

∫ ∞

0
dρ D(ρ)ρ5(Qρ)K1(Qρ). (13)

which is of key importance for continuing towards Q〈ρ〉 ⇒ 0! For sufficiently large Q〈ρ〉, the cru-
cial factor (Qρ)K1(Qρ) ∼ e−Qρ in Eq.(13) exponentially suppresses large size instantons and I-
perturbation theory holds, as shown first in Ref. [6]. In our continuation task towards smaller Q〈ρ〉,
crucial lattice information enters. We recall that the I-size distribution D lattice(ρ), as measured on the
lattice [8, 12, 13], is strongly peaked around an average I-size 〈ρ〉 ≈ 0.5 fm, while being in excellent
agreement with I-perturbation theory for ρ <∼ 0.35 fm (cf. Sect. 2.2 and Fig. 3(left)). Our strategy is thus
to generally identify D(ρ) = Dlattice(ρ) in Eq.(13), whence

R(0) =

∫ ∞

0
dρ Dlattice(ρ)ρ5 ≈ 0.3 fm (14)

becomes finite and a Q2 cut is no longer necessary.

By means of an appropriate change of variables and a subsequent 2d-Fourier transformation,
Eqs. (11), (12) may indeed be cast [20] into a colour-dipole form (9), e.g. (with Q̂ =

√
z (1− z)Q)

(
|ΨL|2 σDP

)(I)
≈ | ΨpQCD

L (z, r) | 2 1

αs
xBjG(xBj, µ

2)
π8

12
(15)
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×





∫ ∞

0
dρD(ρ) ρ5



− d
dr2

(
2r2 K1(Q̂

√
r2+ρ2/z)

Q̂
√
r2+ρ2/z

)

K0(Q̂r)
− (z ↔ 1− z)








2

.

The strong peaking of Dlattice(ρ) around ρ ≈ 〈ρ〉, implies

(
|ΨL,T | 2σDP

)(I) ⇒




O(1) but exponentially small; r → 0,

| Ψ pQCD
L,T | 2 1

αs
xBjG(xBj, µ

2) π
8

12 R(0)2; r
〈ρ〉 >∼ 1.

(16)

Hence, the association of the intrinsic instanton scale 〈ρ〉 with the saturation scale rs becomes appar-
ent from Eqs. (15), (16): σ

(I)
DP (r, . . .) rises strongly as function of r around rs ≈ 〈ρ〉, and indeed

saturates for r/〈ρ〉 > 1 towards a constant geometrical limit, proportional to the area πR(0)2 =

π
(∫∞

0 dρDlattice(ρ) ρ5
)2, subtended by the instanton. Since R(0) is divergent within I-perturbation

theory, the information about D(ρ) from the lattice (Fig. 6 (left)) is crucial for the finiteness of the result.

4.4 Identification of the color glass condensate with the QCD-sphaleron state

Next, let us consider the realistic process, γ∗ + g
(I)→ nf (qR + qR) + gluons. On the one hand, the

inclusion of final-state gluons and nf > 1 causes a significant complication. On the other hand, it is
due to the effect of those gluons that the identification of the QCD-sphaleron state with the colour glass
condensate has emerged [20, 21], while the qualitative “saturation” features remain unchanged. Most
of the I-dynamics resides in the I-induced q∗ g-subprocess with an incoming off-mass-shell quark q∗

originating from photon dissociation. The important kinematical variables are the I-subprocess energy
E =

√
(q′ + p)2 and the quark virtuality Q′ 2 = −q′ 2, with the gluon 4-momentum denoted by pµ.

It is most convenient to account for the final-state gluons by means of the I Ī-valley method [25]
(cf. also Sect. 2.1). It allows to achieve via the optical theorem, an elegant summation over the gluons.
The result leads to an exponentiation of the final-state gluon effects, residing entirely in the I Ī-valley
interaction −1 ≤ ΩIĪ

valley(R
2

ρρ̄ + ρ
ρ̄ + ρ̄

ρ ;U) ≤ 0 , introduced in Eq. (3) of Sect. 2.1. Due to the new gluon
degrees of freedom, the additional integrations over the I Ī-distance Rµ appear (cf. Fig. 2 (right)), while
the matrix U characterizes the relative I Ī orientation in colour space. We remember from Sect. 2.1 that
the functional form of ΩIĪ

valley is analytically known [26, 27] (formally) for all values of R2/(ρρ̄). Our
strategy here is identical to the one for the “simplest process” above: Starting point is the γ ∗N cross
section, this time obtained by means of the I Ī-valley method [7]. The next step is a variable and Fourier
transformation into the colour-dipole picture. The dipole cross section σ̃ (I),gluons

DP (l2, xBj, . . .) before the
final 2d-Fourier transformation of the quark transverse momentum l to the conjugate dipole size r, arises
simply as an energy integral over the I-induced total q∗g cross section in Eq. (3) from Ref. [7],

σ̃
(I),gluons
DP ≈ xBj

2
G(xBj, µ

2)

∫ Emax

0

dE

E

[
E4

(E2 +Q ′2)Q ′2
σ

(I)
q∗ g

(
E, l2, . . .

)]
, (17)

involving in turn integrations over the I Ī-collective coordinates ρ, ρ̄, U and Rµ.

In the softer regime of interest for saturation, we again substitute D(ρ) = Dlattice(ρ), which
enforces ρ ≈ ρ̄ ≈ 〈ρ〉 in the respective ρ, ρ̄-integrals, while the integral over the I Ī-distance R is
dominated by a saddle point,

R

〈ρ〉 ≈ function

(
E

msph

)
; msph ≈

3π

4

1

αs 〈ρ〉
= O( few GeV ). (18)

At this point, the mass msph of the QCD-sphaleron [5,37], i.e the barrier height separating neighbouring
topologically inequivalent vacua, enters as the scale for the energy E. The saddle-point dominance
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sponding IĪ-valley prediction [20] from Fig. 3 (right) are re-displayed versus energy in units of the QCD sphaleron
massmsph.This illustrates the validity of the valley approach right until the sphaleron peak! (right) The same trend
for electroweakB+L -violation is apparent from an independent numerical simulation of the suppression exponent
for two-particle collisions (’Holy Grail’ function) FHG(E) [42, 43]

implies a one-to-one relation,

R

〈ρ〉 ⇔
E

msph
; with R = 〈ρ〉 ⇔ E ≈ msph. (19)

Our continuation to the saturation regime now involves crucial lattice information about ΩIĪ . The
relevant lattice observable is the distribution of the I Ī-distance [8, 20] R, providing information on〈

exp[−4π
αs

ΩIĪ ]
〉
U,ρ,ρ̄

in euclidean space (cf. Fig. 3 (right)). Due to the crucial saddle-point relation

Eqs. (18, 19), we may replace the original variable R/〈ρ〉 by E/msph. A comparison of the respec-
tive IĪ-valley predictions with the UKQCD lattice data [8, 13, 20] versus E/msph is displayed in Fig. 8
(left). It reveals the important result that the I Ī-valley approximation is quite reliable up to E ≈ msph.
Beyond this point a marked disagreement rapidly develops: While the lattice data show a sharp peak at
E ≈ msph, the valley prediction continues to rise indefinitely for E >∼msph! It is remarkable that an
extensive recent and completely independent semiclassical numerical simulation [42] shows precisely
the same trend for electroweak B + L-violation, as displayed in Fig. 8 (right).

It is again at hand to identify ΩIĪ = ΩIĪ
lattice forE >∼msph. Then the integral over the I-subprocess

energy spectrum (17) in the dipole cross section appears to be dominated by the sphaleron configuration
at E ≈ msph. The feature of saturation analogously to the “simplest process” in Sect. 4.3 then implies
the announced identification of the colour glass condensate with the QCD-sphaleron state.

5 Conclusions
As non-perturbative, topological fluctuations of the gluon fields, instantons are a basic aspect of QCD.
Hence their experimental discovery through hard instanton-induced processes would be of fundamental
significance. A first purpose of this overview was to present a summary of our systematic theoretical
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and phenomenological investigations of the discovery potential in DIS at HERA, based on a calculable
rate of measurable range and a characteristic ”fireball”-like event signature. In a summary of the present
status of experimental searches by H1 and ZEUS, the typical remaining challenges were particularly
emphasized. In view of the good performance of the upgraded HERA II machine, one may expect
further possibly decisive instanton search results in the near future.The existing H1 and ZEUS results
have demonstrated already that the required sensitivity according to our theoretical predictions is within
reach. Looking ahead, I have briefly discussed an ongoing project concerning a broad investigation of the
discovery potential of instanton processes at the LHC. A final part of this review was devoted to our work
on small-x saturation from an instanton perspective. After summarizing the considerable motivation for
the relevance of instantons in this regime, the emerging intuitive, geometrical picture was illustrated with
the simplest example, where indeed, saturation does occur. The form of the dipole cross section depends
on the relation of two competing areas: the area π r2, subtended by the q̄q-dipole, and the area π 〈ρ〉2
associated with the average size, 〈ρ〉 ≈ 0.5 fm, of the background instanton. For r/〈ρ〉 � 1, the dipole
cross section is dominated by the dipole area, corresponding to ’color transparency’. For r/〈ρ〉 >∼ 1 it
saturates towards a constant proportional to the background instanton area. Correspondingly, the average
I-size scale 〈ρ〉 is associated with the saturation scale. A further central and intriguing result concerned
the identification of the Color Glass Condensate with the QCD-sphaleron state. Throughout, the non-
perturbative information from lattice simulations was instrumental.
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Heavy quark production at HERA and the LHC

Matthew Wing
University College London and DESY

Abstract
Measurements of heavy quark production, particularly from HERA, their the-
oretical understanding and their relevance for the LHC are reviewed1. The
status of beauty and charm production is discussed in the context of the differ-
ent components of the production process: the parton density function of the
colliding hadrons; the hard scatter; and the fragmentation of the quarks into
hadrons. The theory of QCD at next-to-leading order generally describes well
the hadronic structure and the production of heavy quarks although sometimes
fails in details which are highlighted. The fragmentation of heavy quarks mea-
sured at HERA is consistent with that at LEP and hence supports the notion of
universality.

1 Why study heavy quark production?
The measurement of heavy quarks can give insights into many physical phenomena such as: new parti-
cles which are expected to decay predominantly to beauty (and charm); precise measurements of elec-
troweak parameters; and, the subject of this paper, a deeper understanding of the strong force of nature.
The strong force as described within perturbative Quantum Chromodynamics (QCD) should be able to
give a precise description of heavy quark production. This postulate is described and tested here. The
measurement of heavy quark production also yields valuable information on the structure of colliding
hadrons. The production of a pair of heavy quarks in a generic hadron collision is shown in Fig. 1 where
it can be seen that the process is directly sensitive to the gluon content of the hadron. Most information
on the structure of a hadron comes from inclusive deep inelastic scattering where the gluon content is
determined in the evolution of the QCD equations. Therefore measurement of such a process in Fig. 1
provides complimentary information to that from inclusive measurements.

As well as understanding for its own sake, knowledge of the structure of hadrons will be important
at future colliders such as the LHC and International Linear Collider where hadronic photons will have
large cross section in both e+e− and γγ modes. Heavy quarks will be copiously produced at future
colliders as a background to the more exotic processes expected. Therefore a precise description of their
production properties within QCD will aid in the discovery of physics beyond the Standard Model. An
example of this was studied by the ATLAS collaboration using Monte Carlo to simulate the production at
the LHC of a bb̄ pair along with a supersymmetric Higgs particle (H/A) which subsequently decays to a
bb̄ pair [1]. For an assumed massmA = 500 GeV, even requiring four beauty jets, a signal-to-background
ratio of only a few percent would be achieved. The irreducible background arises from QCD processes
where the dominant processes are gg and gb with a gluon splitting to a bb̄ pair. A discovery in this
channel would therefore only be possible with precise knowledge these QCD background processes.

2 Theoretical and phenomenological overview
For a generic collision between two hadrons, Ha and Hb, in which a heavy quark pair is produced (see
Fig. 1),

Ha +Hb → QQ̄+X,

1Since the presentation, some results have been updated; these are used in what follows.
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Hb

Ha Q

Q

Fig. 1: Example of the production of a heavy quark pair in the collision of two hadrons.

the production cross section, σ(S), for such a reaction at a centre-of-mass energy, S, can be written as:

σ(S) =
∑

i,j

∫
dx1

∫
dx2 σ̂ij(x1x2S,m

2, µ2)fHai (x1, µ)fHbj (x2, µ),

where the right-hand side is a convolution of the parton densities in the colliding hadrons, fHai and
fHbj , and the short-distance cross section, σ̂ij . These are evaluated at a renormalisation and factorisation
scale, µ, and momentum fractions of the colliding partons, x1 and x2. The parton densities are extracted
from QCD fits to inclusive deep inelastic scattering and other data. The short-distance cross section is
calculable in QCD and is a perturbative expansion in the mass of the heavy quark, m:

σ̂ij(s,m
2, µ2) =

α2
s(µ

2)

m2

[
f

(0)
ij (ρ) + 4παs(µ

2)
[
f

(1)
ij (ρ) + f̄

(1)
ij (ρ) log(µ2/m2)

]
+O(α2

s)
]
, ρ = 4m2/s.

The expansion demonstrates that the larger the mass the faster the convergence. Hence predictions for
beauty production should be more accurate than those for charm.

The treatment of the mass of the heavy quark is an important consideration for the implementation
of the perturbative formalism in calculations. There are three schemes used: the fixed-order (FO) or
“massive” scheme, the resummed to next-to-leading logarithms (NLL), or “massless” scheme and more
recently a scheme matching the two, known as FONLL [2]. In the FO scheme, the predictions should
be valid for transverse momenta of the order of the mass of the heavy quark. In this scheme, the heavy
quarks are not active flavours in the parton distributions of the incoming hadron(s); they are produced in
the hard scatter through processes such as gg → QQ̄ shown in Fig. 1. The resummed scheme is valid
for transverse momenta much larger than the heavy quark mass. The heavy quarks are active flavours in
the parton distributions of the incoming hadron(s), so can be produced by reactions such as gQ → gQ.
The FONLL calculations match the two schemes and are valid for all transverse momenta. The validity
of the different calculations is investigated in comparison with data, particularly as a function the energy
scale.

The fixed-order calculations used are from Frixione et al. (FMNR) [3] for photoproduction pro-
cesses and HVQDIS from Harris and Smith [4] for deep inelastic scattering. Resummed calculations are
only available for photoproduction at HERA from two groups of authors, Cacciari et al. [5] and Kniehl et
al. [6]. The FONLL calculation is also only available in photoproduction. A calculation which is already
available for some processes in pp collisions, MC@NLO [7], combines a fixed-order calculation with the
parton showering and hadronisation from the HERWIG Monte Carlo generator [8]. Processes at HERA
are not yet included, but it is hoped they will be done in the future and thereby provide a new level of
detail in comparison with experimental data.
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The advantages of a programme such as MC@NLO are its simulation of higher orders and also its
sophisticated approach to hadronisation which attempts to describe the whole of the final state. The other
programmes produce partons in the final state and fragment the outgoing quark to a hadron usually via
the Peterson function [9]. Therefore these calculations may not be able to describe the full hadronic final
state of an event. The validity of the fragmentation functions used also needs to be tested; they are usually
extracted from fits to e+e− data and their applicability to ep or pp needs to be demonstrated. Therefore
the fragmentation function should be measured at HERA, and is discussed later, or measurements need
to be made at high transverse energy or using jets where the effects of fragmentation are reduced.

Hadron-hadron collisions producing heavy quarks pairs can be simplified to and provide informa-
tion on: the parton densities and in particular the gluon and heavy quark content of the hadron; the hard
scatter and the dynamics of QCD as implemented into programmes; fragmentation or description of the
parton to hadron transition. All of these aspects are discussed in this write-up.

3 Information needed by the LHC experiments
The information needed by the LHC which can be provided by the HERA experiments is the following:

– the state of the description of heavy quark production data by theoretical predictions. The produc-
tion of heavy quarks in the hard scattering process is discussed here in detail. Information on heavy
quarks produced in the splitting of a gluon outgoing from the hard sub-process is also important
for the LHC, but the information from HERA is currently limited;

– the gluon and heavy quark content of the proton parton density functions;
– details of fragmentation in a hadronic environment;
– the effect of the underlying event in heavy quark processes. This information is limited at HERA

but may be studied in the future;
– HERA results can provide general information on event and jet topologies which will be useful for

designing algorithms or triggers at the LHC experiments.

The designing of effective triggers for b physics is particularly acute for the LHCb experiment [10].
Large backgrounds are expected although event topologies should be different to the signal b physics. For
example minimum bias events will have a smaller track multiplicity and a lower transverse momentum
for the highest pT track. Therefore using Monte Carlo simulation, cuts can be found to be able to reduce
the rate of minimum bias whilst triggering efficiently on b events. Such simulations require reliable
Monte Carlo simulation of the event topologies of both classes of events.

Measurements of the proton structure function at HERA will constrain the parton densities in a
large region of the kinematic plane where B mesons will be produced within the acceptance of the LHCb
detector. According to Monte Carlo simulations, these events are produced predominantly with a b quark
in the proton. However, this is just a model (PYTHIA [11]) and at NLO some of the events will be
summed into the gluon distribution of the proton. Nevertheless, measuring all flavours in the proton at
HERA is one of the goals of the experiments and recent results on the beauty contribution to the proton
structure function [12] shed some light on the issue.

4 Open beauty production
The production of open beauty and its description by QCD has been of great interest in the last 10–15
years.The difference between the rates observed by the Tevatron experiments [13] and NLO QCD pre-
dictions led to a mini crisis with many explanations put forward. Several measurements were performed
in different decay channels and then extrapolated to the quark level to facilitate a comparison with QCD
and between themselves. The NLO QCD prediction was found to be a factor of 2–3 below the data for
all measurements as shown in Fig. 2a. As mentioned, these results were extrapolated to the b-quark level

3

HEAVY QUARK PRODUCTION AT HERA AND THE LHC

19



using Monte Carlo models which may or may not give a good estimate of this extrapolation. To facilitate
a particular comparison, an extrapolation can be useful, but should always be treated with caution and
the procedure clearly stated and values of extrapolation factors given. Initial measurements in terms of
measured quantities should also always be given.

The CDF collaboration also published measurements of B meson cross sections. They were also
found to be significantly above NLO calculations, but allowed for phenomenological study. Work on the
fragmentation function was performed by Cacciari and Nason [14] which in combination with updated
parton density functions and the FONLL calculation gave an increased prediction. New measurements at
Run II have also been made by the CDF collaboration which probe down to very low transverse momenta.
In combination with a measured cross section lower (but consistent) than the Run I data, and the above
theoretical improvements, the data and theory now agree very well as shown in Fig. 2b. The programme
MC@NLO also gives a good description of the data.

(a) (b)

Fig. 2: (a) Tevatron Run I data extrapolated and compared to NLO QCD predictions and (b) Run II data presented
in terms of the measured quantities and compared to improved QCD theory.

The first result from HERA [15] also revealed a large discrepancy with NLO QCD predictions.
This analysis also presented an extrapolated quantity, whereas later measurements [16–18] also pre-
sented measured quantities. The most recent and precise measurements [17] of beauty production with
accompanying jets are shown in Fig. 3 compared with predictions from NLO QCD. The measurements
in photoproduction (Fig. 3a) are shown to be very well described by the prediction and the data from the
two collaborations also agree well. The H1 data is somewhat higher than that from ZEUS; the difference
is concentrated at low pµT where the H1 data is also above the NLO calculation. The measurements in
deep inelastic scattering are also generally described by NLO QCD although some differences at forward
ηµ and low pµT are observed by both collaborations. However, inclusive measurements which lead to a
measurement of the beauty contribution to the proton structure function [12] are well described by QCD
(see next Section).

The situation for the QCD description of b production has recently changed significantly. In gen-
eral, QCD provides a good description of the data with some hints at differences in specific regions.
Certainly, there is no longer a difference of a factor of 2–3 independent of pT . The HERA experiments
will produce several new measurements in the next few years of higher precision and covering a larger
kinematic region at both low and high pT and forward η. Allied with expected calculational and phe-
nomenological improvements, a deep understanding of beauty production should be achieved by the
turn-on of the LHC.
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Fig. 3: Measurement of open beauty production as a function of the pseudorapidity of the decay muon for (a) dijet
photoproduction from the H1 and ZEUS experiments and (b) inclusive jet deep inelastic scattering from the H1
experiment. (The measurement from ZEUS experiment for (b) is in a different kinematic region but reveals the
same physics message and so for brevity, is not shown)

5 Open charm production
Due to its smaller mass, predictions for charm production are less accurate than for beauty. However
large data samples allow detailed comparisons with theory. An example of a measured D∗ cross section
in deep inelastic scattering is shown in Fig. 4a; data from the two experiments agree with each other and
are well described by the prediction of QCD. Similar measurements have been made in photoproduction
in which the data is less well described. Due to the larger cross section, the photoproduction data could
prove valuable in constraining the photon as well as the proton structure. However, as can be seen
from Fig. 4b, the theoretical precision is lagging well behind that of the data. Therefore more exclusive
quantities and regions, with smaller theoretical uncertainties, are measured.

Measurements of charm photoproduction accompanied with jets pose a challenge for theory due
the extra scale of the jet transverse energy. Such complicated final states will be copious at the LHC,
so the verification of theory to HERA data will aid in the understanding of these high-rate QCD events.
Dijet correlations in photoproduction have recently been measured [19] and compared with available
calculations. Events were selected in two regions: one enriched in direct photon events where the photon
acts as a pointlike object and one enriched in resolved photon events where the photon acts as a source of
partons. The cross section of the difference in the azimuthal angle, ∆φjj, of the two highest ET jets has
been measured. For the LO 2 → 2 process, the two jets are back-to-back. The data exhibit a significant
cross section at low ∆φjj and for the direct photon events are reasonably well described by NLO QCD
(not shown). However, the description for resolved photon events is poor as shown in Fig. 5a. This
region is particularly sensitive to higher orders not present in the QCD calculation. Monte Carlo models
are compared to the data in Fig. 5b; although the normalisation is poor, the shape of the distribution is
very well described by the HERWIG simulation. This indicates that for the precise description of such
processes, higher-order calculations or the implementation of additional parton showers in current NLO
calculations are needed.
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Fig. 4: Measurement of D∗ production compared with NLO QCD predictions: (a) the differential cross section in
deep inelastic scattering and (b) the relative uncertainty in data and theory in photoproduction.
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Fig. 5: Difference in the azimuthal angle of the two highest ET jets in charm photoproduction for a sample
enriched in resolved photon events compared to (a) a NLO QCD calculation and (b) Monte Carlo models.

6 The structure of the proton
Open charm (and more recently beauty) production in deep inelastic scattering acts as a powerful probe of
the structure of the proton, particularly the gluon and heavy quark densities. Such a direct measurement
of the gluon density complements its extraction in QCD fits to inclusive data. The cross section for the
production of a heavy quark pair can be written in terms of the heavy quark contribution to the proton
structure functions:

d2σQQ̄
(
x,Q2

)

dxdQ2
=

2πα2

xQ4

{[
1 + (1− y)2

]
FQQ̄2

(
x,Q2

)
− y2FQQ̄L

(
x,Q2

)}
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The value of the charm contribution, F cc̄
2 , has traditionally been extracted by measuring D∗ mesons

within the acceptance of the detector and extrapolating to the full phase space.

The values of F cc̄2 extracted from the measured D∗ cross sections [20–22] are shown in Fig. 6a
compared with NLO QCD. New measurements of F cc̄

2 have been recently performed using an inclusive
sample of high pT tracks [12]. This data is more inclusive than the D∗ measurements probing much
lower pT and thereby having much reduced extrapolation factors (a factor of 1.2 rather than 2–3 as
for the D∗ measurements). These results confirm the previous data and add extra information on F cc̄

2 .
The results on F cc̄2 demonstrate a large gluon density in the proton as exhibited by the scaling violations
versus Q2 and are well described by such a parton density function. At high Q2, charm contributes up to
about 30% of the inclusive cross section. It is hoped with higher statistics and a better control over the
systematics that the charm cross section data can be used in QCD fits to constrain the gluon (or heavy
quark) density in the proton.
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Fig. 6: (a) Charm contribution, F cc̄2 , and (b) beauty contribution, F bb̄2 , to the proton structure function, F2, versus
Q2 for fixed x.

Applying the same technique of using high pT tracks, the H1 collaboration have made measure-
ments of F bb̄2 which are shown in Fig. 6. The results are consistent with scaling violations and are well
described by new parton density functions. The differences between the different parametrisations are
not insignificant and future measurements should be able to discriminate between them. For theQ2 range
measured, beauty production contributes up to 3% of the inclusive cross section.

7 Universality of charm fragmentation
Heavy quark fragmentation has been extensively studied in e+e− collisions. The clean environment,
control over the centre-of-mass energy and back-to-back dijet system provide an ideal laboratory for ac-
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curate measurement of fragmentation parameters. The measured parameters, e.g. fragmentation function
and fraction of charm quarks hadronising to a particular meson, are used as inputs to models and NLO
QCD calculations of ep collisions. Therefore, the validity of using fragmentation parameters extracted
from e+e− data in ep data needs to be verified. The strangeness suppression factor, γs, the ratio of neu-
tral and charged D-meson production rates, Ru/d, the fraction of charged D mesons produced in a vector
state, P dv and the fragmentation fractions, f(c → D,Λ), have been measured in deep inelastic scatter-
ing [23] and in photoproduction [24]. The results are shown in Fig. 7 compared with values obtained
in e+e− collisions. The data obtained in different processes are consistent with each other and thereby
consistent with the concept of universal fragmentation. The measurements in photoproduction also have
precision competitive with the combined e+e− data. The data therefore provide extra constraints and
demonstrate that the fragmentation at a hadron collider in the central part of the detector looks like that
in an e+e− collision. This will provide useful input for future models to be used at the LHC.
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Fig. 7: Comparisons of fragmentation parameters, γs, Ru/d and P dv and f(c → D,Λ) in photoproduction, deep
inelastic scattering and e+e− collisions.

The charm fragmentation function to D∗ mesons has been measured by both the H1 and ZEUS
collaborations [25] and compared to e+e− data. Although the definitions of the fragmentation function
and the energies are different, the general trends are the same. However, a consistent fit to all data within
a given Monte Carlo or NLO calculation is needed to clarify this situation. Measurements at the Tevatron
would also contribute significantly to this area.

8 Conclusions
An increasing number of high precision measurements of heavy quark production from HERA have re-
cently become available. They are providing valuable information on the parton densities, the overall
production rates and the concept of the universality of fragmentation. Precise and well-defined mea-
surements have allowed phenomenological improvements to be made. Generally QCD describes the
production of heavy quarks; in particular, due in part to the advances made in the HERA measurements,
the prediction for the production of beauty quarks is no longer well below the data. There are some
details still lacking which await to be confronted with higher order calculations or NLO calculations
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interfaced with parton showers and hadronisation. There is also ongoing work in tuning Monte Carlo
predictions to all known data which demonstrates the need to have global calculations which can predict
all processes under study. In the next few years in the run up to the LHC, HERA will produce a lot more
data and more will be known about heavy quark production.
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From HERA to the LHC

John Ellis
CERN, Geneva

Abstract
Some personal comments are given on some of the exciting interfaces between
the physics of HERA and the LHC. These include the quantitative understand-
ing of perturbative QCD, the possible emergence of saturation phenomena and
the Colour-Glass Condensate at small x and large Q2, the link between for-
ward physics and ultra-high-energy cosmic rays, and new LHC opportunities
opened up by the discovery of rapidity-gap events at HERA, including the
search for new physics such as Higgs bosons in double-diffraction events.

1 Preview
There are many exciting interfaces between physics at HERA and the LHC, and I cannot do justice to all
of them in this talk. Therefore, in this talk I focus on a few specific subjects that interest me personally,
starting with the LHC’s ‘core business’, namely the search for new physics at the TeV scale, notably
the Higgs boson(s) and supersymmetry [1]. Identifying any signals for such new physics will require
understanding of the Standard Model backgrounds, and QCD in particular. I then continue by discussing
some other topics of specific interest to the DESY community.

– The understanding of QCD will be important for making accurate studies of any such new physics.
Perturbative QCD at moderate x and large pT is quite well understood, with dramatic further
progress now being promised by novel calculational techniques based on string theory [2].

– Novel experimental phenomena are now emerging at RHIC at small x, following harbingers at
HERA. The parton density saturates, and a powerful organizational framework is provided by
the Colour-Glass Condensate (CGC) [3]. Forward measurements at the LHC will provide unique
opportunities for following up on this HERA/RHIC physics.

– Forward physics at the LHC will also provide valuable insight into the interpretation of ultra-
high-energy cosmic rays (UHECRs) [4]. One of the principal uncertainties in determining their
energy scale is the modeling of the hadronic showers they induce, and the LHC will be the closest
laboratory approximation to UHECR energies.

– Looking further forward, there is increasing interest in exploring at the LHC the new vistas in
hard and soft diffraction opened up by the discovery of rapidity-gap events at HERA [5]. One
particularly interesting possibility is quasi-exclusive diffractive production of Higgs bosons or
other new particles at the LHC [6]. This is particularly interesting in supersymmetric extensions
of the Standard Model, notably those in which CP is violated [7].

2 Prospects in Higgs Physics
Many studies have given confidence that the Standard Model Higgs boson will be found at the LHC, if
it exists [8]. Moreover, there are some chances that it might be found quite quickly, in particular if its
mass is between about 160 GeV and 600 GeV. However, discovering the Higgs boson will take rather
longer if its mass is below about 130 GeV, as suggested in the minimal supersymmetric extension of the
Standard Model (MSSM) [9]. In this case, the Higgs signal would be composed of contributions from
several different production and decay channels, notably including gg → H → γγ.
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Understanding the gluon distribution at x ∼ 10−2 is therefore a high priority, and one to which
HERA measurements of processes involving gluons have been playing key roles [10]. Perturbative cor-
rections to the gg → H production process need to be understood theoretically, as do the corrections to
H → γγ decay. Resummation of the next-to-next-to-leading logarithms has by now reduced these uncer-
tainties to the 10% level, and further improvements may be possible with the string-inspired calculational
techniques now being introduced [11].

Fig. 1 shows estimates of the accuracy with which various Higgs couplings may be determined at
the LHC, also if the luminosity may be increased by an order of magnitude (SLHC) [12] [see also [13]].
There are interesting prospects for measuring the couplings to ττ, b̄b,WW,ZZ and t̄t as well as the total
Higgs decay width, though not with great accuracy. Measurements at the ILC would clearly be much
more powerful for this purpose [13].
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Fig. 1: Illustrations of the accuracy with which Higgs couplings could be measured at the LHC with the planned
luminosity and with a possible upgrade by a factor of ten (SLHC) [12].

3 Theorists are Hedging their Bets
The prospect of imminent Higgs discovery is leading theorists to place their last bets on the LHC roulette
wheel, and many are hedging their bets by proposing and discussing alternatives to the Standard Model
or the MSSM. Composite Higgs models are not greatly favoured, since they have a strong tendency to
conflict with the precision electroweak data [14]. This problem has led some theorists to question the
interpretation of the electroweak data, which are normally taken to favour mH < 300 GeV, debating
their consistency and even arguing that some data should perhaps be discounted [15]. Personally, I see
no strong reason to doubt the hints from the electroweak data. An alternative corridor leading towards
higher Higgs masses is provided by including higher-dimensional operators in the electroweak data anal-
ysis [16]: this would require some fine-tuning, but cannot be excluded. An even more extreme alternative
that has been re-explored recently is that of Higgsless models [17]. However, these lead to strong WW
scattering and conflict with the available electroweak data. These problems are alleviated, but not solved,
by postulating extra dimensions at the TeV scale [18].

One of the least unappetizing alternatives to the supersymmetric Higgs paradigm is offered by
little Higgs models [19]. Their key idea is to embed the Standard Model in a larger gauge group, from
which the Higgs boson emerges as a relatively light pseudo-Goldstone boson. The one-loop quadratic
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divergence due to the top quark:

δm2
H,top(SM) ∼ (115 GeV)2

(
Λ

400 GeV

)2

is cancelled by the contribution of a new heavy T quark:

δm2
H,top(LH) ∼ 6GFm

2
t√

2π2
m2
T log

Λ

mT

Additionally, there are new gauge bosons and exotic Higgs representations. The Standard-Model-like
Higgs boson is expected to be relatively light, possibly below∼ 150 GeV, whereas the other new particles
are expected to be heavier:

MT < 2 TeV(mh/200GeV)2

M ′W < 6 TeV(mh/200GeV)2

MH++ < 10 TeV

Certainly the new T quark, probably the W ′ boson and possibly even the doubly-charged Higgs boson
will be accessible to the LHC. Thus little Higgs models have quite rich phenomenology, as well being
decently motivated. However, they are not as complete as supersymmetry, and would require more new
physics at energies > 10 TeV.

Depending on the mass scale of this new physics, there may be some possibility for distinguishing
a little Higgs model from the Standard Model by measurements of the gg → H → γγ process at the
LHC. However, the ILC would clearly have better prospects in this regard [13].

4 Supersymmetry
No apologies for repeating the supersymmetric mantra: it resolves the naturalness aspect of the hierar-
chy problem by cancelling systematically the quadratic divergences in all loop corrections to the Higgs
mass and hence stabilizes the electroweak scale [20], it enables the gauge couplings to unify [21], it
predicts mH < 150 GeV [9] as suggested by the precision electroweak data [14], it stabilizes the Higgs
potential for low Higgs masses [22], and it provides a plausible candidate [23] for the dark matter that
astrophysicists and cosmologists claim clutters up the Universe.

However, all we have from accelerators at the moment are lower limits on the possible supersym-
metric particle masses, most notably from the absence of sparticles at LEP: m ˜̀,mχ± > 100 GeV and
the Tevatron collider: mg̃,mq̃ > 300 GeV, the LEP lower limit mH > 114.4 GeV, and the consistency of
b → sγ decay with the Standard Model. However, if we assume that the astrophysical cold dark matter
is largely composed of the lightest supersymmetric particle (LSP), and require its density to lie within
the range allowed by WMAP et al [24]:

0.094 < Ωχh
2 < 0.129,

we obtain upper as well as lower limits on the possible sparticle masses. The anomalous magnetic
moment of the muon, gµ − 2, provides intermittent hints on the supersymmetric mass scale [25]: these
are lower limits if you do not believe there is any significant discrepancy with the Standard Model
prediction, but also an upper limit if you do not believe that the Standard Model can fit the data, as is
indicated by the current interpretation of the e+e− data used to calculate the Standard Model prediction.

If one compares the production of the lightest neutral Higgs boson in the constrained MSSM
(CMSSM) in which all the soft supersymmetry-breaking scalar masses m0 and gaugino masses m1/2

are assumed to be universal, the good news is that the rate for gg → h → γγ is expected to be within
10% of the Standard Model value, as seen in Fig. 2(a) [26]. On the other hand, the bad news is the rates
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Fig. 2: Left panel: The cross section for production of the lightest CP-even MSSM Higgs boson in gluon fusion
and its decay into a photon pair, σ(gg → h)×B(h→ γγ), normalized to the Standard Model value with the same
Higgs mass, is given in the (m1/2,m0) plane for µ > 0, tanβ = 10, assuming A0 = 0 and mt = 175 GeV [26].
The diagonal (red) solid lines are the ±2 − σ contours for gµ − 2. The near-vertical solid, dotted and dashed
(black) lines are the mh = 113, 115, 117 GeV contours. The (brown) bricked regions are excluded since in these
regions the LSP is the charged τ̃1. Right panel: The numbers of standard deviations by which the predictions of
the MSSM with non-universal Higgs masses may be distinguished from those of the Standard Model in different
channels by measurements at the ILC [27]. The predictions with the CMSSM values of MA and µ are indicated
by light vertical (orange) lines. The other parameters have been chosen as m1/2 = 300 GeV, m0 = 100 GeV,
tanβ = 10 and A0 = 0.

are so similar that it will be difficult to distinguish a CMSSM Higgs boson from its Standard Model
counterpart. This would be much easier at the ILC, as seen in Fig. 2(b) [27].

One of the distinctive possibilities opened up by the MSSM is the possibility of CP violation
in the Higgs sector, induced radiatively by phases in the gaugino masses and the soft supersymmetry-
breaking trilinear couplings. Fig. 3 displays CP-violating asymmetries that might be observable in the
gg, b̄b → τ+τ− and W+W− → τ+τ− processes at the LHC, in one particular CP-violating scenario
with large three-way mixing between all three of the neutral MSSM Higgs bosons [28].

A typical supersymmetric event at the LHC is expected to contain high-pT jets and leptons, as
well as considerable missing transverse energy. Studies show that the LHC should be able to observe
squarks and gluinos weighing up to about 2.5 TeV [8], covering most of the possibilities for astrophysical
dark matter. As seen in Fig. 4(a) [1], the dark matter constraint restricts m1/2 and m0 to narrow strips
extending to an upper limit m1/2 ∼ 1 TeV. As seen in Fig. 4(b), whatever the value of m1/2 along
one of these strips, the LHC should be able to observe several distinct species of sparticle [1]. In a
favourable case, such as the benchmark point B in Fig. 4(a) (also known as SPS Point 1a), experiments
at the LHC should be able to measure the CMSSM parameters with sufficient accuracy to calculate the
supersymmetric relic density Ωχh

2 (blue histogram) with errors comparable to the present astrophysical
error (yellow band) as seen in Fig. 4(c) [1]. Fig. 4(d) summarizes the scapabilities of the LHC and other
accelerators to detect various numbers of sparticle species. We see that the LHC is almost guaranteed
to discover supersymmetry if it is relevant to the naturalness of the mass hierarchy. However, there are
some variants of the CMSSM, in particular at the tips of the WMAP strips for large tanβ, that might
escape detection at the LHC.
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Fig. 3: Numerical estimates of differential CP asymmetries as functions of the effective reduced centre-of-mass
energy

√
ŝ in a CP-violating three-Higgs mixing scenario with gaugino phase Φ3 = −90◦ (solid lines) and Φ3 =

−10◦ (dashed lines) [28].

As we also see in Fig. 4(d), linear colliders would be able to observe a complementary subset of
sparticles, particularly sleptons, charginos and neutralinos [1]. A linear collider with a centre-of-mass
energy of 1 TeV would have comparable physics reach to the LHC, but a higher centre-of-mass energy,
such as the 3 TeV option offered by CLIC [29], would be needed to complete the detection and accurate
measurement of all the sparticles in most variants of the CMSSM.

We have recently evaluated whether precision low-energy observables currently offer any hint
about the mass scale of supersymmetric particles, by exploring their sensitivities to m1/2 along WMAP
lines for different values of the trilinear supersymmetry-breaking parameter A0 and the ratio of Higgs
v.e.v’s, tan β [31]. The measurements of mW and sin2 θW each currently favour m1/2 ∼ 300 GeV for
tanβ = 10 and m1/2 ∼ 600 GeV for tanβ = 50. The agreement of b → sγ decay with the Standard
Model is compatible with a low value of m1/2 for tan β = 10 but prefers a larger value for tanβ =
50, whereas Bs → µ+µ− decay currently offers no useful information on the scale of supersymmetry
breaking [30]. The current disagreement of the measured value of the anomalous magnetic moment of
the muon, gµ − 2, also favours independently m1/2 ∼ 300 GeV for tan β = 10 and m1/2 ∼ 600 GeV
for tanβ = 50. Putting all these indications together, as seen in Fig. 5, we see a preference for m1/2 ∼
300 GeV when tan β = 10, and a weaker preference for m1/2 ∼ 600 GeV when tanβ = 50 [31]. At
the moment, this preference is far from definitive, and m1/2 → ∞ is excluded at lass than 3 σ, but it
nevertheless offers some hope that supersymmetry might lurk not far away.

As seen in Fig. 6, the likelihood function for m1/2 can be converted into the corresponding likeli-
hood functions for the masses of various species of sparticles. The preferred squark and gluino masses
lie below 1000 GeV for tanβ = 10, with somewhat heavier values for tanβ = 50, though still well
within the reach of the LHC [31].

5 Gravitino Dark Matter
The above analysis assumed that the lightest supersymmetric particle (LSP) is the lightest neutralino
χ, assuming implicitly that the gravitino is sufficiently heavy and/or rare to have been neglected. This
implicit assumption may or may not be true in a minimal supergravity model, where the gravitino mass
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Fig. 4: Top left panel: The strips of CMSSM parameter space allowed by WMAP and other constraints, with
specific benchmark scenarios indicated by (red) crosses. Top right panel: The numbers of MSSM particle species
observable at the LHC as a function of m1/2 along the WMAP strip for tanβ = 10 [26]. Bottom left panel:
The accuracy with which the relic dark matter density could be calculated using LHC measurements at benchmark
point B, compared with the uncertainty provided by WMAP and other astrophysical data. Bottom right panel: The
numbers of MSSM particle species observable in the benchmark scenarios at the LHC and e+e− colliders with
different centre-of-mass energies [27].

m3/2 = m0, as seen in Fig. 71 [32]. In this model, the gravitino mass is fixed throughout the (m1/2,m0)
plane: there is a familiar WMAP strip where the χ is the LSP, but there is also a wedge of parameter
space where the LSP is the gravitino. There is no way known to detect such astrophysical gravitino dark
matter (GDM), since the gravitino has very weak interactions.

However, the LHC may have prospects for detecting GDM indirectly [33–35]. In the GDM region,
the lighter stau, τ̃1, is expected to be the next-to-lightest sparticle (NLSP), and may be metastable with a
lifetime measurable in hours, days, weeks, months or even years. The τ̃1 would be detectable in CMS or
ATLAS as a slow-moving charged particle. Staus that are sufficiently slow-moving might be stopped in

1Minimal supergravity also relates the trilinear and bilinear supersymmetry-breaking parameters: A0 = B0 + 1, thereby
fixing tan β as a function of m1/2,m0 and A0, see the contours in Fig. 7(b).
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the detector itself, in some external detection volume designed to observe and measure their late decays
into GDM [33, 34], or in the walls of the caverns surrounding the detectors [35].

6 The LHC and Ultra-High-Energy Cosmic Rays
Historically, the two experiments with (until recently) the largest statistics for ultra-high-energy cosmic
rays (UHECRs), AGASA [36] and HiRes [37], have not agreed on their energy spectra above about
1019 eV and, specifically, whether there is a significant number of events beyond the GZK cutoff due to
interactions of primary UHECRs with the cosmic microwave background radiation. The Auger exper-
iment now has the second-largest statistics but does not yet have sufficient data to settle the issue [38],
though these should soon be forthcoming. If there are super-GZK events, they might be due either to
nearby astrophysical sources that have not yet been identified, or (more speculatively) to the decays of
metastable superheavy particles [39]. Normalizing the energies of UHECRs requires understanding of
the development of extensive air showers. At the moment, this is not very well known, and models of
shower development are not even able to tell us the composition of cosmic rays with lower energies
between 1015 and 1019 eV [4].

The LHC is the accelerator that comes closest to reproducing the UHECR energy range, with a
centre-of-mass energy corresponding to 4 × 1017 eV, in the range where the cosmic-ray composition is
still uncertain. This uncertainty would be reduced by better modelling of hadronic showers, which would
in turn benefit from measurements in the forward direction [4].

Unfortunately, the LHC is currently not equipped to make good measurements in this kinematic
region, where most of the centre-of-mass energy is deposited. More instrumentation in the forward di-
rection would be most welcome in both CMS and ATLAS. This region is also of fundamental importance
for our understanding of QCD, as I now explain.
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7 Back to Forward QCD
We discussed earlier the success of perturbative QCD, and the accuracy with which it could be used to
calculate high-pT physics, thanks to the structure functions provided by HERA data [10], in particular.
The simple parton description is expected, however, to break down at ‘small’ x and ‘large’ Q2, due
to saturation effects. At small x, there is a large probability to emit an extra gluon ∼ αsln(1/x), and
the number of gluons grows in a limited transverse area. When the transverse density becomes large,
partons of size 1/Q may start to overlap, and non-linear effects may appear, such as the annihilation of
low-x partons. The Malthusian growth in the number of gluons seen at HERA is eventually curbed by
these annihilation effects when ln(1/x) exceeds some critical x-dependent saturation value of Q2. At
larger values of x, the parton evolution with Q2 is described by the usual DGLAP equations, and the
evolution with ln(1/x) is described by the BFKL equation. However, at lower values of x and large Q2,
a new description is need for the saturated configuration, for which the most convincing proposal is the
Colour-Glass Condensate (CGC) [3].

According to the CGC proposal, the proton wave function participating in interactions at low x
and Q2 is to be regarded as a classical colour field that fluctuates more slowly than the collision time-
scale. This possibility may be probed in Gold-Gold collisions at RHIC and proton-proton collisions
at the LHC: the higher beam energy of LHC compensates approximately for the higher initial parton
density in Gold-Gold collisions at RHIC. At central rapidities y ∼ 0, effects of the CGC are expected
to appear only when the parton transverse momentum < 1 GeV. However, CGC effects are expected to
appear at larger parton transverse momenta in the forward direction when y ∼ 3. Lead-Lead collisions
at the LHC should reveal even more important saturation effects [40].

What is the experimental evidence for parton saturation? First evidence came from HERA, and
Fig. 8(a) displays an extraction of the saturation scale from HERA data [41]. At RHIC, in proton-nucleus
collisions one expects the suppression of hard particles at large rapidity and small angle compared to
proton-proton collisions, whereas one expects an enhancement at small rapidity, the nuclear ‘Cronin
effect’. The data [42] from the BRAHMS collaboration at RHIC shown in Fig. 8(b) are quite consis-
tent with CGC expectations [43], but it remains to be seen whether this approach can be made more
quantitative than older nuclear shadowing ideas.

8 New Physics in Diffraction?
HERA has revealed a menagerie of different diffractive phenomena, opening up a Pandora’s box of possi-
ble new physics at the LHC. Classically one had soft diffraction dissociation in peripheral proton-proton
collisions, in which one (or both) of the colliding protons would dissociate into a low-mass system (or
systems). HERA discovered an additional class of diffractive events [5], which may be interpreted [44]
as a small colour dipole produced by an incoming virtual photon penetrates the proton and produces a
high-mass system. Additionally, one expects at the LHC soft double diffraction, in which a peripheral
proton-proton collision produces a low-mass central system separated from each beam by a large rapidity
gap. Events with mixed hard and soft diffraction are also possible at the LHC, as are events with multiple
large rapidity gaps. The LHC will certainly provide good prospects for deepening our understanding of
diffraction, building upon the insights being gained from HERA.

Double diffraction also offers the possibility of searching for new physics in a relatively clean
experimental environment containing, in addition to Higgs boson or other new particle, only a couple
of protons or their low-mass diffraction-dissociation products2 . The leading-order cross-section formula
(nominal values of the diffractive parameters are quoted in the brackets) is [6]:

M2 ∂2L
∂y∂M2

= 4.0× 10−4

[∫ lnµ
lnQmin

Fg(x1, x2, QT , µ)dlnQT

GeV−2

]2 (
Ŝ2

0.02

) (
4

bGeV2

)2 (Rg
1.2

)4

.

2New physics might also be produced in other classes of diffractive events, but with less distinctive signatures.
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Fig. 8: Top left panel: The parton saturation scale as a function of Bjorken x, extracted from HERA data in [41].
Other three panels: Nuclear modification factor RdAu of charged particles for rapidities η = 1, 2.2, 3.2 [42],
compared with calculations from [43].

The gluon collision factor is currently inferred from HERA data via different parameterizations of the in-
tegrated gluon distribution function, and has an uncertainty of a factor of about two [6]. Further analyses
of HERA data, as well as future LHC data, would enable the determination to be refined.

The observation of diffractive Higgs production at the LHC would be a challenge in the Standard
Model, but the cross section is expected to be considerably larger in the MSSM, particularly at large
tanβ. One of the enticing possibilities offered by supersymmetry is a set of novel mechanisms for CP
violation induced by phases in the soft supersymmetry-breaking parameters [7]. These would show up
in the MSSM Higgs sector, generating three-way mixing among the neutral MSSM Higgs bosons. This
might be observable in inclusive Higgs production at the LHC [7], but could be far more dramatic in
double diffraction. Fig. 9(a) displays the mass spectrum expected in double diffraction in one particular
three-way mixing scenario [45]: it may exhibit one or more peaks that do not coincide with the Higgs
masses. Analogous structures may also be seen in CP-violating asymmetries in Hi → τ+τ− decay, as
seen in Fig. 9(b). These structures could not be resolved in conventional inclusive Higgs production at the
LHC, but may be distinguished in exclusive double diffraction by exploiting the excellent missing-mass
resolution ∼ 2 GeV that could be provided by suitable forward spectrometers [46].
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Fig. 9: Left panel: The hadron-level cross section for the double-diffractive producion of Higgs bosons decaying
into b quarks. CP-violating three-way mixing scenarios have been taken, with the gluino phase Φ3 = −90◦ (solid
lines) and Φ3 = −10◦ (dotted line). The vertical lines indicate the three Higgs-boson pole-mass positions. Right
panel: The CP-violating asymmetry aτCP observable in three-way mixing scenarios when Higgs bosons decay into
τ leptons, using the same line styles [45].

9 Summary
We do not know what the LHC will find - maybe there will be no supersymmetry and we will observe
mini-black-hole production instead! However, whatever the physics scenario, HERA physics will pro-
vide crucial inputs, for example via measuring the parton distributions that will be crucial for searches for
new physics such as the Higgs boson, or via the observation of saturation effects that will be important
for forward physics, or via measurements of diffraction.

Forward physics is a potentially exciting area of LHC physics that is not covered by the present
detectors. HERA and RHIC suggest that parton saturation and the Colour Glass Condensate may be ob-
servable here, understanding of forward physics is essential for the modelling of cosmic-ray air showers
and hence determining the spectrum of ultra-high-energy cosmic rays, and diffractive events related to
those observed by HERA may be a valuable tool for discovering new physics such as Higgs production.
There is still plenty of room at the LHC for novel experimental contributions [46].
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G. Laštovička-Medin 17, J. I. Latorre 16, L. Magnea 18, A. Piccione 18, J. Pumplin 14, V. Ravindran 19,
B. Reisert 20, J. Rojo 16, A. Sabio Vera 21, G. P. Salam 22, F. Siegert 10, A. Staśto 23, H. Stenzel 24,
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Abstract
We provide an assessment of the impact of parton distributions on the determi-
nation of LHC processes, and of the accuracy with which parton distribution
functions (PDFs) can be extracted from data, in particular from current and
forthcoming HERA experiments. We give an overview of reference LHC pro-
cesses and their associated PDF uncertainties, and study in detail W and Z
production at the LHC. We discuss the precision which may be obtained from
the analysis of existing HERA data, tests of consistency of HERA data from
different experiments, and the combination of these data. We determine further
improvements on PDFs which may be obtained from future HERA data (in-
cluding measurements of FL), and from combining present and future HERA
data with present and future hadron collider data. We review the current status
of knowledge of higher (NNLO) QCD corrections to perturbative evolution
and deep-inelastic scattering, and provide reference results for their impact on
parton evolution, and we briefly examine non-perturbative models for parton
distributions. We discuss the state-of-the art in global parton fits, we assess
the impact on them of various kinds of data and of theoretical corrections, by
providing benchmarks of Alekhin and MRST parton distributions and a CTEQ
analysis of parton fit stability, and we briefly present proposals for alternative
approaches to parton fitting. We summarize the status of large and small x
resummation, by providing estimates of the impact of large x resummation on
parton fits, and a comparison of different approaches to small x resummation,
for which we also discuss numerical techniques.

The physics of parton distributions, especially within the context of deep-inelastic scattering (DIS),
has been an active subject of detailed theoretical and experimental investigations since the origins of
perturbative quantum chromodynamics (QCD), which, thanks to asymptotic freedom, allows one to de-
termine perturbatively their scale dependence [1–5].

Since the advent of HERA, much progress has been made in determining the Parton Distribution
Functions (PDFs) of the proton. A good knowledge of the PDFs is vital in order to make predictions
for both Standard Model and beyond the Standard Model processes at hadronic colliders, specifically the
LHC. Furthermore, PDFs must be known as precisely as possible in order to maximize the discovery po-
tential for new physics at the LHC. Conversely, LHC data will lead to an improvement in the knowledge
of PDFs.

The main aim of this document is to provide a state-of-the art assessment of the impact of parton
distributions on the determination of LHC processes, and of the accuracy with which parton distributions
can be extracted from data, in particular current and forthcoming HERA data.

In Ref. [6] we set the stage by providing an overview of relevant LHC processes and a discussion
of their experimental and theoretical accuracy. In Ref. [7] we turn to the experimental determination of
PDFs, and in particular examine the improvements to be expected from forthcoming measurements at
HERA, as well as from analysis methods which allow one to combine HERA data with each other, and
also with data from existing (Tevatron) and forthcoming (LHC) hadron colliders. In Ref. [8] we discuss
the state of the art in the extraction of parton distributions of the data by first reviewing recent progress in
higher-order QCD corrections and their impact on the extraction of PDFs, and then discussing and com-
paring the determination of PDFs from global fits. Finally, in Ref. [9] we summarize the current status
of resummed QCD computations which are not yet used in parton fits, but could lead to an improvement
in the theoretical precision of PDF determinations.

In addition to summarizing the state of the art, we also provide several new results, benchmarks
and predictions obtained within the framework of the HERA–LHC workshop.

2
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LHC final states and their potential experimental and theoretical
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Alessandro Tricoli

1 LHC final states and their potential experimental and theoretical accuracies 1

1.1 Introduction
Cross section calculations and experimental simulations for many LHC reactions, within the Standard
Model and for many new physics scenarios have been performed during the last 20 years. These studies
demonstrate how various final states might eventually be selected above Standard Model backgrounds
and indicate the potential statistical significance of such measurements. In general, these studies assumed
that the uncertainties from various sources, like the PDF uncertainties, the experimental uncertainties and
the various signal and background Monte Carlo simulations will eventually be controlled with uncertain-
ties small compared to the expected statistical significance. This is the obvious approach for many so
called discovery channels with clean and easy signatures and relatively small cross sections.

However, during the last years many new and more complicated signatures, which require more
sophisticated selection criteria, have been discussed. These studies indicate the possibility to perform
more ambitious searches for new physics and for precise Standard Model tests, which would increase the
physics potential of the LHC experiments. Most of these studies concentrate on the statistical significance
only and potential systematic limitations are rarely discussed.

In order to close this gap from previous LHC studies, questions related to the systematic limits
of cross section measurements from PDF uncertainties, from imperfect Standard Model Monte Carlo
simulations, from various QCD uncertainties and from the efficiency and luminosity uncertainties were
discussed within the PDF working group of this first HERA-LHC workshop. The goal of the studies
presented during the subgroup meetings during the 2004/5 HERA LHC workshop provide some answers
to questions related to these systematic limitations. In particular, we have discussed potential experi-
mental and theoretical uncertainties for various Standard Model signal cross sections at the LHC. Some
results on the experimental systematics, on experimental and theoretical uncertainties for the inclusive
W, Z and for diboson production, especially related to uncertainties from PDF’s and from higher order
QCD calculations are described in the following sections.

While it was not possible to investigate the consequences for various aspects of the LHC physics
potential in detail, it is important to keep in mind that many of these Standard Model reactions are
also important backgrounds in the search for the Higgs and other exotic phenomena. Obviously, the
consequences from these unavoidable systematic uncertainties need to be investigated in more detail
during the coming years.

1.2 Measuring and interpreting cross sections at the LHC 2

The LHC is often called a machine to make discoveries. However, after many years of detailed LHC
simulations, it seems clear that relatively few signatures exist, which do not involve cross section mea-
surements for signals and the various backgrounds. Thus, one expects that cross section measurements
for a large variety of well defined reactions and their interpretation within or perhaps beyond the Standard
Model will be one of the main task of the LHC physics program.

While it is relatively easy to estimate the statistical precision of a particular measurement as a func-
tion of the luminosity, estimates of potential systematic errors are much more complicated. Furthmore,

1Subsection coordinator: Michael Dittmar
2Contributing author: Michael Dittmar

46



as almost nobody wants to know about systematic limitations of future experiments, detailed studies are
not rewarding. Nevertheless, realistic estimates of such systematic errors are relevant, as they might
allow the LHC community to concentrate their efforts on the areas where current systematic errors, like
the ones which are related to uncertainties from Parton Distribution Functions (PDF) or the ones from
missing higher order QCD calculations, can still be improved during the next years.

In order to address the question of systematics, it is useful to start with the basics of cross section
measurements. Using some clever criteria a particular signature is separated from the data sample and
the surviving Nobserved events can be counted. Backgrounds, Nbackground, from various sources have
to be estimated either using the data or some Monte Carlo estimates. The number of signal events,
Nsignal, is then obtained from the difference. In order to turn this experimental number of signal events
into a measurement one has to apply a correction for the efficiency. This experimental number can
now be compared with the product of the theoretical production cross section for the considered process
and the corresponding Luminosity. For a measurement at a hadron collider, like the LHC, processes
are calculated on the basis of quark and gluon luminosities which are obtained from the proton-proton
luminosity “folded” with the PDF’s.

In order to estimate potential systematic errors one needs to examine carefully the various ingredi-
ents to the cross section measurement and their interpretation. First, a measurement can only be as good
as the impact from of the background uncertainties, which depend on the optimized signal to background
ratio. Next, the experimental efficiency uncertainty depends on many subdetectors and their actual real
time performance. While this can only be known exactly from real data, one can use the systematic
error estimates from previous experiments in order to guess the size of similar error sources for the fu-
ture LHC experiments. We are furthermore confronted with uncertainties from the PDF’s and from the
proton-proton luminosity. If one considers all these areas as essentially experimental, then one should
assign uncertainties originating from imperfect knowledge of signal and background cross sections as
theoretical.

Before we try to estimate the various systematic errors in the following subsections, we believe
that it is important to keep in mind that particular studies need not to be much more detailed than the
largest and limiting uncertainty, coming from either the experimental or the theoretical area. Thus, one
should not waste too much time, in order to achieve the smalled possible uncertainty in one particular
area. Instead, one should try first to reduce the most important error sources and if one accepts the “work
division” between experimental and theoretical contributions, then one should simply try to be just a
little more accurate than either the theoretical or the experimental colleagues.

1.2.1 Guessing experimental systematics for ATLAS and CMS
In order to guess experimental uncertainties, without doing lengthy and detailed Monte Carlo studies, it
seems useful to start with some simple and optimistic assumptions about ATLAS and CMS3.

First of all, one should assume that both experiments can actually operate as planned in their
proposals. As the expected performance goals are rather similar for both detectors the following list of
measurement capabilities looks as a reasonable first guess.

– Isolated electrons, muons and photons with a transverse momentum above 20 GeV and a pseu-
dorapidity η with |η| ≤ 2.5 are measured with excellent accuracy and high (perhaps as large as
95% for some reactions) “homogeneous” efficiency. Within the pseudo rapidity coverage one can
assume that experimentalists will perhaps be able, using the large statistics from leptonic W and Z
decays, to control the efficiency for electrons and muons with a 1% accuracy. For simplicity, one
can also assume that these events will allow to control measurements with high energy photons to

3Up to date performance of the ATLAS and CMS detectors and further detailed references can be found on the corresponding
homepages http://atlas.web.cern.ch/Atlas/ and http://cmsinfo.cern.ch/Welcome.html/
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a similar accuracy. For theoretical studies one might thus assume that high pt electrons, muons
and photons and |η| ≤ 2.5 are measured with a systematic uncertainty of ± 1% for each lepton
(photon).

– Jets are much more difficult to measure. Optimistically one could assume that jets can be seen
with good efficiency and angular accuracy if the jet transverse momentum is larger than 30 GeV
and if their pseudo rapidity fulfills |η| ≤ 4.5. The jet energy resolution is not easy to quantify, but
numbers could be given using some “reasonable” assumptions like ∆E/E ≈ 100 − 150%/

√
E.

For various measurements one want to know the uncertainty of the absolute jet energy scale. Var-
ious tools, like the decays of W → qq̄ in tt̄ events or the photon-jet final state, might be used to
calibrate either the mean value or the maximum to reasonably good accuracy. We believe that only
detailed studies of the particular signature will allow a quantitative estimate of the uncertainties
related to the jet energy scale measurements.

– The tagging of b–flavoured jets can be done, but the efficiency depends strongly on the potential
backgrounds. Systematic efficiency uncertainties for the b–tagging are difficult to quantify but
it seems that, in the absence of a new method, relative b-tagging uncertainties below ± 5% are
almost impossible to achieve.

With this baseline LHC detector capabilities, it seems useful to divide the various high q2 LHC
reactions into essentially five different non overlapping categories. Such a devision can be used to make
some reasonable accurate estimates of the different systematics.

– Drell–Yan type lepton pair final states. This includes on– and off–shell W and Z decays.
– γ–jet and γγX final states.
– Diboson events of the type WW, WZ, ZZ, Wγ with leptonic decays of the W and Z bosons.

One might consider to include the Standard Model Higgs signatures into this group of signatures.
– Events with top quarks in the final state, identified with at least one isolated lepton.
– Hadronic final states with up to n(=2,3 ..) Jets and different pt and mass.

With this “grouping” of experimental final states, one can now start to analyze the different po-
tential error sources. Where possible, one can try to define and use relative measurements of various
reactions such that some systematic errors will simply cancel.

Starting with the resonant W and Z production with leptonic decays, several million of clean
events will be collected quickly, resulting in relative statistical errors well below ±1%. Theoretical
calculations for these reactions are well advanced and these reactions are among the best understood
LHC final states allowing to build the most accurate LHC Monte Carlo generators. Furthermore, some
of the experimental uncertainties can be reduced considerably if ratio measurements of cross section,
such as W+/W− and Z/W , are performed. The similarities in the production mechanism should also
allow to reduce theoretical uncertainties for such ratios. The experimental counting accuracy of W and
Z events, which includes background and efficiency corrections, might achieve eventually uncertainties
of 1% or slightly better for cross section ratios.

Furthermore, it seems that the shape of the pt distribution of the Z, using the decay into electron
pairs (pp → ZX → e+e−X), can be determined with relative accuracies of much less than 1%. This
distribution, shown in figure 1, can be used to tune the Monte Carlo description of this particular process.
This tuning of the Monte Carlo can than be used almost directly to predict theoretically also the W p t
spectrum, and the pt spectrum for high mass Drell-Yan lepton pair events. Once an accurate model
description of these Standard Model reactions is achieved one might use these insights also to predict the
pt spectrum of other well defined final states.

From all the various high q2 reactions, the inclusive production of W and Z events is known to be
the theoretically best understood and best experimentally measurable LHC reaction. Consequently, the
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Fig. 1: Simple simulation of a potential measurement of the Z pt spectrum, possible with a luminosity of only 1
fb−1. Who will be able to predict this pt spectrum in all its beauty and with similar accuracy?

idea to use these simple well defined final states as the LHC cross section normalisation tool, or standard
candle was described first in reference [1]. This study indicated that the W and Z production might result
in a precise and simple parton luminosity monitor. In addition, these reactions can also be used to im-
prove the relative knowledge of the PDF’s. In fact, if one gives up on the idea to measure absolute cross
sections, the relative parton luminosity can in principle be determined with relative uncertainties well be-
low±5%, the previously expected possible limit for any absolut proton-proton luminosity normalisation
procdure.

In summary, one can estimate that it should be possible to reduce experimental uncertainties for
Drell-Yan processes to systematic uncertainties below ±5%, optimistically one might envisage an event
counting accuracy of perhaps ±1%, limited mainly from the lepton identification efficiency.

The next class of final states, which can be measured exclusively with leptons, are the diboson pair
events with subsequent leptonic decays. Starting with the ZZ final state, we expect that the statistical
accuracy will dominate the measurement for several years. Nevertheless, the systematic uncertainties of
the measurement, based on four leptons, should in principle be possible with relative errors of a few %
only.

The production of WZ and WW involves unmeasurable neutrinos. Thus, experimentally only an
indirect and incomplete determination of the kinematics of the final states is possible and very detailed
simulations with precise Monte Carlo generators are required for the interpretation of these final state.
It seems that a measurement of the event counting with an accuracy below ±5%, due to efficiency
uncertainties from the selection alone, to be highly non trivial. Nevertheless, if the measurements and
the interpretations can be done relative to the W and Z resonance production, some uncertainties from
the lepton identification efficiency, from the PDF and from the theoretical calculation can perhaps be
reduced. Without going into detailed studies for each channel, one could try to assume that a systematic
uncertainty of ±5% might be defined as a goal. Similar characteristics and thus limitations can be
expected for other diboson signatures.

The production cross section of top antitop quark pairs is large and several million of semilep-
tonic tagged and relatively clean events (pp → tt̄ → WbWb identified with one leptonic W decay)
can be expected. However, the signature involves several jets, some perhaps tagged as b–flavoured, and
missing transverse momentum from the neutrino(s). The correct association of the various jets to the
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corresponding top quark is known to be extremely difficult, leading to large combinatorial backgrounds.
Thus, it seems that, even if precise Monte Carlo generators will become eventually available, that system-
atic uncertainties smaller than 5-10% should not be expected. Consequently,we assume that top antitop
backgrounds for a wide class of signals can not be determined with uncertainties smaller than 5-10%.

Measurements of so called “single” top quarks are even more difficult, as the cross section is
smaller and larger backgrounds exist. Systematic errors will therefore always be larger than the one
guessed for top-antitop pair production.

Finally, we can address the QCD jet production. Traditionally one measures and interprets the so
called jet cross section as a function of pt jet and the mass of the multi jet system using various rapidity
intervals. With the steeply falling pt jet spectrum and essentially no background, one will determine the
differential spectrum such that only the slope has to be measured with good relative accuracy. If one is
especially interested into the super high mass or high pt events, then we expect that migrations due to jet
mis-measurements and non Gaussian tails in the jet energy measurements will limit any measurement.
A good guess might be that the LHC experiments can expect absolut normalisation uncertainties similar
to the ones achieved with CDF and D0, corresponding to uncertainties of about ± 10-20%.

Are the above estimated systematic limits for the various measurements pessimistic, optimistic or
simply realistic? Of course, only real experiments will tell during the coming LHC years. However, while
some of these estimates will need perhaps some small modification, they could be used as a limit waiting
to be improved during the coming years. Thus, some people full of ideas might take these numbers
as a challenge, and discover and develop new methods that will improve these estimates. This guess
of systematic limitations for LHC experiments could thus be considered as a “provocation”, which will
stimulate activities to prove them wrong. In fact, if the experimental and theoretical communities could
demonstrate why some of these “pessimistic” numbers are wrong the future real LHC measurements
will obviously benefit from the required efforts to develope better Monte Carlo programs and better
experimental methods.

The following summary from a variety of experimental results from previous high energy collider
experiments might help to quantify particular areas of concern for the LHC measurements. These pre-
vious measurements can thus be used as a starting point for an LHC experimenter, who can study and
explain why the corresponding errors at LHC will be smaller or larger.

1.2.2 Learning from previous collider experiments
It is broadly accepted, due to the huge hadronic interaction rate and the short bunch crossing time, that
the experimental conditions at the LHC will be similar or worse than the ones at the Tevatron collider.
One experimental answer was to improve the granularity, speed and accuracy of the different detector
elements accordingly. Still, no matter how well an experiment can be realized, the LHC conditions to
do experiments will be much more difficult than at LEP or any hypothetical future high energy e+e−

collider. One important reason is the large theoretical uncertainty, which prevents to make signal and
background Monte Carlos with accuracies similar to the ones which were used at LEP.

Thus, we can safely expect that systematic errors at LHC experiments will be larger than the
corresponding ones from LEP and that the Tevatron experience can be used as a first guess.

– Measurement of σ×BR for W and Z production from CDF [2] and D0 [3]:
The CDF collaboration has presented a high statistics measurement with electrons and muons.
Similar systematic errors of about ± 2% were achieved for efficiency and thus the event counting
with electrons and muons. The error was reduced to± 1.4% for the ratio measurement where some
lepton identification efficiencies cancel. Similar errors about × 1.5-2 larger have been obtained by
the corresponding measurements from the D0 experiment.

– Measurement of the cross section for pp̄→ Zγ(γ) from D0 [4]:
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A total of 138 eeγ and 152 µµγ candidate events were selected. The background was estimated
to be about 10% with a systematic uncertainty of ± 10-15%, mainly from γ-jet misidentifica-
tion. Using Monte Carlo and a large sample of inclusive Z events, the efficiency uncertainty has
been estimated to be ≈ 5% and when the data were used in comparison with the Standard Model
prediction another uncertainty of 3.3% originating from PDF’s was added.

– Measurement of the pp̄→ tt̄ production cross section from CDF [5]
A recent CDF measurement, using 197 pb−1, obtained a cross section (in pb) of 7.0 +2.4 (-2.1)
from statistics. This should be comapred with +1.7 (-1.2) from systematics, which includes ±0.4
from the luminosity measurement. Thus, uncertainties from efficiency and background are roughly
±20%. It is expected that some of the uncertainties can be reduced with the expected 10 fold lumi-
nosity increase such that the systematic error will eventually decrease to about ± 10%, sufficient
to be better than the expected theoretical error of ± 15%.

– A search for Supersymmetry with b-tagged jets from CDF [6]:
This study, using single and double b-tagged events was consistent with background only. How-
ever, it was claimed that the background uncertainty was dominated by the systematic error, which
probably originated mostly from the b tagging efficiency and the misidentification of b-flavoured
jets. The numbers given were 16.4± 3.7 events (3.15 from systematics) for the single b-tagged
events and 2.6±0.7 events (0.66 from systematics) for the double b-tagged events. These errors
originate mainly from the b-tagging efficiency uncertainties, which are found to roughly ± 20-25%
for this study of rare events.

– Some “random” selection of recent e+e− measurements:
A recent measurement from ALEPH (LEP) of the W branching ratio to qq̄ estimated a systematic
uncertainty of about ± 0.2% [7]. This small uncertainty was possible because many additional
constraints could be used.
OPAL has reported a measurement of Rb at LEP II energies, with a systematic uncertainty of ±
3.7%. Even though this uncertainty could in principle be reduced with higher statistics, one can
use it as an indication on how large efficiency uncertainties from b-tagging are already with clean
experimental conditions [8]
Recently, ALEPH and DELPHI have presented cross section measurements for e+e− → γγ with
systematic errors between 2.2% (ALEPH) [9] and 1.1% (DELPHI) [10]. In both cases, the effi-
ciency uncertainty, mainly from conversions, for this in principle easy signal was estimated to be
roughly 1%. In the case of ALEPH an uncertainty of about ±0.8% was found for the background
correction.

Obviously, these measurements can only be used, in absence of anything better, as a most op-
timistic guess for possible systematic limitations at a hadron collider. One might conclude that the
systematics from LEP experiments give (1) an optimistic limit for comparable signatures at the LHC and
(2) that the results from CDF and D0 should indicate systematics which might be obtained realistically
during the early LHC years.

Thus, in summary the following list might be used as a first order guess on achievable LHC
systematics4 .

– “Isolated” muons, electrons and photons can be measured with a small momentum (energy) un-
certainty and with an almost perfect angular resolution. The efficiency for pt ≥ 20 GeV and
|η| ≤ 2.5 will be “high” and can be controlled optimistically to ± 1%. Some straight forward
selection criteria should reduce jet background to small or negligible levels.

– “Isolated” jets with a pt ≥ 30 GeV and |η| ≤ 4.5 can be seen with high (veto) efficiency and
a small uncertainty from the jet direction measurement. However, it will be very difficulty to

4Reality will hopefully show new brilliant ideas, which combined with hard work will allow to obtain even smaller uncer-
tainties.
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measure the absolute jet energy scale and Non-Gaussian tails will limit the systematics if the jet
energy scale is important.

– Measurements of the missing transverse momentum depend on the final state but will in general
be a sum of the errors from the lepton and the jet accuracies.

Using these assumptions, the following “optimistic” experimental systematic errors can be used
as a guideline:

1. Efficiency uncertainties for isolated leptons and photons with a pt above 20 GeV can be estimated
with a ±1% accuracy.

2. Efficiencies for tagging jets will be accurate to a few percent and the efficiency to tag b-flavoured
jets will be known at best within ±5%.

3. Backgrounds will be known, combining theoretical uncertainties and some experimental determi-
nations, at best with a±5-10% accuracy. Thus, discovery signatures without narrow peaks require
signal to background ratios larger than 0.25-0.5, if 5 σ discoveries are claimed. Obviously, for
accurate cross section measurements, the signal to background ratio should be much larger.

4. In case of ratio measurements with isolated leptons, like pp → W +/pp → W−, relative errors
between 0.5-1% should be possible. Furthermore, it seems that the measurement of the shape of Z
pt spectrum, using Z→ e+e−, will be possible with a systematic error much smaller than 1%. As
the Z cross section is huge and clean we expect that this signature will become the best measurable
final state and should allow to test a variety of production models with errors below ± 1%, thus
challenging future QCD calculations for a long time.

1.3 Uncertainties on W and Z production at the LHC5

1.3.1 Introduction
At leading order (LO), W and Z production occur by the process, qq̄ → W/Z , and the momentum
fractions of the partons participating in this subprocess are given by x1,2 = M√

s exp(±y), where M is
the centre of mass energy of the subprocess, M = MW or MZ ,

√
s is the centre of mass energy of

the reaction (
√
s = 14 TeV at the LHC) and y = 1

2 ln (E+pl)
(E−pl) gives the parton rapidity. The kinematic

plane for LHC parton kinematics is shown in Fig. 2. Thus, at central rapidity, the participating partons
have small momentum fractions, x ∼ 0.005. Moving away from central rapidity sends one parton to
lower x and one to higher x, but over the measurable rapidity range, |y| < 2.5, x values remain in
the range, 10−4 < x < 0.1. Thus, in contrast to the situation at the Tevatron, valence quarks are not
involved, the scattering is happening between sea quarks. Furthermore, the high scale of the process
Q2 = M2 ∼ 10, 000 GeV2 ensures that the gluon is the dominant parton, see Fig. 2, so that these sea
quarks have mostly been generated by the flavour blind g → qq̄ splitting process. Thus the precision of
our knowledge of W and Z cross-sections at the LHC is crucially dependent on the uncertainty on the
momentum distribution of the gluon.

HERA data have dramatically improved our knowledge of the gluon, as illustrated in Fig. 3, which
shows W and Z rapidity spectra predicted from a global PDF fit which does not include the HERA data,
compared to a fit including HERA data. The latter fit is the ZEUS-S global fit [11], whereas the former is
a fit using the same fitting analysis but leaving out the ZEUS data. The full PDF uncertainties for both fits
are calculated from the error PDF sets of the ZEUS-S analysis using LHAPDF [12] (see the contribution
of M.Whalley to these proceedings). The predictions for the W/Z cross-sections, decaying to the lepton
decay mode, are summarised in Table 1. The uncertainties in the predictions for these cross-sections
have decreased from ∼ 16% pre-HERA to ∼ 3.5% post-HERA. The reason for this can be seen clearly

5Contributing authors: Alessandro Tricoli, Amanda Cooper-Sarkar, Claire Gwenlan
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10, 000 GeV2.

Table 1: LHC W/Z cross-sections for decay via the lepton mode, for various PDFs

PDF Set σ(W+).B(W+ → l+νl) σ(W−).B(W− → l−ν̄l) σ(Z).B(Z → l+l−)

ZEUS-S no HERA 10.63± 1.73 nb 7.80± 1.18 nb 1.69± 0.23 nb

ZEUS-S 12.07± 0.41 nb 8.76± 0.30 nb 1.89± 0.06 nb

CTEQ6.1 11.66± 0.56 nb 8.58± 0.43 nb 1.92± 0.08 nb

MRST01 11.72± 0.23 nb 8.72± 0.16 nb 1.96± 0.03 nb

in Fig. 4, where the sea and gluon distributions for the pre- and post-HERA fits are shown for several
different Q2 bins, together with their uncertainty bands. It is the dramatically increased precision in the
low-x gluon PDF, feeding into increased precision in the low-x sea quarks, which has led to the increased
precision on the predictions for W/Z production at the LHC.

Further evidence for the conclusion that the uncertainties on the gluon PDF at the input scale
(Q2

0 = 7 GeV2, for ZEUS-S) are the major contributors to the uncertainty on the W/Z cross-sections at
Q2 = MW (MZ), comes from decomposing the predictions down into their contributing eigenvectors.
Fig 5 shows the dominant contributions to the total uncertainty from eigenvectors 3, 7, and 11 which are
eigenvectors which are dominated by the parameters which control the low-x, mid-x and high-x, gluon
respectively.

The post-HERA level of precision illustrated in Fig. 3 is taken for granted in modern analyses, such
that W/Z production have been suggested as ‘standard-candle’ processes for luminosity measurement.
However, when considering the PDF uncertainties on the Standard Model (SM) predictions it is necessary
not only to consider the uncertainties of a particular PDF analysis, but also to compare PDF analyses.
Fig. 6 compares the predictions forW+ production for the ZEUS-S PDFs with those of the CTEQ6.1 [13]
PDFs and the MRST01 [14] PDFs6. The corresponding W+ cross-sections, for decay to leptonic mode

6MRST01 PDFs are used because the full error analysis is available only for this PDF set.
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Fig. 3: LHC W+,W−, Z rapidity distributions and their PDF uncertainties (the full line shows the central value
and the dashed lines show the spread of the uncertainty): Top Row: from the ZEUS-S global PDF analysis not
including HERA data; left plot W+; middle plot W−; right plot Z: Bottom Row: from the ZEUS-S global PDF
analysis including HERA data; left plot W+; middle plot W−; right plot Z

are given in Table 1. Comparing the uncertainty at central rapidity, rather than the total cross-section, we
see that the uncertainty estimates are rather larger: 5.2% for ZEUS-S; 8.7% for CTEQ6.1M and about
3.6% for MRST01. The difference in the central value between ZEUS-S and CTEQ6.1 is 3.5%. Thus
the spread in the predictions of the different PDF sets is comparable to the uncertainty estimated by the
individual analyses. Taking all of these analyses together the uncertainty at central rapidity is about 8%.

Since the PDF uncertainty feeding into the W+,W− and Z production is mostly coming from
the gluon PDF, for all three processes, there is a strong correlation in their uncertainties, which can be
removed by taking ratios. Fig. 7 shows the W asymmetry

AW = (W+ −W−)/(W+ +W−).

for CTEQ6.1 PDFs, which have the largest uncertainties of published PDF sets. The PDF uncertainties on
the asymmetry are very small in the measurable rapidity range. An eigenvector decomposition indicates
that sensitivity to high-x u and d quark flavour distributions is now evident at large y. Even this residual
flavour sensitivity can be removed by taking the ratio

AZW = Z/(W+ +W−)

as also shown in Fig. 7. This quantity is almost independent of PDF uncertainties. These quantities have
been suggested as benchmarks for our understanding of Standard Model Physics at the LHC. However,
whereas the Z rapidity distribution can be fully reconstructed from its decay leptons, this is not possible
for the W rapidity distribution, because the leptonic decay channels which we use to identify the W ’s
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have missing neutrinos. Thus we actually measure the W ’s decay lepton rapidity spectra rather than the
W rapidity spectra. The lower half of Fig. 7 shows the rapidity spectra for positive and negative leptons
from W+ and W− decay and the lepton asymmetry,

Al = (l+ − l−)/(l+ + l−).

A cut of, ptl > 25 GeV, has been applied on the decay lepton, since it will not be possible to trigger
on leptons with small ptl. A particular lepton rapidity can be fed from a range of W rapidities so that
the contributions of partons at different x values is smeared out in the lepton spectra, but the broad
features of the W spectra and the sensitivity to the gluon parameters remain. The lepton asymmetry
shows the change of sign at large y which is characteristic of the V − A structure of the lepton decay.
The cancellation of the uncertainties due to the gluon PDF is not so perfect in the lepton asymmetry as
in the W asymmetry. Nevertheless in the measurable rapidity range sensitivity to PDF parameters is
small. Correspondingly, the PDF uncertainties are also small ( 4%) and this quantity provides a suitable
Standard Model benchmark.

In summary, these preliminary investigations indicate that PDF uncertainties on predictions for the
W,Z rapidity spectra, using standard PDF sets which describe all modern data, have reached a precision
of ∼ 8%. This may be good enough to consider using these processes as luminosity monitors. The
predicted precision on ratios such as the lepton ratio, Al, is better (∼ 4%) and this measurement may be
used as a SM benchmark. It is likely that this current level of uncertainty will have improved before the
LHC turns on- see the contribution of C. Gwenlan ( [15]) to these proceedings. The remainder of this
contribution will be concerned with the question: how accurately can we measure these quantities and
can we use the early LHC data to improve on the current level of uncertainty?

1.3.2 k-factor and PDF re-weighting
To investigate how well we can really measure W production we need to generate samples of Monte-
Carlo (MC) data and pass them through a simulation of a detector. Various technical problems arise.
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Fig. 8: Top Row: W rapidity and pt spectra for events generated with HERWIG + k-Factors (full line), compared
to those generated by MC@NLO (dashed line); left plot W+ rapidity; middle plot W− rapidity; right plot W−

pt. Bottom row: the fractional differences of the spectra generated by HERWIG + k-factors and those generated
by MC@NLO. The full line represents the weighted mean of these difference spectra and the dashed lines show
its uncertainty

Firstly, many physics studies are done with HERWIG (6.505) [16], which generates events at LO with
parton showers to account for higher order effects. Distributions can be corrected from LO to NLO by
k-factors which are applied as a function of the variable of interest. The use of HERWIG is gradually
being superceded by MC@NLO (2.3) [17] but this is not yet implemented for all physics processes. Thus
it is necessary to investigate how much bias is introduced by using HERWIG with k-factors. Secondly, to
simulate the spread of current PDF uncertainties, it is necessary to run the MC with all of the eigenvector
error sets of the PDF of interest. This would be unreasonably time-consuming. Thus the technique of
PDF reweighting has been investigated.

One million W → eνe events were generated using HERWIG (6.505). This corresponds to 43
hours of LHC running at low luminosity, 10fb−1. The events are split intoW+ andW− events according
to their Standard Model cross-section rates, 58%: 42% (the exact split depends on the input PDFs). These
events are then weighted with k-factors, which are analytically calculated as the ratio of the NLO to LO
cross-section as a function of rapidity for the same input PDF [18]. The resultant rapidity spectra for
W+,W− are compared to rapidity spectra for ∼ 107, 700 events generated using MC@NLO(2.3) in
Fig 87. The MRST02 PDFs were used for this investigation. The accuracy of this study is limited by the
statistics of the MC@NLO generation. Nevertheless it is clear that HERWIG with k-factors does a good
job of mimicking the NLO rapidity spectra. However, the normalisation is too high by 3.5%. This is
not suprising since, unlike the analytic code, HERWIG is not a purely LO calculation, parton showering
is also included. This normalisation difference is not too crucial since in an analysis on real data the
MC will only be used to correct data from the detector level to the generator level. For this purpose,
it is essential to model the shape of spectra to understand the effect of experimental cuts and smearing
but not essential to model the overall normalisation perfectly. However, one should note that HERWIG
with k-factors is not so successful in modelling the shape of the pt spectra, as shown in the right hand
plot of Fig. 8. This is hardly surprising, since at LO the W have no pt and non-zero pt for HERWIG
is generated by parton showering, whereas for MC@NLO non-zero pt originates from additional higher
order processes which cannot be scaled from LO, where they are not present.

Suppose we generate W events with a particular PDF set: PDF set 1. Any one event has the
hard scale, Q2 = M2

W , and two primary partons of flavours flav1 and flav2, with momentum fractions

7In MC@NLO the hard emissions are treated by NLO computations, whereas soft/collinear emissions are handled by the
MC simulation. In the matching procedure a fraction of events with negative weights is generated to avoid double counting.
The event weights must be applied to the generated number of events before the effective number of events can be converted to
an equivalent luminosity. The figure given is the effective number of events.
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Fig. 9: Left side: W− (left) andW+ (right) rapidity spectra, for events generated with MRST02 PDFs reweighted
to CTEQ6.1 PDFs (full line), compared to events generated directly with CTEQ6.1 PDFs (dashed line). The
fractional difference between these spectra are also shown beneath the plots. The full line represents the weighted
mean of these difference spectra and the dashed lines show its uncertainty. Right side: the same for pt spectra.

x1, x2 according to the distributions of PDF set 1. These momentum fractions are applicable to the hard
process before the parton showers are implemented in backward evolution in the MC. One can then
evaluate the probability of picking up the same flavoured partons with the same momentum fractions
from an alternative PDF set, PDF set 2, at the same hard scale. Then the event weight is given by

PDF(re− weight) =
fPDF2(x1,flav1,Q

2).fPDF2(x2,flav2,Q
2)

fPDF1(x1,flav1,Q2).fPDF1(x2,flav2,Q2)
(1)

where xfPDF (x, flav,Q2) is the parton momentum distribution for flavour, flav, at scale, Q2, and
momentum fraction, x. Fig. 9 compares the W+ and W− spectra for a million events generated using
MRST02 as PDF set 1 and re-weighting to CTEQ6.1 as PDF set 2, with a million events which are di-
rectly generated with CTEQ6.1. Beneath the spectra the fractional difference between these distributions
is shown. These difference spectra show that the reweighting is good to better than 1%, and there is no
evidence of a y dependent bias. This has been checked for reweighting between MRST02, CTEQ6.1 and
ZEUS-S PDFs. Since the uncertainties of any one analysis are similar in size to the differences between
the analyses it is clear that the technique can be used to produce spectra for the eigenvector error PDF
sets of each analysis and thus to simulate the full PDF uncertainties from a single set of MC generated
events. Fig. 9 also shows a similar comparison for pt spectra.

1.3.3 Background Studies
To investigate the accuracy with which W events can be measured at the LHC it is necessary to make
an estimate of the importance of background processes. We focus on W events which are identified
through their decay to the W → e νe channel. There are several processes which can be misidentified
as W → eνe. These are: W → τντ , with τ decaying to the electron channel; Z → τ+τ− with at least
one τ decaying to the electron channel (including the case when both τ ’s decay to the electron channel,
but one electron is not identified); Z → e+e− with one electron not identified. We have generated one
million events for each of these background processes, using HERWIG and CTEQ5L, and compared
them to one million signal events generated with CTEQ6.1. We apply event selection criteria designed
to eliminate the background preferentially. These criteria are:
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Table 2: Reduction of signal and background due to cuts

Cut W → eνe Z → τ+τ− Z → e+e− W → τντ
e+ e− e+ e− e+ e− e+ e−

ATLFAST cuts 382,902 264,415 5.5% 7.9% 34.7% 50.3% 14.8% 14.9%

|η| < 2.4 367,815 255,514 5.5% 7.8% 34.3% 49.4% 14.7% 14.8%

pte > 25 GeV 252,410 194,562 0.6% 0.7% 12.7% 16.2% 2.2% 2.3%

ptmiss > 25 GeV 212,967 166,793 0.2% 0.2% 0.1% 0.2% 1.6% 1.6%

No jets with Pt > 30 GeV 187,634 147,415 0.1% 0.1% 0.1% 0.1% 1.2% 1.2%

precoilt < 20 GeV 159,873 125,003 0.1% 0.1% 0.0% 0.0% 1.2% 1.2%

– ATLFAST cuts (see Sec. 1.3.5)
– pseudorapidity, |η| < 2.4, to avoid bias at the edge of the measurable rapidity range
– pte > 25 GeV, high pt is necessary for electron triggering
– missing Et > 25 GeV, the νe in a signal event will have a correspondingly large missing Et
– no reconstructed jets in the event with pt > 30 GeV, to discriminate against QCD background
– recoil on the transverse plane precoilt < 20 GeV, to discriminate against QCD background

Table 2 gives the percentage of background with respect to signal, calculated using the known relative
cross-sections of these processes, as each of these cuts is applied. After, the cuts have been applied the
background from these processes is negligible. However, there are limitations on this study from the fact
that in real data there will be further QCD backgrounds from 2→ 2 processes involving q, q̄, g in which
a final state π0 → γγ decay mimics a single electron. A preliminary study applying the selection criteria
to MC generated QCD events suggests that this background is negligible, but the exact level of QCD
background cannot be accurately estimated without passing a very large number of events though a full
detector simulation, which is beyond the scope of the current contribution.

1.3.4 Charge misidentification
Clearly charge misidentification could distort the lepton rapidity spectra and dilute the asymmetry A l.

Atrue =
Araw − F+ + F−

1− F− − F+

where Araw is the measured asymmetry, Atrue is the true asymmetry, F− is the rate of true e− misiden-
tified as e+ and F+ is the rate of true e+ misidentified as e−. To make an estimate of the importance of
charge misidentification we use a sample of Z → e+e− events generated by HERWIG with CTEQ5L
and passed through a full simulation of the ATLAS detector. Events with two or more charged electro-
magnetic objects in the EM calorimeter are then selected and subject to the cuts; |η| < 2.5, pte > 25
GeV, as usual and, E/p < 2, for bremsstrahlung rejection. We then look for the charged electromagnetic
pair with invariant mass closest to MZ and impose the cut, 60 < MZ < 120 GeV. Then we tag the
charge of the better reconstructed lepton of the pair and check to see if the charge of the second lepton is
the same as the first. Assuming that the pair really came from the decay of the Z this gives us a measure
of charge misidentification. Fig 10 show the misidentification rates F +, F− as functions of pseudorapid-
ity8. These rates are very small. The quantity Al, can be corrected for charge misidentification applying
Barlow’s method for combining asymmetric errors [19]. The level of correction is 0.3% in the central
region and 0.5% in the more forward regions.

8These have been corrected for the small possibility that the better reconstructed lepton has had its charge misidentified as
follows. In the central region, |η| < 1, assume the same probability of misidentification of the first and second leptons, in the
more forward regions assume the same rate of first lepton misidentification as in the central region.
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Fig. 10: The rates of charge misidentification as a function of rapidity for e− misidentified as e+ (left), e+ misiden-
tifed as e− (right).

1.3.5 Compare events at the generator level to events at the detector level
We have simulated one million signal, W → eνe, events for each of the PDF sets CTEQ6.1, MRST2001
and ZEUS-S using HERWIG (6.505). For each of these PDF sets the eigenvector error PDF sets have
been simulated by PDF reweighting and k-factors have been applied to approximate an NLO generation.
The top part of Fig. 11 shows the e± and Al spectra at this generator level, for all of the PDF sets
superimposed. The events are then passed through the ATLFAST fast simulation of the ATLAS detector.
This applies loose kinematic cuts: |η| < 2.5, pte > 5 GeV, and electron isolation criteria. It also smears
the 4-momenta of the leptons to mimic momentum dependent detector resolution. We then apply the
selection cuts described in Sec. 1.3.3. The lower half of Fig. 11 shows the e± and Al spectra at the
detector level after application of these cuts, for all of the PDF sets superimposed. The level of precision
of each PDF set, seen in the analytic calculations of Fig. 6, is only slightly degraded at detector level, so
that a net level of PDF uncertainty at central rapidity of∼ 8% is maintained. The anticipated cancellation
of PDF uncertainties in the asymmetry spectrum is also observed, within each PDF set, and the spread
between PDF sets suggests that measurements which are accurate to better than∼ 5% could discriminate
between PDF sets.

1.3.6 Using LHC data to improve precision on PDFs
The high cross-sections for W production at the LHC ensure that it will be the experimental systematic
errors, rather than the statistical errors, which are determining. We have imposed a random 4% scat-
ter on our samples of one million W events, generated using different PDFs, in order to investigate if
measurements at this level of precision will improve PDF uncertainties at central rapidity significantly
if they are input to a global PDF fit. Fig. 12 shows the e+ and e− rapidity spectra for events generated
from the ZEUS-S PDFs (|η| < 2.4) compared to the analytic predictions for these same ZEUS-S PDFs.
The lower half of this figure illustrates the result if these events are then included in the ZEUS-S PDF
fit. The size of the PDF uncertainties, at y = 0, decreases from 5.8% to 4.5%. The largest improvement
is in the PDF parameter λg controlling the low-x gluon at the input scale, Q2

0: xg(x) ∼ xλg at low-x,
λg = −0.199 ± 0.046, before the input of the LHC pseudo-data, compared to, λg = −0.196 ± 0.029,
after input. Note that whereas the relative normalisations of the e+ and e− spectra are set by the PDFs,
the absolute normalisation of the data is free in the fit so that no assumptions are made on our ability to
measure luminosity. Secondly, we repeat this procedure for events generated using the CTEQ6.1 PDFs.
As shown in Fig. 13, the cross-section for these events is on the lower edge of the uncertainty band of
the ZEUS-S predictions. If these events are input to the fit the central value shifts and the uncertainty de-
creases. The value of the parameter λg becomes, λg = −0.189±0.029, after input of these pseudo-data.
Finally to simulate the situation which really faces experimentalists we generate events with CTEQ6.1,
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Fig. 11: Top row: e−, e+ and Ae rapidity spectra for the lepton from the W decay, generated using HERWIG +
k factors and CTEQ6.1 (red), ZEUS-S (green) and MRST2001 (black) PDF sets with full uncertainties. Bottom
row: the same spectra after passing through the ATLFAST detector simulation and selection cuts.

and pass them through the ATLFAST detector simulation and cuts. We then correct back from detector
level to generator level using a different PDF set- in this case the ZEUS-S PDFs- since in practice we will
not know the true PDFs. Fig. 14 shows that the resulting corrected data look pleasingly like CTEQ6.1,
but they are more smeared. When these data are input to the PDF fit the central values shift and errors
decrease just as for the perfect CTEQ6.1 pseudo-data. The value of λg becomes, λ = −0.181 ± 0.030,
after input of these pseudo-data. Thus we see that the bias introduced by the correction procedure from
detector to generator level is small compared to the PDF uncertainty.

1.3.7 Conclusions and a warning: problems with the theoretical predictions at small-x?
We have investigated the PDF uncertainty on the predictions for W and Z production at the LHC, taking
into account realistic expectations for measurement accuracy and the cuts on data which will be needed
to identify signal events from background processes. We conclude that at the present level of PDF
uncertainty the decay lepton asymmetry, Al, will be a useful standard model benchmark measurement,
and that the decay lepton spectra can be used as a luminosity monitor which will be good to ∼ 8%.
However, we have also investigated the measurement accuracy necessary for early measurements of
these decay lepton spectra to be useful in further constraining the PDFs. A systematic measurement
error of less than ∼ 4% would provide useful extra constraints.

However, a caveat is that the current study has been performed using standard PDF sets which
are extracted using NLO QCD in the DGLAP [20–23] formalism. The extension to NNLO is straight-
forward, giving small corrections ∼ 1%. PDF analyses at NNLO including full accounting of the PDF
uncertainties are not extensively available yet, so this small correction is not pursued here. However, there
may be much larger uncertainties in the theoretical calculations because the kinematic region involves
low-x. There may be a need to account for ln(1/x) resummation (first considered in the BFKL [24–26]
formalism) or high gluon density effects. See reference [27] for a review.

The MRST group recently produced a PDF set, MRST03, which does not include any data for
x < 5× 10−3. The motivation behind this was as follows. In a global DGLAP fit to many data sets there
is always a certain amount of tension between data sets. This may derive from the use of an inappropriate
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Fig. 12: Top row: e+ and e− rapidity spectra generated from ZEUS-S PDFs compared to the analytic prediction
using ZEUS-S PDFs. Bottom row: the same lepton rapidity spectra compared to the analytic prediction AFTER
including these lepton pseudo-data in the ZEUS-S PDF fit.
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Fig. 13: Top row: e+ and e− rapidity spectra generated from CTEQ6.1 PDFs compared to the analytic prediction
using ZEUS-S PDFs. Bottom row: the same lepton rapidity spectra compared to the analytic prediction AFTER
including these lepton pseudo-data in the ZEUS-S PDF fit.
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Fig. 14: Top row: e+ and e− rapidity spectra generated from CTEQ6.1 PDFs, which have been passed through the
ATLFAST detector simulation and corrected back to generator level using ZEUS-S PDFs, compared to the analytic
prediction using ZEUS-S PDFs. Bottom row: the same lepton rapidity spectra compared to the analytic prediction
AFTER including these lepton pseudo-data in the ZEUS-S PDF fit.

|y|

dσ
Be

/dy W+
MRST03

|y|

dσ
Be

/dy W-
MRST03

|y|

dσ
Be

/dy Z
MRST03

Fig. 15: LHC W+,W−, Z rapidity distributions for MRST03 PDFs: left plot W+; middle plot W−; right plot Z

theoretical formalism for the kinematic range of some of the data. Investigating the effect of kinematic
cuts on the data, MRST found that a cut, x > 5 × 10−3, considerably reduced tension between the
remaining data sets. An explanation may be the inappropriate use of the DGLAP formalism at small-x.
The MRST03 PDF set is thus free of this bias BUT it is also only valid to use it for x > 5 × 10−3.
What is needed is an alternative theoretical formalism for smaller x. However, the MRST03 PDF set
may be used as a toy PDF set, to illustrate the effect of using very different PDF sets on our predictions.
A comparison of Fig. 15 with Fig. 3 or Fig. 6 shows how different the analytic predictions are from the
conventional ones, and thus illustrates where we might expect to see differences due to the need for an
alternative formalism at small-x.

1.4 W and Z production at the LHC 9

The study of the production at the LHC of the electroweak bosons W and Z with subsequent decays
in leptonic final states will provide several precision measurements of Standard Model parameters such

9Contributing author: Hasko Stenzel
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as the mass of the W boson or the weak mixing angle from the Z boson forward-backward asymmetry.
Given their large cross section and clean experimental signatures, the bosons will furthermore serve
as calibration tool and luminosity monitor. More challenging, differential cross sections in rapidity or
transverse momentum may be used to further constrain parton distribution functions. Eventually these
measurements for single inclusive boson production may be applied to boson pair production in order to
derive precision predictions for background estimates to discovery channels like H →W +W−.

This contribution is devoted to the estimation of current uncertainties in the calculations for Stan-
dard Model cross sections involving W and Z bosons with particular emphasis on the PDF and per-
turbative uncertainties. All results are obtained at NLO with MCFM [28] version 4.0 interfaced to
LHAPDF [12] for a convenient selection of various PDF families and evaluation of their intrinsic uncer-
tainties. The cross sections are evaluated within a typical experimental acceptance and for momentum
cuts summarised in Table 3. The electromagnetic decays of W and Z are considered (massless leptons)
and the missing transverse energy is assigned to the neutrino momentum sum (in case of W decays).
Jets in the processes W/Z + jets are produced in an inclusive mode with at least one jet in the event

Table 3: Experimental acceptance cuts used for the calculation of cross-sections.

Observable cut

plept
T > 25 GeV

pjet
T > 25 GeV

|ηlept| < 3.0

|ηjet| < 4.0

R(lepton− jet) > 0.8

R(lepton− lepton) > 0.2

Emiss
T > 25 GeV

reconstructed with the kT -algorithm. MCFM includes one- and two-jet processes at NLO and three-jet
processes at LO. In the case of boson pair production the cuts of Table 3 can only be applied to the two
leading leptons, hence a complete acceptance is assumed for additional leptons e.g. from ZZ or WZ
decays.

The calculations with MCFM are carried out for a given fixed set of electroweak input parame-
ters using the effective field theory approach [28]. The PDF family CTEQ61 provided by the CTEQ
collaboration [29] is taken as nominal PDF input while MRST2001E given by the MRST group [30] is
considered for systematic purposes. The difference between CTEQ61 and MRST2001E alone can’t be
considered as systematic uncertainty but merely as cross-check. The systematic uncertainty is therefore
estimated for each family separately with the family members, 40 for CTEQ61 and 30 for MRST2001E,
which are variants of the nominal PDF obtained with different assumptions while maintaining a reason-
able fit of the input data. The value of αs is not a free input parameter for the cross section calculation
but taken from the corresponding value in the PDF.

Important input parameters are renormalisation and factorisation scales. The central results are
obtained with µR = µF = MV , V = W,Z for single boson production and µR = µF = MV + M ′V
for pair production (V ′ being the second boson in the event). Missing higher orders are estimated by
a variation of the scales in the range 1/2 ≤ xµR ≤ 2 and independently 1/2 ≤ xµF ≤ 2 where
µ = xµ ·MV , following prescriptions applied to other processes [31], keeping in mind that the range of
variation of the scales is purely conventional.
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Fig. 16: Left: pseudo-rapidity distribution of the decay lepton from inclusive W production and right: pT spectra
of W and Z. The bands represent the PDF-uncertainty. The lower inserts show on the left side the ratio W +/W−

resp. the double-ratio CTEQ/MRST and on the right side the ratios for W+/Z0.

1.4.1 Single W and Z cross sections
Detailed studies of single W and Z production including detector simulation are presented elsewhere in
these proceedings, here these channels are mainly studied for comparison with the associated production
with explicitly reconstructed jets and with pair production. The selected process is inclusive in the sense
that additional jets, present in the NLO calculation, are not explicitly reconstructed. The experimentally
required lepton isolation entailing a jet veto in a restricted region of phase space is disregarded at this
stage.

As an example the pseudo-rapidity distribution of the lepton fromW decays and the pT spectra for
Z and W+ are shown in Fig. 16. The cross section for W+ is larger than for W− as a direct consequence
of the difference between up- and down-quark PDFs, and this difference survives in the pseudo-rapidity
distribution of the decay lepton with a maximum around |η|=2.5. In the central part the PDF uncertainty,
represented by the bands in Fig. 16, amounts to about 5% for CTEQ and 2% for MRST, and within the
uncertainty CTEQ and MRST are fully consistent. Larger differences are visible in the peaks for the
W+, where at the same time the PDF uncertainty increases. In the ratio W +/W− the PDF uncertainty
is reduced to about 1-2% in the central region and a difference of about 3% is observed between CTEQ
and MRST, as can be seen from the double-ratio CTEQ/MRST. The uncertainty of the double ratio is
calculated from the CTEQ uncertainty band alone.

In the case of Z production the rapidity and pT spectra can be fully reconstructed from the e+e−

pair. A measurement of the Z pT spectrum may be used to tune the Monte Carlo description of W
pT , which is relevant for measurements of the W mass. The pT spectra are shown in the right part of
Fig. 16. The total yield for W+ is about six times larger than for Z0 but for pT > 150 GeV the ratio
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Fig. 17: Left: pseudo-rapidity distribution of the decay lepton from inclusiveW/Z production for different values
of xµR and xµF = 1, centre: the ratio of predictions with respect to xµ = 1 and right: double ratio V/V ′ of cross
sections for actual scale settings normalised to the nominal scale.

stabilises around 4.5. At small values of pT the fixed-order calculation becomes trustless and should be
supplemented by resummed calculations. The PDF uncertainties for the pT spectra themselves are again
about 5% and about 2% in the ratio, CTEQ and MRST being consistent over the entire pT range.

The perturbative uncertainties are estimated by variations of the renormalisation and factorisation
scales in by a factor of two. The scale variation entails a global change in the total cross section of
the order of 5%. The η distribution of leptons from W/Z decays are shown in Fig. 17, comparing the
nominal cross section with xµR = xµF = 1, to alternative scale settings. The nominal cross section
is drawn with its PDF uncertainty band, illustrating that the perturbative uncertainties are of the same
size. For W− and Z0 the shape of the distribution is essentially unaltered, but for W + the region around
the maxima is changed more than the central part, leading to a shape deformation. The scale variation
uncertainty is strongly correlated for W− and Z0 and cancels in the ratio W−/Z0, but for W+ it is
almost anti-correlated with W− and Z0 and partly enhanced in the ratio.

Globally the perturbative uncertainty is dominated by the asymmetric scale setting xµR = 2, xµR =
1/2 for which a change of −5% is observed, the largest upward shift of 3.5% is obtained for xµR =
2, xµR = 2, locally the uncertainty for W+ can be much different. It can be expected that the perturba-
tive uncertainties are reduced for NNLO calculations to the level of 1%.

The integrated cross sections and systematic uncertainties within the experimental acceptance are
summarised in Table 4.

1.4.2 W/Z + jet production
In the inclusive production of W/Z + jet at least one jet is requested to be reconstructed, isolated from
any lepton by R > 0.8. Additional jets are in case of overlap eventually merged at reconstruction level
by the kT -prescription. Given the presence of a relatively hard (pT > 25 GeV) jet, it can be expected
that PDF- and perturbative uncertainties are different than for single boson production. The study of this
process at the LHC, other than being a stringent test of perturbative QCD, may in addition contribute to
a better understanding of the gluon PDF.

The first difference with respect to single boson production appears in the lepton pseudo-rapidities,
shown in Fig. 18. The peaks in the lepton spectrum from W + disappeared, the corresponding spectrum
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Table 4: Total cross-sections and systematic uncertainties within the experimental acceptance.

W+ W− Z0

CTEQ61 [pb] 5438 4002 923.9

∆CTEQ
PDF [pb] ±282 ±221 ±49.1

∆CTEQ
PDF [%] ±5.2 ±5.5 ±5.3

MRST [pb] 5480 4110 951.1

∆MRST
PDF [pb] ±103 ±83.4 ±17.4

∆MRST
PDF [%] ±1.9 ±2.1 ±1.9

∆pert [%] +3.5 +3.5 +3.1

−5.2 −5.4 −5.5

Table 5: Total cross-sections and systematic uncertainties within the experimental acceptance for W/Z + jet

processes.

W+ + jet W− + jet Z0 + jet

CTEQ61 [pb] 1041 784.5 208.1

∆CTEQ
PDF [pb] ±44.1 ±34.3 ±9.01

∆CTEQ
PDF [%] ±4.2 ±4.4 ±4.3

MRST [pb] 1046 797.7 211.3

∆MRST
PDF [pb] ±17.6 ±14.8 ±3.67

∆MRST
PDF [%] ±1.7 ±1.9 ±1.8

∆pert [%] +8.7 +8.9 +7.6

−9.8 −10.0 −9.1

from W− is stronger peaked at central rapidity while the ratio W +/W− with jets is essentially the same
as without jets. The PDF uncertainties are slightly smaller (4.2-4.4%) compared to single bosons. The
jet pseudo-rapidities are shown in the right part of Fig. 18, they are much stronger peaked in the central
region but the ratio W+/W− for jets is similar to the lepton ratio.

The transverse momenta of associated jets from W/Z + jet production is shown in Fig. 19, the
spectra are steeply falling and the ratio W+/W− is increasing from 1.3 at low pT to almost 2 at 500
GeV pT .

The perturbative uncertainties are investigated in the same way as for the single boson production
and are shown in Fig. 20. The scale variation entails here a much larger uncertainty between 8 and 10%,
almost twice as large as for single bosons. In contrast to the latter case, the scale variation is correlated
for W and Z and cancels in the ratio W+/W−, with an exception for W− where a bump appears at
|η| = 1.8 for xµR = 2.

The total cross sections and their systematic uncertainties are summarised in Table 5.
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Fig. 18: Left: pseudo-rapidity distribution of the decay lepton from inclusiveW+jet production and right: pseudo-
rapidity of the associated leading jet. The bands represent the PDF-uncertainty.

1.4.3 Vector Boson pair production
In the Standard Model the non-resonant production of vector bosons pairs in the continuum is suppressed
by factors of 104-105 with respect to single Boson production. The cross sections for WW ,WZ and ZZ
within the experimental acceptance range from 500 fb (WW ) to 10 fb (ZZ). Given the expected limited
statistics for these processes, the main goal of their experimental study is to obtain the best estimate of
the background they represent for searches of the Higgs boson or new physics yielding boson pairs.

The selection of boson pairs follows in extension the single boson selection cuts applied to 2, 3
or 4 isolated leptons. Again real gluon radiation and virtual loops have been taken into account at NLO
but without applying lepton-jet isolation cuts. Lepton-lepton separation is considered only for the two
leading leptons.

The pseudo-rapidity and transverse momentum distributions taking the e+ from W+W− produc-
tion as example are shown in Fig. 21. The pseudo-rapidity is strongly peaked and the cross section at
η = 0 twice as large as at |η| = 3. The PDF uncertainties are smaller than for single bosons, between
3.5 and 4 %.

The same shape of lepton distributions is also found for the other lepton and for the other pair
production processes, as shown for the W−Z0 case in Fig. 22.

The rapidity distribution of the leading Z0 from ZZ production is shown in the left part of Fig. 23.
With both Z’s being fully reconstructed, the invariant mass of the ZZ system can be compared in the
right part of Fig. 23 to the invariant mass spectrum of the Higgs decaying into the same final state for an
intermediate mass of mH = 200 GeV. In this case a clear peak appears at low invariant masses above
the continuum, and the mass spectrum is also harder at high masses in presence of the Higgs.
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Fig. 19: Transverse momentum distribution of the jet from inclusive W/Z + jet production
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Fig. 20: Left: pseudo-rapidity distribution of the decay lepton from inclusive W/Z + jet production for different
values of xµR and xµF = 1, centre: the ratio of predictions with respect to xµ = 1 and right: double ratio V/V ′

of cross sections for actual scale settings normalised to the nominal scale.
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Fig. 21: Left: pseudo-rapidity distribution of the decay lepton from inclusiveWW production and right: transverse
momentum of the decay lepton.

The perturbative uncertainties, obtained as for the other processes, are shown in Fig. 24 for the
lepton distributions. The systematic uncertainties range from 3.3 to 4.9 % and are slightly smaller than
for single bosons, given the larger scale µ = 2MV and better applicability of perturbative QCD. The
perturbative uncertainty is essentially constant across the pseudo-rapidity and largely correlated between
different pair production processes.

The ratio of boson pair production to single Z production is of particular interest, as similar quark
configurations contribute to both process types, though evidently in a somewhat different x,Q2 regime.
This ratio is shown in Fig. 25 for the lepton distribution, given the different shapes of pseudo-rapidity is
not flat but its PDF uncertainty is reduced to the level of 2 %. The perturbative uncertainties of the V V/Z
ratio, however, are only reduced for the ZZ/Z case and even slightly larger for other ratios because the
scale variations have partly an opposite effect on the cross sections for Z and e.g. WW production.

The total cross sections and their systematic uncertainties are summarised in Table 6.

1.5 Study of next-to-next-to-leading order QCD predictions for W and Z production at LHC10

It has been in 2004 that the first differential next-to-next-to-leading order (NNLO) QCD calculation
for vector boson production in hadron collisions was completed by Anastasiou et al. [32]. This group
has calculated the rapidity dependence for W and Z production at NNLO. They have shown that the
perturbative expansion stabilizes at this order in perturbation theory and that the renormalization and
factorization scale uncertainties are drastically reduced, down to the level of one per-cent. It is therefore
interesting to perform a more detailed study of these NNLO predictions for various observables which

10Contributing author:Günther Dissertori
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Fig. 22: Left: pseudo-rapidity distribution of the decay lepton of the W−from inclusive W−Z0 production and
right: pseudo-rapidity distribution of a decay lepton of the Z0.
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ZZ pair for non-resonant continuum production compared to resonant pair production via the SM Higgs decay.
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Fig. 24: Left: pseudo-rapidity distributions of leptons from various boson pair production processes and different
scale settings and right: ratio of predictions relative to xµ = 1.
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Fig. 25: Left: the ratio of pseudo-rapidity distributions of leptons from boson pair production processes normalised
to single Z production and right: the double ratio V V/Z of predictions for different scales relative to xµ = 1.
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Table 6: Total cross-sections and systematic uncertainties within the experimental acceptance for pair production
processes.

WW ZZ W+Z0 W−Z0

CTEQ61 [fb] 475.7 11.75 31.81 20.77

∆CTEQ
PDF [fb] ±17.0 ±0.48 ±1.12 ±0.80

∆CTEQ
PDF [%] ±3.6 ±4.1 ±3.5 ±3.8

MRST [fb] 494.2 12.34 32.55 21.62

∆MRST
PDF [fb] ±6.3 ±0.19 ±0.49 ±0.41

∆MRST
PDF [%] ±1.3 ±1.6 ±1.5 ±1.9

∆pert [%] +4.6 +3.3 +4.6 +4.8

−4.9 −3.8 −4.7 −4.7

can be measured at LHC, as well as to investigate their systematic uncertainties.

In the study presented here we have calculated both the differential (in rapidity) and inclusive
cross sections for W, Z and high-mass Drell-Yan (Z/γ∗) production. Here ”inclusive” refers to the results
obtained by integrating the differential cross sections over a rapidity range similar to the experimentally
accessible region, which might be more relevant than the complete cross section which also includes the
large-rapidity tails.

Such a prediction would then be compared to the experimental measurements at LHC, which will
allow for precise tests of the Standard Model as well as to put strong constraints on the parton distribution
functions (PDFs) of the proton. It is clear that in the experiment only the rapidity and transverse momenta
of the leptons from the vector boson decays will be accessible, over a finite range in phase space. In
order to compute the rapidity of the vector boson by taking into account the finite experimental lepton
acceptance, Monte Carlo simulations have to be employed which model vector boson production at
the best possible precision in QCD, as for example the program MC@NLO [17]. The so computed
acceptance corrections will include further systematic uncertainties, which are not discussed here.

1.5.1 Parameters and analysis method
The NNLO predictions have been implemented in the computer code VRAP [33], which has been mod-
ified in order to include ROOT [34] support for producing ntuples, histograms and plots. The code
allows to specify the collision energy (14 TeV in our case), the exchanged vector boson (γ ∗,Z, Z/γ∗,
W+, W−), the scale Q of the exchanged boson (MZ,MW or off-shell, e.g. Q = 400 GeV), the renor-
malization and factorization scales, the invariant mass of the di-lepton system (fixed or integrated over
a specified range), the value of the electro-magnetic coupling (αQED = 1/128 or αQED(Q)) and the
number of light fermions considered. Regarding the choice of pdfs, the user can select a pdf set from the
MRST2001 fits [35] or from the ALEKHIN fits [36], consistent at NNLO with variable flavour scheme.
We have chosen the MRST2001 NNLO fit, mode 1 with αs(MZ) = 0.1155 [35], as reference set.

The program is run to compute the differential cross section dσ/dY , Y being the boson rapidity,
at a fixed number of points in Y . This result is then parametrized using a spline interpolation, and the
thus found function can be integrated over any desired rapidity range, such as |Y | < 2, |Y | < 2.5 or
|Y | < 3, as well as over finite bins in rapidity. For the study of on-shell production the integration range
over the di-lepton invariant mass Mll was set to MV − 3ΓV < Mll < MV + 3ΓV , with MV and ΓV the
vector boson mass and width. This simulates an experimental selection over a finite signal range.

The systematic uncertainties have been divided into several categories: The PDF uncertainty is
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estimated by taking the maximum deviation from the reference set when using different PDFs from
within the MRST2001 set or the ALEKHIN set. The latter difference is found to give the maximal
variation in all of the investigated cases. The renormalization and factorization scales µ = µR, µF have
been varied between 0.5 < µ/Q < 2, both simultaneously as well as fixing one to µ = Q and varying the
other. The maximum deviation from the reference setting µ = Q is taken as uncertainty. The observed
difference when using either a fixed or a running electro-magnetic coupling constant is also studied as
possible systematic uncertainty due to higher-order QED effects. Since it is below the one per-cent
level, it is not discussed further. Finally, in the case of Z production it has been checked that neglecting
photon exchange and interference contributions is justified in view of the much larger PDF and scale
uncertainties.

1.5.2 Results for W and Z production
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Fig. 26: Left : Drell-Yan Z production cross section (× BR) at LHC energies, as a function of the Z rapidity, for
two different PDF choices. Right : Zoom into a restricted rapidity region, with the ratio of the predictions for the
two different PDF sets as lower inset. The error bars indicate the scale uncertainties.

In Fig. 26 the results for Z production at LHC are shown for two different choices of PDF set, as
a function of the boson rapidity. It can be seen that the predictions differ by about 2% at central rapidity,
and the difference increases to about 5% at large rapidity. A similar picture is obtained when integrating
the differential cross section up to rapidities of 2, 2.5 and 3 (Table 7). The more of the high-rapidity
tail is included, the larger the uncertainty due to the PDF choice. From Table 1 it can also be seen that
the scale uncertainties are slightly below the one per-cent level. It is worth noting that the choice of the
integration range over the di-lepton invariant mass can have a sizeable impact on the cross section. For
example, increasing the range from the standard value to 66 GeV < MZ < 116 GeV increases the cross
section by 8%.

Table 7: NNLO QCD results for W and Z production at the LHC for the integration over different rapidity ranges.
Also given are the relative uncertainties due to the choice of the PDFs and of the renormalization and factorization
scale. The numbers include the branching ratio Z(W )→ ee(eν).

Channel Z prod. W prod.

range |Y | < 2 |Y | < 2.5 |Y | < 3 |Y | < 2 |Y | < 2.5 |Y | < 3

cross section [nb] 0.955 1.178 1.384 9.388 11.648 13.800

∆ PDF [%] 2.44 2.95 3.57 5.13 5.47 5.90

∆ scale [%] 0.85 0.87 0.90 0.99 1.02 1.05
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The results for W production (Table 7) have been obtained by first calculating separately the cross
sections for W+ and W− production, and then adding these up. Again we observe an increase of the
PDF uncertainty when going to larger rapidity ranges. Compared to the Z production, here the PDF
uncertainties are larger, between 5 and 6%, whereas the scale uncertainties are of the same level, ≈ 1%.
It is interesting to note that the PDF uncertainty for W− production is about 10 - 20% (relative) lower
than that for W+.

A considerable reduction in systematic uncertainty can be obtained by calculating cross section
ratios. Two options have been investigated, namely the ratios σ(W+)/σ(W−) and σ(W)/σ(Z). As can
be seen from Figure 27, the PDF uncertainties are reduced to the 0.7% level in the former ratio, and to
about 2% in the latter. The scale uncertainties are reduced to the 0.15% level in both cases. Taking such
ratios has also the potential advantage of reduced experimental systematic uncertainties, such as those
related to the acceptance corrections.
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Fig. 27: Ratio of the production cross sections for W+, W− (left), and W, Z (right), as a function of rapidity, for
two different PDF sets. The inserts show the ratios of the results for the two PDF choices.

1.5.3 Results for high-mass Drell-Yan processes
Similarly to on-shell W and Z production we have also analyzed the high-mass Drell-Yan process,
namely Z/γ∗ production at a scale of Q = 400 GeV. In this case the di-lepton invariant mass has
been integrated over the range Mll = 400 ± 50 GeV. Here the PDF uncertainties are found between
3.7% and 5.1% for the various integration ranges over rapidity, somewhat larger than for on-shell pro-
duction. However, by normalizing the high-mass production cross section to the on-shell case, the PDF
uncertainties are considerably reduced, being 1.2 - 1.5%.

The systematic uncertainties related to the renormalization and factorization scale are reduced
(∆ scale ≈ 0.2%) when going to the high-mass exchange, as expected from perturbative QCD with a
decreasing strong coupling constant. In this case a normalization of the cross section to the on-shell
case does not give an improvement. However, since the scale uncertainties are well below the PDF
uncertainties, this is less of an issue for the moment.

1.5.4 Summary
We have studied NNLO QCD predictions for W and Z production at LHC energies. We have identified
the choice of PDF set as the dominant systematic uncertainty, being between 3 and 6%. The choice of
the renormalization and factorization scale leads to much smaller uncertainties, at or below the 1% level.
In particular we have shown that the systematic uncertainties can be sizeably reduced by taking ratios
of cross sections, such as σ(W+)/σ(W−), σ(W)/σ(Z) or σ(Z/γ∗, Q = 400 GeV)/σ(Z/γ∗, Q = MZ).
For such ratios it can be expected that also part of the experimental uncertainties cancel. With theoretical
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uncertainties from QCD at the few per-cent level the production of W and Z bosons will most likely be
the best-known cross section at LHC.

Concerning the next steps, it should be considered that at this level of precision it might become
relevant to include also higher-order electro-weak corrections. In addition, since experimentally the bo-
son rapidity will be reconstructed from the measured lepton momenta, a detailed study is needed to
evaluate the precision at which the acceptance correction factors for the leptons from the boson de-
cays can be obtained. For this Monte Carlo programs such as MC@NLO should be employed, which
combine next-to-leading-order matrix elements with parton showers and correctly take account of spin
correlations.
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Experimental determination of Parton Distributions

T. Carli, A. Cooper-Sarkar, J. Feltesse, A. Glazov, C. Gwenlan, M. Klein, T. Laštovička
G. Laštovička-Medin, S. Moch, B. Reisert G. Salam, F. Siegert

1 Introduction 1

With HERA currently in its second stage of operation, it is possible to assess the potential precision
limits of HERA data and to estimate the potential impact of the measurements which are expected at
HERA-II, in particular with respect to the PDF uncertainties.

Precision limits of the structure function analyses at HERA are examined in [1]. Since large
amounts of luminosity are already collected, the systematic uncertainty becomes most important. A
detailed study of error sources with particular emphasis on correlated errors for the upcoming precision
analysis of the inclusive DIS cross section at low Q2 using 2000 data taken by the H1 experiment is
presented. A new tool, based on the ratio of cross sections measured by different reconstruction methods,
is developed and its ability to qualify and unfold various correlated error sources is demonstrated.

An important issue is the consistency of the HERA data. In section 3, the H1 and ZEUS published
PDF analyses are compared, including a discussion of the different treatments of correlated systematic
uncertainties. Differences in the data sets and the analyses are investigated by putting the H1 data set
through both PDF analyses and by putting the ZEUS and H1 data sets through the same (ZEUS) analysis,
separately. Also, the HERA averaged data set (section 4) is put through the ZEUS PDF analysis and
the result is compared to that obtained when putting the ZEUS and H1 data sets through this analysis
together, using both the Offset and Hessian methods of treating correlated systematic uncertainties.

The HERA experimental data can not only be cross checked with respect to each other but also
combined into one common dataset, as discussed in section 4. In this respect, a method to combine
measurements of the structure functions performed by several experiments in a common kinematic do-
main is presented. This method generalises the standard averaging procedure by taking into account
point-to-point correlations which are introduced by the systematic uncertainties of the measurements.
The method is applied to the neutral and charged current DIS cross section data published by the H1 and
ZEUS collaborations. The averaging improves in particular the accuracy due to the cross calibration of
the H1 and ZEUS measurements.

The flavour decomposition of the light quark sea is discussed in [2]. For low x and thus low Q2

domain at HERA only measurement of the photon exchange induced structure functions F2 and FL is
possible, which is insufficient to disentangle individual quark flavours. A general strategy in this case
is to assume flavour symmetry of the sea. [2] considers PDF uncertainties if this assumption is released.
These uncertainties can be significantly reduced if HERA would run in deuteron-electron collision mode.

The impact of projected HERA-II data on PDFs is estimated in section 7. In particular, next-to-
leading order (NLO) QCD predictions for inclusive jet cross sections at the LHC centre-of-mass energy
are presented using the estimated PDFs. A further important measurement which could improve under-
standing of the gluon density at low x and, at the same time, provide consistency checks of the low Q2

QCD evolution is the measurement of the longitudinal structure function FL. Perspectives of this mea-
surement are examined in section 5, while the impact of this measurement is also estimated in section 7.

Further improvements for consistently including final-state observables in global QCD analyses
are discussed in section 8. There, a method for “a posteriori” inclusion of PDFs, whereby the Monte
Carlo run calculates a grid (in x and Q) of cross section weights that can subsequently be combined with
an arbitrary PDF. The procedure is numerically equivalent to using an interpolated form of the PDF. The

1Subsection coordinators: A. Glazov, S. Moch
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main novelty relative to prior work is the use of higher-order interpolation, which substantially improves
the tradeoff between accuracy and memory use. An accuracy of about 0.01% has been reached for the
single inclusive cross-section in the central rapidity region |y| < 0.5 for jet transverse momenta from 100
to 5000GeV. This method will make it possible to consistently include measurements done at HERA,
Tevatron and LHC in global QCD analyses.

2 Precision Limits for HERA DIS Cross Section Measurement 2

The published precision lowQ2 cross section data [3] of the H1 experiment became an important data set
in various QCD fit analyses [3–6]. Following success of these data the H1 experiment plans to analyse
a large data sample, taken during 2000 running period3 , in order to reach precision limits of low Q2

inclusive cross sections measurements at HERA. The precision is expected to approach 1% level.

The aim of this contribution is to calculate realistic error tables for 2000 H1 data and pursue paths
how to reach such a high precision. Correlated error sources are studied in particular and a new tool,
based on the ratio of cross sections measured by different reconstruction methods, is developed. All
errors, including correlated errors, are treated in the same manner as in [3]. Error tables are provided and
used in QCD fit analysis, see Sec 7, in order to study the impact of the new data on PDFs. The new data
are expected to reach higher precision level than [3] due to the following reasons

– Larger data statistics - Statistical errors will decrease by factor of 1.5 − 2, compared to [3], de-
pending on the kinematic region.

– Very large Monte Carlo simulations (MC) - Due to a progress in computing a number of simulated
events can be significantly increased in order to minimise statistical error of MC, to understand
uncorrelated errors and to estimate correlated errors more precisely.

– During past years increasing knowledge, arriving from various H1 analyses, enabled better under-
standing of the detector and its components as well as improving quality of MC.

– Data taking in 2000 was particularly smooth. Both HERA and H1 were running at peak perfor-
mance for HERA-I running period.

This contribution uses existing 2000 data and MC ntuples along with the full analysis chain. It
applies all preliminary technical work done on these data, including calibration, alignment, trigger studies
etc. Quoted errors are assumed to be achieved in the final version of analysis yet the analysis has not
been finalised, all the numbers in the paper are preliminary and may change in the publication.

The uncertainties of the cross section measurement are divided into a number of different types.
Namely, these are statistical uncertainties of the data, uncorrelated systematics and correlated systemat-
ics. The term ’correlated’ refers to the fact that cross section measurements in kinematic bins are affected
in a correlated way while different correlated systematic error sources are considered uncorrelated among
each other. The classification of the systematic errors into types is sometimes straightforward (MC statis-
tics is uncorrelated error source) but sometimes is rather arbitrary (radiative corrections are assumed to
be uncorrelated error source). The main goal of this classification is to preserve correlation between data
points while keeping the treatement as simple as possible.

The cross section uncertainties depend on the method used to reconstruct event kinematics. There
are various methods existing, involving a measurement of the scattered electron as well as of the hadronic
finale state. In the following two of them, so called electron method and sigma method, are employed [7].
The electron method uses only the measurement of the scattered electron, namely its energy and polar
angle, while the sigma method uses both the scattered electron and the hadronic final state. An advantage
of the sigma method is a proper treatment of QED radiation from the incoming beam electron (ISR).

2Contributing authors: G. Laštovička-Medin, A. Glazov, T. Laštovička
3Data statistics will be increased further by adding data taken in year 1999.
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a) b)

Fig. 1: A scan of the cross section measurement change in % depending on a variation of (from top-left) electron
energy, electron polar angle, hadronic final state calibration scale and noise level in LAr calorimeter (bottom-right).
The sigma method (a) and the electron method (b) were used to reconstruct kinematics of events.

The statistical uncertainty of the data is typically 0.5-1%, depending on the kinematic region
analysed and the definition of the kinematic bins. In the following we adapt the bin definition used in [3],
apart from merging bins at low y which was done in the published data in order to increase statistics.

The uncorrelated systematics consists from various contributions. A cross section uncertainty due
to the Monte Carlo statistics is the one with very good potential to be minimised. In the following we
assume 100 million simulated events to be used in analysis of 2000 data. Estimates were calculated with
available 12 million simulated events and corresponding statistical errors scaled by a factor of

√
100/12.

As a result the uncertainty is very small and typically on the level of few permile.

Additional contributions to the uncorrelated systematics are efficiencies. We assume for trigger
efficiency 0.3% and backward tracker tracker efficiency 0.3% uncertainty. Radiative corrections are
expected to affect the final cross section by 0.4%.

Effect of correlated uncertainties on the cross section measurement is studied in the following
manner. Particular source of correlated uncertainty, for instance the scattered electron energy measure-
ment, is varied by assumed error and the change of the measured cross section is quoted as the corre-
sponding cross section measurement error. An example of cross section change on various correlated
error source is shown in Fig. 1 for bin of Q2 = 45 GeV2 and x = 0.005. The kinematics of events
was reconstructed with the sigma method (a) and the electron method (b). Errors are calculated as so
called standard errors of the mean in calculation of which the available Monte Carlo sample was split
into nine sub-samples. It is clearly seen that the cross section measurement with the sigma method in
this kinematic bin is particularly sensitive to the electron energy measurement (top-left) and to noise
description in LAr calorimeter (bottom-right). On the contrary, the electron polar angle measurement
and the calibration of the hadronic final state play a little role. The electron method is mainly sensitive
to the electron energy measurement. The importance of the systematic sources vary from bin to bin.

There are five individual sources contributing to the correlated cross section uncertainties:

– Uncertainties of 0.15% at Ee = 27 GeV and 1% at 7 GeV are assigned to the electron energy scale
for the backward calorimeter. The uncertainty is treated as a linear function of Ee interpolating
between the results at 27 GeV and 7 GeV.

– The uncertainty on the scattered electron polar angle measurement is 0.3 mrad . The corresponding
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Table 1: An example of the error table forQ2 = 25 GeV2 for 2000 data, large Monte Carlo sample and suppressed
systematic errors compared to [1], see text for details. Absolute errors are shown. The table format is identical to
the one published in [1].

25 0.0005 0.493 1.391 0.261 1.449 0.88 0.47 0.63 0.41 0.19 0.21 0.22 0.15 0.13
25 0.0008 0.308 1.251 0.261 1.268 0.91 0.43 0.62 0.51 0.34 0.37 0.02 0.04 0
25 0.0013 0.19 1.138 0.248 1.143 0.94 0.44 0.62 0.56 0.45 0.33 0.03 0.02 0
25 0.002 0.123 1.041 0.236 1.042 0.9 0.45 0.62 0.47 0.13 0.45 0.03 0.05 0
25 0.0032 0.077 0.842 0.254 0.843 1.42 0.5 0.63 1.17 0.74 0.36 0.17 0.8 0
25 0.005 0.049 0.745 0.243 0.745 1.17 0.52 0.63 0.83 0.59 0.42 0.25 0.33 0
25 0.008 0.031 0.667 0.225 0.667 1.22 0.56 0.64 0.87 0.43 0.35 0.66 0.09 0
25 0.013 0.019 0.586 0.214 0.586 2.02 0.65 0.66 1.8 0.67 0.57 1.43 0.65 0
25 0.02 0.012 0.569 0.159 0.569 5.77 0.86 0.71 5.66 0.83 0.52 3.51 4.33 0
25 0.032 0.008 0.553 0.065 0.553 10.64 1.34 0.88 10.52 0.93 0.64 3.86 9.72 0

Table 2: An example of the full error table for Q2 = 25 GeV2, published H1 data. The definition of kinematic
bins is not identical to that in Table 1, some bins were merged to enlarge statistics.

25 0.0005 0.553 1.345 0.248 1.417 2.41 1.04 1.81 1.21 -1.04 -0.37 0.25 0.04 -0.41
25 0.0008 0.346 1.242 0.243 1.263 1.94 0.67 1.62 0.85 -0.6 -0.6 0.04 0.02 -0.07
25 0.0013 0.213 1.091 0.238 1.097 1.78 0.66 1.36 0.93 -0.64 -0.69 0 0 0
25 0.002 0.138 0.985 0.236 0.987 2.89 0.76 1.43 2.4 1.78 -0.7 0.17 1.34 0
25 0.0032 0.086 0.879 0.234 0.88 2.78 0.79 1.46 2.23 1.8 -0.77 -0.23 0.92 0
25 0.005 0.055 0.754 0.234 0.754 2.38 0.85 1.49 1.64 1.01 -0.58 0.16 1.03 0
25 0.008 0.034 0.663 0.234 0.663 2.52 0.92 1.54 1.78 1.11 -0.68 -0.72 0.84 0
25 0.0158 0.018 0.547 0.226 0.547 3.71 0.85 1.49 3.29 1.36 -0.88 -2.44 -1.42 0
25 0.05 0.005 0.447 0.148 0.447 7.54 1.28 3.35 6.64 0.99 -0.68 -3.28 -5.62 0

error on the cross section measurement is typically well below 1% but may be larger at lowest
values of Q2.

– The uncertainty on the hadronic energy scale comprises a number of systematic error sources
corresponding to theE−pz decomposition: an uncertainty of the hadronic energy scale calibration
of 2% for the central and forward calorimeter, an uncertainty of 3% for the fraction carried by
tracks and a 5% uncertainty of the hadronic energy scale measured in backward calorimeter.

– The uncertainty on the hadronic energy scale is further affected by the subtracted noise in the
calorimetery. The noise is described to the level of 10% and the corresponding error is propagated
to the cross section uncertainty. The largest influence is in the low y region, which is measured
with the sigma method.

– The uncertainty due to the photoproduction background at large y is estimated from the normali-
sation error of the PHOJET simulations to about 10%. At low and medium values of y . 0.5 it is
negligible.

The total systematic error is calculated from the quadratic summation over all sources of the un-
correlated and correlated systematic uncertainties. The total error of the DIS cross section measurement
is obtained from the statistical and systematical errors added in quadrature.

An example of the full error table for kinematic bin of Q2 = 25 GeV2 is shown in Table 1. For a
comparison the corresponding part of the published data from [3] is presented in Table 2. One can see
that precision about 1% can be reached especially in four lowest x bins, where the electron method was
used to reconstruct the event kinematics. The key contributions to the seen improvement in the cross
section measurement precision are the electron energy measurement, very large Monte Carlo statistics,
well understood noise in LAr calorimeter and precisely controlled efficiencies entering the analysis.
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Fig. 2: A scan of the cross section ratio R in bins of Q2 and y as a function of the hadronic final state calibration
variation.

Full error table, covering the kinematic region of 5 ≤ Q2 ≤ 150 GeV2 and 0.01 ≤ y ≤ 0.6 was
produced. The electron method was applied for kinematic bins at y > 0.1 while the sigma method
otherwise. The measurement of the proton structure function F2 was simulated using fractal parametri-
sation [8] for central values, accounting for all sources of correlated and uncorrelated errors. This table
was used to estimate effect of precise low Q2 data on the determination of proton PDFs from QCD fits.

The fact that different kinematics reconstruction methods are affected differently by the correlated
systematic uncertainties may be employed as a tool to estimate these uncertainties. We define

Ri =
σel,ir

σΣ,i
r

(1)

to be the cross section measurement ratio, where the reduced cross section σel,ir and σΣ,i
r is mea-

sured using the electron method and the sigma method, respectively. Kinematic bins, indexed by i, cover
a region of the analysis phase space where both reconstruction methods are applicable for the measure-
ment. The statistical error of Ri measurement is again evaluated by splitting the sample to a number of
sub-samples and calculating the standard error of the mean. An example of a scan of the cross section ra-
tio Ri dependence on the hadronic final state calibration variation in a bin of Q2 = 25 GeV2 and various
inelasticity y is shown in Fig. 2.

An error of a particular correlated uncertainty source j can be estimated by searching for lowest
χ2 =

∑
i(Ri(αj) − 1)2/σ2

i , where summation runs over kinematic bins, σi is the error of Ri measure-
ment and αj is the variation of the source j. However, since there is a number of correlated error sources
the correct way to find correlated uncertainties is account for all of them.

Unfolding of the correlated error sources can be linearised and directly solved by minimising the
following function:

L =
∑

i

1

σ2
i

(Ri +
∑

j

αj
∂Ri
∂αj
− 1)2. (2)

The partial derivatives ∂Ri
∂αj

for systematic source αj are obtained from linear fits to distributions as shown
in Fig. 2. Parameters αj and their respective errors are obtained by matrix inversion technique.

The procedure was tested on available Monte Carlo sample for 2000 H1 data. Half of the sample,
six million events, was used to simulate data. Full analysis chain was applied to measure the cross section
and thus Ri. Kinematic bins were selected according to 15 ≤ Q2 ≤ 60 GeV2 and 0.011 ≤ y ≤ 0.6, i.e.
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Fig. 3: Errors on the electron energy measurement (top-left), hadronic scale calibration (top-right) and noise in
LAr calorimeter (bottom-left). Open points correspond to χ2 scan in one correlated error source. Closed points
show the result of complete unfolding, taking into account correlations.

in the main region of the data. The results are shown in Fig. 3. Closed points correspond to unfolded
errors of the electron energy measurement (top-left), hadronic final state calibration and noise in the LAr
calorimeter (bottom-left). There is no sensitivity observed to the electron polar angle measurement. All
values are within statistical errors compatible with zero, as expected. For the final analysis the statistical
errors are expected to be approximately three times smaller due to the significantly larger statistics than
used for the presented study. This will enable the method to gain sufficient control over systematic
correlated errors. Apart from being able to evaluate calibration of the scattered electron and of the
hadronic final state, it gives a very good handle on the LAr calorimeter noise.

For a comparison, open points in Fig. 3 correspond to a χ2 scan in one correlated error source.
The statistical errors are smaller, as expected, and compatible with zero. However, the unfolding method
is preferred since it takes into account all correlated error sources correctly.

In summary, a study of the DIS cross section uncertainties realistically achievable at HERA has
been performed. For x ∈ 0.001−0.01 a precision of 1% can be reached across for a wide range of Q2 ∈
5−150 GeV2, allowing improved estimate ofW,Z production cross section in the central rapidity region
of LHC. The accuracy of the DIS cross section measurement can be verified using different kinematic
reconstruction methods available at the HERA collider.

3 Comparison and combination of ZEUS and H1 PDF analyses 4

Parton Density Function (PDF) determinations are usually global fits [4,5,9], which use fixed target DIS
data as well as HERA data. In such analyses the high statistics HERA NC e+p data, which span the
range 6.3 × 10−5 < x < 0.65, 2.7 < Q2 < 30, 000GeV2, have determined the low-x sea and gluon
distributions, whereas the fixed target data have determined the valence distributions and the higher-x sea
distributions. The ν-Fe fixed target data have been the most important input for determining the valence
distributions, but these data suffer from uncertainties due to heavy target corrections. Such uncertainties
are also present for deuterium fixed target data, which have been used to determine the shape of the
high-x d-valence quark.

HERA data on neutral and charged current (NC and CC) e+p and e−p inclusive double differential
cross-sections are now available, and have been used by both the H1 and ZEUS collaborations [10, 11]
in order to determine the parton distributions functions (PDFs) using data from within a single experi-
ment. The HERA high Q2 cross-section data can be used to determine the valence distributions, thus
eliminating uncertainties from heavy target corrections. The PDFs are presented with full accounting
for uncertainties from correlated systematic errors (as well as from statistical and uncorrelated sources).
Peforming an analysis within a single experiment has considerable advantages in this respect, since the
global fits have found significant tensions between different data sets, which make a rigorous statistical

4Contributing authors: A. Cooper-Sarkar, C. Gwenlan
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Fig. 4: Left plot: Comparison of PDFs from ZEUS and H1 analyses at Q2 = 10GeV2. Right plot: Comparison
of gluon from ZEUS and H1 analyses, at various Q2. Note that the ZEUS analysis total uncertainty includes both
experimental and model uncertainties.

treatment of uncertainties difficult.

Fig. 4 compares the results of the H1 and ZEUS analyses. Whereas the extracted PDFs are broadly
compatible within errors, there is a noticeable difference in the shape of the gluon PDFs. Full details of
the analyses are given in the relevant publications, in this contribution we examine the differences in the
two analyses, recapping only salient details.

3.1 Comparing ZEUS and H1 published PDF analyses
The kinematics of lepton hadron scattering is described in terms of the variables Q2, the invariant mass
of the exchanged vector boson, Bjorken x, the fraction of the momentum of the incoming nucleon taken
by the struck quark (in the quark-parton model), and y which measures the energy transfer between the
lepton and hadron systems. The differential cross-section for the NC process is given in terms of the
structure functions by

d2σ(e±p)
dxdQ2

=
2πα2

Q4x

[
Y+ F2(x,Q2)− y2 FL(x,Q2)∓ Y− xF3(x,Q2)

]
, (3)

where Y± = 1± (1− y)2. The structure functions F2 and xF3 are directly related to quark distributions,
and their Q2 dependence, or scaling violation, is predicted by pQCD. At Q2 ≤ 1000 GeV2 F2 domi-
nates the charged lepton-hadron cross-section and for x ≤ 10−2, F2 itself is sea quark dominated but its
Q2 evolution is controlled by the gluon contribution, such that HERA data provide crucial information
on low-x sea-quark and gluon distributions. At high Q2, the structure function xF3 becomes increas-
ingly important, and gives information on valence quark distributions. The CC interactions enable us to
separate the flavour of the valence distributions at high-x, since their (LO) cross-sections are given by,

d2σ(e+p)

dxdQ2
=

G2
FM

4
W

(Q2 +M2
W )22πx

x
[
(ū+ c̄) + (1− y)2(d+ s)

]
,

d2σ(e−p)
dxdQ2

=
G2
FM

4
W

(Q2 +M2
W )22πx

x
[
(u+ c) + (1− y)2(d̄+ s̄)

]
.

For both HERA analyses the QCD predictions for the structure functions are obtained by solving the
DGLAP evolution equations [12–15] at NLO in the MS scheme with the renormalisation and factor-
ization scales chosen to be Q2. These equations yield the PDFs at all values of Q2 provided they are
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input as functions of x at some input scale Q2
0. The resulting PDFs are then convoluted with coefficient

functions, to give the structure functions which enter into the expressions for the cross-sections. For a
full explanation of the relationships between DIS cross-sections, structure functions, PDFs and the QCD
improved parton model see ref. [16].

The HERA data are all in a kinematic region where there is no sensitivity to target mass and
higher twist contributions but a minimum Q2 cut must be imposed to remain in the kinematic region
where perturbative QCD should be applicable. For ZEUS this is Q2 > 2.5 GeV2, and for H1 it is
Q2 > 3.5 GeV2. Both collaborations have included the sensitivity to this cut as part of their model
errors.

In the ZEUS analysis, the PDFs for u valence, xuv(x), d valence, xdv(x), total sea, xS(x),
the gluon, xg(x), and the difference between the d and u contributions to the sea, x(d̄ − ū), are each
parametrized by the form

p1x
p2(1− x)p3P (x), (4)

where P (x) = 1 + p4x, at Q2
0 = 7GeV2. The total sea xS = 2x(ū+ d̄+ s̄+ c̄+ b̄), where q̄ = qsea for

each flavour, u = uv + usea, d = dv + dsea and q = qsea for all other flavours. The flavour structure of
the light quark sea allows for the violation of the Gottfried sum rule. However, there is no information on
the shape of the d̄− ū distribution in a fit to HERA data alone and so this distribution has its shape fixed
consistent with the Drell-Yan data and its normalisation consistent with the size of the Gottfried sum-rule
violation. A suppression of the strange sea with respect to the non-strange sea of a factor of 2 at Q2

0, is
also imposed consistent with neutrino induced dimuon data from CCFR. Parameters are further restricted
as follows. The normalisation parameters, p1, for the d and u valence and for the gluon are constrained
to impose the number sum-rules and momentum sum-rule. The p2 parameter which constrains the low-x
behaviour of the u and d valence distributions is set equal, since there is no information to constrain
any difference. When fitting to HERA data alone it is also necessary to constrain the high-x sea and
gluon shapes, because HERA-I data do not have high statistics at large-x, in the region where these
distributions are small. The sea shape has been restricted by setting p4 = 0 for the sea, but the gluon
shape is constrained by including data on jet production in the PDF fit. Finally the ZEUS analysis has
11 free PDF parameters. ZEUS have included reasonable variations of these assumptions about the
input parametrization in their analysis of model uncertainties. The strong coupling constant was fixed to
αs(M

2
Z) = 0.118 [17]. Full account has been taken of correlated experimental systematic errors by the

Offset Method, as described in ref [9, 18].

For the H1 analysis, the value of Q2
0 = 4GeV2, and the choice of quark distributions which are

parametrized is different. The quarks are considered as u-type and d-type with different parametrizations
for, xU = x(uv +usea+ c), xD = x(dv +dsea+s), xŪ = x(ū+ c̄) and xD̄ = x(d̄+ s̄), with qsea = q̄,
as usual, and the the form of the quark and gluon parametrizations given by Eq. 4. For xD̄ and xŪ the
polynomial, P (x) = 1.0, for the gluon and xD, P (x) = (1+p4x), and for xU , P (x) = (1+p4x+p5x

3).
The parametrization is then further restricted as follows. Since the valence distributions must vanish as
x→ 0, the low-x parameters, p1 and p2 are set equal for xU and xŪ , and for xD and xD̄. Since there is
no information on the flavour structure of the sea it is also necessary to set p2 equal for xŪ and xD̄. The
normalisation, p1, of the gluon is determined from the momentum sum-rule and the p4 parameters for
xU and xD are determined from the valence number sum-rules. Assuming that the strange and charm
quark distributions can be expressed as x independent fractions, fs and fc, of the d and u type sea, gives
the further constraint p1(Ū) = p1(D̄)(1−fs)/(1−fc). Finally there are 10 free parameters. H1 has also
included reasonable variations of these assumptions in their analysis of model uncertainties. The strong
coupling constant was fixed to αs(M2

Z) = 0.1185 and this is sufficiently similar to the ZEUS choice
that we can rule it out as a cause of any significant difference. Full account has been taken of correlated
experimental systematic errors by the Hessian Method, see ref. [18].

For the ZEUS analysis, the heavy quark production scheme used is the general mass variable
flavour number scheme of Roberts and Thorne [19]. For the H1 analysis, the zero mass variable flavour
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Fig. 5: Sea and gluon distributions at Q2 = 10GeV2 extracted from different data sets and different analyses. Left
plot: H1 data put through both ZEUS and H1 analyses. Middle plot: ZEUS data put through ZEUS analysis. Right
plot: H1 data put through ZEUS analysis.

number scheme is used. It is well known that these choices have a small effect on the steepness of the
gluon at very small-x, such that the zero-mass choice produces a slightly less steep gluon. However,
there is no effect on the more striking differences in the gluon shapes at larger x.

There are two differences in the analyses which are worth further investigation. The different
choices for the form of the PDF parametrization at Q2

0 and the different treatment of the correlated
experimental uncertainties.

3.2 Comparing different PDF analyses of the same data set and comparing different data sets
using the same PDF analysis.

So far we have compared the results of putting two different data sets into two different analyses. Because
there are many differences in the assumptions going into these analyses it is instructive to consider:(i)
putting both data sets through the same analysis and (ii) putting one of the data sets through both analyses.
For these comparisons, the ZEUS analysis does NOT include the jet data, so that the data sets are more
directly comparable, involving just the inclusive double differential cross-section data. Fig. 5 compares
the sea and gluon PDFs, at Q2 = 10GeV2, extracted from H1 data using the H1 PDF analysis with
those extracted from H1 data using the ZEUS PDF analysis. These alternative analyses of the same data
set give results which are compatible within the model dependence error bands. Fig. 5 also compares
the sea and gluon PDFs extracted from ZEUS data using the ZEUS analysis with those extracted from
H1 data using the ZEUS analysis. From this comparison we can see that the different data sets lead to
somewhat different gluon shapes even when put through exactly the same analysis. Hence the most of
the difference in shape of the ZEUS and H1 PDF analyses can be traced back to a difference at the level
of the data sets.

3.3 Comparing the Offset and Hessian method of assessing correlated experimental uncertainties
Before going further it is useful to discuss the treatment of correlated systematic errors in the ZEUS and
H1 analyses. A full discussion of the treatment of correlated systematic errors in PDF analyses is given in
ref [16], only salient details are recapped here. Traditionally, experimental collaborations have evaluated
an overall systematic uncertainty on each data point and these have been treated as uncorrelated, such that
they are simply added to the statistical uncertainties in quadrature when evaluating χ2. However, modern
deep inelastic scattering experiments have very small statistical uncertainties, so that the contribution of
systematic uncertainties becomes dominant and consideration of point to point correlations between
systematic uncertainties is essential.
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For both ZEUS and H1 analyses the formulation of the χ2 including correlated systematic uncer-
tainties is constructed as follows. The correlated uncertainties are included in the theoretical prediction,
Fi(p, s), such that

Fi(p, s) = FNLOQCD
i (p) +

∑

λ

sλ∆sys
iλ

where, FNLOQCD
i (p), represents the prediction from NLO QCD in terms of the theoretical parameters p,

and the parameters sλ represent independent variables for each source of systematic uncertainty. They
have zero mean and unit variance by construction. The symbol ∆sys

iλ represents the one standard deviation
correlated systematic error on data point i due to correlated error source λ. The χ2 is then formulated as

χ2 =
∑

i

[Fi(p, s)− Fi(meas)]2

σ2
i

+
∑

λ

s2
λ (5)

where, Fi(meas), represents a measured data point and the symbol σi represents the one standard devia-
tion uncorrelated error on data point i, from both statistical and systematic sources. The experiments use
this χ2 in different ways. ZEUS uses the Offset method and H1 uses the Hessian method.

Traditionally, experimentalists have used ‘Offset’ methods to account for correlated systematic
errors. The χ2 is formluated without any terms due to correlated systematic errors (sλ = 0 in Eq. 5)
for evaluation of the central values of the fit parameters. However, the data points are then offset to
account for each source of systematic error in turn (i.e. set sλ = +1 and then sλ = −1 for each source
λ) and a new fit is performed for each of these variations. The resulting deviations of the theoretical
parameters from their central values are added in quadrature. (Positive and negative deviations are added
in quadrature separately.) This method does not assume that the systematic uncertainties are Gaussian
distributed. An equivalent (and much more efficient) procedure to perform the Offset method has been
given by Pascaud and Zomer [20], and this is what is actually used. The Offset method is a conservative
method of error estimation as compared to the Hessian method. It gives fitted theoretical predictions
which are as close as possible to the central values of the published data. It does not use the full statistical
power of the fit to improve the estimates of sλ, since it choses to mistrust the systematic error estimates,
but it is correspondingly more robust.

The Hessian method is an alternative procedure in which the systematic uncertainty parameters sλ
are allowed to vary in the main fit when determining the values of the theoretical parameters. Effectively,
the theoretical prediction is not fitted to the central values of the published experimental data, but these
data points are allowed to move collectively, according to their correlated systematic uncertainties. The
theoretical prediction determines the optimal settings for correlated systematic shifts of experimental data
points such that the most consistent fit to all data sets is obtained. Thus, in a global fit, systematic shifts
in one experiment are correlated to those in another experiment by the fit. In essence one is allowing
the theory to calibrate the detectors. This requires great confidence in the theory, but more significantly,
it requires confidence in the many model choices which go into setting the boundary conditions for the
theory (such as the parametrization at Q2

0).

The ZEUS analysis can be performed using the Hessian method as well as the Offset method and
Fig. 6 compares the PDFs, and their uncertainties, extracted from ZEUS data using these two methods.
The central values of the different methods are in good agreement but the use of the Hessian method
results in smaller uncertainties, for a the standard set of model assumptions, since the input data can
be shifted within their correlated systematic uncertainties to suit the theory better. However, model un-
certainties are more significant for the Hessian method than for the Offset method. The experimental
uncertainty band for any one set of model choices is set by the usual χ2 tolerance, ∆χ2 = 1, but the
acceptability of a different set of choices is judged by the hypothesis testing criterion, such that the χ2

should be approximately in the range N ± √(2N), where N is the number of degrees of freedom. The
PDF parameters obtained for the different model choices can differ by much more than their experimen-
tal uncertainties, because each model choice can result in somewhat different values of the systematic
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Fig. 6: PDFs at Q2 = 10GeV2, for the ZEUS analysis of ZEUS data performed by the Offset and the Hessian
methods.

uncertainty parameters, sλ, and thus a different estimate of the shifted positions of the data points. This
results in a larger spread of model uncertainty than in the Offset method, for which the data points can-
not move. Fig 4 illustrates the comparability of the ZEUS (Offset) total uncertainty estimate to the H1
(Hessian) experimental plus model uncertainty estimate.

Another issue which arises in relation to the Hessian method is that the data points should not be
shifted far outside their one standard deviation systematic uncertainties. This can indicate inconsistencies
between data sets, or parts of data sets, with respect to the rest of the data. The CTEQ collaboration have
considered data inconsistencies in their most recent global fit [4]. They use the Hessian method but
they increase the resulting uncertainty estimates, by increasing the χ2 tolerance to ∆χ2 = 100, to allow
for both model uncertainties and data inconsistencies. In setting this tolerance they have considered
the distances from the χ2-minima of individual data sets to the global minimum for all data sets. These
distances by far exceed the range allowed by the ∆χ2 = 1 criterion. Strictly speaking such variations can
indicate that data sets are inconsistent but the CTEQ collaboration take the view that all of the current
world data sets must be considered acceptable and compatible at some level, even if strict statistical
criteria are not met, since the conditions for the application of strict criteria, namely Gaussian error
distributions, are also not met. It is not possible to simply drop “inconsistent” data sets, as then the
partons in some regions would lose important constraints. On the other hand the level of “inconsistency”
should be reflected in the uncertainties of the PDFs. This is achieved by raising the χ2 tolerance. This
results in uncertainty estimates which are comparable to those achieved by using the Offset method [18].

3.4 Using both H1 and ZEUS data in the same PDF analysis
Using data from a single experiment avoids questions of data consistency, but to get the most information
from HERA it is necessary to put ZEUS and H1 data sets into the same analysis together, and then
questions of consistency arise. Fig 7 compares the sea and gluon PDFs and the u and d valence PDFs
extracted from the ZEUS PDF analysis of ZEUS data alone, to those extracted from the ZEUS PDF
analysis of both H1 and ZEUS data. It is noticeable that, for the low-x sea and gluon PDFs, combining
the data sets does not bring a reduction in uncertainty equivalent to doubling the statistics. This is
because the data which determine these PDFs are systematics limited. In fact there is some degree of
tension between the ZEUS and the H1 data sets, such that the χ2 per degree of freedom rises for both
data sets when they are fitted together. The Offset method of treating the systematic errors reflects this
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Fig. 7: Top plots: Sea and gluon distributions at Q2 = 10GeV2 extracted from H1 and ZEUS data using the
ZEUS analysis (left) compared to those extracted from ZEUS data alone using the ZEUS analysis (right). Bottom
Plots: Valence distributions at Q2 = 10GeV2, extracted from H1 and ZEUS data using the ZEUS analysis (left)
compared to those extracted from ZEUS data alone using the ZEUS analysis (right).

tension such that the overall uncertainty is not much improved when H1 data are added to ZEUS data.
However, the uncertainty on the high-x valence distributions is reduced by the input of H1 data, since
the data are still statistics limited at high x.

3.5 Combining the H1 and ZEUS data sets before PDF analysis
Thus there could be an advantage in combining ZEUS and H1 data in a PDF fit if the tension between the
data sets could be resolved. It is in this context the question of combining these data into a single data set
arises. The procedure for combination is detailed in the contribution of S. Glazov to these proceedings
(section 4). Essentially, since ZEUS and H1 are measuring the same physics in the same kinematic
region, one can try to combine them using a ’theory-free’ Hessian fit in which the only assumption is
that there is a true value of the cross-section, for each process, at each x,Q2 point. The systematic
uncertainty parameters, sλ, of each experiment are fitted to determine the best fit to this assumption.
Thus each experiment is calibrated to the other. This works well because the sources of systematic
uncertainty in each experiment are rather different. Once the procedure has been performed the resulting
systematic uncertainties on each of the combined data points are significantly smaller than the statistical
errors. Thus one can legitimately make a fit to the combined data set in which these statistical and
systematic uncertainties are simply combined in quadrature. The result of making such a fit, using the
ZEUS analysis, is shown in Fig. 8. The central values of the ZEUS and H1 published analyses are also
shown for comparison. Looking back to Fig. 7 one can see that there has been a dramatic reduction in the
level of uncertainty compared to the ZEUS Offset method fit to the separate ZEUS and H1 data sets. This
result is very promising. A preliminary study of model dependence, varying the form of the polynomial,
P (x), used in the PDF paremtrizations at Q2

0, also indicates that model dependence is relatively small.
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Fig. 8: Left plot: Sea and gluon distributions at Q2 = 10GeV2, extracted from the combined H1 and ZEUS data
set using the ZEUS analysis. Right plot: Valence distributions at Q2 = 10GeV2, extracted from the combined H1
and ZEUS data set using the ZEUS analysis.
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Fig. 9: Left plot: Sea and gluon distributions at Q2 = 10GeV2, extracted from the H1 and ZEUS data sets using
the ZEUS analysis done by Hessian method. Right plot: Valence distributions at Q2 = 10GeV2, extracted from
the H1 and ZEUS data sets using the ZEUS analysis done by Hessian method.

The tension between ZEUS and H1 data could have been resolved by putting them both into a PDF
fit using the Hessian method to shift the data points. That is, rather than calibrating the two experiments
to each other in the ’theory-free’ fit, we could have used the theory of pQCD to calibrate each experiment.
Fig. 9 shows the PDFs extracted when the ZEUS and H1 data sets are put through the ZEUS PDF analysis
procedure using the Hessian method. The uncertainties on the resulting PDFs are comparable to those
found for the fit to the combined data set, see Fig. 8. However, the central values of the resulting PDFs
are rather different- particularly for the less well known gluon and d valence PDFs. For both of the fits
shown in Figs. 8 and 9 the values of the systematic error parameters, sλ, for each experiment have been
allowed to float so that the data points are shifted to give a better fit to our assumptions, but the values
of the systematic error parameters chosen by the ’theory-free’ fit and by the PDF fit are rather different.
A representaive sample of these values is given in Table 3. These discrepancies might be somewhat
alleviated by a full consideration of model errors in the PDF fit, or of appropriate χ2 tolerance when
combining the ZEUS and H1 experiments in a PDF fit, but these differences should make us wary about
the uncritical use of the Hessian method.
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Table 3: Systematic shifts for ZEUS and H1 data as determine by a joint pQCD PDF fit, and as determined by the
theory-free data combination fit

Syatematic uncertainty sλ in PDF fit in Theory-free fit
ZEUS electron efficiency 1.68 0.31
ZEUS electron angle -1.26 -0.11
ZEUS electron energy scale -1.04 0.97
ZEUS hadron calorimeter energy scale 1.05 -0.58
H1 electron energy scale -0.51 0.61
H1 hadron energy scale -0.26 -0.98
H1 calorimeter noise 1.00 -0.63
H1 photoproduction background -0.36 0.97

4 Averaging of DIS Cross Section Data 5

The QCD fit procedures (Alekhin [6], CTEQ [4], MRST [5], H1 [11], ZEUS [9]) use data from a number
of individual experiments directly to extract the parton distribution functions (PDF). All programs use
both the central values of measured cross section data as well as information about the correlations
among the experimental data points.

The direct extraction procedure has several shortcomings. The number of input datasets is large
containing several individual publications. The data points are correlated because of common system-
atic uncertainties, within and also across the publications. Handling of the experimental data without
additional expert knowledge becomes difficult. Additionally, as it is discussed in Sec. 3, the treatment of
the correlations produced by the systematic errors is not unique. In the Lagrange Multiplier method [20]
each systematic error is treated as a parameter and thus fitted to QCD. Error propogation is then used
to estimate resulting uncertainties on PDFs. In the so-called “offset” method (see e.g. [9]) the datasets
are shifted in turn by each systematic error before fitting. The resulting fits are used to form an envelope
function to estimate the PDF uncertainty. Each method has its own advantages and shortcomings, and it
is difficult to select the standard one. Finally, some global QCD analyses use non-statistical criteria to
estimate the PDF uncertainties (∆χ2 � 1). This is driven by the apparent discrepancy between different
experiments which is often difficult to quantify. Without a model independent consistency check of the
data it might be the only safe procedure.

These drawbacks can be significantly reduced by averaging of the input structure function data
in a model independent way before performing a QCD analysis of that data. One combined dataset
of deep inelastic scattering (DIS) cross section measurements is much easier to handle compared to a
scattered set of individual experimental measurements, while retaining the full correlations between data
points. The averaging method proposed here is unique and removes the drawback of the offset method,
which fixes the size of the systematic uncertainties. In the averaging procedure the correlated systematic
uncertainties are floated coherently allowing in some cases reduction of the uncertainty. In addition, study
of a global χ2/dof of the average and distribution of the pulls allows a model independent consistency
check between the experiments. In case of discrepancy between the input datasets, localised enlargement
of the uncertainties for the average can be performed.

A standard way to represent a cross section measurement of a single experiment is given in the
case of the F2 structure function by:

χ2
exp(

{
F i,true2

}
, {αj}) =

∑
i

[
F i,true2 −

(
F i2 +

∑
j
∂F i2
∂αj

αj

)]2

σ2
i

+
∑

j

α2
j

σ2
αj

. (6)

Here F i2 (σ2
i ) are the measured central values (statistical and uncorrelated systematic uncertainties) of the

5Contributing author: A. Glazov
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F2 structure function6 , αj are the correlated systematic uncertainty sources and ∂F i
2/∂αj are the sensi-

tivities of the measurements to these systematic sources. Eq. 6 corresponds to the correlated probability
distribution functions for the structure function F i,true

2 and for the systematic uncertainties αj . Eq. 6
resembles Eq. 5 where the theoretical predictions for F2 are substituted by F i,true

2 .

The χ2 function Eq. 6 by construction has a minimum χ2 = 0 for F i,true2 = F i2 and αj = 0. One
can show that the total uncertainty for F i,true

2 determined from the formal minimisation of Eq. 6 is equal
to the sum in quadrature of the statistical and systematic uncertainties. The reduced covariance matrix
cov(F i,true2 , F j,true2 ) quantifies the correlation between experimental points.

In the analysis of data from more than one experiment, the χ2
tot function is taken as a sum of the χ2

functions Eq. 6 for each experiment. The QCD fit is then performed in terms of parton density functions
which are used to calculate predictions for F i,true

2 .

Before performing the QCD fit, the χ2
tot function can be minimised with respect to F i,true

2 and
αj . If none of correlated sources is present, this minimisation is equivalent to taking an average of the
structure function measurements. If the systematic sources are included, the minimisation corresponds
to a generalisation of the averaging procedure which contains correlations among the measurements.

Being a sum of positive definite quadratic functions, χ2
tot is also a positive definite quadratic and

thus has a unique minimum which can be found as a solution of a system of linear equations. Although
this system of the equations has a large dimension it has a simple structure allowing fast and precise
solution.

A dedicated program has been developed to perform this averaging of the DIS cross section data
(http://www.desy.de/~glazov/f2av.tar.gz). This program can calculate the simultaneous aver-
ages for neutral current (NC) and charged current (CC) electron- and positron-proton scattering cross
section data including correlated systematic sources. The output of the program includes the central
values and uncorrelated uncertainties of the average cross section data. The correlated systematic uncer-
tainties can be represented in terms of (i) covariance matrix, (ii) dependence of the average cross section
on the original systematic sources together with the correlation matrix for the systematic sources, (iii)
and finally the correlation matrix of the systematic sources can be diagonalised, in this case the form of
χ2 for the average data is identical to Eq. 6 but the original systematic sources are not preserved.

The first application of the averaging program has been a determination of the average of the
published H1 and ZEUS data [3, 11, 21–28]. Nine individual NC and CC cross section measurements
are included from H1 and seven are included from ZEUS. Several sources of systematic uncertainties are
correlated between datasets, the correlations among H1 and ZEUS datasets are taken from [11] and [10],
respectively. No correlations are assumed between H1 and ZEUS systematic uncertainties apart from a
common 0.5% luminosity measurement uncertainty. The total number of data points is 1153 (552 unique
points) and the number of correlated systematic sources, including normalisation uncertainties, is 43.

The averaging can take place only if most of the data from the experiments are quoted at the same
Q2 and x values. Therefore, before the averaging the data points are interpolated to a common Q2, x
grid. This interpolation is based on the H1 PDF 2000 QCD fit [11]. The interpolation of data points in
principle introduces a model dependency. For H1 and ZEUS structure function data both experiments
employ rather similar Q2, x grids. About 20% of the input points are interpolated, for most of the cases
the correction factors are small (few percent) and stable if different QCD fit parametrizations [4, 5] are
used.

The cross section data have also been corrected to a fixed center of mass energy squared S =
101570 GeV2. This has introduced a small correction for the data taken at S = 90530 GeV2. The
correction is based on H1-2000 PDFs, it is only significant for high inelasticity y > 0.6 and does not
exceed 6%.

6The structure function is measured for different Q2 (four momentum transfer squared) and Bjorken-x values which are
omitted here for simplicity.
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Fig. 10: Q2 dependence of the NC reduced cross section for x = 0.002 and x = 0.25 bins. H1 data is shown as
open circles, ZEUS data is shown as open squares and the average of H1 and ZEUS data is shown as filled circles.
The line represents the expectation from the H1 PDF 2000 QCD fit.

The HERA data sets agree very well: χ2/dof for the average is 521/601. The distribution of
pulls does not show any significant tensions across the kinematic plane. Some systematic trends can
be observed at low Q2 < 50 GeV2, where ZEUS NC data lie systematically higher than the H1 data,
although this difference is within the normalisation uncertainty. An example of the resulting average DIS
cross section is shown in Fig. 10, where the data points are displaced in Q2 for clarity.

A remarkable side feature of the averaging is a significant reduction of the correlated systematic
uncertainties. For example the uncertainty on the scattered electron energy measurement in the H1 back-
ward calorimeter is reduced by a factor of three. The reduction of the correlated systematic uncertainties
thus leads to a significant reduction of the total errors, especially for low Q2 < 100 GeV2, where sys-
tematic uncertainties limit the measurement accuracy. For this domain the total errors are often reduced
by a factor two compared to the total errors of the individual H1 and ZEUS measurements.

The reduction of the correlated systematic uncertainties is achieved since the dependence of the
measured cross section on the systematic sources is significantly different between H1 and ZEUS exper-
iments. This difference is due mostly to the difference in the kinematic reconstruction methods used by
the two collaborations, and to a lesser extent to the individual features of the H1 and ZEUS detectors.
For example, the cross section dependence on the scattered electron energy scale has a very particular
behaviour for H1 data which relies on kinematic reconstruction using only the scattered electron in one
region of phase space. ZEUS uses the double angle reconstruction method where the pattern of this
dependence is completely different leading to a measurement constraint.

In summary, a generalised averaging procedure to include point-to-point correlations caused by
the systematic uncertainties has been developed. This averaging procedure has been applied to H1 and
ZEUS DIS cross section data. The data show good consistency. The averaging of H1 and ZEUS data
leads to a significant reduction of the correlated systematic uncertainties and thus a large improvement in
precision for low Q2 measurements. The goal of the averaging procedure is to obtain HERA DIS cross
section set which takes into account all correlations among the experiments.
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5 The longitudinal structure function FL 7

5.1 Introduction
At low x the sea quarks are determined by the accurate data on F2(x,Q2) . The charm contribution to
F2 is directly measured while there is no separation of up and down quarks at low x which are assumed
to have the same momentum distribution, see [2]. Within this assumption, and setting the strange sea to
be a fraction of the up/down sea, the proton quark content at low x is determined. The gluon distribution
xg(x,Q2) , however, is determined only by the derivative ∂F2/∂ lnQ2 which is not well measured [3].
It is thus not surprising that rather different gluon distributions are obtained in global NLO analyses, as
is illustrated in Figure 11. The figure displays the result of recent fits by MRST and CTEQ on the gluon
distribution at low and high Q2. It can be seen that there are striking differences at the initial scale,
Q2 = 5 GeV2, which at high Q2 get much reduced due to the evolution mechanism. The ratio of these
distributions, however, exhibits differences at lower x at the level of 10% even in the LHC Higgs and
W production kinematic range, see Figure 12. One also observes a striking problem at large x which is
beyond the scope of this note, however. In a recent QCD analysis it was observed [3] that the dependence
of the gluon distribution at low x, xg ∝ xbG , is correlated to the value of αs(M2

Z) , see Figure 13.
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Fig. 11: Gluon momentum distributions determined by MRST and CTEQ in NLO QCD, as a function of x for
Q2 = 5 GeV2, close to the initial scale of the fits, and at higher Q2 as the result of the DGLAP evolution.

In the Quark-Parton Model the longitudinal structure function FL(x,Q2) is zero [29]. In DGLAP
QCD, to lowest order, FL is given by [30]

FL(x,Q2) =
αs
4π
x2

∫ 1

x

dz

z3
·
[

16

3
F2(z,Q2) + 8

∑
e2
q

(
1− x

z

)
zg(z,Q2)

]
(7)

with contributions from quarks and from gluons. Approximately this equation can be solved [31] and the
gluon distribution appears as a measurable quantity,

xg(x) = 1.8[
3π

2αs
FL(0.4x) − F2(0.8x] ' 8.3

αs
FL, (8)

determined by measurements of F2 and FL . Since FL , at low x, is not much smaller than F2 , to a good
approximation FL is a direct measure for the gluon distribution at low x.

Apart from providing a very useful constraint to the determination of the gluon distribution, see
also Sect. 7, a measurement of FL(x,Q2) is of principal theoretical interest. It provides a crucial test
of QCD to high orders. A significant departure of an FL measurement from the prediction which is
based on the measurement of F2(x,Q2) and ∂F2/∂ lnQ2 only, would require theory to be modified.
There are known reasons as to why the theoretical description of gluon radiation at low x may differ

7Contributing authors: J. Feltesse, M. Klein

T. CARLI , A. COOPER-SARKAR , J. FELTESSE, A. GLAZOV, C. GWENLAN , M. KLEIN , . . .

94



x

xg
(C

TE
Q6

.1)
/xg

(M
RT

S0
3)

q2=5,1000,10000 GeV2

10-4 10-3 10-2 10-1 100

0.4

0.8

1.2

1.6

2

Fig. 12: Ratio of the gluon distributions of CTEQ to MRST as a function of x for low and large Q2.

from conventional DGLAP evolution: the neglect of ln(1/x), in contrast to BFKL evolution, or the
importance of NLL resummation effects on the gluon splitting function (see [32]). Furthermore recent
calculations of deep inelastic scattering to NNLO predict very large effects from the highest order on
FL contrary to F2 [33].

Within the framework of the colour dipole model there exists a testable prediction for FL(x,Q2) ,
and the longitudinal structure function, unlike F2 , may be subject to large higher twist effects [34].
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Fig. 13: Correlation of the low x behaviour of the gluon distribution, characterised by the power x−bg , with the
strong coupling constant αs as obtained in the H1 NLO QCD fit to H1 and BCDMS data.

5.2 Indirect Determinations of FL at Low x
So far first estimates on FL(x,Q2) at low x have been obtained by the H1 Collaboration. These result
from data on the inclusive ep→ eX scattering cross section

Q4x

2πα2Y+
· d2σ

dxdQ2
= [F2(x,Q2)− f(y) · FL(x,Q2)] = σr (9)

obtained at fixed, large energy, s = 4EeEp. The cross section is defined by the two proton structure
functions, F2 and FL , with Y+ = 1 + (1 − y)2 and f(y) = y2/Y+. At fixed s the inelasticity y is
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fixed by x and Q2 as y = Q2/sx. Thus one can only measure a combination F2 − f(y)FL. Since
HERA accesses a large range of y, and f(y) is large only at large y > 0.4, assumptions have been
made on FL to extract F2 at larger y. Since the cross section measurement accuracy has reached the
few per cent level [3], the effect of the FL assumption on F2 at lowest x has been non-negligible. The
determination of F2(x,Q2) has thus been restricted to a region in which y < 0.6. The proton structure
function F2(x,Q2) is known over a few orders of magnitude in x rather well, from HERA and at largest
x from fixed target data. Thus H1 did interpret the cross section at higher y as a determination of
FL(x,Q2) imposing assumptions about the behaviour of F2(x,Q2) at lowest x. These were derived
from QCD fits to the H1 data [35] or at lower Q2, where QCD could not be trusted, from the derivative
of F2 [36]. Recently, with the established x behaviour [37] of F2(x,Q2) = c(Q2)x−λ(Q2), a new
method [36] has been used to determine FL . This “shape method” is based on the observation that the
shape of σr, Eq. 9, at high y is driven by f ∝ y2 and sensitivity to FL is restricted to a very narrow
range of x corresponding to y = 0.3 − 0.9. Assuming that FL(x,Q2) in this range, for each bin in
Q2, does not depend on x, one obtains a simple relation, σr = cx−λ − fFL. which has been used to
determine FL(x,Q2) . Figure 14 shows the existing, preliminary data on FL(x,Q2) at low Q2 from the
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Fig. 14: Data on the longitudinal structure function obtained using assumptions on the behaviour of the other
structure function F2 in comparison with NLO QCD fit predictions. The data labeled svtx00 and mb99 data are
preliminary.

H1 Collaboration in comparison with predictions from NLO DGLAP QCD fits to HERA and further
cross section data. One can see that the accuracy and the x range of these FL(x,Q2) determinations are
rather limited although the data have some discriminative power already.

5.3 Backgrounds and Accuracy
The longitudinal structure function contribution to σr represents a small correction of the cross section in
a small part of the kinematic range only. The demands for the FL measurement are extremely high: the
cross section needs to be measured at the per cent level and the scattered electron be uniquely identified
up to high y. The method of unfolding F2 and FL consists in a measurement of σr at fixed x and Q2 with
varying s. This allows both structure functions to be determined from a straight line variation of σr as a
function of f(y), see [38].

At large y, corrresponding to low x, and low Q2 the scattering kinematics at HERA resembles
that of a fixed target scattering experiment: the electron scattered off quarks at very low x (“at rest”) is
going in the backward detector region, i.e. in the direction of the electron beam. The scattered electron
is accompanied by part of the hadronic final state which is related to the struck quark. High inelasticities
y ' 1 − E′e/Ee demand to identify scattered electrons down to a few GeV of energy E ′e. Thus a
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considerable background is to be isolated and removed which stems from hadrons or photons, from the
π0 → γγ decay. These particles may originate both from a genuine DIS event but to a larger extent
stem from photoproduction processes, in which the scattered electron escapes mostly non recognised in
electron beam direction. Removal of this background in H1 is possible by requiring a track associated
to the Spacal cluster, which rejects photons, and by measuring its charge which on a statistical basis
removes the remaining part of the background as was demonstrated before [3, 36].

The scattered electron kinematics, E ′e and θe, can be accurately reconstructed using the high res-
olution Spacal calorimeter energy determination and the track measurements in the Backward Silicon
Tracker (BST) and the Central Jet Drift Chamber (CJC). Reconstruction of the hadronic final state al-
lows the energy momentum constraint to be imposed, using the “E − pz” cut, which removes radiative
corrections, and the Spacal energy scale to be calibrated at large E ′e using the double angle method. At
low energies E ′e the Spacal energy scale can be calibrated to a few % using the π0 mass constraint and be
cross checked with the BST momentum measurement and with QED Compton events. The luminosity
is measured to 1-2%. Any common normalisation uncertainty may be removed, or further constrained,
by comparing cross section data at very low y where the contribution of FL is negligible.

Subsequently two case studies are presented which illustrate the potential of measuring FL directly
in unfolding it from the large F2 contribution to the cross section, a study using a set of 3 low proton beam
energies and a simulation for just one low Ep data set combined with standard 920 GeV data. Both
studies use essentially the same correlated systematic errors and differ slightly in the assumptions on the
background and efficiency uncertainties which regard the errors on cross section ratios. The following
assumptions on the correlated systematics are used: δE ′e/E

′
e = 0.003 at large Ee linearly rising to 0.03

at 3 GeV; δθe = 0.2 mrad in the BST acceptance region and 1 mrad at larger angles; δEh/Eh = 0.02.
These and further assumed systematic uncertainties represent about the state of analysis reached so far
in inclusive low Q2 cross section measurements of H1.

5.4 Simulation Results
A simulation has been performed for Ee = 27.6 GeV and for four different proton beam energies,
Ep = 920, 575, 465 and 400 GeV assuming luminosities of 10, 5, 3 and 2 pb−1 , respectively. The beam
energies are chosen such that the cross section data are equidistant in f(y). If the luminosity scales as
expected as E2

p , the low Ep luminosities are equivalent to 35 pb−1 at standard HERA settings. Further
systematic errors regard the residual radiative corrections, assumed to be 0.5%, and the photoproduction
background, 1-2% depending on y. This assumption on the background demands an improvement by a
factor of about two at high y which can be expected from a high statistics subtraction of background using
the charge assignment of the electron scattering candidate. An extra uncorrelated efficiency correction is
assumed of 0.5%. The resulting cross section measurements are accurate to 1-2%. For each Q2 and x
point this choice provides up to four cross section measurements. The two structure functions are then
obtained from a fit to σr = F2 + f(y)FL taking into account the correlated systematics. This separation
provides also accurate data of F2, independently of FL . The simulated data on FL span nearly one order
of magnitude in x and are shown in Figure 15. For the chosen luminosity the statistical and systematic
errors on FL are of similar size. The overall accuracy on FL(x,Q2) , which may be obtained according
to the assumed experimental uncertainties, is thus estimated to be of the order of 10-20%.

Based on recent information about aspects of the machine conditions in a low proton beam energy
mode, a further case study was performed [39] for only one reduced proton beam energy. In this simula-
tion, for the standard electron beam energy of Ee = 27.6 GeV, proton beam energies of Ep = 920 and
460 GeV were chosen with luminosities of 30 and 10 pb−1, respectively. According to [40] it would take
about three weeks to change the configuration of the machine and to tune the luminosity plus 10 weeks to
record 10 pb−1 of good data with High Voltage of trackers on. Uncertainties besides the correlated errors
specified above are assumed for photo-production background subtraction varying from 0% at y=0.65 to
4% at y = 0.9, and of 0.5% for the residual radiative corrections. An overall uncertainty of 1% is assumed

EXPERIMENTAL DETERMINATION OF PARTON DISTRIBUTIONS

97



x

F L

.
10-4 10-3 10-20

0.2

0.4

0.6

0.8
Q2 = 5 GeV2

x

F L

.
10-4 10-3 10-20

0.2

0.4

0.6

0.8
Q2 = 10 GeV2

x

F L

.
10-4 10-3 10-20

0.2

0.4

0.6

0.8
Q2 = 20 GeV2

x

F L

.
10-4 10-3 10-20

0.2

0.4

0.6

0.8

x

F L

.
10-4 10-3 10-20

0.2

0.4

0.6

0.8

x

F L

.
10-4 10-3 10-20

0.2

0.4

0.6

0.8
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Fig. 16: Simulated measurement of the longitudinal structure function FL(x,Q2) for data at 920 GeV (30 pb−1)
and 460 GeV (10 pb−1). The inner error bar is the statistical error. The full error bar denotes the statistical and
systematic uncertainty added in quadrature.

on the measurement of the cross section at low beam energy settings, which covers relative uncertainties
on electron identification, trigger efficiency, vertex efficiency, and relative luminosity.

To evaluate the errors two independent methods have been considered an analytic calculation and a
fast Monte-Carlo simulation technique. The two methods provide statistical and systematic errors which
are in excellent agreement. The overall result of this simulation of FL is displayed in Figure 16. In
many bins the overall precision on FL(x,Q2) is around or below 20%. It is remarkable that the overall
precision would stay below 25% even if the statistical error or the larger source of systematic uncertainty
would turn out to be twice larger than assumed to be in this study.
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5.5 Summary
It has been demonstrated with two detailed studies that a direct measurement of the longitudinal structure
function FL(x,Q2) may be performed at HERA at the five sigma level of accuracy, in the x range from
10−4 to 10−3 in four bins of Q2. This measurement requires about three months of running and tuning
time at reduced proton beam energy. In addition it would provide the first measurement of the diffractive
longitudinal structure function at the three sigma level (see the contribution of P. Newman in the summary
of Working Group 4). The exact choice of the parameters of such a measurement are subject to further
studies. In conclusion an accurate measurement of FL(x,Q2) is feasible, it requires efficient detectors,
dedicated beam time and analysis skills. It would be the right sign of completion to have measured
F2 first, in 1992 and onwards, and to conclude the HERA data taking with a dedicated measurement of
the second important structure function FL(x,Q2) , which is related to the gluon density in the low x
range of the LHC.

6 Determination of the Light Quark Momentum Distributions at Low x at HERA 8

Based on the data taken in the first phase of HERA’s operation (1993-2000), the HERA collider exper-
iments have measured a complete set of neutral (NC) and charged (CC) current double differential e±p
inclusive scattering cross sections, based on about 120 pb−1 of positron-proton and 15 pb−1 of electron-
proton data. The NC and CC deep inelastic scattering (DIS) cross sections for unpolarised e±p scattering
are determined by structure functions and quark momentum distributions in the proton as follows:

σ±NC ∼ Y+F2 ∓ Y−xF3, (10)

F2 ' e2
ux(U + U) + e2

dx(D +D), (11)

xF3 ' 2x[aueu(U − U) + aded(D −D)], (12)

σ+
CC ∼ xU + (1− y)2xD, (13)

σ−CC ∼ xU + (1− y)2xD. (14)

Here y = Q2/sx is the inelasticity, s = 4EeEp and Y± = 1 ± (1 − y)2. The parton distribution
U = u + c + b is the sum of the momentum distributions of the up-type quarks with charge eu = 2/3
and axial vector coupling au = 1/2, while D = d+ s is the sum of the momentum distributions of the
down type quarks with charge ed = −1/3, ad = −1/2. Similar relationships hold for the anti-quark
distributions U and D.

As is illustrated in Fig. 17 the H1 experiment [11] has determined all four quark distributions
and the gluon distribution xg. The accuracy achieved so far by H1, for x = 0.01, 0.4 and 0.65, is
1%, 3%, 7% for the sum of up quark distributions and 2%, 10%, 30% for the sum of down quark dis-
tributions, respectively. The extracted parton distributions are in reasonable agreement with the results
obtained in global fits by the MRST [5] and CTEQ [4] collaborations. The H1 result is also consistent
with the pdfs determined by the ZEUS Collaboration [10] which uses jet data to improve the accuracy for
the gluon distribution and imports a d − u asymmetry fit result from MRST. New data which are being
taken (HERA II) will improve the accuracy of these determinations further. At the time this is written,
the available data per experiment have been grown to roughly 150 pb−1 for both e+p and e−p scattering,
and more is still to come. These data will be particularly important to improve the accuracy at large x,
which at HERA is related to high Q2.

As is clear from the above equations, the NC and CC cross section data are sensitive directly to
only these four quark distribution combinations. Disentangling the individual quark flavours (up, down,
strange, charm and beauty) requires additional assumptions. While informations on the c and b densities
are being obtained from measurements of F cc

2 and F bb2 of improving accuracy, the determination of the
strange quark density at HERA is less straightforward and may rest on sW + → c and strange (Φ) particle

8Contributing authors: M. Klein, B. Reisert
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Fig. 17: Determination of the sum of up, anti-up, down and anti-downquark distributions and of the gluon distri-
bution in the proton based on the H1 neutral and charged current cross section data. Left: for Q2 of 10 and 1000
GeV2 compared with results from MRST and CTEQ; Right: the parton distributions with their experimental and
model uncertainties as determined by H1 at the starting scale Q2
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Fig. 18: Parton distributions and their uncertainties as determined by H1 extrapolated to the region of the LHC,
for x = 0.001 near to the rapidity plateau. Top left: u valence; top right: d valence; bottom left: u and below c;
bottom right, in decreasing order: d, s, b. The results are compared with recent fits to global data by MRST and
CTEQ. Note that at such small x the valence quark distributions are very small. With increasing Q2 the relative
importance of the heavy quarks compared to the light quarks increases while the absolute difference of the quark
distributions is observed to be rather independent ofQ2. The beauty contribution to the cross section thus becomes
sizeable, amounting to about 5% for pp→ HW .
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results of MRST and CTEQ include Drell Yan data which suggest a sea quark asymmetry at x ∼ 0.1.

production [41]. The relative contributions from the heavy quarks become increasingly important with
Q2, as is illustrated in Fig. 18.

The larger x domain is dominated by the valence quarks. At HERA the valence quark distributions
are not directly determined but extracted from the differences uv = U − U and dv = D −D. Note that
this implies the assumption that sea and anti-quarks are equal which in non-perturbative QCD models
may not hold. A perhaps more striking assumption is inherent in these fits and regards the sea quark
asymmetries at low x which is the main subject of the subsequent discussion.

Fig. 19 shows the difference xd− xu as determined in the H1 PDF 2000 fit based on the H1 data
alone (left) and using in addition the BCDMS proton and deuteron data (right). One observes a trend of
these fits to reproduce the asymmetry near x ∼ 0.1 which in the MRST and CTEQ fits, shown in Fig. 19,
is due to fitting the Drell Yan data from the E866/NuSea experiment [42]. While this enhancement is not
very stable in the H1 fit [43] and not significant either, with the BCDMS data an asymmetry is observed
which reflects the violation of the Gottfried sum rule.

In the H1 fit [11] the parton distributions at the initial scale Q2 = 4 GeV2 are parameterised as
xP = Apx

BP (1−x)CP · fP (x). The function fP is a polynomial in x which is determined by requiring
“χ2 saturation” of the fits, i.e. starting from fP = 1 additional termsDPx,EPx2 etc. are added and only
considered if they cause a significant improvement in χ2, half integer powers were considered in [43].
The result for fitting the H1 data has been as follows: fg = (1 + Dgx), fU = (1 + DUx + FUx

3),
fD = (1 + DDx) and fU = fD = 1. The parton distributions at low x are thus parameterised as
xP → APx

BP . The strange (charm) anti-quark distribution is coupled to the total amount of down (up)
anti-quarks as s = fcD (c = fcU ). Two assumptions have been made on the behaviour of the quark
and anti-quark distributions at low x. It has been assumed that quark and anti-quark distributions are
equal and, moreover, that the sea is flavour symmetric. This implies that the slopes B of all four quark
distributions are set equal BU = BD = BU = BD. Moreover, the nomalisations of up and down quarks
are the same, i.e. AU (1 − fc) = AD(1 − fs), which ensures that d/u → 1 as x tends to zero. The
consequence of this assumption is illustrated in Fig. 19. While the DIS data suggest some asymmetry at
larger x, the up-down quark asymmetry is enforced to vanish at lower x. This results in a rather fake
high accuracy in the determination of the four quark distributions at low x, despite the fact that at low
x there is only one combination of them measured, which is F2 = x[4(U + U) + (D + D)]/9. If one
relaxes both the conditions on the slopes and normalisations, the fit to the H1 data decides to completely
remove the down quark contributions as is seen in Fig. 20 (left plot).
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Fig. 20: Determinations of the quark and gluon momentum distributions releasing the constraint xd = xu at low
x, from the H1 NC and CC data alone (left) and from the H1 ep and the BCDMS µp and µD data (right). Since
at low x < 0.01 there is no further constraint than that given from F2 the uncertainties of U and in particular of D
become sizeable.

In DIS the up and down quark asymmetry can be constrained using deuteron data because the
nucleon structure function determines a different linear combination according to F N

2 = 5x(U + U +
D+D)/18+x(c+c−s−s)/6 with N = (p+n)/2. Unfortunately, there are only data at rather large x
available. The effect of including the BCDMS data on the low x behaviour of the parton distributions is
illustrated in Fig. 20 (right plot). It restores some amount of down quarks at low x , the errors, however, in
particular of the down quarks, are still very large. The result is a large sea quark asymmetry uncertainty,
which is shown in Fig. 21. At HERA a proposal had been made [44] to operate the machine in electron-
deuteron mode. Measuring the behaviour at low x would not require high luminosity. Such data would
constrain 9 a possible sea quark asymmetry with very high accuracy, as is also shown in Fig. 21.

Deuterons at HERA would require a new source and modest modifications to the preaccelerators.
The H1 apparatus could be used in its standard mode with a forward proton detector added to take
data at half the beam energy. Tagging the spectator protons with high accuracy at HERA, for the first
time in DIS, one could reconstruct the electron-neutron scattering kinematics essentially free of nuclear
corrections [44]. Since the forward scattering amplitude is related to diffraction one would also be
able to constrain shadowing to the per cent level [47]. The low x measurements would require small
luminosity amounts, of less than 50 pb−1. Long awaited constraints of the d/u ratio at large x and
Q2 would require extended running, as would CC data. Besides determining the parton distributions
better, the measurement of the singlet FN

2 structure function would give important constraints on the
evolution and theory at low x [48]. It would also result in an estimated factor of two improvement on the
measurement of αs at HERA [49]. For the development of QCD, of low x physics in particular, but as
well for understanding physics at the LHC and also for superhigh energy neutrino astrophysics, HERA
eD data remain to be important.

9Constraints on the sea quark distributions may also be obtained from W+/W− production at the TeVatron. However, the
sensitivity is limited to larger x ≥ 0.1 [45] since W ′s produced in collisions involving sea quarks of smaller x will be boosted
so strongly, that their decay products are not within the acceptance of the collider detectors. W+ and W− production at the
LHC has been discussed in [46].
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Fig. 21: Simulation of the difference of sea quark distributions, here assumed to be zero, at low x based on
additional 20 pb−1 of electron-deuteron data at HERA. The error band represents the uncertainty of the H1 NLO
QCD fit to the H1 ep and the BCDMS µp and µd data without the constraint d = u at low x. The dashed curves
represent calculations using recent global fits by MRST and by CTEQ.

7 Impact of future HERA data on the determination of proton PDFs using the ZEUS
NLO QCD fit 10

7.1 PDF fits to HERA data
Recently, the ZEUS Collaboration have performed a combined NLO QCD fit to inclusive neutral and
charged current DIS data [23–28] as well as high precision jet data in DIS [50] and γp scattering [51].
This is called the ZEUS-JETS PDF fit [10]. The use of only HERA data eliminates the uncertainties from
heavy-target corrections and removes the need for isospin symmetry assumptions. It also avoids the dif-
ficulties that can sometimes arise from combining data-sets from several different experiments, thereby
allowing a rigorous statistical treatment of the PDF uncertainties. Furthermore, PDF uncertainties from
current global fits are, in general, limited by (irreducible) experimental systematics. In contrast, those
from fits to HERA data alone, are largely limited by the statistical precision of existing measurements.
Therefore, the impact of future data from HERA is likely to be most significant in fits to only HERA
data.

7.2 The ZEUS NLO QCD fit
The ZEUS-JETS PDF fit has been used as the basis for all results shown in this contribution. The most
important details of the fit are summarised here. A full description may be found elsewhere [10]. The
fit includes the full set of ZEUS inclusive neutral and charged current e±p data from HERA-I (1994-
2000), as well as two sets of high precision jet data in e+p DIS (Q2 >> 1 GeV2) and γp (Q2 ∼ 0)
scattering. The inclusive data used in the fit, span the kinematic range 6.3 × 10−5 < x < 0.65 and
2.7 < Q2 < 30000 GeV2.

The PDFs are obtained by solving the NLO DGLAP equations within the MS scheme. These
equations yield the PDFs at all values of Q2 provided they are input as functions of x at some starting
scale Q2

0. The resulting PDFs are convoluted with coefficient functions to give predictions for structure
functions and, hence, cross sections. In the ZEUS fit, the xuv(x) (u-valence), xdv(x) (d-valence), xS(x)
(total sea-quark), xg(x) (gluon) and x(d̄(x)− ū(x)) PDFs are parameterised at a starting scale ofQ2

0 = 7
GeV2 by the form,

xf(x) = p1x
p2(1− x)p3P (x), (15)

10Contributing authors: C. Gwenlan, A. Cooper-Sarkar, C. Targett-Adams.
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Fig. 22: The optimised jet cross sections included in the HERA-II projected fit. The solid points show the simulated
data generated using the NLO QCD programme of Frixione-Ridolfi, using the CTEQ5M1 proton and the AFG
photon PDFs. The error bars show the statistical uncertainties, which correspond to 500 pb−1 of HERA data.
Systematic uncertainties have been neglected. The dashed line shows the NLO QCD prediction using the ZEUS-S
proton and AFG photon PDFs. The shaded band shows the contribution to the cross section uncertainty arising
from the uncertainty in the gluon distribution in the proton.
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Table 4: The data-sets included in the ZEUS-JETS and HERA-II projected PDF fits. The first column lists the
type of data and the second gives the kinematic coverage. The third column gives the integrated luminosities of
the HERA-I measurements included in the ZEUS-JETS fit. The fourth column gives the luminosities assumed in
the HERA-II projection. Note that the 96-97 NC and the 94-97 CC measurements have not had their luminosity
scaled for the HERA-II projection.

HERA-I HERA-II

data sample kinematic coverage L (pb−1) L (pb−1)

(assumed)

96-97 NC e+p [23] 2.7 < Q2 < 30000 GeV2; 6.3 · 10−5 < x < 0.65 30 30

94-97 CC e+p [24] 280 < Q2 < 17000 GeV2; 6.3 · 10−5 < x < 0.65 48 48

98-99 NC e−p [25] 200 < Q2 < 30000 GeV2; 0.005 < x < 0.65 16 350

98-99 CC e−p [26] 280 < Q2 < 17000 GeV2; 0.015 < x < 0.42 16 350

99-00 NC e+p [27] 200 < Q2 < 30000 GeV2; 0.005 < x < 0.65 63 350

99-00 CC e+p [28] 280 < Q2 < 17000 GeV2; 0.008 < x < 0.42 61 350

96-97 inc. DIS jets [50] 125 < Q2 < 30000 GeV2; EBreitT > 8 GeV 37 500

96-97 dijets in γp [51] Q2 . 1 GeV2; Ejet1,2T > 14, 11 GeV 37 500

optimised jets [52] Q2 . 1 GeV2; Ejet1,2T > 20, 15 GeV - 500

where P (x) = (1 + p4x). No advantage in the χ2 results from using more complex polynomial forms.
The normalisation parameters, p1(uv) and p1(dv), are constrained by quark number sum rules while
p1(g) is constrained by the momentum sum rule. Since there is no information to constrain any difference
in the low-x behaviour of the u- and d-valence quarks, p2(uv) has been set equal to p2(dv). The data
from HERA are currently less precise than the fixed target data in the high-x regime. Therefore, the high-
x sea and gluon distributions are not well constrained in current fits to HERA data alone. To account
for this, the sea shape has been restricted by setting p4(S) = 0. The high-x gluon shape is constrained
by the inclusion of HERA jet data. In fits to only HERA data, there is no information on the shape of
d̄− ū. Therefore, this distribution has its shape fixed consistent with Drell-Yan data and its normalisation
set consistent with the size of the Gottfried sum rule violation. A suppression of the strange sea with
respect to the non-strange sea of a factor of 2 at Q2

0 is also imposed, consistent with neutrino induced
dimuon data from CCFR. The value of the strong coupling has been fixed to αs(MZ) = 0.1180. After all
constraints, the ZEUS-JETS fit has 11 free parameters. Heavy quarks were treated in the variable flavour
number scheme of Thorne & Roberts [19]. Full account was taken of correlated experimental systematic
uncertainties, using the Offset Method [9, 18].

The results of two separate studies are presented. The first study provides an estimate of how
well the PDF uncertainties may be known by the end of HERA-II, within the currently planned running
scenario, while the second study investigates the impact of a future HERA measurement of FL on the
gluon distribution. All results presented, are based on the recent ZEUS-JETS PDF analysis [10].

7.3 PDF uncertainty estimates for the end of HERA running
The data from HERA-I are already very precise and cover a wide kinematic region. However, HERA-II is
now running efficiently and is expected to provide a substantial increase in luminosity. Current estimates
suggest that, by the end of HERA running (in mid-2007), an integrated luminosity of 700 pb−1 should
be achievable. This will allow more precise measurements of cross sections that are curently statistically
limited: in particular, the high-Q2 NC and CC data, as well as high-Q2 and/or high-ET jet data. In
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Fig. 23: The fractional PDF uncertainties, as a function of x, for the u-valence, d-valence, sea-quark and gluon
distributions at Q2 = 1000 GeV2. The red shaded bands show the results of the ZEUS-JETS fit and the yellow
shaded bands show the results of the HERA-II projected fit.

addition to the simple increase in luminosity, recent studies [52] have shown that future jet cross section
measurements, in kinematic regions optimised for sensitivity to PDFs, should have a significant impact
on the gluon uncertainties. In this contribution, the effect on the PDF uncertainties, of both the higher
precision expected from HERA-II and the possibility of optimised jet cross section measurements, has
been estimated in a new QCD fit. This fit will be referred to as the “HERA-II projection”.

In the HERA-II projected fit, the statistical uncertainties on the currently available HERA-I data
have been reduced. For the high-Q2 inclusive data, a total integrated luminosity of 700 pb−1 was as-
sumed, equally divided between e+ and e−. For the jet data, an integrated luminosity of 500 pb−1 was
assumed. The central values and systematic uncertainties were taken from the published data in each
case. In addition to the assumed increase in precision of the measurements, a set of optimised jet cross
sections were also included, for forward dijets in γp collisions, as defined in a recent study [52]. Since
no real data are yet available, simulated points were generated using the NLO QCD program of Frixione-
Ridolfi [53], using the CTEQ5M1 [4] proton and AFG [54] photon PDFs. The statistical uncertainties
were taken to correspond to 500 pb−1. For this study, systematic uncertainties on the optimised jet cross
sections were ignored. The simulated optimised jet cross section points, compared to the predictions of
NLO QCD using the ZEUS-S proton PDF [9], are shown in Fig. 22.

Table 4 lists the data-sets included in the ZEUS-JETS and HERA-II projected fits. The luminosi-
ties of the (real) HERA-I measurements and those assumed for the HERA-II projection are also given.

The results are summarised in Fig. 23, which shows the fractional PDF uncertainties, for the u-
and d-valence, sea-quark and gluon distributions, at Q2 = 1000 GeV2. The yellow bands show the
results of the ZEUS-JETS fit while the red bands show those for the HERA-II projection. Note that the
same general features are observed for all values of Q2. In fits to only HERA data, the information on the
valence quarks comes from the high-Q2 NC and CC cross sections. The increased statistical precision
of the high-Q2 data, as assumed in the HERA-II projected fit, gives a significant improvement in the
valence uncertainties over the whole range of x. For the sea quarks, a significant improvement in the
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Fig. 24: NLO QCD inclusive jet cross section predictions at
√
s=14 TeV in three regions of pseudo-rapidity. The

yellow and blue bands show the PDF uncertainties from the ZEUS-JETS and HERA-II projected fits, respectively.

uncertainties at high-x is also observed. In contrast, the low-x uncertainties are not visibly reduced. This
is due to the fact that the data constraining the low-x region tends to be at lower-Q2, which are already
systematically limited. This is also the reason why the low-x gluon uncertainties are not significantly
reduced. However, the mid-to-high-x gluon, which is constrained by the jet data, is much improved in
the HERA-II projected fit. Note that about half of the observed reduction in the gluon uncertainties is
due to the inclusion of the simulated optimised jet cross sections.

Inclusive jet cross sections at the LHC

The improvement to the high-x partons, observed in the HERA-II projection compared to the ZEUS-
JETS fit, will be particularly relevant for high-scale physics at the LHC. This is illustrated in Fig. 24,
which shows NLO QCD predictions from the JETRAD [55] programme for inclusive jet production at√
s = 14 TeV. The results are shown for both the ZEUS-JETS and the HERA-II projected PDFs. The

uncertainties on the cross sections, resulting from the PDFs, have been calculated using the LHAPDF
interface [56]. For the ZEUS-JETS PDF, the uncertainty reaches ∼ 50% at central pseudo-rapidities,
for the highest jet transverse energies shown. The prediction using the HERA-II projected PDF shows a
marked improvement at high jet tranverse energy.
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lated FL data, for Q2 = 1.5, 5, 10 and 20 GeV2. The red shaded bands show the results of the ZEUS-JETS fit and
the yellow shaded band show the results of the ZEUS-JETS+FL fit.

7.4 Impact of a future HERA measurement of FL on the gluon PDF
The longitudinal structure function, FL, is directly related to the gluon density in the proton. In principle,
FL can be extracted by measuring the NC DIS cross section at fixed x and Q2, for different values of y
(see Eqn. 3). A precision measurement could be achieved by varying the centre-of-mass energy, since
s = Q2/xy ≈ 4EeEp, where Ee and Ep are the electron and proton beam energies, respectively.
Studies [38] (Sec. 5) have shown that this would be most efficiently achieved by changing the proton
beam energy. However, such a measurement has not yet been performed at HERA.

There are several reasons why a measurement of FL at low-x could be important. The gluon
density is not well known at low-x and so different PDF parameterisations can give quite different pre-
dictions for FL at low-x. Therefore, a precise measurement of the longitudinal sturcture function could
both pin down the gluon PDF and reduce its uncertainties. Furthermore, predictions of FL also depend
upon the nature of the underlying theory (e.g. order in QCD, resummed calculation etc). Therefore, a
measurement of FL could also help to discriminate between different theoretical models.

Impact on the gluon PDF uncertainties

The impact of a possible future HERA measurement of FL on the gluon PDF uncertainties has been
investigated, using a set of simulated FL data-points [38]. (see Sec. 5). The simulation was performed
using the GRV94 [57] proton PDF for the central values, and assuming Ee = 27.6 GeV and Ep =
920, 575, 465 and 400 GeV, with luminosities of 10, 5, 3 and 2 pb−1, respectively. Assuming that
the luminosity scales simply as E2

p , this scenario would nominally cost 35 pb−1 of luminosity under
standard HERA conditions. However, this estimate takes no account of time taken for optimisation of
the machine with each change in Ep, which could be considerable. The systematic uncertainties on the
simulated data-points were calculated assuming a ∼ 2% precision on the inclusive NC cross section
measurement. A more comprehensive description of the simulated data is given in contribution for this
proceedings, see Sec. 5.

T. CARLI , A. COOPER-SARKAR , J. FELTESSE, A. GLAZOV, C. GWENLAN , M. KLEIN , . . .

108



2 = 5 GeV2Q 210 GeV

220 GeV

 ZEUS-JETS fit
 

 points: Lsimulated F
GRV94 NLO
MRST2003 NLO

 C(NNLO)×MRSG95 

 ZEUS-JETS fit
 

 points: Lsimulated F
GRV94 NLO
MRST2003 NLO

 C(NNLO)×MRSG95 

 ZEUS-JETS fit
 

 points: Lsimulated F
GRV94 NLO
MRST2003 NLO

 C(NNLO)×MRSG95 

-410 -310 -210 -110

-410 -310 -210 -110

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

x

LF

Fig. 26: The distribution of the longitudinal structure function FL at Q2 =5, 10 and 20 GeV2. The blue, red and
green points show the simulated FL data-points, respectively labelled maximum, middle and minimum in Table 5.
The blue, red and green shaded bands show the NLO QCD predictions, in the case where the data-points of the
corresponding colour have been included in the fit. For comparison, the yellow shaded band shows the prediction
of the ZEUS-JETS fit.

The simulated data were included in the ZEUS-JETS fit. Figure 25 shows the gluon distribution
and fractional uncertainties for fits with and without inclusion of the simulated FL data. The results
indicate that the gluon uncertainties are reduced at low-x, but the improvement is only significant at
relatively low Q2 . 20 GeV2.

Discrimination between theoretical models

In order to assess whether a HERA measurement of FL could discriminate between theoretical models,
two more sets of FL data-points have been simulated [58], using different theoretical assumptions. The
first of the two sets was generated using the MRSG95 [59] proton PDF, which has a large gluon density.
The PDFs were then convoluted with the NNLO order coefficient functions, which are large and positive.
This gives the “maximum” set of FL data-points. In contrast, the second set has been generated using
the MRST2003 [60] proton PDF, which has a negative gluon at low-x and low-Q2, thus providing a
“minimum” set of FL data. The original set of FL points described in the previous subsection lies
between these two extremes. The details of all three sets are summarised in Table 5.

Figure 26 shows the results of including, individually, each set of simulated FL data into the ZEUS
NLO QCD fit. The results show that the NLO fit is relatively stable to the inclusion of the extreme sets
of data. This indicates that a measurement of FL could discriminate between certain theoretical models.
However, it should be noted that the maximum and minimum models studied here were chosen specifi-
cally to give the widest possible variation in FL. There are many other alternatives that would lie between
these extremes and the ability of an FL measurement to discriminate between them would depend both
on the experimental precision of the measurement itself, as well as the theoretical uncertainties on the
models being tested.
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Table 5: Summary of the PDFs used to generate the simulated FL data-points. The extreme maximum FL points
were generated using the MRSG95 PDF, and convoluted with NNLO coefficient functions. The middle points
were generated using the GRV94 PDF, and the extreme minimum points were generated using the MRST2003
PDF, which has a negative gluon at low-x.

PDF QCD order of coefficient functions
Maximum FL MRSG95 NNLO
Middle FL GRV94 NLO
Minimum FL MRST2003 NLO

8 A Method to Include Final State Cross-sections Measured in Proton-Proton Collisions
to Global NLO QCD Analysis 11

The Large Hadron Collider (LHC), currently under construction at CERN, will collide protons on pro-
tons with an energy of 7 TeV. Together with its high collision rate the high available centre-of-mass
energy will make it possible to test new interactions at very short distances that might be revealed in the
production cross-sections of Standard Model (SM) particles at very high transverse momentum (PT ) as
deviation from the SM theory.

The sensitivity to new physics crucially depends on experimental uncertainties in the measure-
ments and on theoretical uncertainties in the SM predictions. It is therefore important to work out a
strategy to minimize both the experimental and theoretical uncertainties from LHC data. For instance,
one could use single inclusive jet or Drell-Yan cross-sections at low PT to constrain the PDF uncertain-
ties at high PT . Typical residual renormalisation and factorisation scale uncertainties in next-to-leading
order (NLO) calculations for single inclusive jet-cross-section are about 5 − 10% and should hopefully
be reduced as NNLO calculations become available. The impact of PDF uncertainties on the other hand
can be substantially larger in some regions, especially at large PT , and for example at PT = 2000 GeV
dominate the overall uncertainty of 20%. If a suitable combination of data measured at the Tevatron and
LHC can be included in global NLO QCD analyses, the PDF uncertainties can be constrained.

The aim of this contribution is to propose a method for consistently including final-state observ-
ables in global QCD analyses.

For inclusive data like the proton structure function F2 in deep-inelastic scattering (DIS) the per-
turbative coefficients are known analytically. During the fit the cross-section can therefore be quickly
calculated from the strong coupling (αs) and the PDFs and can be compared to the measurements. How-
ever, final state observables, where detector acceptances or jet algorithms are involved in the definition of
the perturbative coefficients (called “weights” in the following), have to be calculated using NLO Monte
Carlo programs. Typically such programs need about one day of CPU time to calculate accurately the
cross-section. It is therefore necessary to find a way to calculate the perturbative coefficients with high
precision in a long run and to include αs and the PDFs “a posteriori”.

To solve this problem many methods have been proposed in the past [3,10,61–64]. In principle the
highest efficiencies can be obtained by taking moments with respect to Bjorken-x [61, 62], because this
converts convolutions into multiplications. This can have notable advantages with respect to memory
consumption, especially in cases with two incoming hadrons. On the other hand, there are complications
such as the need for PDFs in moment space and the associated inverse Mellin transforms.

Methods in x-space have traditionally been somewhat less efficient, both in terms of speed (in
the ‘a posteriori’ steps — not a major issue here) and in terms of memory consumption. They are,
however, somewhat more transparent since they provide direct information on the x values of relevance.
Furthermore they can be used with any PDF. The use of x-space methods can be further improved by
using methods developed originally for PDF evolution [65, 66].

11Contributing authors: T. Carli, G. Salam, F. Siegert.
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8.1 PDF-independent representation of cross-sections
Representing the PDF on a grid

We make the assumption that PDFs can be accurately represented by storing their values on a two-
dimensional grid of points and using nth-order interpolations between those points. Instead of using
the parton momentum fraction x and the factorisation scale Q2, we use a variable transformation that
provides good coverage of the full x and Q2 range with uniformly spaced grid points:12

y(x) = ln
1

x
and τ(Q2) = ln ln

Q2

Λ2
. (16)

The parameter Λ is to be chosen of the order of ΛQCD, but not necessarily identical. The PDF q(x,Q2)
is then represented by its values qiy,iτ at the 2-dimensional grid point (iy δy, iτ δτ), where δy and δτ
denote the grid spacings, and obtained elsewhere by interpolation:

q(x,Q2) =

n∑

i=0

n′∑

ι=0

qk+i,κ+ι I
(n)
i

(
y(x)

δy
− k
)
I(n′)
ι

(
τ(Q2)

δτ
− κ
)
, (17)

where n, n′ are the interpolation orders. The interpolation function I (n)
i (u) is 1 for u = i and otherwise

is given by:

I
(n)
i (u) =

(−1)n−i

i!(n− i)!
u(u− 1) . . . (u− n)

u− i . (18)

Defining int(u) to be the largest integer such that int(u) ≤ u, k and κ are defined as:

k(x) = int
(
y(x)
δy − n−1

2

)
, κ(x) = int

(
τ(Q2)

δτ
− n′ − 1

2

)
. (19)

Given finite grids whose vertex indices range from 0 . . . Ny − 1 for the y grid and 0 . . . Nτ − 1 for the τ
grid, one should additionally require that eq. (17) only uses available grid points. This can be achieved
by remapping k → max(0,min(Ny − 1− n, k)) and κ→ max(0,min(Nτ − 1− n′, κ)).

Representing the final state cross-section weights on a grid (DIS case)

Suppose that we have an NLO Monte Carlo program that produces events m = 1 . . . N . Each event m
has an x value, xm, a Q2 value, Q2

m, as well as a weight, wm, and a corresponding order in αs, pm.
Normally one would obtain the final result W of the Monte Carlo integration from:13

W =

N∑

m=1

wm

(
αs(Q

2
m)

2π

)pm
q(xm, Q

2
m). (20)

Instead one introduces a weight grid W (p)
iy ,iτ

and then for each event updates a portion of the grid
with:
i = 0 . . . n, ι = 0 . . . n′ :

W
(pm)
k+i,κ+ι→ W

(pm)
k+i,κ+ι + wm I

(n)
i

(
y(xm)

δy
− k
)
I(n′)
ι

(
τ(Q2

m)

δτ
− κ
)
, (21)

where k ≡ k(xm), κ ≡ κ(Q2
m).

12An alternative for the x grid is to use y = ln 1/x+a(1−x) with a a parameter that serves to increase the density of points
in the large x region.

13Here, and in the following, renormalisation and factorisation scales have been set equal for simplicity.
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The final result for W , for an arbitrary PDF, can then be obtained subsequent to the Monte Carlo run:

W =
∑

p

∑

iy

∑

iτ

W
(p)
iy ,iτ



αs

(
Q2(iτ )

)

2π



p

q
(
x(iy), Q2(iτ )

)
, (22)

where the sums index with iy and iτ run over the number of grid points and we have have explicitly
introduced x(iy) and Q2(iτ ) such that:

y(x(iy)) = iy δy and τ
(
Q2(iτ )

)
= iτ δτ. (23)

Including renormalisation and factorisation scale dependence

If one has the weight matrix W
(p)
iy,iτ

determined separately order by order in αs, it is straightforward
to vary the renormalisation µR and factorisation µF scales a posteriori (we assume that they were kept
equal in the original calculation).

It is helpful to introduce some notation relating to the DGLAP evolution equation:

dq(x,Q2)

d lnQ2
=
αs(Q

2)

2π
(P0 ⊗ q)(x,Q2) +

(
αs(Q

2)

2π

)2

(P1 ⊗ q)(x,Q2) + . . . , (24)

where the P0 and P1 are the LO and NLO matrices of DGLAP splitting functions that operate on vectors
(in flavour space) q of PDFs. Let us now restrict our attention to the NLO case where we have just two
values of p, pLO and pNLO. Introducing ξR and ξF corresponding to the factors by which one varies µR
and µF respectively, for arbitrary ξR and ξF we may then write:

W (ξR, ξF ) =
∑

iy

∑

iτ



αs

(
ξ2
RQ

2(iτ )
)

2π



pLO

W
(pLO)
iy,iτ

q
(
x(iy), ξ2

FQ
2(iτ )

)
+



αs

(
ξ2
RQ

2(iτ )
)

2π



pNLO [(

W
(pNLO)
iy,iτ

+ 2πβ0pLO ln ξ2
RW

(pLO)
iy,iτ

)
q
(
x(iy), ξ2

FQ
2(iτ )

)
(25)

− ln ξ2
F W

(pLO)
iy,iτ

(P0 ⊗ q)
(
x(iy), ξ2

FQ
2(iτ )

)]
,

where β0 = (11Nc−2nf )/(12π) andNc (nf ) is the number of colours (flavours). Though this formula is
given for x-space based approach, a similar formula applies for moment-space approaches. Furthermore
it is straightforward to extend it to higher perturbative orders.

Representing the weights in the case of two incoming hadrons

In hadron-hadron scattering one can use analogous procedures with one more dimension. Besides Q2,
the weight grid depends on the momentum fraction of the first (x1) and second (x2) hadron.

In the case of jet production in proton-proton collisions the weights generated by the Monte Carlo
program as well as the PDFs can be organised in seven possible initial state combinations of partons:

gg : F (0)(x1, x2;Q2) = G1(x1)G2(x2) (26)

qg : F (1)(x1, x2;Q2) =
(
Q1(x1) +Q1(x1)

)
G2(x2) (27)

gq : F (2)(x1, x2;Q2) = G1(x1)
(
Q2(x2) +Q2(x2)

)
(28)

qr : F (3)(x1, x2;Q2) = Q1(x1)Q2(x2) +Q1(x1)Q2(x2)−D(x1, x2) (29)

qq : F (4)(x1, x2;Q2) = D(x1, x2) (30)
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qq̄ : F (5)(x1, x2;Q2) = D(x1, x2) (31)

qr̄ : F (6)(x1, x2;Q2) = Q1(x1)Q2(x2) +Q1(x1)Q2(x2)−D(x1, x2), (32)

where g denotes gluons, q quarks and r quarks of different flavour q 6= r and we have used the generalized
PDFs defined as:

GH(x) = f0/H(x,Q2), QH(x) =

6∑

i=1

fi/H(x,Q2), QH(x) =

−1∑

i=−6

fi/H(x,Q2),

D(x1, x2) =

6∑

i=−6
i6=0

fi/H1
(x1, Q

2)fi/H2
(x2, Q

2), (33)

D(x1, x2, µ
2
F ) =

6∑

i=−6
i6=0

fi/H1
(x1, Q

2)f−i/H2
(x2, Q

2),

where fi/H is the PDF of flavour i = −6 . . . 6 for hadron H and H1 (H2) denotes the first or second
hadron14 .

The analogue of eq. 22 is then given by:

W =
∑

p

6∑

l=0

∑

iy1

∑

iy2

∑

iτ

W
(p)(l)
iy1 ,iy2 ,iτ



αs

(
Q2(iτ )

)

2π



p

F (l)
(
x

(iy1 )
1 , x

(iy1 )
2 , Q2(iτ )

)
. (34)

Including scale depedence in the case of two incoming hadrons

It is again possible to choose arbitrary renormalisation and factorisation scales, specifically for NLO
accuracy:

W (ξR, ξF ) =

6∑

l=0

∑

iy1

∑

iy2

∑

iτ



αs

(
ξ2
RQ

2(iτ )
)

2π



pLO

W
(pLO)(l)
iy1 ,iy2 ,iτ

F (l)
(
x

(iy1)
1 , x

(iy1 )
2 , ξ2

FQ
2(iτ )

)
+



αs

(
ξ2
RQ

2(iτ )
)

2π



pNLO [(

W
(pNLO)(l)
iy1 ,iy2 ,iτ

+ 2πβ0pLO ln ξ2
RW

(pLO)(l)
iy1 ,iy2 ,iτ

)
F (l)

(
x

(iy1)
1 , x

(iy1 )
2 , ξ2

FQ
2(iτ )

)
(35)

− ln ξ2
F W

(pLO)(l)
iy1 ,iy2 ,iτ

(
F

(l)
q1→P0⊗q1

(
x

(iy1)
1 , x

(iy1 )
2 , ξ2

FQ
2(iτ )

)
+ F

(l)
q2→P0⊗q2

(
x

(iy1 )
1 , x

(iy1 )
2 , ξ2

FQ
2(iτ )

))]
,

where F (l)
q1→P0⊗q1 is calculated as F (l), but with q1 replaced wtih P0⊗q1, and analogously for F (l)

q2→P0⊗q2 .

8.2 Technical implementation
To test the scheme discussed above we use the NLO Monte Carlo program NLOJET++ [67] and the
CTEQ6 PDFs [4]. The grid W (p)(l)

iy1 ,iy2 ,iτ
of eq. 34 is filled in a NLOJET++ user module. This module

has access to the event weight and parton momenta and it is here that one specifies and calculates the
physical observables that are being studied (e.g. jet algorithm).

Having filled the grid we construct the cross-section in a small standalone program which reads
the weights from the grid and multiplies them with an arbitrary αs and PDF according to eq. 34. This
program runs very fast (in the order of seconds) and can be called in a PDF fit.

14In the above equation we follow the standard PDG Monte Carlo numbering scheme [17] where gluons are denoted as 0,
quarks have values from 1-6 and anti-quarks have the corresponding negative values.
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The connection between these two programs is accomplished via a C++ class, which provides
methods e.g. for creating and optimising the grid, filling weight events and saving it to disk. The classes
are general enough to be extendable for the use with other NLO calculations.

The complete code for the NLOJET++ module, the C++ class and the standalone job is available
from the authors. It is still in a development, testing and tuning stage, but help and more ideas are
welcome.

The C++ class

The main data members of this class are the grids implemented as arrays of three-dimensional ROOT
histograms, with each grid point at the bin centers15:

TH3D[p][l][iobs](x1, x2,Q
2), (36)

where the l and p are explained in eq. 34 and iobs denotes the observable bin, e.g. a given PT range16 .

The C++ class initialises, stores and fills the grid using the following main methods:

– Default constructor: Given the pre-defined kinematic regions of interest, it initializes the grid.
– Optimizing method: Since in some bins the weights will be zero over a large kinematic region in
x1, x2, Q

2, the optimising method implements an automated procedure to adapt the grid bound-
aries for each observable bin. These boundaries are calculated in a first (short) run. In the present
implementation, the optimised grid has a fixed number of grid points. Other choices, like a fixed
grid spacing, might be implemented in the future.

– Loading method: Reads the saved weight grid from a ROOT file
– Saving method: Saves the complete grid to a ROOT file, which will be automatically compressed.

The user module for NLOJET++

The user module has to be adapted specifically to the exact definition of the cross-section calculation. If a
grid file already exists in the directory where NLOJET++ is started, the grid is not started with the default
constructor, but with the optimizing method (see 8.2). In this way the grid boundaries are optimised for
each observable bin. This is necessary to get very fine grid spacings without exceeding the computer
memory. The grid is filled at the same place where the standard NLOJET++ histograms are filled. After
a certain number of events, the grid is saved in a root-file and the calculation is continued.

The standalone program for constructing the cross-section

The standalone program calculates the cross-section in the following way:

1. Load the weight grid from the ROOT file
2. Initialize the PDF interface17 , load q(x,Q2) on a helper PDF-grid (to increase the performance)
3. For each observable bin, loop over iy1 , iy2 , iτ , l, p and calculate F l(x1, x2, Q

2) from the appropri-
ate PDFs q(x,Q2), multiply αs and the weights from the grid and sum over the initial state parton
configuration l, according to eq. 34.

15ROOT histograms are easy to implement, to represent and to manipulate. They are therefore ideal in an early development
phase. An additional advantage is the automatic file compression to save space. The overhead of storing some empty bins
is largely reduced by optimizing the x1, x2 and Q2 grid boundaries using the NLOJET++ program before final filling. To
avoid this residual overhead and to exploit certain symmetries in the grid, a special data class (e.g. a sparse matrix) might be
constructed in the future.

16For the moment we construct a grid for each initial state parton configuration. It will be easy to merge the qg and the gq
initial state parton configurations in one grid. In addition, the weights for some of the initial state parton configurations are
symmetric in x1 and x2. This could be exploited in future applications to further reduce the grid size.

17We use the C++ wrapper of the LHAPDF interface [56].
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8.3 Results
We calculate the single inclusive jet cross-section as a function of the jet transverse momentum (PT )
for jets within a rapidity of |y| < 0.5. To define the jets we use the seedless cone jet algorithm as im-
plemented in NLOJET++ using the four-vector recombination scheme and the midpoint algorithm. The
cone radius has been put to R = 0.7, the overlap fraction was set to f = 0.5. We set the renormalisation
and factorization scale to Q2 = P 2

T,max, where PT,max is the PT of the highest PT jet in the required
rapidity region18.

In our test runs, to be independent from statistical fluctuations (which can be large in particular
in the NLO case), we fill in addition to the grid a reference histogram in the standard way according to
eq. 20.

The choice of the grid architecture depends on the required accuracy, on the exact cross-section
definition and on the available computer resources. Here, we will just sketch the influence of the grid
architecture and the interpolation method on the final result. We will investigate an example where
we calculate the inclusive jet cross-section in Nobs = 100 bins in the kinematic range 100 ≤ PT ≤
5000 GeV. In future applications this can serve as guideline for a user to adapt the grid method to
his/her specific problem. We believe that the code is transparent and flexible enough to adapt to many
applications.

As reference for comparisons of different grid architectures and interpolation methods we use the
following:

– Grid spacing in y(x): 10−5 ≤ x1, x2 ≤ 1.0 with Ny = 30

– Grid spacing in τ(Q2): 100 GeV ≤ Q ≤ 5000 GeV with Nτ = 30

– Order of interpolation: ny = 3, nτ = 3

The grid boundaries correspond to the user setting for the first run which determines the grid boundaries
for each observable bin. In the following we call this grid architecture 302x30x100(3, 3). Such a grid
takes about 300 Mbyte of computer memory. The root-file where the grid is stored has about 50 Mbyte.

The result is shown in Fig. 27a). The reference cross-section is reproduced everywhere to within
0.05%. The typical precision is about 0.01%. At low and high PT there is a positive bias of about
0.04%. Also shown in Fig. 27a) are the results obtained with different grid architectures. For a finer
x grid (502x30x100(3, 3)) the accuracy is further improved (within 0.005%) and there is no bias. A
finer (302x60x100(3, 3)) as well as a coarser (302x10x100(3, 3)) binning in Q2 does not improve the
precision.

Fig. 27b) and Fig. 27c) show for the grid (302x30x100) different interpolation methods. With an
interpolation of order n = 5 the precision is 0.01% and the bias at low and high PT observed for the
n = 3 interpolation disappears. The result is similar to the one obtained with finer x-points. Thus by
increasing the interpolation order the grid can be kept smaller. An order n = 1 interpolation gives a
systematic negative bias of about 1% becoming even larger towards high PT .

Depending on the available computer resources and the specific problem, the user will have to
choose a proper grid architecture. In this context, it is interesting that a very small grid 102x10x100(5, 5)
that takes only about 10 Mbyte computer memory reaches still a precision of 0.5%, if an interpolation of
order n = 5 is used (see Fig. 27d)).

We have developed a technique to store the perturbative coefficients calculated by an NLO Monte
Carlo program on a grid allowing for a-posteriori inclusion of an arbitrary parton density function (PDF)

18Note that beyond LO the PT,max will in general differ from the PT of the other jets, so when binning an inclusive jet
cross section, the PT of a given jet may not correspond to the renormalisation scale chosen for the event as a whole. For this
reason we shall need separate grid dimensions for the jet PT and for the renormalisation scale. Only in certain moment-space
approaches [62] has this requirement so far been efficiently circumvented.
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Fig. 27: Ratio between the single inclusive jet cross-section with 100 PT bins calculated with the grid technique
and the reference cross-section calculated in the standard way. Shown are the standard grid, grids with finer x and
Q2 sampling (a) with interpolation of order 1, 3 and 5 (b) (and on a finer scale in c)) and a small grid (d).

set. We extended a technique that was already successfully used to analyse HERA data to the more
demanding case of proton-proton collisions at LHC energies.

The technique can be used to constrain PDF uncertainties, e.g. at high momentum transfers, from
data that will be measured at LHC and allows the consistent inclusion of final state observables in global
QCD analyses. This will help increase the sensitivity of LHC to find new physics as deviations from the
Standard Model predictions.

Even for the large kinematic range for the parton momentum fractions x1 and x2 and of the squared
momentum transfer Q2 accessible at LHC, grids of moderate size seem to be sufficient. The single
inclusive jet cross-section in the central region |y| < 0.5 can be calculated with a precision of 0.01%
in a realistic example with 100 bins in the transverse jet energy range 100 ≤ PT ≤ 5000 GeV. In this
example, the grid occupies about 300 Mbyte computer memory. With smaller grids of order 10 Mbyte
the reachable accuracy is still 0.5%. This is probably sufficient for all practical applications.
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DGLAP evolution and parton fits

S. I. Alekhin, J. Blümlein, H. Böttcher, L. Del Debbio, S. Forte, A. Glazov, A. Guffanti, J. Huston,
G. Ingelman J. I. Latorre, S. Moch, A. Piccione, J. Pumplin, V. Ravindran, J. Rojo G.P. Salam,
R.S. Thorne, J.A.M. Vermaseren, A. Vogt

1 DGLAP evolution and parton fits 1

1.1 Introduction
The high-precision data from HERA and the anticipated data from LHC open the possibility for a precise
determination of parton distributions. This, however, requires an improvement in the theoretical descrip-
tion of DIS and hard hadronic scattering processes, as well as an improvement of the techniques used to
extract parton distributions from the data.

The determination of perturbative QCD corrections has undergone substantial progress recently.
The key ingredient of a complete next-to-next-to-leading order (NNLO) prediction in perturbative QCD
are the recently calculated three-loop splitting functions which govern the scale dependence of PDFs.
Extensions in the accuracy of the perturbative predictions yet beyond NNLO are given by the three-loop
coefficient functions for F2, while the coefficient functions for FL at this order are actually required to
complete the NNLO predictions. Section 2 briefly discusses the recent results and their phenomenolog-
ical implications. Certain mathematical aspects, which are important in the calculation of higher order
corrections in massless QCD are presented in section 3. In particular, algebraic relations in Mellin-N
space are pointed out, which are of importance for harmonic sums, harmonic polylogarithms and multiple
ζ-values.

These calculation of the PDF evolution to NNLO in perturbative QCD are used in section 4 to
provide an update and extension of a set of benchmark tables for the evolution of parton distributions of
hadrons. These benchmark tables were first presented in the report of the QCD/SM working group at the
2001 Les Houches workshop, but based on approximate NNLO splitting functions, which are superseded
by the exact results which are now available. In addition, section 4 now includes also reference tables
for the case of polarized PDF evolution.

Whereas in principle the x-shapes of PDFs at low scales can be determined from first principles
using non-perturbative methods, in practice at present this is only possible using models (briefly touched
in in section 5). Therefore, an accurate determination of PDFs requires a global QCD fit to the data,
which is the subject of sections 6–8.

Section 6 discusses in particular the impact on parton fits of NNLO corrections on the one hand,
and of the inclusion of Drell-Yan data and future LHC data on the other hand. It then presents values
for a benchmark fit together with a table of correlation coefficients for the parameter obtained in the
fit. This benchmark fit is then re-examined in sec. 7, along with a comparison between PDFs and the
associated uncertainty obtained using the approaches of Alekhin and the MRST group. The differences
between these benchmark partons and the actual global fit partons are also discussed, and used to explore
complications inherent in extracting PDFs with uncertainties. Finally, in section 8 the stability of PDF
determinations in NLO global analyses is re-investigated and the results of the CTEQ PDF group on this
issue are summarized.

An alternative approach to a completely bias-free parameterization of PDFs is presented in sec-
tion 9. There, a neural network approach to global fits of parton distribution functions is introduced
and work on unbiased parameterizations of deep-inelastic structure functions with faithful estimation of
their uncertainties is reviewed together with a summary of the current status of neural network parton
distribution fits.

1Subsection coordinators: A. Glazov, S. Moch
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2 Precision Predictions for Deep-Inelastic Scattering 2

With high-precision data from HERA and in view of the outstanding importance of hard scattering pro-
cesses at the LHC, a quantitative understanding of deep-inelastic processes is indispensable, necessitating
calculations beyond the standard next-to-leading order of perturbative QCD.

In this contribution we review recent results for the complete next-to-next-to-leading order (NNLO,
N2LO) approximation of massless perturbative QCD for the structure functions F 1, F 2, F 3 and FL in
DIS. These are based on the second-order coefficient functions [1–5], the three-loop splitting functions
which govern the evolution of unpolarized parton distributions of hadrons [6, 7] and the three-loop co-
efficient functions for FL = F 2 − 2xF1 in electromagnetic (photon-exchange) DIS [8, 9]. Moreover
we discuss partial N3LO results for F2, based on the corresponding three-loop coefficient functions also
presented in Ref. [9]. For the splitting functions P and coefficient functions C we employ the convention

P (αs) =
∑

n=0

(αs

4π

)n+1
P (n) , C(αs) =

∑

n=0

(αs

4π

)n
C(n) (1)

for the expansion in the running coupling constant αs. For the longitudinal structure function FL the
third-order corrections are required to complete the NNLO predictions, since the leading contribution to
the coefficient function CL is of first order in the strong coupling constant αs.

In the following we briefly display selected results to demonstrate the quality of precision pre-
dictions for DIS and their effect on the evolution. The exact (analytical) results to third order for the
quantities in Eq. (1) are too lengthy, about O(100) pages in normalsize fonts and will not be reproduced
here. Also the method of calculation is well documented in the literature [5–7, 9–11]. In particular, it
proceeds via the Mellin transforms of the functions of the Bjorken variable x,

A(N) =

1∫

0

dx xN−1A(x) . (2)

Selected mathematical aspects of Mellin transforms are discussed in section 3.

2.1 Parton evolution
The well-known 2nf − 1 scalar non-singlet and 2× 2 singlet evolution equations for nf flavors read

d

d lnµ 2
f

q ins = P i
ns ⊗ q ins , i = ±, v , (3)

for the quark flavor asymmetries q±ns and the valence distribution qv
ns, and

d

d lnµ 2
f

(
qs

g

)
=

(
Pqq Pqg

Pgq Pgg

)
⊗
(
qs

g

)
(4)

for the singlet quark distribution qs and the gluon distribution g, respectively. Eqs. (3) and (4) are gov-
erned by three independent types of non-singlet splitting functions, and by the 2 × 2 matrix of singlet
splitting functions. Here ⊗ stands for the Mellin convolution. We note that benchmark numerical solu-
tions to NNLO accuracy of Eqs. (3) and (4) for a specific set of input distributions are given in section 4.
Phenomenological QCD fits of parton distributions in data analyses are extensively discussed in sec-
tions 6–8. An approach based on neural networks is described in section 9.

Let us start the illustration of the precision predictions by looking at the parton evolution and at
large Mellin-N (large Bjorken-x) behavior. Fig. 1 shows the stability of the perturbative expansion which

2Contributing authors: S. Moch, J.A.M. Vermaseren, A. Vogt
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Fig. 1: On the left we show the perturbative expansion of P v
ns(N), and on the right the resulting perturbative

expansion of the logarithmic scale derivative d ln q ns/d lnµ 2
f is displayed for a model input. See the text for

details.

is very benign and indicates, for αs
<∼ 0.2, corrections of less than 1% beyond NNLO. On the left we

show the results for the perturbative expansion of Pns in Mellin space, cf. Eqs. (1), (2). We employ four
active flavors, nf = 4, and an order-independent value for the strong coupling constant,

αs(µ
2
0 ) = 0.2 , (5)

which corresponds to µ 2
0 ' 25 . . . 50 GeV2 for αs(M

2
Z ) = 0.114 . . . 0.120 beyond the leading order. On

the right of Fig. 1 the perturbative expansion of the logarithmic derivative, cf. Eqs. (1), (3), is illustrated
at the standard choice µr = µf of the renormalization scale. We use the schematic, but characteristic
model distribution,

xq ns(x, µ
2
0 ) = x 0.5(1− x)3 . (6)

The normalization of q ns is irrelevant at this point, as we consider the logarithmic scale derivative only.
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Fig. 2: The three-loop gluon-quark (left) and gluon-gluon (right) splitting functions together with the leading
small-x contribution (dotted line).

Next, let us focus on the three-loop splitting functions at small momentum fractions x, where the
splitting functions P ig in the lower row of the 2 × 2 matrix in Eq. (4), representing g→ i splittings, are
most important. In Fig. 2 we show, again for nf = 4, the three-loop splitting functions P (2)

qg and P (2)
gg
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together with the leading small-x term indicated separately for x < 0.01. In the present singlet case the
leading logarithmic small-x limits ∼ x−1 lnx of Refs. [12, 13] are confirmed together with the general
structure of the BFKL limit [14–16]. The same holds for the leading small-x terms ln4 x in the non-
singlet sector [17, 18], with the qualification that a new, unpredicted leading logarithmic contribution is
found for the color factor dabcdabc entering at three loops for the first time.

It is obvious from Fig. 2 (see also Refs. [5–7, 11]) that the leading x→ 0-terms alone are insuf-
ficient for collider phenomenology at HERA or the LHC as they do not provide good approximations
of the full results at experimentally relevant small values of x. Resummation of the small-x terms and
various phenomenological improvements are discussed in detail in [19].
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Fig. 3: The perturbative expansion of the scale derivatives (4) of the singlet distributions (7).

In the same limit of small x, it is instructive to look at the evolution of parton distributions. Again,
we choose the reference scale of Eq. (5), nf = 4 and the sufficiently realistic model distributions

xqs(x, µ
2
0 ) = 0.6 x−0.3(1− x)3.5 (1 + 5.0 x 0.8 )

xg(x, µ 2
0 ) = 1.6 x−0.3(1− x)4.5 (1− 0.6 x 0.3 ) (7)

irrespective of the order of the expansion to facilitate direct comparisons of the various contributions.
Of course, this order-independence does not hold for actual data-fitted parton distributions like those in
sections 6–8. In Fig. 3 we display the perturbative expansion of the scale derivative for the singlet quark
and gluon densities at µ 2

f = µ 2
0 for the initial conditions specified in Eqs. (5) and (7). For the singlet

quark distribution the total NNLO corrections, while reaching 10% at x = 10 −4, remain smaller than
the NLO results by a factor of eight or more over the full x-range. For the gluon distribution already
the NLO corrections are small and the NNLO contribution amounts to only 3% for x as low as 10 −4.
Thus, we see in Fig. 3 that the perturbative expansion is very stable. It appears to converge rapidly at
x > 10−3, while relatively large third-order corrections are found for very small momenta x <∼ 10−4.

2.2 Coefficient functions
While the previous considerations were addressing the evolution of parton distributions, we now turn to
the further improvements of precision predictions due to the full third-order coefficient functions for the
structure functions F2 and FL in electromagnetic DIS [8, 9]. The results for FL complete the NNLO
description of unpolarized electromagnetic DIS, and the third-order coefficient functions for F 2 form, at
not too small values of the Bjorken variable x, the dominant part of the next-to-next-to-next-to-leading
order (N3LO) corrections. Thus, they facilitate improved determinations of the strong coupling αs from
scaling violations.
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Fig. 4: The three-loop non-singlet coefficient function c (3)
2,ns(x) in the large-x (left) and the small-x (right) region,

multiplied by (1−x) for display purposes.

Let us start with the three-loop coefficient functions for F2 in the non-singlet case. In Fig. 4 we
display the three-loop non-singlet coefficient function c (3)

2,ns(x) for nf = 4 flavors. We also show the
soft-gluon enhanced terms Dk dominating the large-x limit,

Dk =
ln 2k−1(1− x)

(1− x)+
, (8)

and the small-x approximations obtained by successively including enhanced logarithms lnk x. However
the latter are insufficient for an accurate description of the exact result. The dashed band in Fig. 4 shows
the uncertainty of previous estimates [20] mainly based on the calculation of fixed Mellin moments [21–
23]. For a detailed discussion of the soft-gluon resummation of the the Dk terms, we refer to [19].
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Fig. 5: The perturbative expansion of the logarithmic scale derivative of the non-singlet structure function F2,ns.
The results up to NNLO are exact, while those at N3LO are very good approximations. The N4LO corrections
have been estimated by various methods.

Building on the coefficient functions, it is interesting to study the perturbative expansion of the
logarithmic scale derivative for the non-singlet structure function F2,ns. To that end we use in Fig. 5
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again the input shape Eq. (6) (this time for F2,ns itself) irrespective of the order of the expansion, nf = 4
flavors and the reference scale of Eq. (5). The N4LO approximation based on Padé summations of the
perturbation series can be expected to correctly indicate at least the rough size of the four-loop correc-
tions, see Ref. [9] for details. From Fig. 5 we see that the three-loop results for F 2 can be employed
to effectively extend the main part of DIS analyses to the N3LO at x > 10−2 where the effect of the
unknown fourth-order splitting functions is expected to be very small. This has, for example, the po-
tential for a ‘gold-plated’ determination of αs(MZ) with an error of less than 1% from the truncation of
the perturbation series. On the right hand side of Fig. 5 the scale uncertainty which is conventionally
estimated by

∆ḟ ≡ 1

2

(
max [ḟ(x, µ2

r)]−min [ḟ(x, µ2
r)]
)
, (9)

is plotted, where the scale varies µr ∈ [Q/2, 2Q].
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Fig. 6: The perturbative expansion up to three loops (N3LO) of the quark (left) and gluon (right) contributions to
singlet structure function F2.

In the singlet case, we can study the quark and gluon contributions to the structure function F2. In
Fig. 6 we plot the perturbative expansion up to N3LO of the quark and gluon contributions to structure
function F2,s at the scale (5) using the distributions (7). All curves have been normalized to the leading-
order result F LO

2,s = 〈e2〉 qs . Fig. 6 nicely illustrates the perturbative stability of the structure function
F2.

Finally, we address the longitudinal structure function FL at three loops. In the left part of Fig. 7
we plot the singlet-quark and gluon coefficient functions cL,q and cL,g for FL up to the third order for
four flavors and the αs-value of Eq. (5). The curves have been divided by as = αs/(4π) to account
for the leading contribution being actually of first order in the strong coupling constant αs. Both the
second-order and the third-order contributions are rather large over almost the whole x-range. Most
striking, however, is the behavior at very small values of x, where the anomalously small one-loop parts
are negligible against the (negative) constant two-loop terms, which in turn are completely overwhelmed
by the (positive) new three-loop corrections xc(3)

L,a ∼ lnx+ const , which we have indicated in Fig. 7.

To assess the effect for longitudinal structure function FL, we convolute in Fig. 7 on the right
the coefficient functions with the input shapes Eq. (7) for nf = 4 flavors and the reference scale of
Eq. (5). A comparison of the left and right plots in Fig. 7 clearly reveals the smoothening effect of the
Mellin convolutions. For the chosen input conditions, the (mostly positive) NNLO corrections to the
flavor-singlet FL amount to less than 20% for 5 · 10−5 < x < 0.3. In data fits we expect that the parton
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Fig. 7: The perturbative expansion to N2LO of the longitudinal singlet-quark and gluon coefficient functions to
third order multiplied by x for display purposes (left) and of the quark and gluon contributions to singlet structure
function FL (right).

Table 1: Number of alternating and non-alternating harmonic sums in dependence of their weight, [28].

Number of

Weight Sums a-basic sums Sums ¬{−1} a-basic sums Sums i > 0 a-basic sums

1 2 2 1 1 1 1

2 6 3 3 2 2 1

3 18 8 7 4 4 2

4 54 18 17 7 8 3

5 162 48 41 16 16 6

6 486 116 99 30 32 9

7 1458 312 239 68 64 18

distributions, in particular the gluon distribution, will further stabilize the overall NNLO/NLO ratio.
Thus, at not too small scales, FL is a quantity of good perturbative stability, for the x-values accessible
at HERA, see Ref. [8] for more details.

3 Mathematical Structure of Higher Order Corrections 3

The QCD anomalous dimensions and Wilson coefficients for structure functions are single scale quan-
tities and may be expressed in simple form in Mellin space in terms of polynomials of harmonic sums

3Contributing authors: J. Blümlein, H. Böttcher, A. Guffanti, V. Ravindran
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and ration functions of the Mellin variable. Unlike the case in various calculations using representations
in momentum-fraction (z-) space the use of multiple nested harmonic sums leads to a synchronization in
language. Furthermore, significant simplifications w.r.t. the number of functions needed can be achieved.
This is due to algebraic [24,25] relations between these quantities, which in a similar way are also present
between harmonic polylogarithms [26] and multiple ζ-values [27]. These relations result from the the
specific index pattern of the objects considered and their multiplication relation and do not refer to fur-
ther more specific properties. In Table 1 we illustrate the level of complexity which one meets in case
of harmonic sums. To three-loop order weight w=6 harmonic sums occur. The algebraic relations for
the whole class of harmonic sums lead to a reduction by a factor of ∼ 4 (column 3). As it turns out,
physical pseudo-observables, as anomalous dimensions and Wilson-coefficients in the MS scheme, to
2-, resp. 3-loop order depend on harmonic sums only, in which the index {−1} never occurs. The
algebraic reduction for this class is illustrated in column 5. We also compare the complexity of only non-
alternating harmonic sums and their algebraic reduction, which is much lower. This class of sums is,
however, not wide enough to describe the above physical quantities. In addition to the algebraic relations
of harmonic sums structural relations exist, which reduces the basis further [28]. Using all these relations
one finds that 5 basic functions are sufficient to describe all 2-loop Wilson coefficients for deep-inelastic
scattering [29] and further 8 [30] for the 3-loop anomalous dimensions. Their analytic continuations to
complex values of the Mellin variable are given in [31, 32]. These functions are the (regularized) Mellin
transforms of :

ln(1 + x)

1 + x
,

Li2(x)

1± x ,
S1,2(x)

1± x ,
Li4(x)

x± 1
,

S1,3(x)

1 + x
,

S2,2(x)

x± 1
,

Li22(x)

1 + x
,

S2,2(−x)− Li22(−x)/2

x± 1
. (10)

It is remarkable, that the numerator-functions in (10) are Nielsen integrals [33] and polynomials thereof,
although one might expect harmonic polylogarithms [26] outside this class in general. The representation
of the Wilson coefficients and anomalous dimensions in the way described allows for compact expres-
sions and very fast and precise numerical evaluation well suited for fitting procedures to experimental
data.

3.1 Two-loop Processes at LHC in Mellin Space
Similar to the case of the Wilson coefficients in section 3 one may consider the Wilson coefficients
for inclusive hard processes at hadron colliders, as the Drell–Yan process to O(α2

s) [34–36], scalar or
pseudoscalar Higgs-boson production to O(α3

s) in the heavy-mass limit [37–42], and the 2-loop time-
like Wilson coefficients for fragmentation [43–45]. These quantities have been analyzed in [46,47] w.r.t.
their general structure in Mellin space. The cross section for the Drell–Yan process and Higgs production
is given by

σ

(
ŝ

s
,Q2

)
=

∫ 1

x

dx1

x1

∫ 1

x/x1

dx2

x2
fa(x1, µ

2)fb(x2, µ
2)σ̂

(
x

x1x2
,
Q2

µ2

)
, (3.11)

with x = ŝ/s. Here, fc(x, µ2) are the initial state parton densities and µ2 denotes the factorization scale.
The Wilson coefficient of the process is σ̂ and Q2 is the time-like virtuality of the s-channel boson.
Likewise, for the fragmentation process of final state partons into hadrons in pp–scattering one considers
the double differential final state distribution

d2σH

dxd cos θ
=

3

8
(1 + cos2 θ)

dσHT
dx

+
3

4
sin2 θ

dσHL
dx

. (3.12)

Here,

dσHk
dx

=

∫ 1

x

dz

z

[
σ

(0)
tot

{
DH
S

(x
z
,M2

)
CS
k,q(z,Q

2/M2) +DH
g

(x
z
,M2

)
CS
k,q(z,Q

2/M2)
}
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+

Nf∑

p=1

σ(0)
p DH

NS,p

(x
z
,M2

)
CNS
k,q (z,Q2/M2)

]
. (3.13)

In the subsystem cross-sections σ the initial state parton distributions are included. DH
k denote the non-

perturbative fragmentation functions and CS,NS
k,i (z,Q2/M2) the respective time-like Wilson coefficients

describing the fragmentaion process for a parton i into the hadron H .

Although these Wilson coefficients are not directly related to the 2-loop Wilson coefficients for
deeply inelastic scattering, one finds for these functions at most the same set of basic functions as given
above. Again one obtains very fast and concise numerical programs also for these processes working in
Mellin space, which will be well suited for inclusive analyses of experimental collider data at LHC in
the future.

3.2 Non-Singlet Parton Densities at O(α3
s)

The precision determination of the QCD-scale ΛQCD and of the idividual parton densities is an important
issue for the whole physics programme at LHC since all measurements rely on the detailed knwoledge of
this parameter and distribution functions. In Ref. [48] first results were reported of a world data analysis
for charged lepton-p(d) scattering w.r.t. the flavor non-singlet sector at O(α3

s) accuracy. The flavor non-
singlet distributions xuv(x,Q2) and xdv(x,Q2) were determined along with fully correlated error bands
giving parameterizations both for the values and errors of these distributions for a wide range in x and
Q2. In Figure 8 these distributions including their error are shown. The value of the strong coupling
constant αs(M2

Z) was determined as 0.1135 + 0.0023− 0.0026 (exp.) The full analysis is given in [49],
including the determination of higher twist contributions in the large x region both for F p

2 (x,Q2) and
F d2 (x,Q2).

3.3 Scheme-invariant evolution for unpolarzed DIS structure functions
The final HERA-II data on unpolarized DIS structure functions, combined with the present world data
from other experiments, will allow to reduce the experimental error on the strong coupling constant,
αs(M

2
Z), to the level of 1% [52]. On the theoretical side the NLO analyzes have intrinsic limitations

which allow no better than 5% accuracy in the determination of αs [53]. In order to match the expected
experimental accuracy, analyzes of DIS structure functions need then to be carried out at the NNLO-
level. To perform a full NNLO analysis the knowledge of the 3-loop β-function coefficient, β2, the 2-
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Fig. 9: NNLO scheme invariant evolution for the singlet part of the structure function F2 and its slope ∂F2/∂t for
four massless flavours, [54].

resp. 3-loop Wilson coefficients and the 3-loop anomalous dimensions is required. With the calculation
of the latter [6, 7], the whole scheme-independent set of quantities is known, thus allowing a complete
NNLO study of DIS structure functions.

Besides the standard approach solving the QCD evolution equations for parton densities in the MS
scheme it appears appealing to study scheme-invariant evolution equations [54]. Within this approach
the input distributions at a scale Q2

0 are measured experimentally. The only parameter to be determined
by a fit to data is the QCD-scale ΛQCD. To perform an analysis in the whole kinematic region the non-
singlet [48] contribution has to be separated from the singlet terms of two measured observables. In
practice these can be chosen to be F2(x,Q2) and ∂F2(x,Q2)/∂ ln(Q2) or F2(x,Q2) and FL(x,Q2)
if the latter structure function is measured well enough. Either ∂F2(x,Q2)/∂ ln(Q2) or FL(x,Q2)
play a role synonymous to the gluon distribution while F2(x,Q2) takes the role of the singlet-quark
distribution compared to the standard analysis. These equations do no longer describe the evolution
of universal quantities depending on the choice of a scheme but of process-dependent quantities which
are observables and thus factorization scheme-indedependent. Since the respective evolution kernels
are calculated in perturbation theory the dependence on the renormalization scale remains and becomes
smaller with the order in the coupling constant included.

Physical evolution kernels have been studied before in [55–57]. The 3-loop scheme-invariant
evolution equations were solved in the massless case in [54]. This analysis is extended including the
heavy flavor contributions at present [49]. The large complexity of the evolution kernels can only be
handeled in Mellin space since in z-space various inverse and direct Mellin convolutions would be re-
quired numerically, causing significant accuracy and run-time problems. The inclusion of the heavy
flavor contributions is possible using the parameterizations [58].

In Fig. 8 we present the scheme invariant evolution for the structure functions F2 and ∂F2/∂t
to NNLO with t = −2/β0 ln(αs(Q

2)/αs(Q
2
0)). The input distribution at the reference scale are not

extracted from data, but rather built up as a convolution of Wilson coefficients and PDFs, the latter being
parametrised according to [59].

Scheme-invariant evolution equations allow a widely un-biased approach to determine the initial
conditions for QCD evolution, which in general is a source of systematic effects which are difficult to
control. On the other hand, their use requires to consider all correlations of the input measurements in
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a detailed manner experimentally. At any scale Q2 mappings are available to project the observables
evolved onto the quark-singlet and the gluon density in whatever scheme. In this way the question
whether sign changes in the unpolarized gluon distribution in the MS scheme do occur or do not occur
in the small x region can be answered uniquely. As in foregoing analyses [48, 60] correlated error
propagation throughout the evolution is being performed.

4 Updated reference results for the evolution of parton distributions 4

In this contribution we update and extend our benchmark tables, first presented in the report of the
QCD/SM working group at the 2001 Les Houches workshop [59], for the evolution of parton distribu-
tions of hadrons in perturbative QCD. Since then the complete next-to-next-to-leading order (NNLO)
splitting functions have been computed [6,7], see also section 2. Thus we can now replace the NNLO re-
sults of 2001 which were based on the approximate splitting functions of Ref. [61]. Furthermore we now
include reference tables for the polarized case treated in neither Ref. [59] nor the earlier study during the
1995/6 HERA workshop [62]. Since the spin-dependent NNLO splitting functions are still unknown, we
have to restrict ourselves to the polarized leading-order (LO) and next-to-leading-order (NLO) evolution.

As in Ref. [59], we employ two entirely independent and conceptually different FORTRAN pro-
grams. At this point, the x-space code of G.S. is available from the author upon request, while the Mellin-
space program of A.V. has been published in Ref. [63]. The results presented below correspond to a di-
rect iterative solution of the NmLO evolution equations for the parton distributions fp(x, µ2

f ) ≡ p(x, µ2
f ),

where p = qi, q̄i , g with i = 1, . . . , Nf ,

dfp(x, µ
2
f )

d lnµ2
f

=

m∑

l=0

a l+1
s (µ2

r )

∫ 1

x

dy

y

∑

p′
P

(l)
pp′

(
x

y
,
µ2

f

µ2
r

)
fp′(y, µ

2
f ) (4.14)

with the strong coupling, normalized as as ≡ αs/(4π), given in terms of

d as

d lnµ2
r

= βNmLO(as) = −
m∑

l=0

a l+2
s βl (4.15)

with β0 = 11−2/3Nf etc. µr and µf represent the renormalization and mass-factorization scales in the
MS scheme. The reader is referred to Refs. [59, 63] for the scale dependence of the splitting functions
P (l) and a further discussion of our solutions of Eqs. (4.14) and (4.15).

For the unpolarized case we retain the initial conditions as set up at the Les Houches meeting: The
evolution is started at

µ2
f,0 = 2 GeV2 . (4.16)

Roughly along the lines of the CTEQ5M parametrization [64], the input distributions are chosen as

xuv(x, µ2
f,0) = 5.107200 x0.8 (1− x)3

xdv(x, µ2
f,0) = 3.064320 x0.8 (1− x)4

xg (x, µ2
f,0) = 1.700000x−0.1(1− x)5 (4.17)

xd̄ (x, µ2
f,0) = .1939875x−0.1(1− x)6

xū (x, µ2
f,0) = (1− x) xd̄ (x, µ2

f,0)

xs (x, µ2
f,0) = xs̄ (x, µ2

f,0) = 0.2x(ū + d̄ )(x, µ2
f,0)

where, as usual, qi,v ≡ qi − q̄i. The running couplings are specified by Eq. (4.15) and

αs(µ
2
r =2 GeV2) = 0.35 . (4.18)

4Contributing authors: G.P. Salam, A. Vogt
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For simplicity initial conditions (4.17) and (4.18) are employed regardless of the order of the evolution
and the (fixed) ratio of the renormalization and factorization scales.

For the evolution with a fixed number Nf > 3 of quark flavours the quark distributions not spec-
ified in Eq. (4.17) are assumed to vanish at µ2

f,0, and Eq. (4.18) is understood to refer to the chosen
value of Nf . For the evolution with a variable Nf = 3 . . . 6, Eqs. (4.16) and (4.17) always refer to three
flavours. Nf is then increased by one unit at the heavy-quark pole masses taken as

mc = µf,0 , mb = 4.5 GeV2 , mt = 175 GeV2 , (4.19)

i.e., Eqs. (4.14) and (4.15) are solved for a fixed number of flavours between these thresholds, and the
respective matching conditions are invoked at µ2

f = m2
h , h = c, b, t. The matching conditions for the

unpolarized parton distributions have been derived at NNLO in Ref. [65], and were first implemented in
an evolution program in Ref. [66]. Note that, while the parton distributions are continuous up to NLO
due to our choice of the matching scales, αs is discontinuous at these flavour thresholds already at this
order for µr 6= µf , see Refs. [67, 68]. Again the reader is referred to Refs. [59, 63] for more details.

Since the exact NNLO splitting functions P (2) are rather lengthy and not directly suitable for use in
a Mellin-space program (see, however, Ref. [32]), the reference tables shown below have been computed
using the parametrizations (4.22)–(4.24) of Ref. [6] and (4.32)–(4.35) of Ref. [7]. Likewise, the operator
matrix element ÃS,2

hg entering the NNLO flavour matching is taken from Eq. (3.5) of Ref. [63]. The
relative error made by using the parametrized splitting functions is illustrated in Fig. 10. It is generally
well below 10−4, except for the very small sea quark distributions at very large x.

Eqs. (4.16), (4.18) and (4.19) are used for the (longitudinally) polarized case as well, where
Eq. (4.17) replaced by the sufficiently realistic toy input [63]

xuv = +1.3 x0.7 (1− x)3 (1 + 3x)

xdv = −0.5 x0.7 (1− x)4 (1 + 4x)

xg = +1.5 x0.5 (1− x)5

xd̄ = xū = −0.05 x0.3 (1− x)7

xs = xs̄ = +0.5 xd̄ . (4.20)

As Eq. (4.17) in the unpolarized case, this input is employed regardless of the order of the evolution.

As in Ref. [59], we have compared the results of our two evolution programs, under the conditions
specified above, at 500 x-µ2

f points covering the range 10−8 ≤ x ≤ 0.9 and 2 GeV2 ≤ µ2
f ≤ 106 GeV2.

A representative subset of our results at µ2
f = 104 GeV4, a scale relevant to high-ET jets and close to

m2
W, m2

Z and, possibly, m2
Higgs, is presented in Tables 2 – 6. These results are given in terms of the

valence distributions, defined below Eq. (4.17), L± ≡ d̄± ū, and the quark–antiquark sums q+≡ q−q̄
for q = s, c and, for the variable-Nf case, b.

For compactness an abbreviated notation is employed throughout the tables, i.e., all numbers a·10b

are written as ab. In the vast majority of the x-µ2
f points our results are found to agree to all five figures

displayed, except for the tiny NLO and NNLO sea-quark distributions at x = 0.9, in the tables. Entries
where the residual offsets between our programs lead to a different fifth digit after rounding are indicated
by the subscript ‘∗’. In these cases the number with the smaller modulus is given in the tables.

The approximate splitting functions [61], as mentioned above employed in the previous version
[59] of our reference tables, have been used in (global) NNLO fits of the unpolarized parton distributions
[51, 69], which in turn have been widely employed for obtaining NNLO cross sections, in particular for
W and Higgs production. The effect of replacing the approximate results by the full splitting functions
[6, 7] is illustrated in Figure 11. Especially at scales relevant to the above-mentioned processes, the
previous approximations introduce an error of less than 0.2% for x >∼ 10−3, and less than 1% even down
to x ' 10−5. Consequently the splitting-function approximations used for the evolution the parton
distributions of Refs. [51,69] are confirmed to a sufficient accuracy for high-scale processes at the LHC.
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0.

The unchanged unpolarized LO and NLO reference tables of Ref. [59] are not repeated here. Note
that the one digit of the first (FFN) αs value was mistyped in the header of Table 1 in that report 5 , the
correct value can be found in Table 3 below.

5 Non-perturbative x-shape of PDFs 6

The x-shape of parton density functions at a low scale Q2
0 is due to the dynamics of the bound state

proton and is hence an unsolved problem of non-perturbative QCD. Usually this is described by parame-
terizations of data using more or less arbitrary functional forms. More understanding can be obtained by
a recently developed physical model [70], which is phenomenologically successful in describing data.

The model gives the four-momentum k of a single probed valence parton (Fig. 12a) by assuming
that, in the nucleon rest frame, the shape of the momentum distribution for a parton of type i and mass
mi can be taken as a Gaussian fi(k) = N(σi,mi) exp

{
−
[
(k0 −mi)

2 + k2
x + k2

y + k2
z

]
/2σ2

i

}
, which

may be motivated as a result of the many interactions binding the parton in the nucleon. The width of
the distribution should be of order hundred MeV from the Heisenberg uncertainty relation applied to the
nucleon size, i.e. σi = 1/dN . The momentum fraction x of the parton is then defined as the light-cone
fraction x = k+/p+ and is therefore invariant under longitudinal boosts (e.g. to the infinite momentum
frame). Constraints are imposed on the final-state momenta to obtain a kinematically allowed final state,
which also ensures that 0 < x < 1 and fi(x)→ 0 for x→ 1.

The sea partons are obtained using a hadronic basis for the non-perturbative dynamics of the bound
state proton and considering hadronic fluctuations

|p〉 = α0|p0〉+ αpπ0 |pπ0〉+ αnπ+|nπ+〉+ . . .+ αΛK |ΛK+〉+ . . . (5.21)

Probing a parton i in a hadron H of a baryon-meson fluctuation |BM〉 (Fig. 12b) gives a sea parton
with light-cone fraction x = xH xi of the target proton. The momentum of the probed hadron is given
by a similar Gaussian, but with a separate width parameter σH . Also here, kinematic constraints ensure
physically allowed final states.

Using a Monte Carlo method the resulting valence and sea parton x-distributions are obtained
without approximations. These apply at a low scale Q2

0 and the distributions at higher Q2 are obtained
using perturbative QCD evolution at next-to-leading order. To describe all parton distributions (Fig. 12c),

5We thank H. Böttcher and J. Blümlein for pointing this out to us.
6Contributing author: G. Ingelman
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Table 2: Reference results for the Nf = 4 next-next-to-leading-order evolution for the initial conditions (4.16)–
(4.18). The corresponding value of the strong coupling is αs(µ

2
r = 104 GeV2) = 0.110141. The valence distri-

butions sv and cv are equal for the input (4.17). The notation is explained below Eq. (4.17) and in the paragraph
below Eq. (4.20).

NNLO, Nf = 4 , µ2
f = 104 GeV2

x xuv xdv xL− 2xL+ xsv xs+ xc+ xg

µ2
r = µ2

f

10−7 1.5287−4 1.0244−4 5.7018−6 1.3190+2 3.1437−5 6.4877+1 6.4161+1 9.9763+2

10−6 6.9176−4 4.4284−4 2.5410−5 6.8499+1 9.4279−5 3.3397+1 3.2828+1 4.9124+2

10−5 3.0981−3 1.8974−3 1.0719−4 3.3471+1 2.2790−4 1.6059+1 1.5607+1 2.2297+2

10−4 1.3722−2 8.1019−3 4.2558−4 1.5204+1 3.6644−4 7.0670+0 6.7097+0 9.0668+1

10−3 5.9160−2 3.4050−2 1.6008−3 6.3230+0 1.4479−4 2.7474+0 2.4704+0 3.1349+1

10−2 2.3078−1 1.2919−1 5.5688−3 2.2752+0 −5.7311−4 8.5502−1 6.6623−1 8.1381+0

0.1 5.5177−1 2.7165−1 1.0023−2 3.9019−1 −3.0627−4 1.1386−1 5.9773−2 9.0563−1

0.3 3.5071−1 1.3025−1 3.0098−3 3.5358−2 −3.1891−5 9.0480−3 3.3061−3 8.4186−2

0.5 1.2117−1 3.1528−2 3.7742−4 2.3867−3 −2.7215−6 5.7965−4 1.7170−4 8.1126−3

0.7 2.0077−2 3.0886−3 1.3434−5 5.4244−5 −1.0106−7 1.2936−5 3.5304−6 3.8948−4

0.9 3.5111−4 1.7783−5 8.651−9 2.695−8 −1.476−10 7.132−9 2.990−9 1.2136−6

µ2
r = 2µ2

f

10−7 1.3416−4 8.7497−5 4.9751−6 1.3020+2 2.1524−5 6.4025+1 6.3308+1 1.0210+3

10−6 6.2804−4 3.9406−4 2.2443−5 6.6914+1 6.5149−5 3.2602+1 3.2032+1 4.9626+2

10−5 2.9032−3 1.7575−3 9.6205−5 3.2497+1 1.5858−4 1.5570+1 1.5118+1 2.2307+2

10−4 1.3206−2 7.7673−3 3.9093−4 1.4751+1 2.5665−4 6.8388+0 6.4807+0 9.0162+1

10−3 5.8047−2 3.3434−2 1.5180−3 6.1703+0 1.0388−4 2.6695+0 2.3917+0 3.1114+1

10−2 2.2930−1 1.2857−1 5.4626−3 2.2492+0 −3.9979−4 8.4058−1 6.5087−1 8.0993+0

0.1 5.5428−1 2.7326−1 1.0072−2 3.9297−1 −2.1594−4 1.1439−1 5.9713−2 9.0851−1

0.3 3.5501−1 1.3205−1 3.0557−3 3.6008−2 −2.2632−5 9.2227−3 3.3771−3 8.5022−2

0.5 1.2340−1 3.2166−2 3.8590−4 2.4459−3 −1.9420−6 5.9487−4 1.7699−4 8.2293−3

0.7 2.0597−2 3.1751−3 1.3849−5 5.5722−5 −7.2616−8 1.3244−5 3.5361−6 3.9687−4

0.9 3.6527−4 1.8544−5 9.050−9 2.663−8 −1.075−10 6.713−9 2.377−9 1.2489−6

µ2
r = 1/2µ2

f

10−7 1.7912−4 1.2521−4 6.4933−6
∗ 1.2714+2 4.9649−5 6.2498+1 6.1784+1 9.2473+2

10−6 7.7377−4 5.1222−4 2.8719−5 6.7701+1 1.4743−4 3.2999+1 3.2432+1 4.6863+2

10−5 3.3184−3 2.0760−3 1.1977−4 3.3644+1 3.5445−4 1.6147+1 1.5696+1 2.1747+2

10−4 1.4184−2 8.4455−3 4.6630−4 1.5408+1 5.6829−4 7.1705+0 6.8139+0 8.9820+1
∗

10−3 5.9793−2 3.4418−2 1.6996−3 6.4042+0 2.2278−4 2.7892+0 2.5128+0 3.1336+1

10−2 2.3106−1 1.2914−1 5.7016−3 2.2876+0 −8.9125−4 8.6205−1 6.7377−1 8.1589+0

0.1 5.5039−1 2.7075−1 1.0031−2 3.8850−1 −4.7466−4 1.1332−1 5.9489−2 9.0795−1

0.3 3.4890−1 1.2949−1 2.9943−3 3.5090−2 −4.9304−5 8.9667−3 3.2670−3 8.4309−2

0.5 1.2026−1 3.1269−2 3.7428−4 2.3729−3 −4.1981−6 5.7783−4 1.7390−4 8.1099−3
∗

0.7 1.9867−2 3.0534−3 1.3273−5 5.4635−5 −1.5541−7 1.3275−5 3.9930−6 3.8824−4

0.9 3.4524−4 1.7466−5 8.489−9 3.030−8 −2.255−10 8.863−9 4.803−9 1.2026−6
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Table 3: As Table 2, but for the variable-Nf evolution using the flavour matching conditions of Ref. [65, 67,
68]. The corresponding values for the strong coupling αs(µ

2
r = 104 GeV2) are given by 0.115818, 0.115605 and

0.115410 for µ2
r/µ

2
f = 0.5, 1 and 2, respectively. For brevity the small, but non-vanishing valence distributions

sv, cv and bv are not displayed.

NNLO, Nf = 3 . . . 5 , µ2
f = 104 GeV2

x xuv xdv xL− 2xL+ xs+ xc+ xb+ xg

µ2
r = µ2

f

10−7 1.5978−4 1.0699−5 6.0090−6 1.3916+2 6.8509+1 6.6929+1 5.7438+1 9.9694+3

10−6 7.1787−4 4.5929−4 2.6569−5 7.1710+1 3.5003+1 3.3849+1 2.8332+1 4.8817+2

10−5 3.1907−3 1.9532−3 1.1116−4 3.4732+1 1.6690+1 1.5875+1 1.2896+1 2.2012+2

10−4 1.4023−2 8.2749−3 4.3744−4 1.5617+1 7.2747+0 6.7244+0 5.2597+0 8.8804+1

10−3 6.0019−2 3.4519−2 1.6296−3 6.4173+0 2.7954+0 2.4494+0 1.8139+0 3.0404+1

10−2 2.3244−1 1.3000−1 5.6100−3 2.2778+0 8.5749−1 6.6746−1 4.5073−1 7.7912+0

0.1 5.4993−1 2.7035−1 9.9596−3 3.8526−1 1.1230−1 6.4466−2 3.7280−2 8.5266−1

0.3 3.4622−1 1.2833−1 2.9572−3 3.4600−2 8.8410−3 4.0134−3 2.1047−3 7.8898−2

0.5 1.1868−1 3.0811−2 3.6760−4 2.3198−3 5.6309−4 2.3752−4 1.2004−4 7.6398−3

0.7 1.9486−2 2.9901−3 1.2957−5 5.2352−5 1.2504−5 5.6038−6 2.8888−6 3.7080−4

0.9 3.3522−4 1.6933−5 8.209−9 2.574−8 6.856−9 4.337−9 2.679−9 1.1721−6

µ2
r = 2µ2

f

10−7 1.3950−4 9.0954−5 5.2113−6 1.3549+2 6.6672+1 6.5348+1 5.6851+1 1.0084+3

10−6 6.4865−4 4.0691−4 2.3344−5 6.9214+1 3.3753+1 3.2772+1 2.7818+1 4.8816+2

10−5 2.9777−3 1.8020−3 9.9329−5 3.3385+1 1.6015+1 1.5306+1 1.2601+1 2.1838+2

10−4 1.3452−2 7.9078−3 4.0036−4 1.5035+1 6.9818+0 6.4880+0 5.1327+0 8.7550+1

10−3 5.8746−2 3.3815−2 1.5411−3 6.2321+0 2.7012+0 2.3747+0 1.7742+0 3.0060+1

10−2 2.3063−1 1.2923−1 5.4954−3 2.2490+0 8.4141−1 6.5083−1 4.4354−1 7.7495+0

0.1 5.5279−1 2.7222−1 1.0021−2 3.8897−1 1.1312−1 6.2917−2 3.7048−2 8.5897−1

0.3 3.5141−1 1.3051−1 3.0134−3 3.5398−2 9.0559−3 3.8727−3 2.0993−3 8.0226−2

0.5 1.2140−1 3.1590−2 3.7799−4 2.3919−3 5.8148−4 2.2376−4 1.1918−4 7.8098−3

0.7 2.0120−2 3.0955−3 1.3462−5 5.4194−5 1.2896−5 5.0329−6 2.8153−6 3.8099−4

0.9 3.5230−4 1.7849−5 8.687−9 2.568−8 6.513−9 3.390−9 2.407−9 1.2188−6

µ2
r = 1/2µ2

f

10−7 1.8906−4 1.3200−4 6.9268−6 1.3739+2 6.7627+1 6.5548+1 5.5295+1 9.4403+2

10−6 8.1001−4 5.3574−4 3.0345−5 7.2374+1 3.5337+1 3.3846+1 2.7870+1 4.7444+2

10−5 3.4428−3 2.1524−3 1.2531−4 3.5529+1 1.7091+1 1.6065+1 1.2883+1 2.1802+2

10−4 1.4580−2 8.6744−3 4.8276−4 1.6042+1 7.4886+0 6.8276+0 5.3044+0 8.9013+1

10−3 6.0912−2 3.5030−2 1.7393−3 6.5544+0 2.8656+0 2.4802+0 1.8362+0 3.0617+1

10−2 2.3327−1 1.3022−1 5.7588−3 2.2949+0 8.6723−1 6.7688−1 4.5597−1 7.8243+0
∗

0.1 5.4798−1 2.6905−1 9.9470−3 3.8192−1 1.1124−1 6.7091−2 3.7698−2 8.4908−1

0.3 3.4291−1 1.2693−1 2.9239−3 3.4069−2 8.6867−3 4.3924−3 2.1435−3 7.8109−2

0.5 1.1694−1 3.0310−2 3.6112−4 2.2828−3 5.5537−4 2.7744−4 1.2416−4 7.5371−3

0.7 1.9076−2 2.9217−3 1.2635−5 5.2061−5 1.2677−5 7.2083−6 3.0908−6 3.6441−4

0.9 3.2404−4 1.6333−5 7.900−9 2.850−8 8.407−9 6.795−9 3.205−9 1.1411−6
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Table 4: Reference results for the Nf = 4 (FFN) and the variable-Nf (VFN) polarized leading-order evolution of
the initial distributions (4.20), shown together with these boundary conditions. The respective values for αs(µ

2
r =

µ2
f =104 GeV2) read 0.117574 (FFN) and 0.122306 (VFN). The notation is the same as for the unpolarized case.

x xuv −xdv −xL− −2xL+ xs+ xc+ xb+ xg

Pol. input, µ2
f = 2 GeV2

10−7 1.6366−5 6.2946−6 7.9433−5 1.5887−3 −3.9716−4 0.0+0 0.0+0 4.7434−4

10−6 8.2024−5 3.1548−5 1.5849−4 3.1698−3 −7.9244−4 0.0+0 0.0+0 1.5000−3

10−5 4.1110−4 1.5811−4 3.1621−4 6.3241−3 −1.5810−3 0.0+0 0.0+0 4.7432−3

10−4 2.0604−3 7.9245−4 6.3052−4 1.2610−2 −3.1526−3 0.0+0 0.0+0 1.4993−2

10−3 1.0326−2 3.9716−3 1.2501−3 2.5003−2 −6.2507−3 0.0+0 0.0+0 4.7197−2

10−2 5.1723−2 1.9886−2 2.3412−3 4.6825−2 −1.1706−2 0.0+0 0.0+0 1.4265−1

0.1 2.4582−1 9.1636−2 2.3972−3 4.7943−2 −1.1986−2 0.0+0 0.0+0 2.8009−1

0.3 3.6473−1 1.1370−1 5.7388−4 1.1478−2 −2.8694−3 0.0+0 0.0+0 1.3808−1

0.5 2.5008−1 5.7710−2 6.3457−5 1.2691−3 −3.1729−4 0.0+0 0.0+0 3.3146−2

0.7 8.4769−2 1.1990−2 1.9651−6 3.9301−5 −9.8254−6 0.0+0 0.0+0 3.0496−3

0.9 4.4680−3 2.1365−4 9.689−10 1.9378−8 −4.8444−9 0.0+0 0.0+0 1.4230−5

LO, Nf = 4 , µ2
f = 104 GeV2

10−7 4.8350−5
∗ 1.8556−5 1.0385−4 3.5124−3 −1.2370−3 −7.1774−4 0.0+0 1.4116−2

10−6 2.3504−4 9.0090−5 2.0700−4 7.7716−3 −2.8508−3 −1.8158−3 0.0+0 4.2163−2

10−5 1.1220−3 4.2916−4 4.1147−4 1.6007−2 −5.9463−3 −3.8889−3 0.0+0 1.0922−1

10−4 5.1990−3 1.9818−3 8.0948−4 2.8757−2 −1.0331−2 −6.2836−3 0.0+0 2.4069−1

10−3 2.2900−2 8.6763−3 1.5309−3 4.0166−2 −1.2428−2 −4.7739−3 0.0+0 4.2181−1

10−2 9.1489−2 3.4200−2 2.4502−3 3.3928−2 −4.7126−3 7.5385−3 0.0+0 4.9485−1

0.1 2.6494−1 9.1898−2 1.5309−3 8.5427−3 3.3830−3 1.1037−2 0.0+0 2.0503−1

0.3 2.2668−1 6.2946−2 2.1104−4 6.6698−4 7.2173−4 1.7769−3 0.0+0 3.3980−2

0.5 9.7647−2 1.9652−2 1.4789−5 −1.8850−5 8.3371−5 1.5732−4 0.0+0 4.3802−3

0.7 1.9545−2 2.3809−3 2.7279−7 −4.1807−6 3.4543−6 4.8183−6 0.0+0 2.6355−4

0.9 4.1768−4 1.7059−5 5.494−11 −7.6712−9 4.1103−9 4.3850−9 0.0+0 9.8421−7

LO, Nf = 3 . . . 5 , µ2
f = 104 GeV2

10−7 4.9026−5 1.8815−5 1.0422−4 3.5315−3 −1.2447−3 −7.2356−4 −6.2276−4 1.3726−2

10−6 2.3818−4 9.1286−5 2.0774−4 7.8108−3 −2.8667−3 −1.8280−3 −1.5301−3 4.1011−2

10−5 1.1359−3 4.3445−4 4.1289−4 1.6070−2 −5.9705−3 −3.9060−3 −3.1196−3 1.0615−1

10−4 5.2567−3 2.0035−3 8.1206−4 2.8811−2 −1.0345−2 −6.2849−3 −4.5871−3 2.3343−1

10−3 2.3109−2 8.7537−3 1.5345−3 4.0125−2 −1.2390−2 −4.7174−3 −2.4822−3 4.0743−1

10−2 9.2035−2 3.4391−2 2.4501−3 3.3804−2 −4.6512−3 7.5994−3 6.4665−3 4.7445−1

0.1 2.6478−1 9.1762−2 1.5206−3 8.5181−3 3.3438−3 1.0947−2 6.5223−3 1.9402−1

0.3 2.2495−1 6.2376−2 2.0811−4 6.6195−4 7.0957−4 1.7501−3 9.2045−4 3.1960−2

0.5 9.6318−2 1.9353−2 1.4496−5 −1.8549−5 8.1756−5 1.5424−4 7.8577−5 4.1226−3

0.7 1.9147−2 2.3281−3 2.6556−7 −4.0936−6 3.3746−6 4.7024−6 2.4901−6 2.4888−4

0.9 4.0430−4 1.6480−5 5.285−11 −7.4351−9 3.9818−9 4.2460−9 2.6319−9 9.2939−7
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Table 5: Reference results for the polarized next-to-leading-order polarized evolution of the initial distributions
(4.20) with Nf = 4 quark flavours. The corresponding value of the strong coupling is αs(µ

2
r = 104 GeV2) =

0.110902. As in the leading-order case, the valence distributions sv and cv vanish for the input (4.20).

Pol. NLO, Nf = 4, µ2
f = 104 GeV2

x xuv xdv xL− 2xL+ xs+ xc+ xg

µ2
r = µ2

f

10−7 6.7336−5 −2.5747−5 −1.1434−4 −5.2002−3 −2.0528−3 −1.5034−3 2.6955−2

10−6 3.1280−4 −1.1938−4 −2.3497−4 −1.0725−2 −4.2774−3 −3.1845−3 6.5928−2

10−5 1.4180−3 −5.3982−4 −4.8579−4 −1.9994−2 −7.8594−3 −5.6970−3 1.4414−1

10−4 6.2085−3 −2.3546−3 −9.8473−4 −3.1788−2 −1.1749−2 −7.5376−3 2.7537−1

10−3 2.5741−2 −9.7004−3 −1.8276−3 −3.8222−2 −1.1427−2 −3.6138−3 4.3388−1

10−2 9.6288−2 −3.5778−2 −2.6427−3 −2.6437−2 −1.2328−3 1.0869−2 4.8281−1

0.1 2.5843−1 −8.9093−2 −1.4593−3 −7.5546−3 3.4258−3 1.0639−2 2.0096−1

0.3 2.1248−1 −5.8641−2 −1.9269−4 −1.2210−3 3.5155−4 1.3138−3 3.4126−2

0.5 8.9180−2 −1.7817−2 −1.3125−5 −9.1573−5 1.9823−5 8.5435−5 4.5803−3

0.7 1.7300−2 −2.0885−3 −2.3388−7 −1.9691−6 1.8480−7 1.3541−6 2.9526−4

0.9 3.4726−4 −1.4028−5 −4.407−11 −4.247−9 −1.903−9 −1.683−9 1.2520−6

µ2
r = 2µ2

f

10−7 6.1781−5 −2.3641−5 −1.1137−4 −4.6947−3 −1.8092−3 −1.2695−3 2.2530−2

10−6 2.8974−4 −1.1068−4 −2.2755−4 −9.8528−3 −3.8580−3 −2.7838−3 5.7272−2
∗

10−5 1.3281−3 −5.0612−4 −4.6740−4 −1.8799−2 −7.2908−3 −5.1629−3 1.2975−1

10−4 5.8891−3 −2.2361−3 −9.4412−4 −3.0787−2 −1.1292−2 −7.1363−3 2.5644−1

10−3 2.4777−2 −9.3502−3 −1.7632−3 −3.8610−2 −1.1658−2 −3.9083−3 4.1725−1

10−2 9.4371−2 −3.5129−2 −2.6087−3 −2.8767−2 −2.3430−3
∗ 9.7922−3

∗ 4.7804−1

0.1 2.6008−1 −8.9915−2 −1.4923−3 −8.3806−3 3.1932−3 1.0585−2 2.0495−1

0.3 2.1837−1 −6.0497−2 −2.0143−4 −1.2157−3 3.9810−4 1.4042−3 3.5366−2

0.5 9.3169−2 −1.8699−2 −1.3954−5 −7.9331−5 3.0091−5 9.9849−5 4.7690−3

0.7 1.8423−2 −2.2357−3 −2.5360−7 −1.0062−6 7.6483−7 2.0328−6 3.0796−4

0.9 3.8293−4 −1.5559−5 −4.952−11 −1.955−9 −7.298−10 −4.822−10 1.3247−6

µ2
r = 1/2µ2

f

10−7 7.4443−5 −2.8435−5 −1.1815−4 −5.7829−3 −2.3341−3 −1.7739−3 3.2071−2

10−6 3.4143−4 −1.3016−4 −2.4482−4 −1.1668−2 −4.7305−3 −3.6168−3 7.5123−2

10−5 1.5256−3 −5.8002−4 −5.1085−4 −2.1193−2 −8.4295−3 −6.2295−3
∗ 1.5788−1

10−4 6.5726−3 −2.4891−3 −1.0409−3 −3.2697−2 −1.2166−2 −7.8952−3 2.9079−1

10−3 2.6766−2 −1.0070−2 −1.9171−3 −3.7730−2 −1.1160−2 −3.2890−3
∗ 4.4380−1

10−2 9.8073−2 −3.6370−2 −2.6942−3 −2.4056−2 −1.2354−4
∗ 1.1929−2 4.8272−1

0.1 2.5628−1 −8.8133−2 −1.4304−3 −6.9572−3 3.5561−3 1.0604−2 1.9831−1

0.3 2.0709−1 −5.6988−2 −1.8541−4 −1.3308−3 2.5993−4 1.1855−3 3.3524−2

0.5 8.5835−2 −1.7089−2 −1.2463−5 −1.1920−4 2.6972−6
∗ 6.4995−5 4.5044−3

0.7 1.6405−2 −1.9723−3 −2.1859−7
∗ −3.6817−6 −7.4795−7

∗ 3.4496−7 2.9100−4

0.9 3.2011−4 −1.2870−5 −4.000−11 −8.173−9 −3.886−9 −3.686−9 1.2230−6
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Table 6: As Table 5, but for the variable-Nf evolution using Eqs. (4.16), (4.17) and (4.20). The corresponding
values for the strong couplingαs(µ

2
r =104 GeV2) are given by 0.116461, 0.116032 and 0.115663 for µ2

r/µ
2
f = 0.5,

1 and 2, respectively.

Pol. NLO, Nf = 3 . . . 5 , µ2
f = 104 GeV2

x xuv −xdv −xL− −2xL+ xs+ xc+ xb+ xg

µ2
r = µ2

f

10−7 6.8787−5
∗ 2.6297−5 1.1496−4 5.2176−3 −2.0592−3 −1.5076−3 −1.2411−3 2.5681−2

10−6 3.1881−4 1.2165−4 2.3638−4 1.0770−2 −4.2953−3 −3.1979−3 −2.4951−3 6.3021−2

10−5 1.4413−3 5.4856−4 4.8893−4 2.0077−2 −7.8934−3 −5.7228−3 −4.1488−3 1.3809−1

10−4 6.2902−3 2.3849−3 9.9100−4 3.1883−2 −1.1785−2 −7.5596−3 −4.8420−3 2.6411−1

10−3 2.5980−2 9.7872−3 1.8364−3 3.8224−2 −1.1416−2 −3.5879−3 −1.1723−3 4.1601−1

10−2 9.6750−2 3.5935−2 2.6452−3 2.6306−2 −1.1774−3 1.0917−2 8.1196−3 4.6178−1

0.1 2.5807−1 8.8905−2 1.4509−3 7.4778−3 3.4207−3 1.0591−2 6.1480−3 1.9143−1

0.3 2.1104−1 5.8186−2 1.9054−4 1.2026−3 3.4999−4 1.3015−3 7.2795−4 3.2621−2

0.5 8.8199−2 1.7601−2 1.2924−5 8.9668−5 1.9771−5 8.4378−5 5.2125−5 4.4207−3

0.7 1.7027−2 2.0531−3 2.2921−7 1.9243−6 1.8384−7 1.3298−6 1.2157−6 2.8887−4

0.9 3.3898−4 1.3676−5 4.284−11 4.260−9 −1.916−9 −1.701−9 −7.492−11 1.2435−6

µ2
r = 2µ2

f

10−7 6.2819−5
∗ 2.4035−5 1.1180−4 4.6896−3 −1.8050−3 −1.2637−3 −1.0544−3 2.1305−2

10−6 2.9408−4 1.1232−4 2.2855−4 9.8538−3 −3.8554−3 −2.7780−3 −2.2077−3 5.4411−2

10−5 1.3450−3 5.1245−4 4.6965−4 1.8815−2 −7.2936−3 −5.1597−3 −3.8359−3 1.2368−1

10−4 5.9485−3 2.2582−3 9.4866−4 3.0816−2 −1.1297−2 −7.1323−3 −4.7404−3 2.4503−1

10−3 2.4951−2 9.4134−3 1.7698−3 3.8618−2 −1.1654−2 −3.8925−3 −1.5608−3 3.9912−1

10−2 9.4706−2 3.5243−2 2.6108−3 2.8761−2 −2.3471−3 9.7827−3 7.5188−3 4.5698−1

0.1 2.5982−1 8.9780−2 1.4862−3 8.3807−3 3.1615−3 1.0522−2 6.1973−3 1.9561−1

0.3 2.1732−1 6.0165−2 1.9984−4 1.2086−3 3.9371−4 1.3919−3 7.6929−4 3.3906−2

0.5 9.2445−2 1.8539−2 1.3804−5 7.8411−5 2.9799−5 9.8805−5 5.7333−5 4.6166−3

0.7 1.8219−2 2.2090−3 2.5004−7
∗ 9.8927−7

∗ 7.5552−7 2.0057−6 1.4438−6 3.0231−4

0.9 3.7653−4 1.5285−5 4.855−11 2.005−9 −7.599−10 −5.171−10 3.809−10 1.3232−6

µ2
r = 1/2µ2

f

10−7 7.6699−5 2.9289−5 1.1912−4 5.8548−3 −2.3667−3 −1.8030−3 −1.4521−3 3.1009−2

10−6 3.5067−4 1.3364−4 2.4707−4 1.1806−2 −4.7934−3 −3.6731−3 −2.7846−3 7.2690−2

10−5 1.5611−3 5.9329−4 5.1593−4 2.1406−2 −8.5248−3 −6.3125−3 −4.4072−3 1.5274−1

10−4 6.6957−3 2.5346−3 1.0509−3 3.2903−2 −1.2252−2 −7.9608−3 −4.8402−3 2.8097−1

10−3 2.7125−2 1.0200−2 1.9310−3 3.7698−2 −1.1127−2 −3.2334−3 −7.5827−4 4.2756−1

10−2 9.8758−2 3.6602−2 2.6980−3 2.3675−2 5.1386−5 1.2092−2 8.6053−3 4.6241−1

0.1 2.5572−1 8.7847−2 1.4179−3 6.7523−3 3.5944−3 1.0578−2 6.0904−3 1.8838−1

0.3 2.0497−1 5.6318−2 1.8228−4 1.2965−3 2.6142−4 1.1713−3 6.8941−4 3.1884−2

0.5 8.4404−2 1.6775−2 1.2174−5 1.1604−4 2.8309−6 6.3682−5 4.7009−5 4.3221−3

0.7 1.6013−2 1.9215−3 2.1196−7
∗ 3.6047−6 −7.4260−7 3.1714−7 9.6419−7 2.8268−4

0.9 3.0848−4 1.2377−5 3.829−11 8.129−9 −3.873−9 −3.681−9 −6.816−10 1.2009−6
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Fig. 13: F2(x,Q2) from H1 compared to the model with ±50% variation of the width parameter σg of the gluon
distribution.

the model has only four shape parameters and three normalization parameters, plus the starting scale:

σu = 230 MeV σd = 170 MeV σg = 77 MeV σH = 100 MeV
α2

pπ0 = 0.45 α2
nπ+ = 0.14 α2

ΛK = 0.05 Q0 = 0.75 GeV
(5.22)

These are determined from fits to data as detailed in [70] and illustrated in Fig. 13. The model reproduces
the inclusive proton structure function and gives a natural explanation of observed quark asymmetries,
such as the difference between the up and down valence distributions and between the anti-up and anti-
down sea quark distributions. Moreover, its asymmetry in the momentum distribution of strange and
anti-strange quarks in the nucleon is large enough to reduce the NuTeV anomaly to a level which does
not give a significant indication of physics beyong the Standard Model.

Recent fits of PDF’s at very low x and Q2 have revealed problems with the gluon density, which
in some cases even becomes negative. The reason for this is that the DGLAP evolution, driven primarily
by the gluon at small x, otherwise gives too large parton densities and thereby a poor fit to F2 in the
genuine DIS region at larger Q2. It has been argued [71] that the root of the problem is the application
of the formalism for DIS also in the low-Q2 region, where the momentum transfer is not large enough
that the parton structure of the proton is clearly resolved. The smallest distance that can be resolved
is basically given by the momentum transfer of the exchanged photon through d = 0.2/

√
Q2, where

d is in Fermi if Q2 is in GeV2. This indicates that partons are resolved only for Q2 >∼ 1 GeV2. For
Q2 <∼ 1 GeV2, there is no hard scale involved and a parton basis for the description is not justified.
Instead, the interaction is here of a soft kind between the nearly on-shell photon and the proton. The
cross section is then dominated by the process where the photon fluctuates into a virtual vector meson
state which then interacts with the proton in a strong interaction. The quantum state of the photon can
be expressed as |γ〉 = C0|γ0〉 +

∑
V

e
fV
|V 〉 +

∫
m0
dm(· · · ). The sum is over V = ρ0, ω, φ . . . as in

the original vector meson dominance model (VDM), whereas the generalised vector meson dominance
model (GVDM) also includes the integral over a continuous mass spectrum (not written out explicitly
here).

Applied to ep at low Q2 this leads to the expression [71]

F2(x,Q2) =
(1− x)Q2

4π2α





∑

V=ρ,ω,φ

rV

(
m2
V

Q2 +m2
V

)2(
1 + ξV

Q2

m2
V

)

+ rC

[
(1− ξC)

m2
0

Q2 +m2
0

+ ξC
m2

0

Q2
ln (1 +

Q2

m2
0

)

]}
Aγ

Q2ε

xε
(5.23)

where the hadronic cross-section σ(ip → X) = Ais
ε + Bis

−η ≈ Ais
ε ≈ Ai(Q

2/x)ε has been used
for the small-x region of interest. The parameters involved are all essentially known from GVDM phe-
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Fig. 14: F2 data at low Q2 from ZEUS compared to the full GVDM in eq. (5.23) (full curves), when excluding the
longitudinal contribution of the continuum (ξC = 0) and excluding the continuous contribution altogether (setting
rC = 0) giving VDM.

nomenology. With ε = 0.091, ξ = 0.34, m0 = 1.5 GeV and Aγ = 71µb, this GVDM model gives a
good fit (χ2/d.o.f. = 87/66 = 1.3) as illustrated in Fig. 14. Using this model at very low Q2 in com-
bination with the normal parton density approach at larger Q2 it is possible to obtain a good description
of data over the full Q2 range [71]. This involves, however, a phenomenological matching of these two
approaches, since a theoretically well justified combination is an unsolved problem.

Neglecting the GVDM component when fitting PDF’s to data at small Q2 may thus lead to an
improper gluon distribution, which is not fully universal and therefore may give incorrect results when
used for cross section calculations at LHC.

6 Towards precise determination of the nucleon PDFs 7

The nucleon parton distribution functions (PDFs) available to the moment are extracted from the rather
limited set of experimental distributions (the deep-inelastic scattering (DIS) structure functions, the
Drell-Yan (DY) and jet production cross sections). Other high-energy processes potentially could pro-
vide additional constraints on PDFs, however insufficient theoretical understanding does not allow to use
those data without risk of having uncontrolled theoretical inaccuracies. Even for the case of the exist-
ing global fits of the PDFs performed by the MRST and CTEQ groups missing next-to-next-to-leading
(NNLO) order QCD corrections to the Drell-Yan and jet production cross sections are not small as com-
pared to the accuracy of the corresponding data used and therefore might give non-negligible effect. In
this section we outline progress in the QCD fits with consistent account of the NNLO corrections.

6.1 Impact of the NNLO evolution kernel fixation on PDFs
In order to allow account of the NNLO corrections in the fit of PDFs one needs analytical expressions
for the 3-loop corrections to the QCD evolution kernel. Until recent times these expressions were known
only in the approximate form of Ref. [61] derived from the partial information about the kernel, including
the set of its Mellin moments and the low-x asymptotics [12,22,23] However with the refined calculations
of Ref. [6, 7] the exact expression for the NNLO kernel has been available. These improvement is of
particular importance for analysis of the low-x data including the HERA ones due to general rise of
the high-order QCD correction at low x. We illustrate impact of the NNLO evolution kernel validation
on PDFs using the case of fit to the global DIS data [72–77]. The exact NNLO corrections to the DIS
coefficient functions are know [4, 78] that allowed to perform approximate NNLO fit of PDFs to these
data [69] using the approximate NNLO corrections to the evolution kernel of Ref. [61]. Taking into

7Contributing author: S. I. Alekhin
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Fig. 15: The gluon distributions obtained in the different variants of PDFs fit to the DIS data (solid: the fit with
exact NNLO evolution; dashes: the fit with approximate NNLO evolution; dots: the approximate NNLO gluons
evolved with the exact NNLO kernel; dashed-dots: the NLO fit).

account exact NNLO evolution kernel the analysis of Ref. [69] was updated recently to the exact NNLO
case [79].

The gluon distributions at small x obtained in these two variants of the fit are compared in Fig.15.
With the exact NNLO corrections the QCD evolution of gluon distribution at small x gets weaker and
as a result at small x/Q the gluon distribution obtained using the precise NNLO kernel is quite dif-
ferent from the approximate one. In particular, the approximate NNLO gluon distribution is negative
at Q2 . 1.3 GeV2, while the precise one remains positive even below Q2 = 1 GeV2. For the NLO
case the positivity of gluons at small x/Q is even worse than for the approximate NNLO case due to
the approximate NNLO corrections dampen the gluon evolution at small x too, therefore account of the
NNLO corrections is crucial in this respect. (cf. discussion of Ref. [80]). Positivity of the PDFs is not
mandatory beyond the QCD leading order, however it allows probabilistic interpretation of the parton
model and facilitates modeling of the soft processes, such as underlying events in the hadron-hadron col-
lisions at LHC. The change of gluon distribution at small x/Q as compared to the fit with approximate
NNLO evolution is rather due the change in evolution kernel than due to shift in the fitted parameters
of PDFs. This is clear from comparison of the exact NNLO gluon distribution to one obtained from the
approximate NNLO fit and evolved to low Q using the exact NNLO kernel (see Fig.15). In the vicinity
of crossover in the gluon distribution to the negative values its relative change due to variation of the
evolution kernel is quite big and therefore further fixation of the kernel at small x discussed in Ref. [81]
might be substantial for validation of the PDFs at low x/Q. For the higher-mass kinematics at LHC
numerical impact of the NNLO kernel update is not dramatic. Change in the Higgs and W/Z bosons
production cross sections due to more precise definition of the NNLO PDFs is comparable to the errors
coming from the PDFs uncertainties, i.e. at the level of several percent.

6.2 NNLO fit of PDFs to the combined DIS and Drell-Yan data
The DIS process provide very clean source of information about PDFs both from experimental and
theoretical side, however very poorly constrains the gluon and sea distributions at x & 0.3. The well
known way to improve precision of the sea distributions is to combine DIS data with the Drell-Yan ones.
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Fig. 16: Uncertainties in the non-strange sea distributions obtained from NNLO QCD fit to the DIS data combined
with the fixed target Drell-Yan data (solid curves). The same uncertainties obtained in fit to the DIS data only [8]
are given for comparison by dashes.

The cross section of process NN → l+l− reads

σDY ∝
∑

i

[qi(x1)q̄i(x2) + qi(x2)q̄i(x1)] + higher order terms,

where q(q̄)i are the quarks(antiquarks) distribution and x1,2 give the momentum fractions carried by
each of the colliding partons. The quark distributions are determined by the DIS data with the precision
of several percent in the wide region of x and therefore precision of the sea distribution extracted from
the combined fit to the DIS and DY data is basically determined by the latter. The Fermilab fixed-
target experiments provide measurements of the DY cross sections for the isoscalar target [82] and the
ratio of cross sections for the deuteron and proton targets [83] with the accuracy better than 20% at
x . 0.6. Fitting PDFs to these data combined with the global DIS data of Ref. [72–77] we can achieve
comparable precision in the sea distributions. Recent calculations of Ref. [84] allow to perform this fit
with full account of the NNLO correction. Using these calculations the DY data of Refs. [82, 83] were
included into the NNLO fit of Ref. [79] that leads to significant improvement in the precision of sea
distributions (see Fig. 16). Due to the DY data on the deuteron/proton ratio the isospin asymmetry of
sea is also improved. It is worth to note that the precision achieved for the total sea distribution is in
good agreement to the rough estimates given above. The value of χ2/NDP obtained in the fit is 1.1
and the spread of χ2/NDP over separate experiments used in the fit is not dramatic, its biggest value
is 1.4. We rescaled the errors in data for experiments with χ2/NDP > 1 in order to bring χ2/NDP
for this experiments to 1 and found that overall impact of this rescaling on the PDFs errors is marginal.
This proofs sufficient statistical consistency of the data sets used in the fit and disfavors huge increase
in the value of ∆χ2 criterion suggested by the CTEQ collaboration for estimation of errors in the global
fit of PDFs. A particular feature of the PDFs obtained is good stability with respect to the choice of
factorization/renormalization scale in the DY cross section: Variation of this scale from Mµ+µ−/2 to
2Mµ+µ− leads to variation of PDFs comparable to their uncertainties due to errors in data.
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.

6.3 LHC data and flavor separation of the sea at small x
Combination of the existing DIS and fixed-target DY data provide good constraint on the total sea quarks
distribution and allows separation of the ū- and d̄-quark distributions up to the values of x sufficient for
most practical applications at the LHC. At small x the total sea is also well constrained by the precise
HERA data on the inclusive structure functions, however ū/d̄ separation is poor in this region due to lack
of the deuteron target data at HERA. The problem of the sea flavor separation is regularly masked due
to additional constraints imposed on PDFs. In particular, most often the Regge-like behavior of the sea
isospin asymmetry x(d̄− ū) ∝ xaud is assumed with aud selected around value of 0.5 motivated by the
intercept of the meson trajectories. This assumption automatically provides constraint d̄ = ū at x → 0
and therefore leads to suppression of the uncertainties both in ū and d̄ at small x. If we do not assume
the Regge-like behavior of x(d̄ − ū) its precision determined from the NNLO fit to the combined DIS
and DY data of Section 1.2 is about 0.04 at x = 10−4 furthermore this constraint is defined rather by
assumption about the shape of PDFs at small x than by data used in the fit. The strange sea distribution
is known much worse than the non-strange ones. It is essentially defined only by the CCFR experiment
from the cross section of dimuon production in the neutrino nucleus collisions [85]. In this experiment
the strange sea distribution was probed at x = 0.01 ÷ 0.2 and the shape obtained is similar to one of
the non-strange sea with the strangeness suppression factor about 0.5. This is in clear disagreement with
the Regge-like constraint on x(d̄ − s̄) or x(ū − s̄) and therefore we cannot use even this assumption to
predict the strange sea at small x.

The LHC data on µ+µ− production cross section can be used for further validation of the sea dis-
tributions at small x. Study of this process at the lepton pair masses down to 15 GeV will allow to probe
PDFs at x down to 10−4, while with both leptons detected full kinematics can be reliably reconstructed.
In order to check impact of the foreseen LHC data on the sea flavor separation we generated sample
of pseudo-data for the process pp → µ+µ−X at

√
s = 14 TeV with integral luminosity of 10 1/fb

corresponding to the first stage of the LHC operation. In order to meet typical limitations of the LHC
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Table 7: Values of the parameters obtained in the benchmark fit.

Valence au 0.718±0.085
bu 3.81±0.16
εu −1.56±0.46
γu 3.30±0.49
ad 1.71±0.20
bd 10.00±0.97
εd −3.83±0.23
γd 4.64±0.41

Sea AS 0.211±0.016
as −0.048±0.039
bs 2.20±0.20

Glue aG 0.356±0.095
bG 10.9±1.4

αs(MZ) 0.1132±0.0015

detectors only events with the lepton pair absolute rapidity less than 2.5 were accepted; other detector
effects were not taken into account. For generation of these pseudo-data we used PDFs obtained in the
dedicated version of fit [79] with the sea distributions parameterized as xSu,d,s = ηu,d,sx

a(1 − x)bu,d,s

with the constraints ηu = ηd = ηs and bs = (bu + bd)/2 imposed. These constraints are necessary for
stability of the fit in view of limited impact of the DIS data on the flavor separation and, besides, the
former one guarantees SU(3) symmetry in the sea distributions at small x. The generated pseudo-data
were added to the basic DIS data sample and the errors in PDFs parameters were re-estimated with no
constraints on the sea distributions imposed at this stage. Since dimuon data give extra information about
the PDFs products they allow to disentangle the strange distribution, if an additional constraint on the
non-strange sea distributions is set. The dashed curves in the lower panel of Fig.17 give the 1σ bands for
x(d̄− s̄) as they are defined by the LHC simulated data combined with the global DIS ones given (d̄− ū)
is fixed. One can see that d̄/s̄ (and ū/s̄) separation at the level of several percents would be feasible
down to x=10−4 in this case. The supplementary constraint on (d̄− ū) can be obtained from study of the
W -boson charge asymmetry. To estimate impact of this process we simulated the single W +- and W−-
production data similarly to the case of the µ+µ−-production and took into account this sample too. In
this case one can achieve separation of all three flavors with the precision better than 0.01 (see Fig.17).
Note that strange sea separation is also improved due to certain sensitivity of the W -production cross
section to the strange sea contribution. The estimates obtained refer to the ideal case of full kinematical
reconstruction of the W -bosons events. For the case of using the charge asymmetry of muons produced
from the W -decays the precision of the PDFs would be worse. Account of the backgrounds and the
detector effects would also deteriorate it, however these losses can be at least partially compensated by
rise of the LHC luminosity at the second stage of operation.

6.4 Benchmarking of the PDFs fit
For the available nucleon PDFs the accuracy at percent level is reached in some kinematical regions.
For this reason benchmarking of the codes used in these PDFs fits is becoming important issue. A
tool for calibration of the QCD evolution codes was provided by Les Houches workshop [59]. To allow
benchmarking of the PDFs errors calculation we performed a test fit suggested in Les Houches workshop
too. This fit reproduces basic features of the existing global fits of PDFs, but is simplified a lot to facilitate
its reproduction. We use for the analysis data on the proton DIS structure functions F2 obtained by the
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BCDMS, NM, H1, and ZEUS collaborations and ratio of the deuteron and proton structure functions F2

obtained by the NMC. The data tables with full description of experimental errors taken into account
are available online8 . Cuts for the momentum transferred Q2 > 9 GeV2 and for invariant mass of the
hadronic system W 2 > 15 GeV2 are imposed in order to avoid influence of the power corrections and
simplify calculations. The contribution of the Z-boson exchange at large Q is not taken into account for
the same purpose. The PDFs are parameterized in the form

xpi(x, 1 GeV ) = Nix
ai(1− x)bi(1 + εi

√
x+ γix),

to meet choice common for many popular global fits of PDFs. Some of the parameters εi and γi are set
to zero since they were found to be consistent to zero within the errors. We assume isotopic symmetry
for sea distribution and the strange sea is the same as the non-strange ones suppressed by factor of 0.5.
Evolution of the PDFs is performed in the NLO QCD approximation within the MS scheme. The heavy
quarks contribution is accounted in the massless scheme with the variable number of flavors (the thresh-
olds for c- and b-quarks are 1.5 GeV and 4.5 GeV correspondingly). All experimental errors including
correlated ones are taken into account for calculation of the errors in PDFs using the covariance matrix
approach [86] and assuming linear propagation of errors. The results of the benchmark fit obtained with
the code used in analysis of Refs. [69,79] are given in Tables 7 and 8. The total number of the fitted PDF
parameters left is 14. The normalization parameters Ni for the gluon and valence quark distributions are
calculated from the momentum and fermion number conservation. The remaining normalization param-
eter AS gives the total momentum carried by the sea distributions. Important note is that in view of many
model assumptions made in the fit these results can be used mainly for the purposes of benchmarking
rather for the phenomenological studies.

7 Benchmark Partons from DIS data and a Comparison with Global Fit Partons 9

In this article I consider the uncertainties on partons arising from the errors on the experimental data
that are used in a parton analysis. Various groups [87], [88], [69], [89], [76], [90], [91] have concen-
trated on the experimental errors and have obtained estimates of the uncertainties on parton distributions
within a NLO QCD framework, using a variety of competing procedures. Here the two analyses, per-
formed by myself and S. Alekhin (see Sec. 6) minimise the differences one obtains for the central values
of the partons and the size of the uncertainties by fitting to exactly the same data sets with the same
cuts, and using the same theoretical prescription. In order to be conservative we use only DIS data —
BCDMS proton [73] and deuterium [74] fixed target data, NMC data on proton DIS and on the ratio
F n2 (x,Q2)/F p2 (x,Q2) [75], and H1 [76] and ZEUS [77] DIS data. We also apply cuts of Q2 = 9GeV2

and W 2 = 15GeV2 in order to avoid the influence of higher twist. We each use NLO perturbative
QCD in the MS renormalization and factorization scheme, with the zero-mass variable flavour number
scheme and quark masses of mc = 1.5GeV and mb = 4.5GeV. There is a very minor difference be-
tween αS(µ2) used in the two fitting programs due to the different methods of implementing heavy quark
thresholds (the differences being formally of higher order), as observed in the study by M. Whalley for
this workshop [92]. If the couplings in the two approaches have the same value at µ2 = M2

Z , then the
MRST value is ∼ 1% higher for Q2 ∼ 20GeV2.

We each input our parton distributions at Q2
0 = 1GeV2 with a parameterization of the form

xfi(x,Q
2
0) = Ai(1− x)bi(1 + εix

0.5 + γix)xai . (7.24)

The input sea is constrained to be 40% up and anti-up quarks, 40% down and anti-down quarks, and
20% strange and antistrange. No difference between ū and d̄ is input. There is no negative term for the
gluon, as introduced in [90], since this restricted form of data shows no strong requirement for it in order

8https://mail.ihep.ru/̃ alekhin/benchmark/TABLE
9Contributing author: R.S. Thorne.
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Fig. 18: Left plot: xdV (x, 20) from the MRST benchmark partons compared to that from the Alekhin benchmark
partons. Right plot: xg(x, 20) from the MRST benchmark partons compared to that from the Alekhin benchmark
partons.

to obtain the best fit. Similarly we are able to set εg, γg, εS and γS all equal to zero. Ag is set by the
momentum sum rule and AuV and AdV are set by valence quark number. Hence, there are nominally 13
free parton parameters. However, the MRST fitting program exhibited instability in the error matrix due
to a very high correlation between uV parameters, so εu was set at its best fit value of εu = −1.56, while
12 parameters were free to vary. The coupling was also allowed to vary in order to obtain the best fit. The
treatment of the errors on the data was exactly as for the published partons with uncertainties for each
group, i.e. as in [69] and [93]. This means that all detail on correlations between errors is included for
the Alekhin fit (see Sec. 6), assuming that these errors are distributed in the Gaussian manner. The errors
in the MRST fit are treated as explained in the appendix of [93], and the correlated errors are not allowed
to move the central values of the data to as great an extent for the HERA data, and cannot do so at all
for the fixed target data, where the data used are averaged over the different beam energies. The Alekhin
approach is more statistically rigorous. The MRST approach is more pragmatic, reducing the ability of
the data to move relative to the theory comparison by use of correlated errors (other than normalization),
and is in some ways similar to the offset method [91]. The danger of this movement of data relative to
theory has been suggested by the joint analysis of H1 and ZEUS data at this workshop (see [94]), where
letting the joint data sets determine the movement due to correlated errors gives different results from
when the data sets are compared to theoretical results.

7.1 Comparison Between the Benchmark Parton Distributions.
I compare the results of the two approaches to fitting the restricted data chosen for the benchmarking.
The input parameters for the Alekhin fit are presented in Sec. 6. Those for the MRST type fit are similar,
but there are some differences which are best illustrated by comparing the partons at a typical Q2 for the
data, e.g. Q2 = 20GeV2. A comparison is shown for the dV quarks and the gluon in Fig. 18.
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From the plots it is clear that there is generally good agreement between the parton distributions.
The central values are usually very close, and nearly always within the uncertainties. The difference
in the central values is mainly due to the different treatment of correlated errors, and partially due to
the difference in the coupling definition. The uncertainties are similar in the two sets, but are generally
about 1.2 − 1.5 times larger for the Alekhin partons, due to the increased freedom in the use of the
correlated experimental errors. The values of αS(M2

Z) are quite different, αS(M2
Z) = 0.1132 ± 0.0015

compared to 0.1110 ± 0.0012. However, as mentioned earlier, one expects a 1% difference due to the
different threshold prescriptions — the MRST αS would be larger at Q2 ∼ 20GeV2, where the data are
concentrated, so correspondingly to fit the data it receives a 1% shift downwards for Q2 = M2

Z . Once
this systematic effect is taken into account, the values of αS(M2

Z) are very compatible. Hence, there is
no surprising inconsistency between the two sets of parton distributions.

7.2 Comparison of the Benchmark Parton Distributions and Global Fit Partons.
It is also illuminating to show the comparison between the benchmark partons and the published partons
from a global fit. This is done below for the MRST01 partons. For example, uV (x,Q2) and ū(x,Q2) are
shown in Fig. 19. It is striking that the uncertainties in the two sets are rather similar. This is despite the
fact that the uncertainty on the benchmark partons is obtained from allowing ∆χ2 = 1 in the fit while
that for the MRST01 partons is obtained from ∆χ2 = 50.10 This illustrates the great improvement in
precision which is obtained due to the increase in data from the relaxation of the cuts and the inclusion
of types of data other than DIS. For the uV partons, which are those most directly constrained by the
DIS data in the benchmark fit, the comparison between the two sets of partons is reasonable, but hardly
perfect — the central values differing by a few standard deviations. This is particularly important given
that in this comparison the treatment of the data in the fit has been exactly the same in both cases. There
is a minor difference in theoretical approach because of the simplistic treatment of heavy flavours in
the benchmark fit. However, this would influence the gluon and sea quarks rather than valence quarks.
Moreover, the region sensitive to this simplification would be Q2 ∼ m2

c (the lower charge weighting for
bottom quarks greatly reducing the effect near Q2 = m2

b ) which is removed by the Q2 cut of 9GeV2.
Indeed, introducing the variable flavour number scheme usually used for the MRST partons modifies
the benchmark partons only very minimally. Hence, if the statistical analysis is correct, the benchmark
partons should agree with the global partons within their uncertainties (or at most 1.5 times their un-
certainties, allowing for the effect of the correlated errors), which they do not. For the ū partons the
comparison is far worse, the benchmark partons being far larger at high x.

This disagreement in the high-x ū partons can be understood better if one also looks at the high-
x dV distribution shown in Fig. 20. Here the benchmark distribution is very much smaller than for
MRST01. However, the increase in the sea distribution, which is common to protons and neutrons, at
high-x has allowed a good fit to the high-x BCDMS deuterium data even with the very small high-x dV
distribution. In fact it is a better fit than in [93]. However, the fit can be shown to break down with the
additional inclusion of high-x SLAC data [72] on the deuterium structure function. More dramatically,
the shape of the ū is also completely incompatible with the Drell-Yan data usually included in the global
fit, e.g. [82, 95]. Also in Fig. 20 we see that the dV distributions are very different at smaller x. The
benchmark set is markedly inconsistent with NMC data on F n

2 (x,Q2)/F p2 (x,Q2) which is at small x,
but below the cut of Q2 = 9GeV2.

The gluon from the benchmark set is also compared to the MRST01 gluon in Fig. 21. Again there
is an enormous difference at high x. Nominally the benchmark gluon has little to constrain it at high x.
However, the momentum sum rule determines it to be very small in this region in order to get the best fit
to HERA data, similar to the gluon from [76]. As such, the gluon has a small uncertainty and is many
standard deviations from the MRST01 gluon. Indeed, the input gluon at high x is so small that its value
at higher Q2 is dominated by the evolution of uV quarks to gluons, rather than by the input gluon. Hence,

10Though it is meant to be interpreted as a one sigma error in the former case and a 90% confidence limit in the latter.
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Fig. 19: Left plot: xuV (x, 20) from the MRST benchmark partons compared to that from the MRST01 partons.
Right plot: xū(x, 20) from the MRST benchmark partons compared to that from the MRST01 partons with em-
phasis on large x.

the uncertainty is dominated by the quark parton input uncertainty rather than its own, and since the up
quark is well determined the uncertainty on the high-x gluon is small for the benchmark partons. The
smallness of the high-x gluon results in the benchmark partons producing a very poor prediction indeed
for the Tevatron jet data [96, 97], which are the usual data that constrain the high-x gluon in global fits.

It is also illustrative to look at small x. Here the benchmark gluon is only a couple of standard
deviations from the MRST01 gluon, suggesting that its size is not completely incompatible with a good
fit to the HERA small-x data at Q2 below the benchmark cut. However, the uncertainty in the benchmark
gluon is much smaller than in the MRST01 gluon, despite the much smaller amount of low-x data in the
fit for the benchmark partons. This comes about as a result of the artificial choice made in the gluon input
at Q2

0. Since it does not have the term introduced in [93], allowing the freedom for the input gluon to be
negative at very small x, the gluon is required by the fit to be valence-like. Hence, at input it is simply
very small at small x. At higher Q2 it becomes much larger, but in a manner driven entirely by evolution,
i.e. it is determined by the input gluon at moderate x, which is well constrained. In this framework the
small-x gluon does not have any intrinsic uncertainty — its uncertainty is a reflection of moderate x. This
is a feature of e.g. the CTEQ6 gluon uncertainty [89], where the input gluon is valence-like. In this case
the percentage gluon uncertainty does not get any larger once x reaches about 0.001. The alternative
treatment in [93] gives the expected increase in the gluon uncertainty as x → 0, since in this case the
uncertainty is determined largely by that in the input gluon at small x. The valence-like input form for a
gluon is an example of fine-tuning, the form being unstable to evolution in either direction. The artificial
limit on the small-x uncertainty is a consequence of this.
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Fig. 20: Left plot: xdV (x, 20) from the MRST benchmark partons compared to that from the MRST01 partons.
Right plot: xdV (x, 20) from the MRST benchmark partons compared to that from the MRST01 partons with
emphasis on small x.

7.3 Conclusions.
I have demonstrated that different approaches to fitting parton distributions that use exactly the same
data and theoretical framework produce partons that are very similar and have comparable uncertain-
ties. There are certainly some differences due to the alternative approaches to dealing with experimental
errors, but these are relatively small. However, the partons extracted using a very limited data set are
completely incompatible, even allowing for the uncertainties, with those obtained from a global fit with
an identical treatment of errors and a minor difference in theoretical procedure. This implies that the
inclusion of more data from a variety of different experiments moves the central values of the partons in
a manner indicating either that the different experimental data are inconsistent with each other, or that
the theoretical framework is inadequate for correctly describing the full range of data. To a certain extent
both explanations are probably true. Some data sets are not entirely consistent with each other (even
if they are seemingly equally reliable). Also, there are a wide variety of reasons why NLO perturba-
tive QCD might require modification for some data sets, or in some kinematic regions [98]. Whatever
the reason for the inconsistency between the MRST benchmark partons and the MRST01 partons, the
comparison exhibits the dangers in extracting partons from a very limited set of data and taking them se-
riously. It also clearly illustrates the problems in determining the true uncertainty on parton distributions.

8 Stability of PDF fits 11

One of the issues raised at the workshop is the reliability of determinations of parton distribution func-
tions (PDFs), which might be compromised for example by the neglect of NNLO effects or non-DGLAP
evolution in the standard analysis, or hidden assumptions made in parameterizing the PDFs at nonper-

11Contributing authors: J. Huston, J. Pumplin.
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Fig. 21: Left plot: xg(x, 20) from the MRST benchmark partons compared to that from the MRST2001 partons.
Right plot: xg(x, 20) from the MRST benchmark partons compared to that from the MRST2001 partons with
emphasis on small x.

turbative scales. We summarize the results of the CTEQ PDF group on this issue. For the full story
see [80].

8.1 Stability of PDF determinations
The stability of NLO global analysis was seriously challenged by an analysis [98] which found a 20%
variation in the cross section predicted for W production at the LHC — a critical “standard candle” pro-
cess for hadron colliders — when certain cuts on input data are varied. If this instability were confirmed,
it would significantly impact the phenomenology of a wide range of physical processes for the Teva-
tron Run II and the LHC. The CTEQ PDF group therefore performed an independent study of this issue
within their global analysis framework. In addition, to explore the dependence of the results on assump-
tions about the parameterization of PDFs at the starting scale Q0 = 1.3 GeV, we also studied the effect
of allowing a negative gluon distribution at small x— a possibility that is favored by the MRST NLO
analysis, and that is closely tied to the W cross section controversy.

The stability of the global analysis was investigated by varying the inherent choices that must be
made to perform the analysis. These choices include the selection of experimental data points based on
kinematic cuts, the functional forms used to parameterize the initial nonperturbative parton distribution
functions, and the treatment of αs.

The stability of the results is most conveniently measured by differences in the global χ2 for the
relevant fits. To quantitatively define a change of χ2 that characterizes a significant change in the quality
of the PDF fit is a difficult issue in global QCD analysis. In the context of the current analysis, we have
argued that an increase by ∆χ2 ∼ 100 (for ∼ 2000 data points) represents roughly a 90% confidence
level uncertainty on PDFs due to the uncertainties of the current input experimental data [89, 99–101].
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Table 9: Comparisons of three fits with different choices of the cuts on input data at the Q and x values indicated.
In these fits, a conventional positive-definite gluon parameterization was used.

Cuts Qmin xmin Npts χ2
1926 χ2

1770 χ2
1588 σLHC

W ×B`ν [nb]

standard 2 GeV 0 1926 2023 1850 1583 20.02

intermediate 2.5 GeV 0.001 1770 – 1849 1579 20.10

strong 3.162 GeV 0.005 1588 – – 1573 20.34

Table 10: Same as Table 9 except that the gluon parameterization is extended to allow negative values.

Cuts Qmin xmin Npts χ2
1926 χ2

1770 χ2
1588 σLHC

W ×B`ν [nb]

standard 2 GeV 0 1926 2011 1845 1579 19.94

intermediate 2.5 GeV 0.001 1770 – 1838 1574 19.80

strong 3.162 GeV 0.005 1588 – – 1570 19.15

In other words, PDFs with χ2 − χ2
BestFit > 100 are regarded as not tolerated by current data.

The CTEQ6 and previous CTEQ global fits imposed “standard” cuts Q > 2 GeV and W >
3.5 GeV on the input data set, in order to suppress higher-order terms in the perturbative expansion
and the effects of resummation and power-law (“higher twist”) corrections. We examined the effect of
stronger cuts on Q to see if the fits are stable. We also examined the effect of imposing cuts on x, which
should serve to suppress any errors due to deviations from DGLAP evolution, such as those predicted
by BFKL. The idea is that any inconsistency in the global fit due to data points near the boundary of
the accepted region will be revealed by an improvement in the fit to the data that remain after those
near-boundary points have been removed. In other words, the decrease in χ2 for the subset of data that is
retained, when the PDF shape parameters are refitted to that subset alone, measures the degree to which
the fit to that subset was distorted in the original fit by compromises imposed by the data at low x and/or
low Q.

The main results of this study are presented in Table 9. Three fits are shown, from three choices of
the cuts on input data as specified in the table. They are labeled ‘standard’, ‘intermediate’ and ‘strong’.
Npts is the number of data points that pass the cuts in each case, and χ2

Npts
is the χ2 value for that subset

of data. The fact that the changes in χ2 in each column are insignificant compared to the uncertainty
tolerance is strong evidence that our NLO global fit results are very stable with respect to choices of
kinematic cuts.

We extended the analysis to a series of fits in which the gluon distribution g(x) is allowed to be
negative at small x, at the scale Q0 = 1.3 GeV where we begin the DGLAP evolution. The purpose of
this additional study is to determine whether the feature of a negative gluon PDF is a key element in the
stability puzzle, as suggested by the findings of [98]. The results are presented in Table 10. Even in this
extended case, we find no evidence of instability. For example, χ2 for the subset of 1588 points that pass
the strong cuts increases only from 1570 to 1579 when the fit is extended to include the full standard data
set.

Comparing the elements of Table 9 and Table 10 shows that our fits with g(x) < 0 have slightly
smaller values ofχ2: e.g., 2011 versus 2023 for the standard cuts. However, the difference ∆χ2 = 12
between these values is again not significant according to our tolerance criterion.
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8.2 W cross sections at the LHC
The last columns of Tables 9 and 10 show the predicted cross section for W + + W− production at
the LHC. This prediction is also very stable: it changes by only 1.6% for the positive-definite gluon
parameterization, which is substantially less than the overall PDF uncertainty of σW estimated previously
with the standard cuts. For the negative gluon parameterization, the change is 4%–larger, but still less
than the overall PDF uncertainty. These results are explicitly displayed, and compared to the MRST
results in Fig. 22. We see that this physical prediction is indeed insensitive to the kinematic cuts used for

Fig. 22: Predicted total cross section of W+ + W− production at the LHC for the fits obtained in our stability
study, compared to the NLO results of Ref. [98]. The Q-cut values associated with the CTEQ points are given in
the two tables. The overall PDF uncertainty of the prediction is ∼ 5%.

the fits, and to the assumption on the positive definiteness of the gluon distribution.

We also studied the stability of the prediction for σW using the Lagrange Multiplier (LM) method
of Refs. [99–101]. Specifically, we performed a series of fits to the global data set that are constrained to
specific values of σW close to the best-fit prediction. The resulting variation of χ2 versus σW measures
the uncertainty of the prediction. We repeated the constrained fits for each case of fitting choices (param-
eterization and kinematic cuts). In this way we gain an understanding of the stability of the uncertainty,
in addition to the stability of the central prediction.

Figure 23 shows the results of the LM study for the three sets of kinematic cuts described in
Table 9, all of which have a positive-definite gluon distribution. The χ2 shown along the vertical axis is
normalized to its value for the best fit in each series. In all three series, χ2 depends almost quadratically
on σW . We observe several features:

– The location of the minimum of each curve represents the best-fit prediction for σLHC
W for the

corresponding choice of cuts. The fact that the three minima are close together displays the stability
of the predicted cross section already seen in Table 9.

– Although more restrictive cuts make the global fit less sensitive to possible contributions from
resummation, power-law and other nonperturbative effects, the loss of constraints caused by the
removal of precision HERA data points at small x and low Q results directly in increased un-
certainties on the PDF parameters and their physical predictions. This is shown in Fig. 23 by
the increase of the width of the curves with stronger cuts. The uncertainty of the predicted σW
increases by more than a factor of 2 in going from the standard cuts to the strong cuts.

Figure 24 shows the results of the LM study for the three sets of kinematic cuts described in
Table 10, all of which have a gluon distribution which is allowed to go negative.
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Fig. 23: Lagrange multiplier results for the W

cross section (in nb) at the LHC using a positive-
definite gluon. The three curves, in order of de-
creasing steepness, correspond to the three sets of
kinematic cuts labeled standard/intermediate/strong
in Table 9.

Fig. 24: Lagrange multiplier results for the W cross sec-
tion (in nb) at the LHC using a functional form where
the gluon is not required to be positive-definite. The
three curves, in order of decreasing steepness, corre-
spond to the three sets of kinematic cuts labeled stan-
dard/intermediate/strong in Table 10.

We observe:

– Removing the positive definiteness condition necessarily lowers the value of χ2, because more
possibilities are opened up in the χ2 minimization procedure. But the decrease is insignificant
compared to other sources of uncertainty. Thus, a negative gluon PDF is allowed, but not required.

– The minima of the two curves occur at approximately the same σW . Allowing a negative gluon
makes no significant change in the central prediction — merely a decrease of about 1 %, which is
small compared to the overall PDF uncertainty.

– For the standard set of cuts, allowing a negative gluon PDF would expand the uncertainty range
only slightly. For the intermediate and strong cuts, allowing a negative gluon PDF would signifi-
cantly expand the uncertainty range.

We examined a number of aspects of our analysis that might account for the difference in conclu-
sions between our stability study and that of [98]. A likely candidate seems to be that in order to obtain
stability, it is necessary to allow a rather free parametrization of the input gluon distribution. This suspi-
cion is seconded by recent work by MRST [102], in which a different gluon parametrization appears to
lead to a best-fit gluon distribution that is close to that of CTEQ6. In summary, we found that the NLO
PDFs and their physical predictions at the Tevatron and LHC are quite stable with respect to variations
of the kinematic cuts and the PDF parametrization after all.

8.3 NLO and NNLO
In recent years, some preliminary next-to-next-leading-order (NNLO) analyses for PDFs have been car-
ried out either for DIS alone [103], or in a global analysis context [51] — even if all the necessary hard
cross sections, such as inclusive jet production, are not yet available at this order. Determining the parton
distributions at NNLO is obviously desirable on theoretical grounds, and it is reasonable to plan for hav-
ing a full set of tools for a true NNLO global analysis in place by the time LHC data taking begins. At
the moment, however, NNLO fitting is not a matter of pressing necessity, since the difference between
NLO and NNLO appears to be very small compared to the other uncertainties in the PDF analysis. This
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Fig. 25: Left: mrst2002 NLO (solid) and NNLO (dotted); Right: mrst2004 NLO (solid) and NNLO (dotted);
Shaded region is uncertainty according to the 40 eigenvector sets of CTEQ6.1.

is demonstrated in Fig. 25, which shows the NLO and NNLO gluon distributions extracted by the MRST
group. The difference between the two curves is much smaller than the other uncertainties measured by
the 40 eigenvector uncertainty sets of CTEQ6.1, which is shown by the shaded region. The difference
is also much smaller than the difference between CTEQ and MRST best fits. Similar conclusions [104]
can be found using the NLO and NNLO fits by Alekhin.

9 The neural network approach to parton distributions 12

The requirements of precision physics at hadron colliders, as has been emphasized through this work-
shop, have recently led to a rapid improvement in the techniques for the determination of parton distri-
bution functions (pdfs) of the nucleon. Specifically it is now mandatory to determine accurately the un-
certainty on these quantities, and the different collaborations performing global pdf analysis [51,69,105]
have performed estimations of these uncertainties using a variety of techniques. The main difficulty is
that one is trying to determine the uncertainty on a function, that is, a probability measure in a space
of functions, and to extract it from a finite set of experimental data, a problem which is mathematically
ill-posed. It is also known that the standard approach to global parton fits have several shortcomings: the
bias introduced by choosing fixed functional forms to parametrize the parton distributions (also known as
model dependence), the problems to assess faithfully the pdf uncertainties, the combination of inconsis-
tent experiments, and the lack of general, process-independent error propagation techniques. Although
the problem of quantifying the uncertainties in pdfs has seen a huge progress since its paramount impor-
tance was raised some years ago, until now no unambiguous conclusions have been obtained.

In this contribution we present a novel strategy to address the problem of constructing unbi-
ased parametrizations of parton distributions with a faithful estimation of their uncertainties, based on
a combination of two techniques: Monte Carlo methods and neural networks. This strategy, introduced
in [106, 107], has been first implemented to address the marginally simpler problem of parametrizing
deep-inelastic structure functions F (x,Q2), which we briefly summarize now. In a first step we con-
struct a Monte Carlo sampling of the experimental data (generating artificial data replicas), and then we

12Contributing authors: L. Del Debbio, S. Forte, J. I. Latorre, A. Piccione, J. Rojo
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train neural networks to each data replica, to construct a probability measure in the space of structure
functions P

[
F (x,Q2)

]
. The probability measure constructed in this way contains all information from

experimental data, including correlations, with the only assumption of smoothness. Expectation val-
ues and moments over this probability measure are then evaluated as averages over the trained network
sample,

〈
F
[
F (x,Q2)

]〉
=

∫
DFP

[
F (x,Q2)

]
F
[
F (x,Q2)

]
=

1

Nrep

Nrep∑

k=1

F
(
F (net)(k)(x,Q2)

)
. (9.25)

where F [F ] is an arbitrary function of F (x,Q2).

The first step is the Monte Carlo sampling of experimental data, generating Nrep replicas of the
original Ndat experimental data,

F
(art)(k)
i =

(
1 + r

(k)
N σN

)

F (exp)

i + r
s,(k)
i σstati +

Nsys∑

l=1

rl,(k)σsys,li


 , i = 1, . . . , Ndat , (9.26)

where r are gaussian random numbers with the same correlation as the respective uncertainties, and
σstat, σsys, σN are the statistical, systematic and normalization errors. The number of replicas Nrep has
to be large enough so that the replica sample reproduces central values, errors and correlations of the
experimental data.

The second step consists on training a neural network13 on each of the data replicas. Neural
networks are specially suitable to parametrize parton distributions since they are unbiased, robust ap-
proximants and interpolate between data points with the only assumption of smoothness. The neural
network training consist on the minimization for each replica of the χ2 defined with the inverse of the
experimental covariance matrix,

χ2(k)
=

1

Ndat

Ndat∑

i,j=1

(
F

(art)(k)
i − F (net)(k)

i

)
cov−1

ij

(
F

(art)(k)
j − F (net)(k)

j

)
. (9.27)

Our minimization strategy is based on Genetic Algorithms (introduced in [108]), which are specially
suited for finding global minima in highly nonlinear minimization problems.

The set of trained nets, once is validated through suitable statistical estimators, becomes the
sought-for probability measure P

[
F (x,Q2)

]
in the space of structure functions. Now observables with

errors and correlations can be computed from averages over this probability measure, using eq. (9.25).
For example, the average and error of a structure function F (x,Q2) at arbitrary (x,Q2) can be computed
as

〈
F (x,Q2)

〉
=

1

Nrep

Nrep∑

k=1

F (net)(k)(x,Q2), σ(x,Q2) =

√
〈F (x,Q2)2〉 − 〈F (x,Q2)〉2 . (9.28)

A more detailed account of the application of the neural network approach to structure functions can
be found in [107], which describes the most recent NNPDF parametrization of the proton structure
function14 .

Hence this strategy can be used also to parametrize parton distributions, provided one now takes
into account perturbative QCD evolution. Therefore we need to define a suitable evolution formalism.

13For a more throughly description of neural network, see [106] and references therein
14The source code, driver program and graphical web interface for our structure function fits is available at

http://sophia.ecm.ub.es/f2neural.
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Fig. 26: Preliminary results for the NNPDF qNS fit atQ2
0 = 2 GeV2, and the prediction for FNS2 (x,Q2) compared

with the CTEQ and MRST results.

Since complex neural networks are not allowed, we must use the convolution theorem to evolve parton
distributions in x−space using the inverse Γ(x) of the Mellin space evolution factor Γ(N), defined as

q(N,Q2) = q(N,Q2
0)Γ

(
N,αs

(
Q2
)
, αs

(
Q2

0

))
, (9.29)

The only subtlety is that the x-space evolution factor Γ(x) is a distribution, which must therefore be
regulated at x = 1, yielding the final evolution equation,

q(x,Q2) = q(x,Q2
0)

∫ 1

x
dy Γ(y) +

∫ 1

x

dy

y
Γ(y)

(
q

(
x

y
,Q2

0

)
− yq(x,Q2

0)

)
, (9.30)

where in the above equation q(x,Q2
0) is parametrized using a neural network. At higher orders in per-

turbation theory coefficient functions C(N) are introduced through a modified evolution factor, Γ̃(N) ≡
Γ(N)C(N). We have benchmarked our evolution code with the Les Houches benchmark tables [59] at
NNLO up to an accuracy of 10−5. The evolution factor Γ(x) and its integral are computed and interpo-
lated before the neural network training in order to have a faster fitting procedure.

As a first application of our method, we extract the nonsinglet parton distribution qNS(x,Q2
0) =

1
6

(
u+ ū− d− d̄

)
(x,Q2

0) from the nonsinglet structure function FNS
2 (x,Q2) as measured by the NMC

[75] and BCDMS [73, 74] collaborations. The preliminary results of a NLO fit with fully correlated
uncertainties [109] can be seen in fig. 26 compared to other pdfs sets. Our preliminary results appear
to point in the direction that the uncertainties at small x do not allow, provided the current experimental
data, to determine if qNS(x,Q2) grows at small x, as supported by different theoretical arguments as
well as by other global parton fits. However, more work is still needed to confirm these results. Only
additional nonsinglet structure function data at small x could settle in a definitive way this issue15 .

Summarizing, we have described a general technique to parametrize experimental data in an bias-
free way with a faithful estimation of their uncertainties, which has been successfully applied to structure
functions and that now is being implemented in the context of parton distribution. The next step will be
to construct a full set of parton distributions from all available hard-scattering data using the strategy
described in this contribution.
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[25] Blümlein, J., Comput. Phys. Commun. 159, 19 (2004).
[26] Remiddi, E. and Vermaseren, J. A. M., Int. J. Mod. Phys. A15, 725 (2000).
[27] Borwein, J. M. and Bradley, D. M. and Broadhurst, D. J. and Lisonek, P., Trans. Am. Math. Soc.

353, 907 (2001).
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[32] Blümlein, J. and Moch, S., Phys. Lett. B614, 53 (2005).
[33] Nielsen, N., Nova Acta Leopoldina (Halle) 90, 123 (1909).
[34] Matsuura, T. and van der Marck, S. C. and van Neerven, W. L., Nucl. Phys. B319, 570 (1989).
[35] Hamberg, R. and van Neerven, W. L. and Matsuura, T., Nucl. Phys. B359, 343 (1991).
[36] Ravindran, V. and Smith, J. and van Neerven, W. L., Nucl. Phys. B682, 421 (2004).
[37] Catani, S. and de Florian, D. and Grazzini, M., JHEP 05, 025 (2001).
[38] Harlander, R. V. and Kilgore, W. B., Phys. Rev. D64, 013015 (2001).
[39] Harlander, R. V. and Kilgore, W. B., Phys. Rev. Lett. 88, 201801 (2002).
[40] Harlander, R. V. and Kilgore, W. B., JHEP 10, 017 (2002).
[41] Anastasiou, C. and Melnikov, K., Nucl. Phys. B646, 220 (2002).
[42] Ravindran, V. and Smith, J. and van Neerven, W. L., Nucl. Phys. B665, 325 (2003).
[43] Rijken, P. J. and van Neerven, W. L., Phys. Lett. B386, 422 (1996).

DGLAP EVOLUTION AND PARTON FITS

157



[44] Rijken, P. J. and van Neerven, W. L., Nucl. Phys. B487, 233 (1997).
[45] Rijken, P. J. and van Neerven, W. L., Phys. Lett. B392, 207 (1997).
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Resummation

G. Altarelli, J. Andersen, R. D. Ball, M. Ciafaloni, D. Colferai, G. Corcella, S. Forte, L. Magnea,
A. Sabio Vera, G. P. Salam, A. Staśto

1 Introduction 1

An accurate perturbative determination of the hard partonic cross-sections (coefficient functions) and
of the anomalous dimensions which govern parton evolution is necessary for the precise extraction of
parton densities. Recent progress in the determination of higher order contributions to these quantities
has been reviewed in [1]. As is well known, such high-order perturbative calculations display classes
of terms containing large logarithms, which ultimately signal the breakdown of perturbation theory.
Because these terms are scale–dependent and in general non universal, lack of their inclusion can lead
to significant distortion of the parton densities in some kinematical regions, thereby leading to loss of
accuracy if parton distributions extracted from deep-inelastic scattering (DIS) or the Drell-Yan (DY)
processes are used at the LHC.

Logarithimic enhancement of higher order perturbative contribution may take place when more
than one large scale ratio is present. In DIS and DY this happen in the two opposite limits when the
center-of-mass energy of the partonic collision is much higher than the characteristic scale of the process,
or close to the threshold for the production of the final state. These correspond respectively to the small
x and large x kinematical regions, where 0 ≤ x ≤ 1 is defined in terms of the invariant mass M 2 of the
non-leptonic final state as M 2 = (1−x)Q2

x . The corresponding perturbative contributions are respectively
enhanced by powers of ln 1

x and ln(1−x), or, equivalently, in the space of Mellin moments, by powers of
1
N and lnN , where N → 0 moments dominate as x→ 0 while N →∞ moments dominate as x→ 1.

The theoretical status of small x and large x resummation is somewhat different. Large x logs
are well understood and the corresponding perturbative corrections have been determined to all orders
with very high accuracy. Indeed, the coefficients that determine their resummation can be extracted
from fixed-order perturbative computations. Their resummation for DY and DIS was originally derived
in [2, 3] and extended on very general grounds in [4]. The coefficients of the resulting exponentiation
have now been determined so that resummation can now be performed exactly at N2LL [5, 6], and to
a very good approximation at N3LL [7–9], including even some non-logarithmic terms [10]. On the
other hand, small x logs are due to the fact that at high energies, due to the opening of phase space, both
collinear [11–13] and high-energy [14–17] logarithms contribute, and thus the coefficients required for
their resummation can only be extracted from a simultaneous resolution of the DGLAP equation, which
resums collinear logarithms, and the BFKL equation, which resum the high-energy logarithms. Although
the determination of the kernels of these two equations has dramatically progressed in the last several
years, thanks to the computation of the N2LO DGLAP kernel [6, 18] and of the NLO BFKL kernel [14–
17, 19, 20], the formalism which is needed to combine these two equations, as required for sucessful
phenomenology, has only recently progressed to the point of being usable for realistic applications [21–
30].

In practice, however, neither small x nor large x resummation is systematically incorporated in
current parton fits, so data points for which such effects may be important must be discarded. This
is especially unsatisfactory in the case of large x resummation, where resummed results (albeit with a
varying degree of logarithmic accuracy) are available for essentially all processes of interest for a global
parton fit, in particular, besides DIS and DY, prompt photon production [31, 32], jet production [33, 34]
and heavy quark electroproduction [35,36]. Even if one were to conclude that resummation is not needed,
either because (at small x) it is affected by theoretical uncertainties or because (at large x) its effects are
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small, this conclusion could only be arrived at after a careful study of the impact of resummation on the
determination of parton distributions, which is not available so far.

The purpose of this section is to provide a first assessment of the potential impact of the inclusion
of small x and large x resummation on the determination of parton distributions. In the case of large
x, this will be done by determining resummation effects on parton distributions extracted from structure
functions within a simplified parton fit. In the case of small x, this will be done through a study of the
impact of small x resummation on splitting functions, as well as the theoretical uncertainty involved in the
resummation process, in particular by comparing the results obtained within the approach of ref. [21–23]
and that of ref. [24–30]. We will also discuss numerical approaches to the solution of the small-x (BFKL)
evolution equation.

2 Soft gluons
With the current level of theoretical control of soft gluon resummations, available calculations for DIS
or DY should be fully reliable over most of the available phase space. Specifically, one expects current
(resummed) predictions for DIS structure functions to apply so long as the leading power correction can
be neglected, i.e. so long as W 2 ∼ (1 − x)Q2 >> Λ2, with x = xBj . Similarly, for the inclusive
DY cross section, one would expect the same to be true so long as (1 − z)2Q2 >> Λ2, where now
z = Q2/ŝ, with ŝ = x1x2S the partonic center of mass energy squared. Indeed, as already mentioned, a
consistent inclusion of resummation effects in parton fits is feasible with present knowledge: on the one
hand, recent fits show that consistent parton sets can be obtained by making use of data from a single
process (DIS) (see [37,38] and Ref. [39]), on the other hand, even if one adopts the philosophy of global
fits, resummed calculations are available for all processes of interest.

In practice, however, currently available global parton fits are based on NLO, or N2LO fixed-
order perturbative calculations, so data points which would lie within the expected reach of resummed
calculations cannot be fit consistently and must be discarded. The effect is that large-x quark distributions
become less constrained, which has consequences on the gluon distribution, as well as on medium-x
quark distributions, through sum rules and evolution. The pool of untapped information is growing, as
more data at large values of x have become available from, say, the NuTeV collaboration at Fermilab [40,
41]. A related issue is the fact that a growing number of QCD predictions for various processes of interest
at the LHC are now computed including resummation effects in the hard partonic cross sections, which
must be convoluted with parton densities in order to make predictions at hadron level. Such predictions
are not fully consistent, since higher order effects are taken into account at parton level, but disregarded
in defining the parton content of the colliding hadrons.

It is therefore worthwile to provide an assessment of the potential impact of resummation on
parton distributions. Here, we will do this by computing resummation effects on quark distributions in
the context of a simplified parton fit.

2.1 General Formalism in DIS
Deep Inelastic Scattering structure functions Fi(x,Q2) are given by the convolution of perturbative co-
efficient functions, typically given in the MS factorization scheme, and parton densities. The coefficient
functions Cq

i for quark-initiated DIS present terms that become large when the Bjorken variable x for
the partonic process is close to x = 1, which forces gluon radiation from the incoming quark to be soft
or collinear. At O(αs), for example, the coefficient functions can be written in the form

Cqi

(
x,
Q2

µ2
F

, αs(µ
2)

)
= δ(1 − x) +

αs(µ
2)

2π
Hq
i

(
x,
Q2

µ2
F

)
+O

(
α2
s

)
. (1)
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Treating all quarks as massless, the part of H q
i which contains terms that are logarithmically enhanced

as x→ 1 reads

Hq
i,soft

(
x,
Q2

µ2
F

)
= 2CF

{[
ln(1− x)

1− x

]

+

+
1

(1− x)+

(
lnQ2

µ2
F

− 3

4

)}
. (2)

In moment space, where soft resummation is naturally performed, the contributions proportional to
αs[ln(1 − x)/(1 − x)]+ and to αs[1/(1 − x)]+ correspond to double (αs ln2 N) and single (αs lnN)
logarithms of the Mellin variable N . The Mellin transform of Eq. (2) in fact reads, at large N ,

Ĥq
i,soft

(
N,

Q2

µ2
F

)
= 2CF

{
1

2
ln2N +

[
γE +

3

4
− lnQ2

µ2
F

]
lnN

}
. (3)

All terms growing logarithmically with N , as well as all N -independent terms corresponding to contri-
butions proportional to δ(1 − x) in x-space, have been shown to exponentiate. In particular, the pattern
of exponentiation of logarithmic singularities is nontrivial: one finds that the coefficient functions can be
written as

Ĉqi

(
N,

Q2

µ2
F

, αs(µ
2)

)
= R

(
N,

Q2

µ2
F

, αs(µ
2)

)
∆

(
N,

Q2

µ2
F

, αs(µ
2)

)
, (4)

where R(N,Q2/µ2
F , αs(µ

2)) is a finite remainder, nonsingular as N →∞, while [4]

ln ∆

(
N,

Q2

µ2
F

, αs(µ
2)

)
=

∫ 1

0
dx
xN−1 − 1

1− x

{∫ (1−x)Q2

µ2
F

dk2

k2
A
[
αs(k

2)
]

+B
[
αs
(
Q2(1− x)

)]
}
.

(5)
In Eq. (5) the leading logarithms (LL), of the form αns lnn+1N , are generated at each order by the
function A. Next-to-leading logarithms (NLL), on the other hand, of the form αns lnnN , require the
knowledge of the function B. In general, resumming NkLL to all orders requires the knowledge of the
function A to k+ 1 loops, and of the function B to k loops. In the following, we will adopt the common
standard of NLL resummation, therefore we need the expansions

A(αs) =

∞∑

n=1

(αs
π

)n
A(n) ; B(αs) =

∞∑

n=1

(αs
π

)n
B(n) (6)

to second order for A and to first order for B. The relevant coefficients are

A(1) = CF ,

A(2) =
1

2
CF

[
CA

(
67

18
− π2

6

)
− 5

9
nf

]
, (7)

B(1) = −3

4
CF .

Notice that in Eq. (5) the term∼ A(αs(k
2))/k2 resums the contributions of gluons that are both soft and

collinear, and in fact the anomalous dimension A can be extracted order by order from the residue of the
singularity of the nonsinglet splitting function as x→ 1. The function B, on the other hand, is related to
collinear emission from the final state current jet.

In [35, 36] soft resummation was extended to the case of heavy quark production in DIS. In the
case of heavy quarks, the function B(αs) needs to be replaced by a different function, called S(αs)
in [36], which is characteristic of processes with massive quarks, and includes effects of large-angle
soft radiation. In the following, we shall consider values of Q2 much larger than the quark masses and
employ the resummation results in the massless approximation, as given in Eq. (5).
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2.2 Simplified parton fit
We would like to use large-x resummation in the DIS coefficient functions to extract resummed parton
densities from DIS structure function data. Large-x data typically come from fixed-target experiments: in
the following, we shall consider recent charged-current (CC) data from neutrino-iron scattering, collected
by the NuTeV collaboration [40, 41], and neutral-current (NC) data from the NMC [42] and BCDMS
[43, 44] collaborations.

Our strategy will be to make use of data at different, fixed values of Q2. We will extract from
these data moments of the corresponding structure functions, with errors; since such moments factor into
a product of moments of parton densities times moments of coefficient functions, computing parton mo-
ments with errors is straightforward. We then compare NLO to resummed partons in Mellin space, and
subsequently provide a translation back to x-space by means of simple parametrization. Clearly, given
the limited data set we are working with, our results will be affected by comparatively large errors, and
we will have to make simplifying assumptions in order to isolate specific quark densities. Resummation
effects are, however, clearly visible, and we believe that our fit provides a rough quantitative estimate of
their size. A more precise quantitative analysis would have to be performed in the context of a global fit.

The first step is to construct a parametrization of the chosen data. An efficient and faithful
parametrization of the NMC and BCDMS neutral-current structure functions was provided in [45, 46],
where a large sample of Monte Carlo copies of the original data was generated, taking properly into
account errors and correlations, and a neural network was trained on each copy of the data. One can then
use the ensemble of networks as a faithful and unbiased representation of the probability distribution in
the space of structure functions. We shall make use of the nonsinglet structure function F ns

2 (x,Q2) ex-
tracted from these data, as it is unaffected by gluon contributions, and provides a combination of up and
down quark densities which is independent of the ones we extract from charged current data (specifically,
F ns

2 (x,Q2) gives u− d).

As far as the NuTeV data are concerned, we shall consider the data on the CC structure functions
F2 and F3. The structure function F3 can be written as a convolution of the coefficient function C q

3 with
quark and antiquark distributions, with no gluon contribution, as

xF3 =
1

2

(
xF ν3 + xF ν̄3

)
= x


∑

q,q′
|Vqq′ |2 (q − q̄)⊗ Cq

3


 . (8)

We consider data for F3 at Q2 = 12.59 and 31.62 GeV2, and, in order to compute moments, we fit them
using the functional form

xF3(x) = Cx−ρ(1− x)σ(1 + kx) . (9)

The best-fit values of C , ρ and δ, along with the χ2 per degree of freedom, are given in [47]. Here we
show the relevant NuTeV data on xF3, along with our best-fit curves, in Fig. 1.

The analysis of NuTeV data on F2 is slightly complicated by the fact that gluon-initiated DIS
gives a contribution, which, however, is not enhanced but suppressed at large x. We proceed therefore
by taking the gluon density from a global fit, such as the NLO set CTEQ6M [48], and subtract from F2

the gluon contribution point by point. We then write F2 as

F2 ≡
1

2

(
F ν2 + F ν̄2

)
= x

∑

q,q′
|Vqq′ |2 [(q + q̄)⊗Cq

2 + g ⊗ Cg2 ] ≡ F q2 + F g2 , (10)

and fit only the quark-initiated part F q
2 , using the same parametrization as in Eq. (9). Fig. 2 shows the data

on F q2 and the best fit curves, as determined in Ref. [47]. After the subtraction of the gluon contribution
from F2, the structure functions we are considering (F q

2 , xF3 and F ns
2 ) are all given in factorized form

as

Fi(x,Q
2) = x

∫ 1

x

dξ

ξ
qi
(
ξ, µ2

F

)
Cqi

(
x

ξ
,
Q2

µ2
F

, αs(µ
2)

)
, (11)
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Fig. 1: NuTeV data on the structure function xF3, at Q2 = 12.59 GeV2 (a) and at Q2 = 31.62 GeV2 (b), along
with the best fit curve parametrized by Eq. (9).

Fig. 2: NuTeV data on the quark-initiated contribution F q2 to the structure function F2, for Q2 = 12.59 GeV2 (a),
and Q2 = 31.62 GeV2 (b). The solid lines are the best-fit predictions.

where Cq
i is the relevant coefficient function and qi is a combination of quark and antiquark distributions

only. Hereafter, we shall take µ = µF = Q for the factorization and renormalization scales. At this
point, to identify individual quark distributions from this limited set of data, we need to make some
simplifying assumptions. Following [47], we assume isospin symmetry of the sea, ū = d̄, s = s̄ and we
further impose a simple proportionality relation expressing the antistrange density in terms of the other
antiquarks, s̄ = κū. As in [47], we shall present results for κ = 1

2 . With these assumptions, we can
explicit solve for the remaining three independent quark densities (up, down, and, say, strange), using
the three data sets we are considering.

Taking the Mellin moments of Eq. (11), the convolution becomes an ordinary product and we can
extract NLO or NLL-resummed parton densities, according to whether we use NLO or NLL coefficient
functions. More precisely,

q̂NLO
i (N,Q2) =

F̂i(N − 1, Q2)

ĈNLO
i (N, 1, αs(Q2))

; q̂res
i (N,Q2) =

F̂i(N − 1, Q2)

Ĉres
i (N, 1, αs(Q2))

. (12)

After extracting the combinations qi, one can derive the individual quark densities, at NLO and including
NLL large-x resummation. We concentrate our analysis on the up quark distribution, since experimental
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errors on the structure functions are too large to see an effect of the resummation on the other quark
densities, such as d or s, with the limited data set we are using.

2.3 Impact of the resummation
We present results for moments of the up quark distribution in Figs. 3 and 4. Resummation effects

Fig. 3: NLO and resummed moments of the up quark distribution at Q2 = 12.59 GeV2

Fig. 4: As in Fig. 3, but at Q2 = 31.62 GeV2.

become statistically significant around N ∼ 6− 7 at both values of Q2. Notice that high moments of the
resummed up density are suppressed with respect to the NLO density, as a consequence of the fact that
resummation in the MS scheme enhances high moments of the coefficient functions.

In order to illustrate the effect in the more conventional setting of x-space distributions, we fit our
results for the moments to a simple parametrization of the form u(x) = Dx−γ(1 − x)δ . Our best fit
values for the parameters, with statistical errors, are given in Table (1), and the resulting distributions
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Table 1: Best fit values and errors for the up-quark x-space parametrization, at the chosen values of Q2.

Q2 PDF D γ δ

12.59 NLO 3.025 ± 0.534 0.418 ± 0.101 3.162 ± 0.116

RES 4.647 ± 0.881 0.247 ± 0.109 3.614 ± 0.128

31.62 NLO 2.865 ± 0.420 0.463 ± 0.086 3.301 ± 0.098

RES 3.794 ± 0.583 0.351 ± 0.090 3.598 ± 0.104

Fig. 5: NLO and resummed up quark distribution at Q2 = 12.59 GeV2 (a) and at Q2 = 31.62 GeV2, using the
parametrization given in the text. The band corresponds to one standard deviation in parameter space.

Fig. 6: Central value of relative change in the up quark distribution, ∆u(x) ≡ (uNLO(x) − ures(x)) /uNLO(x), at
Q2 = 12.59 (a) and 31.62 GeV2 (b).

are displayed in Fig. 5, with one standard deviation uncertainty bands. Once again, the effect of soft
resummation is clearly visible at large x: it suppresses the quark densities extracted from the given
structure function data with respect to the NLO prediction.

In order to present the effect more clearly, we show in Fig. 6 the normalized deviation of the
NLL-resummed prediction from the NLO one, i.e. ∆u(x) = (uNLO(x)− ures(x)) /uNLO(x), at the
two chosen values of Q2 and for the central values of the best-fit parameters. We note a change in the
sign of ∆u in the neighborhhod of the point x = 1/2: although our errors are too large for the effect
to be statistically significant, it is natural that the suppression of the quark distribution at large x be
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compensated by an enhancement at smaller x. In fact, the first moment of the coefficient function is
unaffected by the resummation: thus C q

i , being larger at large x, must become smaller at small x. The
further sign change at x ∼ 0.1, on the other hand, should not be taken too seriously, since our sample
includes essentially no data at smaller x, and of course we are using an x-space parametrization of limited
flexibility.

Finally, we wish to verify that the up-quark distributions extracted by our fits at Q2 = 12.59 and
31.62 GeV2 are consistent with perturbative evolution. To achieve this goal, we evolve our N -space
results at Q2 = 31.62 GeV2 down to 12.59 GeV2, using NLO Altarelli–Parisi anomalous dimensions,
and compare the evolved moments with the direct fit at 12.59 GeV2. Figures 7 and 8 show that the
results of our fits at 12.59 GeV2 are compatible with the NLO evolution within the confidence level of
one standard deviation. Note however that the evolution of resummed moments appears to give less
consistent results, albeit within error bands: this can probably be ascribed to a contamination between
pertubative resummation and power corrections, which we have not disentangled in our analysis.

Fig. 7: Comparison of fitted moments of the NLO up quark distribution, at Q2 = 12.59 GeV2, with moments
obtained via NLO evolution from Q2 = 31.62 GeV2.

Qualitatively, the observed effect on the up quark distribution is easily described, at least within the
limits of a simple parametrization like the one we are employing: resummation increases the exponent
δ, responsible for the power-law decay of the distribution at large x, by about 10% to 15% at moderate
Q2. The exponent γ, governing the small-x behavior, and the normalization D, are then tuned so that the
first finite moment (the momentum sum rule) may remain essentially unaffected.

In conclusion, our results indicate that quark distributions are suppressed at large x by soft gluon
effects. Quantitatively, we observe an effect ranging between 10% and 20% when 0.6 < x < 0.8 at
moderate Q2, where we expect power corrections not to play a significant role. Clearly, a more detailed
quantitative understanding of the effect can be achieved only in the context of a broader and fully con-
sistent fit. We would like however to notice two things: first, the effect of resummations propagates
to smaller values of x, through the fact that the momentum sum rule is essentially unaffected by the
resummation; similarly, evolution to larger values of Q2 will shift the Sudakov suppression to smaller
x. A second point is that, in a fully consistent treatment of hadronic cross section, there might be a
partial compensation between the typical Sudakov enhancement of the partonic process and the Sudakov
suppression of the quark distribution: the compensation would, however, be channel-dependent, since
gluon-initiated partonic processes would be unaffected. We believe it would be interesting, and phe-
nomenologically relevant, to investigate these issues in the context of a more comprehensive parton fit.
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Fig. 8: As in Fig. 7, but comparing NLL-resummed moments of the up quark density.

3 Small x
Small x structure functions are dominated by the flavour singlet contribution, whose coefficient functions
and anomalous dimensions receive logarithmic enhancements, which make perturbation theory converge
more slowly. In the small x, i.e. high energy limit, the cross section is quasi-constant and characterised by
the effective expansion parameter 〈αs(k2)〉 log 1

x log k
2
max

k2
min

, where x = Q2/s, k2 . Q2 is the transverse

momentum of the exchanged gluon, s is the photon-proton centre of mass energy squared and Q2 is
the hard scale. Such expansion parameter can be large, due to both the double-logs and to the fact that
〈k2〉 may drift towards the non-perturbative region. Even assuming that truly non-perturbative effects
are factored out — as is the case for structure functions — the problem remains of resumming the
perturbative series with both kinds of logarithms [11–17]

In the BFKL approach one tries to resum the high-energy logarithms first, by an evolution equation
in log 1/x, whose k-dependent evolution kernel is calculated perturbatively in αs. However, the leading
kernel [14–17] overestimates the hard cross-section, and subleading ones [19,20,49] turn out to be large
and of alternating sign, pointing towards an instability of the leading-log x (Lx) hierarchy. The problem
is that, for any given value of the hard scales Q,Q0 �

√
s — think, for definiteness, of γ∗(Q)-γ∗(Q0)

collisions —, the contributing kernels contain collinear enhancements in all k-orderings of the exchanged
gluons of type

√
s � · · · k1 � k2 · · · , or

√
s � · · ·k2 � k1 · · · and so on, to all orders in αs. Such

enhancements are only partly taken into account by any given truncation of the Lx hierarchy, and they
make it unstable. In the DGLAP evolution equation one resums collinear logarithms first, but fixed order
splitting functions do contain [6, 18] high-energy logarithms also, and a further resummation is needed.

Two approaches to the simultaneous resummation of these two classes of logs have recently
reached the stage where their phenomenological application can be envisaged. The renormalisation
group improved (CCSS) approach [21–23, 50] is built up within the BFKL framework, by improving
the whole hierarchy of subleading kernels in the collinear region, so as to take into account all the k-
orderings mentioned before, consistently with the RG. In the duality (ABF) approach [24–30, 51] one
concentrates on the problem of obtaining an improved anomalous dimension (splitting function) for DIS
which reduces to the ordinary perturbative result at large N (large x), thereby automatically satisfying
renormalization group constraints, while including resummed BFKL corrections at small N (small x),
determined through the renormalization-group improved (i.e. running coupling) version of the BFKL
kernel.
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We will briefly review the theoretical underpinnings of these two approaches in turn, and then
compare phenomenological results obtained in both approaches. Note that we shall use the notation of
the CCSS or ABF papers in the corresponding sections, in order to enable a simpler connection with the
original literature, at the price of some notational discontinuity. In particular, ln 1

x is called Y by CCSS
and ξ by ABF; the Mellin variable conjugate to ln 1

x is called ω by CCSS and N by ABF; and the Mellin

variable conjugated to ln Q2

k2 is called γ by CCSS and M by ABF.

3.1 The renormalisation group improved approach
The basic problem which is tackled in the CCSS approach [21–23, 50] is the calculation of the (az-
imuthally averaged) gluon Green function G(Y ; k, k0) as a function of the magnitudes of the external
gluon transverse momenta k ≡ |k|, k0 ≡ |k0| and of the rapidity Y ≡ log s

kk0
. This is not yet a hard

cross section, because one needs to incorporate the impact factors of the probes [52–59]. Nevertheless,
the Green function exhibits most of the physical features of the hard process, if we think of k2, k2

0

as external (hard) scales. The limits k2 � k2
0 (k2

0 � k2) correspond conventionally to the ordered
(anti-ordered) collinear limit. By definition, in the ω-space conjugate to Y (so that ω̂ = ∂Y ) one sets

Gω(k,k0) ≡ [ω −Kω]−1(k,k0) , (13)

ωGω(k,k0) = δ2(k − k0) +

∫
d2k′ Kω(k,k′)Gω(k′,k0) , (14)

where Kω(k,k′) is a kernel to be defined, whose ω = 0 limit is related to the BFKL Y -evolution kernel
discussed before.

In order to understand the RG constraints, it is useful to switch from k-space to γ-space, where the
variable γ is conjugated to t ≡ log k2/k2

0 at fixed Y , and to make the following kinematical remark: the
ordered (anti-ordered) region builds up scaling violations in the Bjorken variable x = k2/s (x0 = k2

0/s)
and, if x (x0) is fixed instead of kk0/s = e−Y , the variable conjugated to t is shifted [60] by an ω-
dependent amount, and becomes γ + ω

2 ∼ ∂log k2 (1 − γ + ω
2 ∼ ∂log k2

0
). Therefore, the characteristic

function χω(γ) of Kω (with a factor αs factored out) must be singular when either one of the variables
is small, as shown (in the frozen αs limit) by

1

ω
χω(γ)→

[
1

γ + ω
2

+
1

1− γ + ω
2

+ · · ·
] [
γ(1)
gg (αs, ω) + · · ·

]
, (15)

where γ(1)
gg is the one-loop gluon anomalous dimension, and further orders may be added. Eq. (15)

ensures the correct DGLAP evolution in either one of the collinear limits (because, e.g., γ+ ω
2 ∼ ∂log k2)

and is ω-dependent, because of the shifts. Since higher powers of ω are related to higher subleading
powers of αs [61], this ω-dependence of the constraint (15) means that the whole hierarchy of subleading
kernels is affected.

To sum up, the kernel Kω is constructed so as to satisfy the RG constraint (15) and to reduce to
the exact Lx + NLx BFKL kernels in the ω → 0 limit; it is otherwise interpolated on the basis of various
criteria (e.g., momentum conservation), which involve a “scheme” choice.

The resulting integral equation has been solved in [21–23] by numerical matrix evolution methods
in k- and x-space. Furthermore, introducing the integrated gluon density g, the resummed splitting
function Peff(x,Q2) is defined by the evolution equation

∂g(x,Q2)

∂ logQ2
=

∫
dz

z
Peff

(
z, αs(Q

2)
)
g
(x
z
,Q2

)
, (16)

and has been extracted [21–23] by a numerical deconvolution method [62]. Note that in the RGI approach
the running of the coupling is treated by adopting in (14) the off-shell dependence of αs suggested by
the BFKL and DGLAP limits, and then solving the ensuing integral equation numerically.
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It should be noted that the RGI approach has the somewhat wider goal of calculating the off-shell
gluon density (13), not only its splitting function. Therefore, a comparison with the ABF approach, to be
discussed below, is possible in the “on-shell” limit, in which the homogeneous (eigenvalue) equation of
RGI holds. In the frozen coupling limit we have simply

χω(αs, γ − ω
2 ) = ω , (χω is at scale kk0) . (17)

In the same spirit as the ABF approach [24–30, 51], when solving Eq. (17) for either ω or γ, we are able
to identify the effective characteristic function and its dual anomalous dimension

ω = χeff(αs, γ) ; γ = γeff(αs, ω) . (18)

3.2 The duality approach
As already mentioned, in the ABF approach one constructs an improved anomalous dimension (splitting
function) for DIS which reduces to the ordinary perturbative result at large N (large x) given by:

γ(N,αs) = αsγ0(N) + α2
sγ1(N) + α3

sγ2(N) . . . . (19)

while including resummed BFKL corrections at small N (small x) which are determined by the afore-
mentioned BFKL kernel χ(M,αs):

χ(M,αs) = αsχ0(M) + α2
sχ1(M) + . . . , (20)

which is the Mellin transform of the ω → 0, angular averaged kernel K eq. 14 with respect to t = ln k2

k2
0

.
The main theoretical tool which enables this construction is the duality relation between the kernels χ
and γ [compare Eq. (18)]

χ(γ(N,αs), αs) = N, (21)

which is a consequence of the fact that the solutions of the BFKL and DGLAP equations coincide at
leading twist [24, 51, 63]. Further improvements are obtained exploiting the symmetry under gluon
interchange of the BFKL gluon-gluon kernel and through the inclusion of running coupling effects.

By using duality, one can construct a more balanced expansion for both γ and χ, the ”double
leading” (DL) expansion, where the information from χ is used to include in γ all powers of αs/N and,
conversely γ is used to improve χ by all powers of αs/M . A great advantage of the DL expansion is
that it resums the collinear poles of χ at M = 0, enabling the imposition of the physical requirement of
momentum conservation γ(1, αs) = 0, whence, by duality:

χ(0, αs) = 1. (22)

This procedure eliminates in a model independent way the alternating sign poles +1/M,−1/M 2, .....
that appear in χ0, χ1,. . . . These poles make the perturbative expansion of χ unreliable even in the central
region of M : e.g., αsχ0 has a minimum at M = 1/2, while, at realistic values of αs, αsχ0 + α2

sχ1 has
a maximum.

At this stage, while the poles at M = 0 are eliminated, those at M = 1 remain, so that the DL
expansion is still not finite near M = 1. The resummation of the M = 1 poles can be accomplished by
exploiting the collinear-anticollinear symmetry, as suggested in the CCSS approach discussed above. In
Mellin space, this symmetry implies that at the fixed-coupling level the kernel χ for evolution in ln s

kk0

must satisfy χ(M) = χ(1 − M). This symmetry is however broken by the DIS choice of variables
ln 1

x = ln s
Q2 and by the running of the coupling. In the fixed coupling limit the kernel χDIS, dual to

the DIS anomalous dimension, is related to the symmetric one χσ through the implicit equation [49]

χDIS(M + 1/2χσ(M)) = χσ(M), (23)

to be compared to eq. (17) of the CCSS approach.
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Hence, theM = 1 poles can be resummed by performing the double-leading resummation ofM =
0 poles of χDIS, determining the associated χσ through eq. (23), then symmetrizing it, and finally going
back to DIS variables by using eq. (23) again in reverse. Using the momentum conservation eq. (22) and
eq. (23), it is easy to show that χσ(M) is an entire function of M, with χσ(−1/2) = χσ(3/2) = 1 and
has a minimum at M = 1/2. Through this procedure one obtains order by order from the DL expansion
a symmetrized DL kernel χDIS, and its corresponding dual anomalous dimension γ. The kernel χDIS has
to all orders a minimum and satisfies a momentum conservation constraint χDIS(0) = χDIS(2) = 1.

The final ingredient of the ABF approach is a treatment of the running coupling corrections to
the resummed terms. Indeed, their inclusion in the resummed anomalous dimension greatly softens the
asymptotic behavior near x = 0. Hence, the dramatic rise of structure functions at small x, which char-
acterized resummations based on leading–order BFKL evolution, and is ruled out phenomenologically, is
replaced by a much milder rise. This requires a running coupling generalization of the duality Eq. (21),
which is possible noting that in M space the running coupling αs(t) becomes a differential operator,
since t→ d/dM . Hence, the BFKL evolution equation for double moments G(N,M), which is an alge-
braic equation at fixed coupling, becomes a differential equation in M for running coupling. In the ABF
approach, one solves this differential equation analytically when the kernel is replaced by its quadratic
approximation near the minimum. The solution is expressed in terms of an Airy function if the kernel is
linear in αs, for example in the case of αsχ0, or of a Bateman function in the more general case of a non
linear dependence on αs as is the case for the DL kernels. The final result for the improved anomalous
dimension is given in terms of the DL expansion plus the “Airy” or “Bateman” anomalous dimension,
with the terms already included in the DL expansion subtracted away.

For example, at leading DL order, i.e. only using γ0(N) and χ0(M), the improved anomalous
dimension is

γNLI (αs, N) =
[
αsγ0(N) + α2

sγ1(N) + γs(
αs
N

)− ncαs
πN

]
+ γA(c0, αs, N)− 1

2
+

√
2

κ0αs
[N − αsc0].

(24)
The terms within square brackets give the LO DL approximation, i.e. they contain the fixed–coupling
information from γ0 and (through γs) from χ0. The “Airy” anomalous dimension γA(c0, αs, N) contains
the running coupling resummation, i.e. it is the exact solution of the running coupling BFKL equation
which corresponds to a quadratic approximation to χ0 near M = 1/2. The last two terms subtract the
contributions to γA(c0, αs, N) which are already included in γs and γ0. In the limit αs → 0 with N
fixed, γI(αs, N) reduces to αsγ0(N) + O(α2

s). For αs → 0 with αs/N fixed, γI(αs, N) reduces to
γs(

αs
N ) + O(α2

s/N), i.e. the leading term of the small x expansion. Thus the Airy term is subleading
in both limits. However, if N → 0 at fixed αs, the Airy term replaces the leading singularity of the DL
anomalous dimension, which is a square root branch cut, with a simple pole, located on the real axis at
rather smaller N , thereby softening the small x behaviour. The quadratic approximation is sufficient to
give the correct asymptotic behaviour up to terms which are of subleading order in comparison to those
included in the DL expression in eq. (24).

The running coupling resummation procedure can be applied to a symmetrized kernel, which
possesses a minimum to all orders, and then extended to next-to-leading order [29, 30]. This entails
various technical complications, specifically related to the nonlinear dependence of the symmetrized
kernel on αs, to the need to include interference between running coupling effects and the small x
resummation, and to the consistent treatment of next-to-leading log Q2 terms, in particular those related
to the running of the coupling. It should be noted that even though the ABF appraoch is limited to the
description of leading-twist evolution at zero-momentum transfer, it leads to a pair of systematic dual
perturbative expansions for the χ and γ kernels. Hence, comparison with the CCSS approach is possible
for instance by comparing the NLO ABF kernel to the RG improved Lx+NLx CCSS kernel.
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Fig. 9: The kernel χ (BFKL characteristic function) for fixed coupling (β0 = 0) αs = 0.2 and nf = 0. The BFKL
curves are the LO and NLO truncations of eq. (20), the DGLAP curve is the dual eq. (21) of the NLO anomalous
dimension eq. (19), while the CCSS and ABF curves are respectively the solution ω of eq. (17) and the solution
χDIS of eq. (23).

3.3 Comparison of results
Even though the basic underlying physical principles of the CCSS and ABF approaches are close, there
are technical differences in the construction of the resummed RG-improved (CCSS) or symmetrized DL
(ABF) kernel, in the derivation from it of an anomalous dimension and associated splitting function,
and in the inclusion of running coupling effects. Therefore, we will compare results for the resummed
fixed-coupling χ kernel (BFKL characteristic function), then the corresponding fixed-coupling splitting
functions, and finally the running coupling splitting functions which provide the final result in both
approaches. In order to assess the phenomenological impact on parton evolution we will finally compare
the convolution of the splitting function with a “typical” gluon distribution.

In Fig. 9 we compare the solution, ω, to the on-shell constraint, eq. (17) for the RGI CCSS result,
and the solution χDIS of eq. (23) for the symmetrized NLO DL ABF result. The pure Lx and NLx
(BFKL) and next-to-leading lnQ2 (DGLAP) are also shown. All curves are determined with frozen
coupling (β0 = 0), and with nf = 0, in order to avoid complications related to the diagonalization of the
DGLAP anomalous dimension matrix and to the choice of scheme for the quark parton distribution. The
resummed CCSS and ABF results are very close, in that they coincide by construction at the momentum
conservation points M = 1

2 and M = 2, and differ only in the treatment of NLO DGLAP terms. In
comparison to DGLAP, the resummed kernels have a minimum, related to the fact that both collinear and
anticollinear logs are resummed. In comparison to BFKL, which has a minimum at LO but not NLO, the
resummed kernels always have a perturbatively stable minimum, characterized by a lower intercept than
leading–order BFKL: specifically, when αs = 0.2, λ ∼ 0.3 instead of λ ∼ 0.5. This corresponds to a
softer small x rise of the associated splitting function.

The fixed–coupling resummed splitting functions up to NLO are shown in figure 10, along with

G. ALTARELLI , J. ANDERSEN, R. D. BALL , M. CIAFALONI , D. COLFERAI, G. CORCELLA, . . .

172



Fig. 10: The fixed coupling (β0 = 0) xPgg(x) splitting function, evaluated with αs = 0.2 and nf = 0. The dashed
curves are LO for DGLAP, NLx+LO for CCSS and symmetrized LO DL for ABF, while the solid curves are NLO
and NNLO for DGLAP, NLx+NLO for CCSS and symmetrized NLO DL for ABF.

the unresummed DGLAP splitting functions up to NNLO.2 In the CCSS approach the splitting function
is determined by explicitly solving eq. (14) with the kernel corresponding to figure 9, and then applying
the numerical deconvolution procedure of [62]. For nf = 0 the NLO DGLAP splitting function has the
property that it vanishes at small x — this makes it relatively straightforward to combine not just LO
DGLAP but also NLO DGLAP with the NLLx resummation. Both the CCSS NLx+LO and NLx+NLO
curves are shown in Fig. 10. On the other hand, in the ABF approach the splitting function is the inverse
Mellin transform of the anomalous dimension obtained using duality Eq. (21) from the symmetrized DL
χ kernel. Hence, the LO and NLO resummed result respectively reproduce all information contained in
the LO and NLO χ and γ kernel with the additional constraint of collinear-anticollinear symmetry. Both
the ABF LO and NLO results are shown in figure 10.

In comparison to unresummed results, the resummed splitting functions display the characteristic
rise at small x of fixed-coupling leading-order BFKL resummation, though the small x rise is rather
milder (∼ x−0.3 instead of ∼ x−0.5 for αs = 0.2). At large x there is good agreement between the
resummed results and the corresponding LO (dashed) or NLO (solid) DGLAP curves. At small x the
difference between the ABF LO and CCSS NLx+LO (dashed) curves is mostly due to the inclusion
in CCSS of BFKL NLx terms, as well as to differences in the symmetrization procedure. When com-
paring CCSS NLx+NLO with ABF NLO this difference is reduced, and , being only due the way the
symmetrization is implemented, it might be taken as an estimate of the intrinsic ambiguity of the fixed–
coupling resummation procedure. At intermediate x the NLO resummed splitting functions is of a similar
order of magnitude as the NLO DGLAP result even down to quite small x, but with a somewhat different

2Starting from NLO one needs also to specify a factorisation scheme. Small-x results are most straightforwardly obtained
in the Q0 scheme, while fixed-order splitting functions are quoted in the MS scheme (for discussions of the relations between
different schemes see [25, 50, 64, 65]).
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Fig. 11: The running coupling xPgg(x) splitting function, evaluated with αs = 0.2 and nf = 0. The various
curves correspond to the same cases as in figure 10.

shape, characterized by a shallow dip at x ∼ 10−2, until the small x rise sets in for x ∼ 10−3. It has
been suggested [66] that in the small αs limit this dip can be explained as a consequence of the inter-
play between the −αs

3 lnx NNLO term of xPgg (also present in the resummation) and the first positive
resummation effects which start with an αs

4 ln3 1/x term. The unstable small x drop of the NNLO
DGLAP result appears to be a consequence of the unresummed α3

s
N2 double pole in the NNLO anomalous

dimension.

The running-coupling resummed splitting functions are displayed in figure 11. Note that the unre-
summed curves are the same as in the fixed coupling case since their dependence on αs is just through a
prefactor of αks , whereas in the resummed case there is an interplay between the running of the coupling
and the structure of the small-x logs. All the resummed curves display a considerable softening of the
small x behaviour in comparison to their fixed-coupling counterparts, due to the softening of the leading
small x singularity in the running-coupling case [21, 26]. As a consequence, the various resummed re-
sults are closer to each other than in the fixed-coupling case, and also closer to the unresummed LO and
NLO DGLAP results. The resummed perturbative expansion appears to be stable, subject to moderate
theoretical ambiguity, and qualitatively close to NLO DGLAP.

Finally, to appreciate the impact of resummation it is useful to investigate not only the properties
of the splitting function, but also its convolution with a physically reasonable gluon distribution. We take
the following toy gluon

xg(x) = x−0.18(1− x)5 , (25)

and show in Fig. 12 the result of its convolution with various splitting functions of Fig. 11. The dif-
ferences between resummed and unresummed results, and between the CCSS and ABF resummations
are partly washed out by the convolution, even though the difference between the unresummed LO and
NLO DGLAP results is clearly visible. In particular, differences between the fixed-order and resummed
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Fig. 12: Convolution of resummed and fixed-order Pgg splitting functions with a toy gluon distribution, Eq. (25),
normalised to the gluon distribution itself, with αs = 0.2 and nf = 0. The resummed CCSS and ABF curves are
obtained using respectively the CCSS NLx+NLO and the ABF NLO splitting function shown in Fig. 11.

convolution start to become significant only for x . 10−2 − 10−3, even though resummation effects
started to be visible in the splitting functions at somewhat larger x.

It should be kept in mind that it is only the gg entry of the singlet splitting function matrix that has
so far been investigated at this level of detail and that the other entries may yet reserve surprises.

3.4 Explicit solution of the BFKL equation by Regge exponentiation
The CCSS approach of section 3.1 exploits a numerical solution of the BFKL equation in which the gluon
Green’s function is represented on a grid in x and k. This method provides an efficient determination of
the azimuthally averaged Green’s function and splitting functions — for percent accuracy, up to Y = 30,
it runs in a few seconds — for a wide range of physics choices, e.g. pure NLx, various NLx+NLO
schemes. Here we will discuss an alternative framework suitable to solve numerically the NLL BFKL
integral equation [67], based on Monte Carlo generation of events, which can also be applied to the study
of different resummation schemes and DIS, but so far has been investigated for simpler NLL BFKL
kernels and Regge–like configurations. This method has the advantage that it automatically provides
information about azimuthal decorrelations as well as the pattern of final-state emissions.

This appproach relies on the fact that, as shown in Ref. [67], it is possible to trade the simple and
double poles in ε, present in D = 4 + 2ε dimensional regularisation, by a logarithmic dependence on an
effective gluon mass λ. This λ dependence numerically cancels out when the full NLL BFKL evolution is
taken into account for a given center–of–mass energy, a consequence of the infrared finiteness of the full
kernel. The introduction of this mass scale, differently to the original work of Ref. [49] was performed
without angular averaging the NLL kernel.

With such reguralisation of the infrared divergencies it is then convenient to iterate the NLL BFKL
equation for the t–channel partial wave, generating, in this way, multiple poles in the complex ω–plane.
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The positions of these singularities are set at different values of the gluon Regge trajectory depending
on the transverse momenta of the Reggeized gluons entering the emission vertices. At this point it is
possible to Mellin transform back to energy space and obtain an iterated form for the solution of the
NLL BFKL equation:

f(ka,kb,Y) = eω
λ
0 (ka)Y δ(2)(ka − kb) (26)

+

∞∑

n=1

n∏

i=1

∫
d2ki

∫ yi−1

0
dyi

[
θ
(
k2
i − λ2

)

πk2
i

ξ (ki) + K̃r
(

ka +

i−1∑

l=0

kl,ka +

i∑

l=1

kl

) ]

× eωλ0 (ka+
Pi−1
l=1 kl)(yi−1−yi) eω

λ
0 (ka+

Pi
l=1 kl)ynδ(2)

(
n∑

l=1

kl + ka − kb

)
,

where the strong ordering in longitudinal components of the parton emission is encoded in the nested
integrals in rapidity with an upper limit set by the logarithm of the total energy in the process, y0 = Y.
The first term in the expansion corresponds to two Reggeized gluons propagating in the t–channel with
no additional emissions. The exponentials carry the dependence on the Regge gluon trajectory, i.e.

ωλ0 (q) = −ᾱs ln
q2

λ2
+
ᾱ2
s

4

[
β0

2Nc
ln

q2

λ2
ln

q2λ2

µ4
+

(
π2

3
− 4

3
− 5

3

β0

Nc

)
ln

q2

λ2
+ 6ζ(3)

]
, (27)

corresponding to no–emission probabilities between two consecutive effective vertices. Meanwhile, the
real emission is built out of two parts, the first one:

ξ (X) ≡ ᾱs +
ᾱ2
s

4

(
4

3
− π2

3
+

5

3

β0

Nc
− β0

Nc
ln

X

µ2

)
, (28)

which cancels the singularities present in the trajectory order by order in perturbation theory, and the
second one: K̃r, which, although more complicated in structure, does not generate ε singularities when
integrated over the full phase space of the emissions, for details see Ref. [67].

The numerical implementation and analysis of the solution as in Eq. (26) was performed in
Ref. [68]. As in previous studies the intercept at NLL was proved to be lower than at leading–logarithmic
(LL) accuracy. In this approach the kernel is not expanded on a set of functions derived from the LL
eigenfunctions, and there are no instabilities in energy associated with a choice of functions breaking the
γ ↔ 1 − γ symmetry, with γ being the variable Mellin–conjugate of the transverse momenta. This is
explicitly shown at the left hand side of Fig. 13 where the coloured bands correspond to uncertainties
from the choice of renormalisation scale. Since the exponential growth at NLL is slower than at LL, there
is little overlap between the two predictions, and furthermore these move apart for increasing rapidities.
The NLL corrections to the intercept amount to roughly 50% and are stable with increasing rapidities.

In transverse momentum space the NLL corrections are stable when the two transverse scales
entering the forward gluon Green’s function are of similar magnitude. However, when the ratio between
these scales departs largely from unity, the perturbative convergence is poor, driving, as it is well–known,
the gluon Green’s function into an oscillatory behaviour with regions of negative values along the period
of oscillation. This behaviour is demonstrated in the second plot of Fig 13.

The way the perturbative expansion of the BFKL kernel is improved by simultaneous resummation
of energy and collinear logs has been discussed in sections 3.1,3.2. In particular, the original approach
based on the introduction in the NLL BFKL kernel of an all order resummation of terms compatible
with renormalisation group evolution described in ref. [60] (and incorporated in the CCSS approach of
section 3.1) can be implemented in the iterative method here explained [69] (the method of ref. [60] was
combined with the imposition of a veto in rapidities in refs. [70–72]). The main idea is that the solution
to the ω–shift proposed in ref. [60]

ω = ᾱs

(
1 +

(
a +

π2

6

)
ᾱs

)(
2ψ(1) − ψ

(
γ +

ω

2
− b ᾱs

)
− ψ

(
1− γ +

ω

2
− b ᾱs

))
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Fig. 13: Analysis of the gluon Green’s function as obtained from the NLL BFKL equation. The plot to the
left shows the evolution in rapidity of the gluon Green’s function at LL and NLL for fixed ka = 25 GeV and
kb = 30 GeV. The plot on the right hand side shows the dependence on ka for fixed kb = 30 GeV and Y = 10.
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+ ᾱ2
s

(
χ1 (γ) +

(
1

2
χ0 (γ)− b

)(
ψ′(γ) + ψ′(1− γ)

)
−
(

a +
π2

6

)
χ0(γ)

)
, (29)

can be very accurately approximated by the sum of the approximated solutions to the shift at each of the
poles in γ of the LL eigenvalue of the BFKL kernel. This provides an effective “solution” of Eq. (29) of
the form [69]

ω = ᾱsχ0(γ) + ᾱ2
sχ1(γ) +

{ ∞∑

m=0

[( ∞∑

n=0

(−1)n(2n)!

2nn!(n+ 1)!

(
ᾱs + a ᾱ2

s

)n+1

(γ +m− b ᾱs)
2n+1

)

− ᾱs
γ +m

− ᾱ2
s

(
a

γ +m
+

b

(γ +m)2
− 1

2(γ +m)3

)]
+ {γ → 1− γ}

}
, (30)

where χ0 and χ1 are, respectively, the LL and NLL scale invariant components of the kernel in γ repre-
sentation with the collinear limit

χ1 (γ) ' a

γ
+

b

γ2
− 1

2γ3
, a =

5

12

β0

Nc
− 13

36

nf
N3
c

− 55

36
, b = −1

8

β0

Nc
− nf

6N3
c

− 11

12
. (31)

The numerical solution to Eq. (29) and the value of expression (30) are compared in Fig. 14. The stability
of the perturbative expansion is recovered in all regions of transverse momenta with a prediction for the
intercept of 0.3 at NLL for ᾱs = 0.2, a result valid up to the introduction of scale invariance breaking
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terms. The implementation of expression (30) in transverse momentum space is simple given that the
transverse components decouple from the longitudinal in this form of the collinear resummation [69].
The prescription is to remove the term − ᾱ2

s
4 ln2 q2

k2 from the real emission kernel, Kr
(
~q,~k
)

, and replace
it with
(
q2

k2

)−bᾱs
|k−q|
k−q

√
2 (ᾱs + a ᾱ2

s)

ln2 q2

k2

J1

(√
2 (ᾱs + a ᾱ2

s) ln2 q
2

k2

)
− ᾱs − a ᾱ2

s + b ᾱ2
s

|k − q|
k − q ln

q2

k2
, (32)

with J1 the Bessel function of the first kind. This prescription does not affect angular dependences and
generates a well–behaved gluon Green’s function as can be seen in Fig. 15 where the oscillations in
the collinear and anticollinear regions of phase space are consistently removed. At present, work is in
progress to study the effect of the running of the coupling in this analysis when the Bessel resummation
is introduced in the iterative procedure of Ref. [67].

A great advantage of the iterative method here described is that the solution to the NLL BFKL
equation is generated integrating the phase space using a Monte Carlo sampling of the different parton
configurations. This allows for an investigation of the diffusion properties of the BFKL kernel as shown
in ref. [73], and provides a good handle on the average multiplicities and angular dependences of the
evolution. Multiplicities can be extracted from the Poisson–like distribution in the number of iterations
of the kernel needed to reach a convergent solution, which is obtained numerically at the left hand side of
Fig. 16 for a fixed value of the λ parameter. On the right hand side of the figure a study of the azimuthal
angular correlation of the gluon Green’s function is presented at Y = 5. This decorrelation will directly
impact the prediction for the azimuthal angular decorrelation of two jets with a large rapidity separation,
in a fully inclusive jet sample (i.e. no rapidity gaps). The increase of the angular correlation when the
NLL terms are included is a characteristic feature of these corrections. This study is possible using this
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approach because the NLL kernel is treated in full, without angular averaging, so there is no need to use
a Fourier expansion in angular variables.
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G. Grindhammer, C. Group, G. Gustafson, S. Höche, S. Jadach, H. Jung, A. Kaidalov, V. Khoze, M. Klasen,
H. Kowalski, F. Krauss, N. Lavesson, V. Lendermann, E. Levin, L. Lönnblad, M. Lublinsky, S. Magill,
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Abstract
We summarize the activities of Working Group 2 of the HERA/LHC Workshop
dealing with multi-jet final states and energy flows. Among the more specific
topics considered were underlying event and minimum bias, rapidity gaps and
survival probabilities, multi-jet topologies and multi-scale QCD, and parton
shower–matrix element matching.

1 Introduction
In many ways, the LHC will become the best QCD machine ever built. It will allow us to study the
production of hadrons and jets at unprecedented collision energies and will surely increase our under-
standing of QCD tremendously. Of course, some may argue that QCD already is a well understood and an
integral part of the Standard Model, and the reason for building the LHC is to discover new phenomena,
hopefully beyond the Standard Model.

However, the fact is that QCD is still not a completely understood theory. The qualitative aspects
of asymptotic freedom and confinement may be under control, but the quantitative predictive power of
the theory is still not at a satisfactory level. This is particularly true for the non-perturbative region, but
also for the high-energy limit, where the hard scale of a process is much smaller than the total collision
energy. The latter situation will be dominant in the bulk of events produced at the LHC. The triggers
at the main LHC detectors will discard the majority of such events, but what is left will be processes
with hard scales of around 100 GeV, which is still more than a hundred times smaller than the collision
energy. And there will be significant amounts of minimum-bias data taken as well.

Except for a handful of gold-plated signals for new physics, any such search will be plagued by
huge backgrounds stemming from pure QCD or other Standard Model processes involving jets. Hence,
even if the study of QCD may seem to be a mundane preoccupation, it is of the utmost importance if
we are to find and understand the few needles of new physics hopefully present in the immense LHC
haystack.

Although the Tevatron may seem to be the obvious place to learn about QCD processes relevant
for the LHC, the triggers there are typically tuned to high-scale processes, not far from the total collision
energy. This means that HERA can give important additional insight, since there the situation is in some
senses closer to that of the LHC, with the ratio of the typical hard scale and the total energy in DIS
being

√
〈Q2〉/S ∼ 0.01. In addition, HERA allows us to study such processes in a more controlled

environment, where one side of the collision is well constrained by our relatively precise understanding
of electroweak physics.

In our Working Group we have studied in some detail which lessons about multi-jet final states
and general hadronic energy flows can be learned from HERA when preparing for the analysis of LHC
data. And in this brief summary we will in a few pages try to distill the progress made by almost a
hundred physicists as reported in more than fifty talks in this workshop and also in almost twenty separate
contributions to these proceedings. The work was broadly divided into four categories: underlying events
and minimum bias; rapidity gaps and survival probabilities; multi-jet topologies and multi-scale QCD;
and matrix element–parton shower matching.
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The first category may not represent the most striking feature of HERA physics, but it will surely
be of great importance for the LHC. And it turns out that there are many possibilities to gain further
understanding of underlying events in both photoproduction and DIS at HERA.

The study of rapidity gaps and, in particular, hard diffractive scattering gained momenta when it
was observed at HERA, and the suggestion to use such processes to obtain clean signals of new physics
at the LHC presents exciting prospects where the experience from HERA will be very important.

Multi-scale processes have already been presented as an important connection between HERA and
the LHC. This is not least true for the LHCb experiment, where the understanding of the forward region
is vital, a region which has been intensely studied at HERA. Also the recent theoretical development in
QCD resummation techniques, which so far have mainly been applied to e+e− annihilation, may provide
important tools for understanding event shapes at the LHC, and the corresponding application to HERA
data will be essential for this understanding.

Finally, the more technical issue of matching fixed-order tree-level matrix elements with parton
shower generators as well as other theoretical improvements of such simulation programs will surely be
vital for the successful understanding of data from the LHC and also here the comparison to HERA data
will be essential for the tuning and validation.

It should be noted that all of these categories, presented in more detail below, have a fairly large
overlap with other working groups in this workshop. The most obvious overlaps are the working groups
for Diffraction and Monte Carlo simulations, but there is also overlap with the heavy flavour and parton
distributions working groups.

2 Underlying events and minimum bias
An understanding of the underlying event is an interesting physics topic in its own right but is also
crucial in developing robust analyses for LHC physics. The underlying event can enhance central jet
production, reducing the effectiveness of the central jet veto in analyses such as the vector boson fusion
Higgs channel, or reduce the isolation of leptons resulting in reduced efficiency for identifying isolated
leptons. In particular for LHCb and ALICE, where the triggers typically do not mandate high-scale
processes, a good understanding of underlying events and minimum-bias events is crucial.

In this workshop there were several contributions dealing with underlying events and multiple
interactions. They are all described in a joint contribution to these proceedings [1]. There the event
generator models in PYTHIA [2–5], HERWIG/JIMMY [6–8] and SHERPA [9] are presented together with
results from tuning these and other models to available data. The contribution also includes a summary
of the plenary talk by Gösta Gustafson on the theory and phenomenology underlying events and multiple
scattering.

Of the models presented and studied in Ref. [1], the one implemented in PYTHIA is probably the
most advanced. This model has recently been developed further, introducing a scheme for interleaving
the multiple interaction with a transverse-momentum ordered parton shower [3]. In contrast, the default
underlying event model in HERWIG is a simple parametrization of UA5 data [10]. However, HERWIG

is easily interfaced to the multiple-interaction model in the JIMMY program, which is similar to the
PYTHIA model in spirit, although many of the details differ. The JIMMY program has recently been
improved, making the generation of events more efficient where the signal process is different from the
additional multiple scattering processes. Also the SHERPA event generator is now equipped with multiple
interactions. Again, this model is similar in spirit to that in PYTHIA. One interesting aspect which
differs is the attempt to incorporate the multiple scatterings in the general CKKW (see Section 5 below)
framework of SHERPA.
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The CDF Collaboration has carried out studies of the underlying event in jet processes [11–13] and
this was used to provide a tuning for PYTHIA. In Ref. [1] a new analysis is presented which has extended
these studies by increasing the energy range of the leading jet from around 50 GeV to 450 GeV using
ET from the calorimeter as well as particle p⊥ measured in the tracker, and defining two-jet topologies
as a subset of the leading jet to investigate the beam–beam and radiation components of the underlying
event. Both PYTHIA tune-A and HERWIG/JIMMY were found to be in good agreement with the data,
although both underestimate the transverse energy. The extension to higher energy scale shows that the
underlying event activity increases with leading jet p⊥ i.e., the hardness of the primary scatter, but by
studying the maximum and minimum activity it is seen that this rise is largely due to bremsstrahlung
from the primary scattering rather than secondary interactions between the beam remnants.

The CDF analysis was carried out primarily at 1.8 TeV although some of the early 546 GeV data
has also been analysed. This has meant that there is only limited information on the energy dependence
of the underlying event. To cover a wider range of energy, ATLAS have used minimum-bias data from
the SppS and Tevatron covering 200 GeV to 1.8 TeV in addition to the CDF underlying event data to
tune PYTHIA and HERWIG/JIMMY. Comparing the predictions of minimum-bias and underlying event
distributions at the LHC using the tuned PYTHIA, the tuned HERWIG/JIMMY and PHOJET [14] shows
large variations, emphasizing the need to understand the energy dependence of these processes better.
The energy dependence was investigated further by LHCb, again using minimum-bias data to fit the
parameters required for the model of energy dependence in PYTHIA.

Both the ATLAS and LHCb analyses have the implicit assumption that minimum bias and the
underlying event have the same physics origin. While CDF data supports this, it would be helpful to
probe the underlying event directly over a larger range of energy scales. HERA is in a prime position
to make such a contribution by studying jets from photoproduction in an energy range corresponding to
centre-of-mass energies in the region of 200 GeV, fitting well with the low-energy minimum-bias data.
In photoproduction, resolved photons behave like hadrons so that HERA is effectively a hadron–hadron
collider. Photoproduction data shows that particle flow and multi-jet measurements require models with
multiple interactions to best describe the data but detailed studies of multiple interactions have not been
made. However, studies of particle and energy flow in the transverse region similar to that carried out by
CDF could be made at HERA.

An interesting question is whether there is also an underlying event present in DIS at HERA.
As explained in Refs. [15, 16] it is possible to relate diffraction and saturation to multiple-interaction
processes also for DIS using a QCD reformulation of the so-called AGK cutting rules [17]. And since
diffractive processes have been clearly seen at high Q2 at HERA, it is reasonable to expect that multiple
interactions may also be present. A good place to search for such effects is in forward-jet production at
HERA. In [18] preliminary results are presented indicating that multiple-interaction effects may indeed
give a noticeable increase in the measured forward-jet cross-section in resolved virtual photon processes
at small x and moderate Q2.

The connection between multiple interactions, saturation and diffraction was also discussed in the
plenary talk by Gösta Gustafson. He pointed out a possible problem with the qualitative AGK predictions
for the hadronic multiplicity in multiple-interaction events. Taking the tuning of PYTHIA to CDF data at
face value, there is an indication that the colour flows of secondary interactions are not independent from
the primary scattering. Rather, the different colour flows seem to combine in a way where the total string
length is minimized, resulting in a multiplicity which does not grow proportionally to the number of
scatterings. Currently there is no theoretical understanding of this phenomenon. Gustafson also pointed
out the problem that all multiple-interaction models discussed here rely on collinear factorization of the
individual scatterings in a region where we expect k⊥ factorization to be the relevant formalism. In fact,
using k⊥ factorization, the soft divergencies in the partonic cross section present in the conventional
models may be removed, which could make the extrapolation of the model predictions to high energy
more constrained.

INTRODUCTION TO MULTI-JET FINAL STATES AND ENERGY FLOWS
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3 Rapidity gaps and survival probabilities
A characteristic signature of diffractive processes is the existence of a large rapidity gap (LRG) in the
final state, defined as a region of (pseudo-) rapidity devoid of hadronic activity. A rapidity gap may be
adjacent to a leading proton or may arise between the decay products of final hadronic systems. The
appearance of the rapidity gaps is intimately related to the exchange in the t-channel of objects with
vacuum quantum numbers (Pomeron in the Regge theory, di-gluon Pomeron in pQCD, photon or W
-mediator). The diffractive rapidity gap events have been studied in great detail at the ISR, SPS, HERA
and the Tevatron. The LHC is the first collider which will have enough energy to allow the events with
several (n = 2–4) LRGs.

The activity of our Working Group was focused mainly on the LRGs in the hard diffractive pro-
cesses. For specifics of the photon and W -mediated reactions see, for example, Refs. [19–22].

An intensive discussion concerned the breakdown of factorization in hard hadronic diffractive
processes. It is the consequence of unitarization effects, that both hard and Regge factorization are
broken. This breakdown of factorization is experimentally seen [23] as the suppression of the single
diffractive dijet cross section at the Tevatron as compared to the prediction based on HERA results. The
observed suppression is in a quantitative agreement with the calculations [24] where the unitarization
effects are described by multi-Pomeron exchange diagrams. The analysis of the current CDF diffractive
dijet data with one or two rapidity gaps shows a good agreement with this approach. The situation with
the factorization breaking in dijet photoproduction is not completely clear and further experimental and
theoretical efforts are needed. A possible way to study this effect is to measure the ratio of diffractive
and inclusive dijet photoproduction, see Ref. [25].

It is important to emphasize that the rapidity gap signal is very powerful but, at the same time,
quite a fragile tool. We have to pay a price for ensuring such a clean environment. The gaps may easily
fade away (filled by hadronic secondaries) on account of various sources of QCD ‘radiation damage’:

(i) soft or hard rescattering between the interacting hadrons (classic screening/unitarization effects or
underlying event);

(ii) bremsstrahlung induced by the ‘active’ partons in the hard subprocesses;
(iii) radiation originating from the small transverse distances in two-gluon Pomeron dipoles.

An essential issue in the calculation of the rate of events with LRG concerns the size of the factor
W which determines the probability for the gaps to survive in the (hostile) QCD environment. As dis-
cussed in the contributions of Brian Cox [26] and Jeff Forshaw [27], this factor is a crucial ingredient for
evaluation of the discovery potential of the LHC in the exclusive processes with double proton tagging.

Symbolically, the survival probability W can be written as

W = S2T 2. (1)

S2 is the probability that the gaps are not filled by secondary particles generated by soft rescatter-
ing, i.e., that no other interactions occur except the hard production process. Following Bjorken [28,29],
who first introduced such a factor in the context of rescattering, such a factor is often called the sur-
vival probability of LRG. The second factor, T 2, is the price to pay for not having gluon radiation in the
hard production subprocess. It is related to Sudakov-suppression phenomena and is incorporated in the
pQCD calculation via the skewed unintegrated parton densities. The physics of Sudakov suppression is
discussed in more detail in the contribution of Jeff Forshaw to these Proceedings [27].

In some sense the soft survival factor S2 is the ‘Achilles heel’ of the calculations of the rates of
diffractive processes, since, in principle, S2 could strongly depend on the phenomenological models for
soft diffraction. This factor is not universal, but depends on the particular hard subprocess, as well as on
the distribution of partons inside the proton in impact parameter space. It has a specific dependence on
the characteristic momentum fractions carried by the active partons in the colliding hadrons [24].
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However, the good news is that, as discussed in these Proceedings by Uri Maor et al. [30], the
existing estimates of S2 calculated by different groups for the same processes appear to be in a reasonably
good agreement with each other. This is related to the fact that these approaches reproduce the existing
data on high-energy soft interactions, and, thus, result in the similar profile of the optical density in
the impact parameter space. Another reason results from the comparatively small role of the high-mass
diffractive dissociation.

Note that it is possible to check the value of S2 by observing double-diffractive dijet produc-
tion [31]. The gap survival in the Higgs production via the WW -fusion process can be probed in Z
production which is driven by the same dynamics, and has a higher cross-section, see Refs. [32, 33]. Let
us emphasize that it is the presence of this factor which makes the calculation infrared stable, and pQCD
applicable. Neglecting the Sudakov suppression would lead to a considerable overshooting of the cross
section of the hard central exclusive processes at large momentum transfer.

4 Multi-jet topologies and multi-scale QCD
In this workshop work on a wide range of topics regarding jet production and multi-scale processes has
been presented [34]. It is of great interest to know what the LHC will teach us in the area of QCD, but
at the same time uncertainties on the theoretical predictions for processes at the LHC should be limited
as far as possible beforehand. By using the knowledge attained at HERA, our models can be sharpened
and our theories can be tested.

Predictions of the event topology of gg → H at the LHC have been investigated for various parton
shower models — such as PYTHIA, HERWIG and ARIADNE, that have proven their validity at HERA — and
uncertainties in the event selection have been estimated [35,36]. In the parton cascade as implemented in
some of these programs, the parton emissions are calculated using the DGLAP approach, with the partons
ordered in virtuality. DGLAP accurately describes high-energy collisions of particles at moderate values
of the Bjorken-x by resummation of the leading log terms of transverse momenta (αs lnQ2). However,
to fixed order, the QCD scale used in the ladder is not uniquely defined. There are many examples
were more than one hard scale plays a role in the hard scatter, such as the virtuality Q, the transverse
momentum ET of the jet, or the mass of a produced object. Also, at low values of Bjorken-x large
logarithms appear (αs ln 1/x), leading to large corrections.

The CCFM formalism takes this into account, describing the evolution in an angular ordered
region of phase space, while reproducing DGLAP and BFKL in the appropriate asymptotic limits. The
CASCADE program has implemented the CCFM formalism, describing the low-x F2 data and forward
jet data at HERA. The predictions for the jet production at the LHC have been studied, both in the context
of a gg → H , as well as in the context of the forward event topology at LHCb [37].

In order to get reliable predictions for exclusive final-state processes, unintegrated parton density
functions f(x, Q2, k⊥) (uPDFs) become indispensable. For example, in the small-x regime, when the
transverse momenta of the partons are of the same order as their longitudinal momenta, the collinear
approximation is no longer appropriate and k⊥ factorization has to be applied, with the appropriate
CCFM evolution equations. In this workshop various parametrizations for unintegrated gluon densities
matched to HERA F2 data were compared to each other [38]. It is, however, still questionable if these
densities are constrained enough for reliable predictions for Higgs production cross-section. Final-state
measurements like photoproduction of D∗+jet events could however constrain these uPDFs further. It is
argued that it is important to reformulate perturbative QCD in terms of fully unintegrated parton densities,
since neglecting parton transverse momentum leads to wrong results. The HERA F2 data has also been
fitted using non-linear BFKL evolution, expressed with a universal dipole cross section, which in turn
can be related to the unintegrated gluon distribution.
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Finally, a theoretical description of hard diffractive processes at HERA can provide information on
the so-called generalized, or skewed, gluon distribution (depending on the x of the emitted and absorbed
gluon), providing for a theoretical description for diffractive Higgs production at the LHC.

The role of HERA is also emphasized in the area of resummed calculations, obtaining accurate
QCD parameters such as the strong coupling, quark masses and parton distribution functions, which
are vital inputs for predictions at the LHC. For example, event-shape distributions at HERA led to the
finding of non-global logarithms, influencing observables at the LHC such as energy flows away from
jets. Additionally, HERA data seem to confirm 1/Q power corrections (arising from gluon emission with
transverse momentum ∼ ΛQCD), demonstrating that these corrections are not affected by the presence
of the initial-state proton. HERA data is also used to study dijet ET and angular spectra, in order to test
NLL perturbative predictions. Finally, we have discussed whether additional small-x terms are needed to
accommodate HERA DIS data, which at LHC energies would result in a broadening of the vector boson
pT spectrum.

5 Parton shower/matrix element matching
The LHC is, of course, mainly a machine for discovering new physics. But irrespective of what new
phenomena may exist, we know for sure that LHC events will contain huge numbers of hadrons, and
that a large fraction of these events will have many hard jets produced by standard QCD processes. Such
events are interesting in their own right, but they are also important backgrounds for almost any signal
of new physics. Unfortunately the standard Parton Shower (PS)-based event generators of today are not
well suited to describe events with more than a couple of hard jets. The alternative is to use matrix
element (ME) generator programs; this typically can generate up to six hard partons according to the
exact fixed-order tree-level matrix elements. But these generators are not well suited for describing the
conversion of these hard partons into jets of hadrons.

To get properly generated events it is therefore important to interface the ME generators to re-
alistic hadronization models; this requires that also soft and collinear partons are generated according
to PS models to get reliable predictions for the intra- and inter-jet structure. When adding a PS to an
event from a ME generator, it is important to avoid double-counting. Hence the PS must be vetoed to
avoid generating parton emissions above the cutoff needed to avoid divergences in the ME generator.
In addition the PS assumes that the emissions are ordered in some evolution variable (scale) and uses
Sudakov form factors to ensure that there was no additional emission with a scale between two generated
emissions. This also generates the virtual corrections to the splittings. The ME generators, of course,
have no such ordering since all diagrams are added coherently. However, there is still a need for a cutoff
in some scale to regulate soft and collinear divergencies, and to naively add a PS to events from a ME
generator will therefore give a strong dependence on this cutoff.

A solution to this problem was presented by Catani et al. [39]. This so-called CKKW procedure
is based on using a jet reconstruction algorithm on the ME-generated event to define an ordering of the
emissions and then reweight the event according to Sudakov form factors obtained from the reconstructed
scales. In this way it was shown that the dependence on the ME cutoff cancels to NLL accuracy. The
procedure was originally developed for e+e− annihilation where it was further developed in Ref. [40],
but lately it has also been applied to hadron–hadron collisions [41–45] using several different parton
shower models. In addition, an alternative procedure, called MLM, was developed by Mangano [46, 47]
which is similar in spirit to CKKW, but which has a simpler interface between the ME and PS program.

There was some hope that during this workshop an implementation of CKKW for DIS would
also be developed. This would be interesting, not least because the procedure would then be tested in
a small-x environment, and comparing with such HERA data as well as with high-scale Tevatron data
should then give a more reliable understanding about the uncertainties when extrapolating to the LHC.
Although some progress has been made on the application to DIS [48] there was not enough time to
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make a proper implementation. Instead the activities were focused on comparing the predictions of
some of the programs (SHERPA [9] and MADGRAPH/MADEVENT [49]+ARIADNE [50] using CKKW, and
ALPGEN [51]+PYTHIA [4] using MLM) for the case of W+jets production at the Tevatron and the LHC.
This process is very interesting in its own right, but is also an important background for almost any signal
of new physics at the LHC. The results are presented in these proceedings [52] and it was found that the
models give fairly similar predictions for jet rates, but some differences were found, for example, for
the rapidity correlation between jets and the W. The latter may be related to the fact that W production,
especially at the LHC, can be considered to be a small-x process (mW /

√
S ∼ x ∼ 0.005) and we know

that there are large differences between parton shower models in this region. This emphasizes again the
importance of confronting the ME+PS matching procedures with HERA DIS data also.

Possible improvements to the QCD PS approach were discussed in three other contributions to
these proceedings. All of these are based on experience of Monte Carlo programs for QED resummation.
One of these contributions [53] describes a new algorithm for forward evolution of the initial-state parton
cascade in which the type and energy of the final parton is predefined/constrained. Contrary to the
widely used backward-evolution algorithms [54], this algorithm is similar to the one used in the LDCMC
generator [55] and does not need a fully evolved PDF parametrization as input.

Using an operator formalism, another contribution [56] describes what we can learn about QCD
parton showers from the popular PHOTOS generator, which combines in a clever way soft photon re-
summation and hard collinear photon resummation in QED. Finally there is a contribution [57] which
describes a more ambitious attempt to combine ME+PS calculations for both QCD and QED, preserving
the proper soft gluon limit and the standard factorization of collinear singularities. All of these contri-
butions represents work which is still in a rather early stage. Nevertheless, they signal important efforts
which may lead to interesting new Monte Carlo tools for the LHC era.

6 Conclusions and outlook
In this summary we hope to have made it clear that there is a rich flora of interesting topics relating to
jets and hadronic energy flows where the understanding of results from HERA will be important for the
upcoming analysis of LHC data. It should also be clear that although substantial progress has been made
during this workshop, we have only started to botanize among these topics. Hence, as we now thank the
participants of our Working Group for all the work they have contributed to the workshop, we would also
like to remind them, and also other readers of these proceedings, that there is much work still to be done.
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Abstract
The contributions to working group II: “Multi-jet final states and energy flows”
on the underlying event are summarized. The study of the underlying event in
hadronic collisions is presented and Monte Carlo tunings based on this are
described. New theoretical and Monte Carlo methods for describing the un-
derlying event are also discussed.

1 Introduction
The underlying event is an important element of the hadronic environment within which all physics at
the LHC, from Higgs searches to physics beyond the standard model, will take place. Many aspects
of the underlying event will be constrained by LHC data when they arrive. However, the physics is so
complex, spanning non-perturbative and perturbative QCD and including sensitivities to multi-scale and
very low-x physics, that even after LHC switch-on many uncertainties will remain. For this reason, and
also for planning purposes, it is critical to have to hand sensible models containing our best physical
knowledge and intuition, tuned to all relevant available data.

In this summary of several contributions to the workshop, we first outline the available models in
Section 2, most of which are in use at HERA and/or the Tevatron. Recent improvements, some of which
were made during the workshop, are also discussed.

Next, current work on tuning these to data is discussed. The underlying event has been exten-
sively studied by CDF and the latest results are presented in Section 3 and compared to predictions from
the PYTHIA and HERWIG+JIMMY Monte Carlo generators. The CDF tunings are compared to other
tunings based on CDF data and minimum bias data and used to predict the level of underlying events at
the LHC in Sections 4 and 5. These reports are very much a snapshot of ongoing work, which will be
continued in the follow-up meetings of this workshop and the TeV4LHC workshop.

One major issue in extrapolating the underlying event (UE) to LHC energies is the possible energy
dependence of the transverse momentum cut-off between hard and soft scatters, p̂min

T . The need for such
a cut-off may be avoided by using the k⊥ factorization scheme as discussed in Section 6, where soft
emissions do not contribute to the total cross-section or to the parton density functions (PDFs), but do
contribute to the properties of the event. The cross-section for a chain of partonic emission can be
extracted from HERA data and can be used to predict the minijet rate or multiple interaction rate in pp or
pp̄ collisions. The running of αs still introduces a cut-off scale between soft and hard chains; however
it has been shown that the total cross-section is insensitive to this cut-off and predictions for the mini-jet
rate at the LHC are stable. The hadron multiplicity observed in the CDF underlying event data indicates
that the string connections in the underlying event are made to minimise the string length. This is the
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opposite to what is observed in e+e− collisions. The implications for this on the AGK cutting rules is
discussed further in Section 6.

This summary ends with a section on conclusions and suggestions for future work.

2 Underlying event models
Several underlying event models are available, at varying stages of development and use. In this section
we review the status of thosed discussed during the workshop.

2.1 Multiple Interactions in PYTHIA

The basic implementation of multiple interactions in PYTHIA is almost 20 years old, and many of the
key aspects have been confirmed by comparisons with data. In recent years the model has been gradually
improved, with junction-string topologies, with flavour-correlated multiparton densities, and with trans-
verse-momentum-ordered showers interleaved with the multiple interactions. However, the “correct”
description of colour flow still remains to be found.

The traditional PYTHIA [1,2] model for multiple interactions (MI) [3] is based on a few principles:

1. The naive perturbative QCD 2→ 2 cross section is divergent like dp2
⊥/p

4
⊥ for transverse momenta

p⊥ → 0. Colour screening, from the fact that the incoming coloured partons are confined in colour
singlet states, should introduce a dampening of this divergence, e.g. by a factor p4

⊥/(p
2
⊥0 + p2

⊥)2,
where p⊥0 is a free parameter, which comes out to be of the order of 2 GeV.

2. From the thus regularized integrated interaction rate σint(Ecm, p⊥0) and the nondiffractive cross
section σnd(Ecm), the average number of interactions per event can be derived as 〈nint〉 = σint/σnd.
With no impact-parameter dependence, the actual number of interactions is given by a Poissonian
with mean as above (modulo some corrections coming from nint = 0).

3. More realistically, since hadrons are extended objects, there should be more (average) activity in
central collisions than in peripheral ones. By introducing a matter distribution inside a hadron, the
overlap between the two incoming hadrons can be calculated as a function of impact parameter b.
The number of interactions is now a Poissonian for each b separately, with a mean proportional to
the overlap. All events are required to contain at least one interaction; thereby the cross section is
automatically dampened for large b. Empirically, the required hadronic impact parameter profile
is more peaked at small b than in a Gaussian distribution.

4. It is natural to consider the interactions in an event in order of decreasing p⊥ values. Such a p⊥
ordering has a natural interpretation in terms of formation-time arguments. The generation proce-
dure can conveniently be written in a language similar to that used for parton showers, with the
equivalent of a Sudakov form factor being used to pick the next smaller p⊥, given the previous
ones. It allows the hardest interaction to be described in terms of conventional PDFs, whereas sub-
sequent ones have to be based on modified PDFs, at the very least reduced by energy–momentum
conservation effects. This also reduces the tail of events with very many interactions.

5. Technical limitations lead to several simplifications, such that only the hardest interaction was
allowed to develop initial- and final state interactions, and have flavours selected completely freely.

6. Colour correlations between different scatterings cannot be predicted by perturbation theory, but
have a direct consequence on the structure of events. One of the most senstive quantities is
〈p⊥〉(ncharged). Data here suggest a very strong colour correlation, where the total string length is
essentially minimized in the final state.

For a long period of time, only one significant change was made to this scenario:
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7. Originally the p⊥0 parameter had been assumed energy-independent. In the wake of the HERA
data [4], which led to newer PDF parametrizations having a steeper small-x behaviour than pre-
viously assumed, it became necessary to let p⊥0 increase with energy to avoid too steep a rise of
the multiplicity. Such an energy dependence can be motivated by colour screening effects [5]. A
functional form p⊥0 ∝ sε with ε ∼ 0.08 is suggested by Pomeron arguments.

Several studies have been presented based on this framework. Some of the recent tuning activities
are described elsewhere in this report. The PYTHIA Tune A [6] is a standard reference for much of the
current Tevatron underlying-event and minimum-bias physics studies.

In recent years, an effort has been made to go beyond the framework outlined above. Several new
or improved components have been introduced.

1. The fragmentation of junction-string topologies has been implemented [7] . Such topologies must
be considered when at least two valence quarks are kicked out of an incoming proton beam particle.
Here a proton is modelled as a Y-shaped topology, where each valence quarks sits at the end of one
of the three legs going out from the middle, the junction. When some ends of this Y are kicked
out, also the junction is set in motion. The junction carries no energy or momentum of its own,
but it is around the junction that the baryon inheriting the original baryon number will be formed.
The junction rest frame is defined by having 120◦ between the three jets. A number of technical
problems have to be overcome in realistic situations, where also gluons may be colour-connected
on the three legs, thus giving more complicated space–time evolution patterns.

2. PDFs are more carefully modelled, to take into account the flavour structure of previous interac-
tions [8], not only the overall energy–momentum constraints. Whenever a valence quark is kicked
out, the remaining valence PDF of this flavour is rescaled to the new remaining number. When
a sea quark is kicked out, an extra “companion” antiquark distribution contribution is inserted,
thereby increasing the likelihood that also the antiquark is kicked out.

3. Also remnant flavours are more carefully considered, along with issues such as primordial k⊥
values and remnant longitudinal momentum sharing.

4. A few further impact-parameter possibilities are introduced.
5. New transverse-momentum-ordered showers are introduced, both for initial- and final-state radia-

tion (ISR and FSR) [9]. On the one hand, this appears to give an improved description of (hard)
multijet production. On the other hand, it allows all evolution to be viewed in terms of a common
“time” ordering given by decreasing p⊥ values. This is especially critical for the description of MI
and ISR, which are in direct competition, in the sense that both mechanisms take momentum out
of the incoming beams and thereby require a rescaling of PDF’s at later “times”. This approach,
with interleaved MI and ISR, is illustrated in Fig. 1.

Currently we still make use of two simplifications to the new p⊥-ordered framework: (a) the
inclusion of FSR is deferred until the MI and ISR have been considered in full, and (b) there is no
intertwining, in which two seemingly separate higher-virtuality parton chains turns out to have a common
origin when studied at lower p⊥ scales. Fortunately there are good reasons why neither of those omitted
aspects should be so important.

There is one big remaining unsolved issue in this model, however, namely that of colour flow.
If colours are only connected via the fact that the incoming beam remnants are singlets, the correct
〈p⊥〉(ncharged) behaviour cannot be reproduced whatever variation is tried. It appears necessary to as-
sume that some final-state colour reconnection mechanism tends to reduce the total string length almost
to the minimal possible, as was required for Tune A. The most physically reasonable approach, that is yet
not too time-consuming to implement, remains to be found. It is possible that also diffractive topologies
will need to become a part of this game.
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Fig. 1: Schematic figure illustrating one incoming hadron in an event with a hard interaction occurring at p⊥1

and three further interactions at successively lower p⊥ scales, each associated with (the potentiality of) initial-state
radiation, and further with the possibility of two interacting partons (2 and 3 here) having a common ancestor in
the parton showers. Full lines represent quarks and spirals gluons. The vertical p⊥ scale is chosen for clarity rather
than realism; most of the activity is concentrated to small p⊥ values.

Apart from this big colour issue, and the smaller ones of a complete interleaving/intertwining,
PYTHIA now contains a very consistent and complete picture of both minimum-bias and underlying-
event physics. It will be interesting to see how this framework fares in comparisons with data. However,
if the models appears complex, this complexity is driven by necessity: all of the issues already brought
up must be included in the “definitive” description, in one form or other, plus possibly some more not
yet brought to light.

2.2 JIMMY

The basic ideas of the eikonal model implemented in JIMMY are discussed elsewhere [10]. The model
derives from the observation that for partonic scatters above some minimum transverse momentum,
p̂min
T , the values of the hadronic momentum fraction x which are probed decrease as the centre-of-mass

energy, s, increases, and since the proton structure function rises rapidly at small x [4], high parton
densities are probed. Thus the perturbatively-calculated cross section grows rapidly with s. However, at
such high densities, the probability of more than one partonic scattering in a single hadron-hadron event
may become significant. Allowing such multiple scatters reduces the total cross section, and increases
the activity in the final state of the collisions.

2.2.1 Model Assumptions
The JIMMY model assumes some distribution of the matter inside the hadron in impact parameter (b)
space, which is independent of the momentum fraction, x. The multiparton interaction rate is then
calculated using the cross section for the hard subprocess, the conventional parton densities, and the area
overlap function, A(b). No assumption about the behaviour of the total cross section is used. For cross
sections other than QCD 2 → 2 scatters, JIMMY makes use of approximate formulae, valid when all
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cross sections except QCD 2→ 2 are small, which is true in most cases of interest. This approximation
is described in detail elsewhere [11].

2.2.2 Standard JIMMY

The starting point for the multiple scattering model is the assertion that, at fixed impact parameter, b,
different scatters are independent and so obey Poisson statistics. It is then straightforward to show that
the cross section for events in which there are n scatters of type a is given by

σn =

∫
d2b

(A(b)σa)n

n!
e−A(b)σa , (1)

where σa is the parton–parton cross section and A(b) is the matter density distribution, obeying
∫

d2bA(b) = 1. (2)

It is straightforward to show that the inclusive cross section for scatters of type a is σa and the total
cross section for events with at least one scatter of type a is

σtota =

∫
d2b

(
1− e−A(b)σa

)
. (3)

These can then be combined to give the probability that an event has exactly n scatters of type a, given
that it has at least 1 scatter of type a,

Pn =

∫
d2b (A(b)σa)n

n! e−A(b)σa

∫
d2b

(
1− e−A(b)σa

) , n ≥ 1. (4)

This is the probability distribution pretabulated (as a function of
√
s) by Jimmy.

Jimmy’s procedure can then be summarized as:

1. Give all events cross section σtota.
2. In a given event, choose n according to Eq. (4).

It is interesting to note that Jimmy’s procedure, despite integrating over b once-and-for-all at initialization
time, correctly reproduces the correlation between different scatters, whose physical origin is a b-space
correlation: small cross section scatters are more likely to come from events with a large overlap and
hence be accompanied by a larger-than-average number of large cross section scatters.

2.2.3 Two Different Scattering Types
We consider the possibility that there are two different scattering types, but that the cross section for the
second type, σb, is small enough that events with more than one scatter of type b are negligible. The
probability distribution for number of scatters of type a, n, in events with at least one of type b is given
by [11]

P (n|m ≥ 1) =

∫
d2b (A(b)σa)n

n! e−A(b)σa
(
1− e−A(b)σb

)
∫

d2b
(
1− e−A(b)σb

) , n ≥ 0. (5)

Since σb is small, we can expand the exponentials and obtain

P (n|m ≥ 1) ≈
∫

d2bA(b)
(A(b)σa)n

n!
e−A(b)σa , n ≥ 0. (6)
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Note that this expression is independent of σb. It is therefore ideal for implementing into JIMMY. It is
useful to rewrite this equation, as follows. We redefine n to be the total number of scatters, including the
one of type b (i.e. “new n”=“old n”+1) and rewrite, to obtain

Pn ≈
∫

d2b n (A(b)σa)n

n! e−A(b)σa

σa
, n ≥ 1. (7)

Note the similarity with Eq. (4), making this form even easier to implement into Jimmy.

The Monte Carlo implementation of this procedure is straightforward:

1. Give all events cross section σb.
2. In a given event choose n according to Eq. (7).
3. Generate 1 scatter of type b and n−1 of type a.

There is one important difference between the cases in which b is distinct from a and b is a subset
of a: some of the n−1 scatters of type a could also be of type b. Although this is a small fraction of the
total, it can be phenomenologically important. As each scatter of type a is generated, a check is made
as to whether it is also of type b. The mth scatter of type b generated so far is rejected with probability
1/(m+ 1). This ensures that the proposed algorithm is continuous at the boundary of b.

When using JIMMY at the LHC, the tuneable parameters are those described previously [10], with
the obvious exception of those parameters which only concern the photon. Those remaining are therefore
the minimum transverse momentum of a hard scatter, the proton structure, and the effective radius of the
proton. Details on how to adjust these parameters can be found elsewhere [11].

2.3 Simulation of Multiple Interactions in Sherpa

Given the studies presented in the following sections, and references therein, current multi-purpose event
generators rely heavily on the implementation of multiple parton interaction models to describe the final
state in hadronic collisions. To allow Sherpa to provide a complete description of hadronic events, the
module AMISIC++ has been developed to simulate multiple parton interactions. This module is capable
of simulating multiple scatterings according to the formalism initially presented in [3] and in its current
implementation acts as a benchmarking tool to cross-check new multiple interaction models [12].

The basic assumption of the multiple interaction formalism according to T. Sjöstrand and M. van
Zijl is, that the differential probability P(pout

⊥ ) to get a (semi-)hard scattering in the underlying event is
given by P(pout

⊥ ) = σhard(pout
⊥ )/σND, where pout

⊥ is the transverse momentum of the outgoing partons in
the scattering. Since σhard is dominated by 2→ 2 processes, the definition of pout

⊥ is unambiguous. The
specific feature of AMISIC++ is, that it allows for an independent Q2-evolution of initial and final state
partons in each (semi-)hard scattering via an interface to Sherpa’s parton shower module APACIC++

[13, 14]. The key point here is, that the parton shower must then respect the initial pout
⊥ distribution of

each (semi-)hard scattering. In particular, it must not radiate partons with p⊥ > pout
⊥ . The appropriate

way to incorporate this constraint is in fact identical to the realisation of the highest multiplicity treatment
in the CKKW approach [15–18]. Our proposed algorithm works as follows:

1. Create a hard scattering process according to the CKKW approach.
Employ a KT jet finding algorithm in the E-scheme to define final state jets.
Stop the jet clustering as soon as there remains only one QCD node to be clustered.
Set the starting scale of the multiple interaction evolution to p⊥ of this node.

2. Select p⊥ of the next (semi-)hard interaction according to [3].
If done for the first time in the event, select the impact parameter b of the collision.
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3. Set the jet veto scale of the parton shower to the transverse momentum p⊥, selected in 2.
Start the parton shower at the QCD hard scale µ2

QCD = 2 stu/
(
s2 + t2 + u2

)
.

4. Return to step 2.

The above algorithm works for pure QCD hard matrix elements as well as for electroweak processes
in the hard scattering. In the QCD case the selected starting scale for the determination of the first
additional interaction reduces to pout

⊥ and is thus equal to the original ordering parameter. In the case of
electroweak core processes, like single W - or Z-boson production there is no such unique identification.
On the other hand the multiple scatterings in the underlying event must not spoil jet topologies described
by the hard event through, e.g., using multi-jet matrix elements. However, since the electroweak bosons
may be regarded to have been radiated off QCD partons during the parton shower evolution of a hard
QCD event, it is appropriate to reinterprete the hard matrix element as such a QCD+EW process, where
the simplest is a 1-jet process.

An important question in conjunction with the simulation of underlying events is the assignment
of colours to final state particles. In the Sherpa framework, colour connections in any hard 2→ 2 QCD
process are chosen according to the kinematics of the process. In particular the most probable colour
configuration is selected. Additionally, initial state hadrons are considered to be composed from QCD
partons in such a way that the colour string lengths in the final state are minimized. In cases, where it is
impossible to realise this constraint, the colour configurations of the hard matrix elements are kept but
the configuration of the beam remnants is shuffled until a suitable solution is found.

Figures 2–5 show some preliminary results obtained with the above algorithm, implemented in the
current Sherpa version, Sherpa-1.0.6. We compare the Sherpa prediction including multiple interac-
tions to the one without multiple interactions and to the result obtained with PYTHIA 6.214, also includ-
ing multiple interactions and employing the parameters of PYTHIA Tune A [6]. Shown are hadron-level
predictions, which are uncorrected for detector acceptance, except for a uniform track finding efficiency
as given in [19]. Data were taken at the Fermilab Tevatron during Run I [20]. Good agreement between
the simulations and data is observed only if multiple interactions are included. The mean interaction
number in Sherpa, including the hard scattering, in this case is <Nhard> = 2.08, while for PYTHIA
6.214 it is <Nhard> = 7.35. The lower interaction number in Sherpa can easily be understood, as
a decrease of parton multiplicity in the (semi-)hard scatterings due to a rise of the parton multiplicity in
the parton showers. PYTHIA 6.214 does not allow for parton showers in the (semi-)hard scatterings in
the underlying event. This feature has, however, been added in PYTHIA 6.3 (see Section 2.1), and is also
present in JIMMY(Section 2.2).

2.4 PHOJET

The physics model used in the MC event generator PHOJET combines the ideas of the DPM [21] with
perturbative QCD to give an almost complete picture of high-energy hadron collisions [22].

PHOJET is formulated as a two-component model containing contributions from both soft and hard
interactions. The DPM is used to describe the dominant soft processes and perturbative QCD is applied
to generate hard interactions.

There has been very little development on PHOJET for the last few years, although it is used quite
widely in minimum bias and cosmic ray physics. A major disadvantage for the LHC is that it is not part
of a general purpose generator, and therefore cannot be used to generate underlying events to low cross
section processes.
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Fig. 2: Charged particle multiplicity as a function of PT of the leading charged particle jet. The left figure shows
the total charged particle multiplicity in the selected pT - and η-range, the right one displays the same in the
“Toward” region (for definitions, see Section 3 and [20]).

3 Tuning PYTHIA and HERWIG/JIMMY in Run 2 at CDF
The behaviour of the charged particle (pT > 0.5 GeV/c, |η| < 1) and energy (|η| < 1) components of
the UE in hard scattering proton-antiproton collisions at 1.96 TeV has been studied at CDF. The goal
is to produce data on the UE that is corrected to the particle level, so that it can be used to tune the
QCD Monte-Carlo models using tools such as those described in the contributions from Group 5 of
this workshop without requiring a simulation of the CDF detector. Unlike the previous CDF Run 2
UE analysis which used JetClu to define “jets” and compared uncorrected data with the QCD Monte-
Carlo models after detector simulation (i.e., CDFSIM), this analysis uses the midpoint jet algorithm and
corrects the observables to the particle level. The corrected observables are then compared with the QCD
Monte-Carlo models at the particle level (i.e., generator level). The QCD Monte-Carlo models include
PYTHIA Tune A, HERWIG and a tuned version of JIMMY.

One can use the topological structure of hadron-hadron collisions to study the UE [19,23,24]. The
direction of the leading calorimeter jet is used to isolate regions of η-φ space that are sensitive to the
UE. As illustrated in Fig. 6, the direction of the leading jet, jet#1, is used to define correlations in the
azimuthal angle, ∆φ. The angle ∆φ = φ − φjet#1 is the relative azimuthal angle between a charged
particle (or a calorimeter tower) and the direction of jet#1. The “transverse” region is perpendicular to
the plane of the hard 2-to-2 scattering and is therefore very sensitive to the UE. We restrict ourselves to
charged particles in the range pT >0.5 GeV/c and |η|<1 and calorimeter towers withET >0.1 GeV and
|η|< 1, but allow the leading jet that is used to define the “transverse” region to have |η(jet#1)| < 2.
Furthermore, we consider two classes of events. We refer to events in which there are no restrictions
placed on the second and third highest PT jets (jet#2 and jet#3) as “leading jet” events. Events with at
least two jets with PT > 15 GeV/c where the leading two jets are nearly “back-to-back” (|∆φ| > 150◦)
with PT (jet#2)/PT (jet#1) > 0.8 and PT (jet#3) < 15 GeV/c are referred to as “back-to-back”
events. “Back-to-back” events are a subset of the “leading jet” events. The idea is to suppress hard initial
and final-state radiation thus increasing the sensitivity of the “transverse” region to the “beam-beam
remnants” and the multiple parton scattering component of the “underlying event”.

As illustrated in Fig. 7, we define a variety of MAX and MIN “transverse” regions which help to
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Fig. 3: Charged particle multiplicity as a function of PT of the leading charged particle jet. The left figure shows
results for the “Away” side region, the right one displays results for the “Transverse” region.
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Fig. 4: Scalar PT sum as a function of the azimuthal angle relative to the leading charged particle jet. The left
figure shows results for PT,jet1 > 2 GeV, the right one displays results for PT,jet1 > 5 GeV.
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Fig. 5: Left: Scalar PT sum as a function of the azimuthal angle relative to the leading charged particle jet for
PT,jet1 > 30 GeV. Right: Charged particle multiplicity as a function of PT in the “Transverse” region.

Fig. 6: Illustration of correlations in azimuthal angle φ relative to the direction of the leading jet (MidPoint,
R = 0.7, fmerge = 0.75) in the event, jet#1. The angle ∆φ = φ − φjet1 is the relative azimuthal angle between
charged particles and the direction of jet#1. The “transverse” region is defined by 60◦ < |∆φ| < 120◦ and |η|<1.
We examine charged particles in the range pT > 0.5 GeV/c and |η|< 1 and calorimeter towers with |η|< 1, but
allow the leading jet to be in the region |η(jet#1)| < 2.

separate the “hard component” (initial and final-state radiation) from the “beam-beam remnant” com-
ponent. MAX (MIN) refer to the “transverse” region containing largest (smallest) number of charged
particles or to the region containing the largest (smallest) scalar PT sum of charged particles or the re-
gion containing the largest (smallest) scalar ET sum of particles. Since we will be studying regions in
η-φ space with different areas, we will construct densities by dividing by the area. For example, the
number density, dNchg/dφdη, corresponds to the number of charged particles (pT >0.5 GeV/c) per unit
η-φ the PTsum density, dPTsum/dφdη, corresponds to the amount of charged particle (pT >0.5 GeV/c)
scalar PT sum per unit η-φ, and the transverse energy density, dETsum/dφdη, corresponds the amount
of scalar ET sum of all particles per unit η-φ. One expects that the “transMAX” region will pick up the
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Fig. 7: Illustration of correlations in azimuthal angle φ relative to the direction of the leading jet (highest PT
jet) in the event, jet#1. The angle ∆φ = φ − φjet#1 is the relative azimuthal angle between charged particles
and the direction of jet#1. On an event by event basis, we define “transMAX” (“transMIN”) to be the maximum
(minimum) of the two “transverse” regions, 60◦ < ∆φ < 120◦ and 60◦ < −∆φ < 120◦. “transMAX” and
“transMIN” each have an area in η-φ space of ∆η∆φ = 4π/6. The overall “transverse” region defined in Fig. 6
contains both the “transMAX” and the “transMIN” regions. Events in which there are no restrictions placed on
the second and third highest pT jets (jet#2 and jet#3) are referred to as “leading jet” events (left). Events with
at least two jets with pT > 15 GeV/c where the leading two jets are nearly “back-to-back” (|∆φ| > 150◦) with
pT (jet#2)/pT (jet#1) > 0.8 and pT (jet#3) < 15 GeV/c are referred to as “back-to-back” events (right).

hardest initial or final-state radiation while both the “transMAX” and “transMIN” regions should receive
“beam-beam remnant” contributions. Hence one expects the “transMIN” region to be more sensitive
to the “beam-beam remnant” component of the “underlying event”, while the “transMAX” minus the
“transMIN” (i.e., “transDIF”) is very sensitive to hard initial and final-state radiation. This idea, was first
suggested by Bryan Webber and Pino Marchesini [25], and implemented in a paper by Jon Pumplin [26].
This was also studied by Valeria Tano in her CDF Run 1 analysis of maximum and minimum transverse
cones [27].

Our previous Run 2 UE analysis [28] used JetClu to define jets and compared uncorrected data
with PYTHIA Tune A [6] and HERWIG after detector simulation (i.e., CDFSIM). This analysis uses the
MidPoint jet algorithm (R = 0.7, fmerge = 0.75) and corrects the observables to the particle level. The
corrected observables are then compared with the QCD Monte-Carlo models at the particle level (i.e.,
generator level). The models includes PYTHIA Tune A, HERWIG and HERWIG with a tuned version
of JIMMY [10]. In addition, for the first time we study the transverse energy density in the “transverse”
region.

Fig. 8 compares the data on the density of charged particles and the charged PT sum density in
the “transverse” region corrected to the particle level for “leading jet” and “back-to-back” events with
PYTHIA Tune A and HERWIG at the particle level. As expected, the “leading jet” and “back-to-back”
events behave quite differently. For the “leading jet” case the “transMAX” densities rise with increasing
PT (jet#1), while for the “back-to-back” case they fall with increasing PT (jet#1). The rise in the
“leading jet” case is, of course, due to hard initial and final-state radiation, which has been suppressed in
the “back-to-back” events. The “back-to-back” events allows a closer look at the “beam-beam remnant”
and multiple parton scattering component of the UE. PYTHIA Tune A, which includes multiple parton
interactions, does a better job of describing the data than HERWIG which does not have multiple parton
interactions.

The “transMIN” densities are more sensitive to the “beam-beam remnant” and multiple parton
interaction component of the “underlying event”. The “back-to-back” data show a decrease in the “trans-
MIN” densities with increasing PT (jet#1) which is described fairly well by PYTHIA Tune A (with
multiple parton interactions) but not by HERWIG (without multiple parton interactions). The decrease
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Fig. 8: Data at 1.96 TeV on (left) the density of charged particles dNchg/dφdη and (right) on the scalar PT sum

density of charged particles, with pT >0.5 GeV/c and |η|<1 in the “transMAX” region (top) and the “transMIN”
region (bottom) for “leading jet” and “back-to-back” events defined in Fig. 7 as a function of the leading jet PT
compared with PYTHIA Tune A and HERWIG. The data are corrected to the particle level (with errors that include
both the statistical error and the systematic uncertainty) and compared with the theory at the particle level (i.e.,
generator level).

of the “transMIN” densities with increasing PT (jet#1) for the “back-to-back” events is very interesting
and might be due to a “saturation” of the multiple parton interactions at small impact parameter. Such an
effect is included in PYTHIA Tune A but not in HERWIG (without multiple parton interactions).

Fig. 9(left) compares the data on average pT of charged particles in the “transverse” region cor-
rected to the particle level for “leading jet” and “back-to-back” events with PYTHIA Tune A and HER-
WIG at the particle level. Again the “leading jet” and “back-to-back” events behave quite differently.

Fig. 9(right) shows the data corrected to the particle level for the scalar ET sum density in the
“transverse” region for “leading jet” and “back-to-back” events compared with PYTHIA Tune A and
HERWIG. The scalar ET sum density has been corrected to correcpond to all particles (all pT , |η|<1).
Neither PYTHIA Tune A nor HERWIG produce enough energy in the “transverse” region. HERWIG
has more “soft” particles than PYTHIA Tune A and does slightly better in describing the energy density
in the “transMAX” and “transMIN” regions.

Fig. 10(left) shows the difference of the “transMAX” and “transMIN” regions (“transDIF” =
“transMAX” minus “transMIN”) for “leading jet” and “back-to-back” events compared with PYTHIA

Tune A and HERWIG. “TransDIF” is more sensitive to the hard scattering component of the UE (i.e.,
initial and final state radiation). Both PYTHIA Tune A and HERWIG underestimate the energy density
in the “transMAX” and “transMIN” regions (see Fig. 9). However, they both fit the “transDIF” energy
density. This indicates that the excess energy density seen in the data probably arises from the “soft”
component of the UE (i.e., beam-beam remnants and/or multiple parton interactions).

JIMMY is a model of multiple parton interaction which can be combined with HERWIG to en-
hance the UE thereby improving the agreement with data. Fig. 10(right) and Fig. 11(left) show the energy
density and charged PT sum density, respectively, in the “transMAX” and “transMIN” regions for “lead-
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Fig. 9: On the left, data at 1.96 TeV on average transverse momentum, 〈pT〉, of charged particles |η|<1 in the with
with pT >0.5 GeV/c and |η|<1 in the “transverse” region. On the right, scalar ET sum density, dETsum/dφdη,
for particles. with pT >0.5 GeV/c and |η|<1 in the “transMAX” region or the “transMIN” region. The “leading
jet” and “back-to-back” events are defined in Fig. 7, and the data are shown as a function of the leading jet PT
and compared with PYTHIA Tune A and HERWIG. The data are corrected to the particle level (with errors that
include both the statistical error and the systematic uncertainty) and compared with the theory at the particle level
(i.e., generator level).

ing jet” and “back-to-back” events compared with PYTHIA Tune A and a tuned version of JIMMY˙JIMMY

was tuned to fit the “transverse” energy density in “leading jet” events (PTJIM = 3.25 GeV/c). The
default JIMMY (PTJIM = 2.5 GeV/c) produces too much energy and too much charged PT sum
in the “transverse” region. Tuned JIMMY does a good job of fitting the energy and charged PT sum
density in the “transverse” region (although it produces slightly too much charged PTsum at large
PT (jet#1)). However, the tuned JIMMY produces too many charged particles with pT > 0.5 GeV/c
(see Fig. 11(right)). The particles produced by this tune of JIMMY are too soft. This can be seen clearly
in Fig. 12 which shows the average charge particle pT in the “transverse” region.

The goal of this analysis is to produce data on the UE that is corrected to the particle level so
that it can be used to tune the QCD Monte-Carlo models without requiring CDF detector simulation.
Comparing the corrected observables with PYTHIA Tune A and HERWIG at the particle level (i.e.,
generator level) leads to the same conclusions as we found when comparing the uncorrected data with the
Monte-Carlo models after detector simulation [28]. PYTHIA Tune A (with multiple parton interactions)
does a better job in describing the UE (i.e., “transverse” regions) for both “leading jet” and “back-
to-back” events than does HERWIG (without multiple parton interactions). HERWIG does not have
enough activity in the UE for PT (jet#1) less than about 150 GeV/c, which was also observed in our
published Run 1 analysis [19].

This analysis gives our first look at the energy in the UE (i.e., the “transverse” region). Neither
PYTHIA Tune A nor HERWIG produce enough transverse energy in the “transverse” region. However,
they both fit the “transDIF” energy density (“transMAX” minus “transMIN”). This indicates that the
excess energy density seen in the data probably arises from the “soft” component of the UE (i.e., beam-
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Fig. 10: Left: Data at 1.96 TeV on the difference of the “transMAX” and “transMIN” regions (“transDIF” =
“transMAX”- “transMIN”) for “leading jet” and “back-to-back” events defined in Fig. 7 as a function of the
leading jet PT compared with PYTHIA Tune A and HERWIG.
Right: Data on scalar ET sum density, dETsum/dφdη, for particles with |η|< 1 in the “transMAX” region (top)
and the “transMIN” region (bottom) for “leading jet” and “back-to-back” events defined in Fig. 7 as a function of
the leading jet PT compared with PYTHIA Tune A and tuned JIMMY. JIMMY was tuned to fit the “transverse”
energy density in “leading jet” events (PTJIM = 3.25 GeV/c). The data are corrected to the particle level (with
errors that include both the statistical error and the systematic uncertainty) and compared with the theory at the
particle level (i.e., generator level).

beam remnants and/or multiple parton interactions). HERWIG has more “soft” particles than PYTHIA

Tune A and does slightly better in describing the energy density in the “transMAX” and “transMIN”
regions. Tuned JIMMY does a good job of fitting the energy and charged PT sum density in the “trans-
verse” region (although it produces slightly too much charged PT sum at large PT (jet#1)). However,
the tuned JIMMY produces too many charged particles with pT >0.5 GeV/c indicating that the particles
produced by this tuned JIMMY are too soft.

In summary, we see an interesting dependence of the UE on the transverse momentum of the
leading jet (i.e., the Q2 of the hard scattering). For the “leading jet” case the “transMAX” densities
rise with increasing PT (jet#1), while for the “back-to-back” case they fall with increasing PT (jet#1).
The rise in the “leading jet” case is due to hard initial and final-state radiation with pT > 15 GeV/c,
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Fig. 11: Left: Data at 1.96 TeV on scalar PT sum density of charged particles, dPTsum/dφdη, with pT >

0.5 GeV/c and |η| < 1 in the “transMAX” region (top) and the “transMIN” region (bottom) for “leading
jet” and “back-to-back” events defined in Fig. 7 as a function of the leading jet PT compared with PYTHIA

Tune A and tuned JIMMY. JIMMY was tuned to fit the “transverse” energy density in “leading jet” events
(PTJIM = 3.25 GeV/c). Right: Data on the density of charged particles, dNchg/dφdη, with pT > 0.5 GeV/c

and |η|< 1 in the “transMAX” region (top) and the “transMIN” region (bottom) for “leading jet” and “back-to-
back” events defined in Fig. 2 as a function of the leading jet PT compared with PYTHIA Tune A and tuned JIMMY.
JIMMY was tuned to fit the “transverse” energy density in “leading jet” events (PTJIM = 3.25 GeV/c). The data
are corrected to the particle level (with errors that include both the statistical error and the systematic uncertainty)
and compared with the theory at the particle level (i.e., generator level).

Fig. 12: Data at 1.96 TeV on average transverse momentum, 〈pT〉, of charged particles with pT > 0.5 GeV/c and
|η|<1 in the “transverse” region for “leading jet” and “back-to-back” events defined in Fig. 7 as a function of the
leading jet PT compared with PYTHIA Tune A and tuned JIMMY. JIMMY was tuned to fit the “transverse” energy
density in “leading jet” events (PTJIM = 3.25 GeV/c). The data are corrected to the particle level (with errors
that include both the statistical error and the systematic uncertainty) and compared with the theory at the particle
level (i.e., generator level).
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which has been suppressed in the “back-to-back” events. The “back-to-back” data show a decrease
in the “transMIN” densities with increasing PT (jet#1). The decrease of the “transMIN” densities with
increasing PT (jet#1) for the “back-to-back” events is very interesting and might be due to a “saturation”
of the multiple parton interactions at small impact parameter. Such an effect is included in PYTHIA

Tune A (with multiple parton interactions) but not in HERWIG (without multiple parton interactions).
PYTHIA Tune A does predict this decrease, while HERWIG shows an increase (due to increasing initial
and final state radiation).

4 Extrapolation to LHC energies
The LHCb experiment [29] is designed to measure CP violation in the B-quark sector at the LHC and
expand the current studies underway at the B-factories (BaBar, Belle) and at the Tevatron (CDF, D0). At√
s=1.8 TeV, 28% of all of the primary produced B-mesons in pp̄ collisions are produced in L=1 excited

states [30]. These excited states decay via the emission of a charged hadron, allowing the possibility
of same-side-tagging (SST) studies. As such, it is important to simulate the production of B mesons as
accurately as possible.

The production of primary produced excited meson states are not included in the default PYTHIA

[31] settings and including them increases the average multiplicity of an event. An attempt to reproduce
the HFAG [32] values whilst retaining the spin counting rule for B** states has been made. This note
covers a preliminary re-tuning [33] of PYTHIA v6.224 including these settings.

4.1 Method
The main parameter of the multiple-interaction model in PYTHIA v6.224 is the p̂min

T parameter, which
defines the minimum transverse momentum of the parton-parton interactions. This effectively controls
the number of parton-parton collisions and hence the average track multiplicity.

The charged particle density measured at η = 0 in the range of centre-of-mass energies, 52 GeV
<
√
s < 1800 GeV, [34] [35] is used to tune the p̂min

T parameter of PYTHIA. We define ρ = 1
Nev

dNch
dη |η=0

and measure ρ for a range of p̂min
T values at each

√
s. The quantity δ = ρMC − ρData is plotted against

p̂min
T and a linear fit performed. In Fig. 13, the re-tuned value of p̂min

T at
√
s = 900 GeV is taken to be

the point at which the fit crosses the p̂min
T axis. To extrapolate p̂min

T to LHC energy, a fit is performed
(Figure 14) using the form suggested by PYTHIA:

p̂min
T = p̂min

T (LHC)
( √

s

14TeV

)2ε
(8)

4.2 Results
Extrapolating to 14 TeV using the tuned values of p̂min

T (
√
s) and (8), we obtain p̂min

T (LHC) = 3.34 ±
0.13, with ε = 0.079 ± 0.0006 with a corresponding central multiplicity of ρ = 6.45 ± 0.25. Compar-
ing the output of the re-tuned settings (dashed line) to the old LHCb settings (solid line), Fig. 15, 16
and 17, we find that the re-tuned settings produce a slightly lower multiplicity which affects the other
distributions accordingly. Note: both the fragmentation parameters and the p̂min

T parameter affect the
multiplicity of a generated event. This re-tuning method varies the p̂min

T parameter only i.e. it does not
alter the fragmentation parameters in any fashion. Further investigations into re-tuning the fragmentation
parameters using data from LEP are underway.

4.3 Conclusions
The central multiplicity values measured at CDF and UA5 are accurately reproduced using the re-tuned
values for p̂min

T at several
√
s. An extrapolation of p̂min

T to LHC energies using a form implemented
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Fig. 13: Determining the value of
p̂min
T (
√
s = 900GeV ), the dashed line shows

the point at which |δ| is minimised.

Fig. 14: The
√
s dependance of p̂min

T . The curve is
the result of a fit assuming the functional form of
(8).

Fig. 15: η distribution at 14 TeV us-
ing the extrapolated value of PTMin

Fig. 16: p⊥max distribution in the
LHCb acceptance

Fig. 17: Charged-stable multiplicity
distribution in the LHCb acceptance.

in PYTHIA gives p̂min
T (LHC) = 3.34 ± 0.13, with ε = 0.079 ± 0.0006 with a corresponding central

multiplicity of ρLHC = 6.45 ± 0.25 in non-diffractive events.

5 Tuned models for the underlying event and minimum bias interactions
In this section we compare tuned MC generator models for the underlying event and minimum bias
interactions. The aim of this study is to predict the event activity of minimum bias and the underlying
event at the LHC. The models investigated correspond to tuned versions of PYTHIA, PHOJET and JIMMY.

5.1 Tuned models for the underlying event and minimum bias interactions
The starting point for the event generation in PYTHIA and JIMMY is the description of multiple hard
interactions in the hadronic collision described in Section 2.1 (for PYTHIA 6.2), Section 2.2 for JIMMY

and Section 2.4 for PHOJET.
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Table 1: PYTHIA 6.214 default, ATLAS and CDF tune A parameters for minimum bias and the underlying event.

Default [31] ATLAS [37] CDF tune A [6] Comments
MSTP(51)=7 MSTP(51)=7 MSTP(51)=7 CTEQ5L - selected p.d.f.

MSTP(81)=1 MSTP(81)=1 MSTP(81)=1 multiple interactions
MSTP(82)=1 MSTP(82)=4 MSTP(82)=4 complex scenario plus double Gaussian matter

distribution

PARP(67)=1 PARP(67)=1 PARP(67)=4 parameter regulating initial state radiation
PARP(82)=1.9 PARP(82)=1.8 PARP(82)=2.0 ptmin

parameter

PARP(84)=0.2 PARP(84)=0.5 PARP(84)=0.4 hadronic core radius (only for MSTP(82)=4)

PARP(85)=0.33 PARP(85)=0.33 PARP(85)=0.9 probability for gluon production with colour
connection to nearest neighbours

PARP(86)=0.66 PARP(86)=0.66 PARP(86)=0.95 probability to produce gluons either either as in
PARP(85) or as a closed gluon loop

PARP(89)=1.0 PARP(89)=1.0 PARP(89)=1.8 energy scale (TeV) used to calculate ptmin

PARP(90)=0.16 PARP(90)=0.16 PARP(90)=0.25 power of the energy dependence of ptmin

PYTHIA and PHOJET have been shown to describe both minimum bias and underlying event data
reasonably well when appropriately tuned [3, 6, 36, 37]. JIMMY is limited to the description of the
underlying event; again, it has been shown capable of describing this rather well [38].

5.2 PYTHIA tunings
Several minimum bias and underlying event (UE) tunings for PYTHIA have been proposed in recent
years. Ref. [37] describes how the current ATLAS tuning for PYTHIA was obtained after extensive
comparisons to a variety of experimental measurements made at different colliding energies. Similar
work has been done by the CDF Collaboration, although their PYTHIA tuning, CDF tune A [6], is
primarily based on the description of the underlying event in jet events measured for pp at

√
s = 1.8 TeV.

Table 1 displays the relevant parameters tuned to the data as proposed by the ATLAS [37] and
CDF [6] collaborations. For the purpose of comparison, the corresponding default values [31] are also
shown in the table.

5.3 PHOJET
The parameters used in PHOJET to describe minimum bias and the underlying event can be found in
Ref. [22] and are currently set as default in PHOJET1.12, which is used in this study.

5.4 JIMMY tunings
We have tuned JIMMY to describe the UE as measured by CDF [19] and the resulting sets of parameters
are shown in table 2. Figure 18 shows JIMMY predictions for the UE compared to CDF data for the
average charged particle multiplicity (a) and the average pt sum in the underlying event (b). In Fig.18 we
compare JIMMY - default parameters to “Tuning A” and “Tuning B”. Note that for the default parameters
JIMMY does not give a correct description of the data. The other two distributions, generated with tuning
A and B parameters, agree fairly well with the data.

In this study, JIMMY - tuning A and B will only be used to generate LHC predictions for the
underlying event associated to jet events.
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Table 2: JIMMY 4.1 default, tunings A and B parameters for the underlying event.

Default Tuning A Tuning B Comments
JMUEO=1 JMUEO=0 JMUEO=0 multiparton interaction model

PTMIN=10.0 PTMIN=3.0 PTMIN=2.0 minimum pT in hadronic jet production
PTJIM=3.0 – – minimum pT of secondary scatters when

JMUEO=1 or 2

JMRAD(73)=0.71 JMRAD(73)=2.13 JMRAD(73)=0.71 inverse proton radius squared
PRSOF=1.0 PRSOF=0.0 PRSOF=0.0 probability of a soft underlying event
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Fig. 18: JIMMY predictions for the UE compared to CDF data. (a) Average charged particles multiplicity in the
UE and (b) average pt sum in the UE.

5.5 Minimum bias interactions at the LHC
Throughout this report, minimum bias events will be associated with non-single diffractive inelastic
interactions, following the experimental trend (see Ref. [37] and references therein).

For LHC collisions (pp collisions at
√
s = 14 TeV) the minimum bias cross-section estimated

by PYTHIA 6.214, regardless of which tuning is used, is σnsd = 65.7 mb while PHOJET1.12 predicts
σnsd = 73.8 mb, 12.3% greater than the former. Hence, for the same luminosity PHOJET1.12 generates
more minimum bias pp collisions than PYTHIA 6.214 - tuned. We shall however, focus on the general
properties per pp collision not weighted by cross-sections. The results per pp collision can later be easily
scaled by the cross-section and luminosity.

Figure 19(a) shows charged particle density distributions in pseudorapidity for minimum bias pp
collisions at

√
s = 14 TeV generated by PHOJET1.12 and PYTHIA 6.214 - ATLAS and CDF tune A.

The charged particle density generated by PHOJET1.12 and PYTHIA 6.214 - CDF tune A and ATLAS
at η = 0 is 5.1, 5.3 and 6.8, respectively. Contrasting to the agreement seen in previous studies for pp
collisions at

√
s = 200 GeV, 546 GeV, 900 GeV and 1.8 TeV in Ref. [37], at the LHC PYTHIA 6.214 -

ATLAS generates ∼ 25% more charged particle density in the central region than PYTHIA 6.214 - CDF
tune A and PHOJET1.12.

Compared to the charged particle density dNch/dη measured by the CDF experiment at 1.8 TeV
[39], PYTHIA 6.214 - ATLAS indicates a plateau rise of ∼ 70% at the LHC in the central region while
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Fig. 19: (a) Charged particle density distributions, dNch/dη, for NSD pp collisions at
√

s = 14 TeV. (b) dNch/dη at
η = 0 for a wide range of

√
s. Predictions generated by PYTHIA 6.214, ATLAS and CDF tune A and PHOJET1.12.

PHOJET1.12 and PYTHIA 6.214 - CDF tune A suggest a smaller rise of ∼ 35%.

Figure 19(b) displays dNch/dη at η = 0 plotted as a function of
√

s. For centre-of-mass energies
greater than ∼ 1 TeV, the multiparton interaction model employed by PYTHIA and the DPM used by
PHOJET lead to multiplicity distributions with different rates of increase with the energy. PYTHIA

suggests a rise dominated by the ln2(s) term while PHOJET predicts that the dominant term gives a ln(s)
rise for dNch/dη at η = 0. The ATLAS tuning for PYTHIA gives a steeper rise than CDF tune A and
PHOJET (Fig. 19(b)) indicating a faster increase in the event activity at the partonic level in the ATLAS
tuning when compared to CDF tune A and PHOJET. The average charged particle multiplicity in LHC
minimum bias collisions, < nch >, is 69.6, 77.5 and 91.0 charged particles as predicted by PHOJET1.12,
PYTHIA 6.214 - CDF tune A and ATLAS, respectively.

The < pt > at η = 0 for charged particles in LHC minimum bias collisions predicted by PHO-
JET1.12 and PYTHIA 6.214 - ATLAS and CDF tune A models is 0.64 GeV, 0.67 GeV and 0.55 GeV,
respectively. Generating less particles in an average minimum bias collision at the LHC, PHOJET1.12
predicts that the average pt per particle at η = 0 is greater (or harder) than the corresponding prediction
from PYTHIA 6.214 - ATLAS. However, amongst the three models, PYTHIA 6.214 - CDF tune A gives
the hardest < pt > at η = 0. The main reason for this is the increased contribution of harder parton
showers used to make the model agree with the pt spectrum of particles in the UE, and obtained by
setting PARP(67)=4 [6].

5.6 The underlying event
Based on CDF measurements, we shall use their definition for the UE, i.e., the angular region in φ which
is transverse to the leading charged particle jet as described in Section 3 and shown in Fig. 6. Figure
20(a) displays PYTHIA 6.214 — ATLAS and CDF tune A, and PHOJET1.12 predictions for the average
particle multiplicity in the UE for pp collisions at the LHC (charged particles with pT > 0.5 GeV and
|η| < 1). The distributions generated by the three models are fundamentally different. Except for events
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Fig. 20: (a) PYTHIA 6.214 (ATLAS and CDF tune A), PHOJET1.12 and (b) JIMMY 4.1 (tunings A and B) predic-
tions for the average multiplicity in the UE for LHC pp collisions.

with ptljet

<∼3 GeV, PYTHIA 6.214 — ATLAS generates greater multiplicity in the UE than the other
models shown in Fig. 20(a).

A close inspection of predictions for the UE given in Fig. 20(a), shows that the average multiplicity
in the UE for Ptljet

> 10 GeV reaches a plateau at ∼ 6.5 charged particles according to PYTHIA 6.214 -
ATLAS, ∼ 5 for CDF tune A and ∼ 3.0 according to PHOJET1.12. Compared to the underlying event
distributions measured by CDF at 1.8 TeV, PYTHIA 6.214 - ATLAS indicates a plateau rise of ∼ 200%
at the LHC while PYTHIA 6.214 - CDF tune A predicts a rise of ∼ 100% and PHOJET1.12 suggests a
much smaller rise of ∼ 40%.

In Fig. 20(b) we show JIMMY 4.1 - Tuning A and B predictions for the average particle multiplicity
in the UE for LHC collisions. The average multiplicity in the UE for Ptljet

> 10 GeV reaches a plateau at
∼ 12 charged particles according to JIMMY 4.1 - Tuning A, and ∼ 9.0 according to JIMMY 4.1 - Tuning
B. Note that, for both JIMMY tunings, the plateau rise for the average multiplicity in the UE is much
greater than the ones predicted by any of the PYTHIA tunings or by PHOJET as shown in Figs. 20(a) and
(b). Once again, compared to the underlying event distributions measured by CDF at 1.8 TeV, JIMMY

4.1 - Tuning A indicates a five-fold plateau rise at the LHC while JIMMY 4.1 - Tuning B - CDF suggests
a four-fold rise.

5.7 Conclusion
The minimum bias and underlying event predictions for the LHC generated by models which have been
tuned to the available data have been compared. In previous studies, these models have been shown to be
able to describe the data distributions for these two classes of interactions. However, in this article, it has
been shown that for the models detailed in tables 1 and 2, there can be dramatic disagreements in their
predictions at LHC energies. This is especially evident in the distributions for the average multiplicity in
the UE (Fig. 20) where, for example, PHOJET1.12 predicts that the distribution’s plateau will be at ∼ 3
charged particles while JIMMY 4.1 - Tuning A predicts for the same distribution, a plateau at ∼ 12.

Even though models tuned to the data have been used in this study, uncertainties in LHC predic-
tions for minimum bias and the underlying event are still considerable. Improved models for the soft
component of hadronic collisions are needed as well as more experimental information which may be
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used to tune current models. Future studies should focus on tuning the energy dependence for the event
activity in both minimum bias and the underlying event, which at the moment seems to be one of the
least understood aspects of all the models investigated in this study.

6 Can the final state at LHC be determined from ep data at HERA?
6.1 Jets and E⊥-flow
A phenomenological fit for a soft-cutoff, p̂min

T , and an extrapolation to LHC energies, was discussed in
sections 4.1 and 5.2. However, in the k⊥-factorization formalism the soft divergence is avoided, and it
is possible to predict minijets and E⊥-flow from HERA data alone. Thus it is not necessary to rely on
a purely phenomenological fit using pp̄ collision data. This gives a better dynamical insight, and avoids
the uncertainties associated with the extrapolation to higher energies.

High p⊥ jets are well described by conventional collinear factorization, but in this formalism the
minijet cross section diverges, σjet ∝ 1/p4

⊥. This implies that the total E⊥ also diverges, and therefore a
cutoff p̂min

T is needed. Fits to data give p̂min
T ∼ 2 GeV growing with energy [8,9]. There is no theoretical

basis for the extrapolation of p̂min
T from the Tevatron to LHC, which induces an element of uncertainty

in the predictions for LHC.

In the k⊥-factorization formalism the off shell matrix element for the hard subcollision k1 +k2 →
q1 + q2 does not blow up, when the momentum exchange k2

⊥ is smaller than the incoming virtualities
k2
⊥1 and k2

⊥2. The unintegrated structure functions F(x, k2
⊥, Q

2) are also suppressed for small k⊥, and
as a result the total E⊥ is not divergent but stays finite. An “effective cutoff” increases with energy, but
the increase is less steep for larger energies [40].

At high energy σjet is larger than σtot, which implies that there usually are multiple hard subcolli-
sions in a single event. The experimental evidence for multiple collisions has been discussed in previous
sections. It includes multijet events, forward-backward correlations, the pedestal effect, and associated
particles in jet events. The data also indicate that the hard subcollisions are not independent. Central
collisions contain more, and peripheral collisions fewer, minijets, and the results are well described by a
double Gaussian distribution in impact parameter, as suggested in ref. [3].

At high energies the pdfs needed to calculate the minijet cross section have to be evaluated in the
BFKL domain of small x and low k⊥. This implies that non-k⊥-ordered parton chains are important.
For a γ∗p collision a single local k⊥-maximum corresponds to a resolved photon interaction. Similarly
several local maxima in a single chain correspond to correlated hard subcollisions.

In the BFKL formalism the gluon links in the t-channel correspond to reggeized gluons, which
means that soft emissions are compensated by virtual corrections. These soft emissions do not contribute
to the parton distributions or total cross sections, but they do contribute to the properties of final states,
and should then be added with Sudakov form factors. The CCFM model [41, 42] interpolates between
DGLAP and BFKL. Here some soft emissions are included in the initial state radiation, which implies
that they must be suppressed by non-eikonal form factors. The Linked Dipole Chain (LDC) model [43] is
a reformulation and generalization of CCFM, in which more emissions are treated as final state emissions,
in closer agreement with the BFKL picture. In the LDC formalism the chain formed by the initial
state radiation is fully symmetric with respect to the photon end and the proton end of the ladder. This
symmetry implies that the formalism is also directly applicable to hadron-hadron collisions. Thus a fit to
DIS data will also give the cross section for a parton chain in pp collisions [44].

A potential problem is due to the fact that with a running αs, the enhancement of small k⊥ implies
that the result depends on a necessary cutoff Q0. Good fits to DIS data are possible with different Q0,
if the input distribution f0(x,Q2

0) is adjusted accordingly. However, although a larger cutoff gives fewer
hard chains, it also implies a larger number of soft chains, in which no link has a k⊥ larger than Q0. Thus
the total number of chains in pp scattering is independent of Q0, and therefore well determined by the fit
to DIS data.
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Fig. 21: The average number of minijets per event in the “minimum azimuth region”, as a function of transverse
energy of the trigger jet, E⊥max. The figure shows the result for 1.8 TeV and for LHC. The two LHC curves
correspond to different values for Q0, showing the stability with respect to the soft cutoff.

When the fit to HERA data in this way is applied to pp̄ scattering at the Tevatron, the predictions
for e.g. jet multiplicity and the pedestal effect are very close to CDF’s tune A, described in Section 3.
The result is insensitive to the soft cutoff Q0, which implies that the extrapolation to LHC energies is
stable, and does not depend on an uncertain extrapolation of the low-p⊥ cutoff needed in a collinear
formalism. As an example fig. 21 shows a prediction for the average number of minijets per event within
60◦ in azimuth perpendicular to a trigger jet, on the side with minimum activity.

As the LDC model is fully symmetric with respect to an interchange of the projectile and the
target, the parton chains have to combine at one end at the same rate as they multiply at the other.
Therefore the formalism should be suitable for studies of gluon recombination and saturation. This
work is in progress, and some preliminary results from combining the LDC model with Mueller’s dipole
formulation in transverse coordinate space [45–47] are presented in ref. [48].

6.2 Hadron multiplicities
The hadron multiplicity is much more sensitive to non-perturbative effects. This implies larger uncer-
tainties, and models differ by factors 3-4 in their predictions for LHC (see Section 5). The CDF data
also show that the data are best fitted if colours rearrange so that secondary hard scatterings give mini-
mum extra string length, i.e. minimum extra multiplicity. This is very different from the case in e+e−

annihilation.

In pp collisions the multiplicity of final state hadrons depends very sensitively on the colour con-
nections between the produced partons. This implies that the result depends on soft non-perturbative
effects. Multiple interactions are related to multiple pomeron exchange, which is expected to obey the
Abramovskyĭ-Gribov-Kancheli cutting rules [49]. These rules are derived for a multiperipheral model,
but a multiperipheral chain has important similarities with a gluonic chain. An essential feature is the
dominance of small momentum exchanges at each vertex. The colour structure of QCD gives, however,
some extra complications as discussed by J. Bartels (see the contribution by Bartels to working group 4).

The pomeron is identified by two gluon exchange, and multiple chains correspond to multi-
pomeron exchange. For the example of two pomeron exchange, the AGK rules give the relative weights
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1 : −4 : 2 for cutting 0, 1 or 2 pomerons. These ratios imply that the two-pomeron diagram contributes
to the multiplicity fluctuations, but has no effect on the number of produced particles, determined by∑
nσn. This result can also be generalized to the exchange of more pomerons.

Similar cutting rules apply to a diagram with two pomerons attached to one proton and one
pomeron to the other, connected by a central triple-pomeron coupling. In ref. [49] this and similar
diagrams are, however, expected to give smaller contributions.

A hard gg→ gg subcollision will imply that the two proton remnants carry colour octet charges.
This is expected to give two colour triplet strings, or two cluster chains, connecting the two remnants and
the two final state gluons. In the string model the strings are stretched between the remnants, with the
gluons acting as kinks on the strings. These kinks can either be on different strings or both on the first
or both on the second string, with equal probabilities for the three possibilities (see ref. [50]). Including
initial state radiation will give extra kinks, which due to colour coherence will be connected so as to
result in minimal extra string length.

Multiple collisions with two independent gg → gg scatterings would be expected to correspond
to two cut pomerons, with four triplet strings stretched between the proton remnants. This would give
approximately a doubled multiplicity, in accordance with the AGK cutting rules. However, the CDF data
show that this is far from reality.

CDF’s successful tune A [6] is a fit using an early PYTHIA version. Already in the analysis in
ref. [3] it was realized that four strings would give too high multiplicity. Therefore in this early PYTHIA

version there are three possible string connections for a secondary hard subcollision. 1) An extra closed
string loop between the two final state gluons. 2) A single string between the scattered partons, which
are then treated as a qq̄ system. 3) The new hard gluons are inserted as extra kinks among the initial
state radiations, in a way which corresponds to minimum extra string length. In the successful tune A
the last possibility is chosen in 90% of the cases, which corresponds to minimal extra multiplicity. The
default PYTHIA tune, which contained equal probabilities for the three cases, does not give a good fit. A
more advanced treatment of pp collisions [8, 9] is implemented in a new PYTHIA version (6.3) [2] (see
Section 2.1). This model does, however, not work as well as Field’s tune A of the older model.

Consequently two independent hard collisions do not correspond to two cut pomeron ladders
stretched between the proton remnants. It also does not correspond to a cut pomeron loop in the centre.
Instead it looks like a single ladder, with a higher density of gluon rungs in the central region.

How can this be understood? It raises a set of important questions: What does it imply for the
AGK rules and the diffractive gap survival probability? Do rescattering and unitarity constraints (and
AGK) work in the initial perturbative phase? If so, does this correspond to an initial hard collision inside
a confining bag, with the final state partons colour connected in a later non-perturbative phase?

We can compare with the situation in e+e−-annihilation. If two gluons are emitted from the quark
or antiquark legs, these gluons form a colour singlet with probability ∼ 1/N 2

c . They could then hadronize
as a separate system. Analyses of data from LEP indicate that such isolated systems are suppressed even
more than by a factor ∼ 1/N 2

c .

In conclusion we have following important questions:

– Why do the strings make the shortest connections in ≈100% in pp and almost never in e+e−?
– How do multiplicity fluctuations and the relation diffraction diffraction and high multiplicity events

reflect features of AGK in ep, γp, and pp?
– Do unitarity effects and AGK cutting rules work as expected in an initial perturbative phase, and

the colours recombine in a subsequent nonperturbative soft phase?
– Or is the pomeron a much more complicated phenomenon than the simple ladder envisaged by

Abramovskyĭ-Gribov-Kancheli?
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7 Conclusions and the potential for HERA data
This was a very active area of discussion during the workshop. In fact, the area remains so active that
firm conclusions are hard to make, and likely to be superceded on a very short timescale. Nevertheless
there are some things which do seem clear.

– The underlying event is clearly an topic of substantial importance for the LHC.
– The dominant input data for understanding the underlying event comes at present from the Teva-

tron, with HERA data primarily featuring indirectly, though importantly, via the parton densities.
– The data strongly indicate that multiple hard scatters are required to adequately describe the final

state in high energy hadron collisions.
– The UE depends on the measurement being made as demonstrated by difference between the UE

in the CDF leading jet and back-to-back jet analysis.
– The colour structure of the final parton state is an unsolved problem. The CDF data indicate that

’short strings’ are strongly favoured.
– There are large uncertainties associated with extrapolating the available models to LHC energies.

As far as the future impact of HERA data on this area goes, some ideas have been discussed
in the previous section. In addition, it is worth noting that most of the models discussed here have
also been used in high energy photoproduction at HERA [51], where they also improve the description
of the data. No study comparable to those carried out at pp or pp̄ experiments is currently available.
The benefits of such a study would be that (a) HERA could add another series of points in energy
(around 200 GeV) to help pin down the energy dependence of the underlying event, (b) it is possible to
select regions of phase space where resolved (i.e., hadronic) or direct (i.e., pointlike) photons dominate,
thus effectively switching on or off the photon PDF (and thus presumably multiparton interactions) and
allowing comparison between the two cases, (c) the photon is a new particle with which the physics
assumptions of underlying event models can be confronted. The last of these points however also implies
that a slew of new parameters will be introduced, and one may learn more about the photon this way than
about underlying events themselves. Either way, it is to be hoped that such a study will be carried out
before HERA finishes and LHC switches on.
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Abstract
HERA provides a unique possibility to investigate the dependence of multi-
ple interactions on transverse interaction sizes through variation of the photon
virtuality Q2. In order to observe effects of multiple interactions at Q2 sub-
stantially different from zero we have to look into regions of phase space where
resolved processes dominate over direct ones. The forward jet production at
small values of Bjorken x is one example. PYTHIA and RAPGAP have been
employed to estimate contribution of the multiple interactions to forward jet
production cross section.

Comparisons of HERA photoproduction data with QCD NLO calculations for high transverse
momentum jets revealed that the observed jets are not well described by the calculations. The energy flow
adjacent to jets - the underlying event or jet pedestal - was found to be far above QCD expectations [1].
Similar excess of underlying energy was observed in pp̄ data, see [2] and [3] for recent studies. It
appears that both HERA and TEVATRON data can be described by adding beam remnant interactions,
from soft to hard, as first proposed in ref. [4]. The remnant beam-beam interactions can result in multiple
hard parton interactions (MI) thus creating additional pairs of jets. Therfore the presence of four high
transverse momentum objects in the hadronic final state (e.g. four jets or prompt photon and three jets)
allows searches for signatures of multi-parton interactions in a region of phase space where their effects
may be maximized. The evidence of MI coming from 4-jet studies is more explicit and is not complicated
by initial/final state radiation and soft beam-remnant components of the underlying event. Both ZEUS [5]
and CDF [6] observed explicite double parton interactions in rough agreement with PYTHIA [4, 7]
simulations.

The very interesting aspect of measurements at HERA is that variation of the photon virtuality
Q2 provides information about transverse interaction sizes. Observation of the dependence of MI on Q2

could be important from the phenomenological point of view. In order to see MI at photon virtuality
substantially different from zero we have to look into regions of phase space for deep inelastic scattering
where the resolved virtual photon processes dominate over direct ones. The forward jet production at
small values of Bjorken x is one example. Here one could expect that additional interactions between
the remnants of the proton and resolved virtual photon would produce extra hadron multiplicity in an
underlying event. Although the transverse momentum of these hadrons would be limited, they could still
give a substantial effect on the rate of forward jets which have a steeply falling p⊥ spectrum.

The forward jet cross-section is especially interesting since it has been notoriously difficult to
reproduce by standard DGLAP-based parton shower event generators. It has been shown that the de-
scription of the forward jet cross section can be improved by adding resolved virtual photon component
in eg. the RAPGAP Monte Carlo [8], but the jet rates produced in the simulations are still a bit too low
in the small-x region. In order to check if MI can give measurable contribution to this process we have
performed a study in which we estimate MI effect using both PYTHIA 6.2 and RAPGAP 3.1. We use
PYTHIA since the MI model there has been shown to be able to give a good description of underlying
events and jet pedestal effects in hadron-hadron collisions and in photoproduction, and it is fairly easy to
apply the same model to the resolved part of the γ? − p collisions. However, PYTHIA does not describe
correctly the transverse energy flow in in DIS at HERA above Q2 ≈ 5 GeV2. We can still use PYTHIA
to estimate the relative effect of MI and we have generated forward jet cross section with H1 cuts [9]:

218



p2
Tjet (GeV2)

Fig. 1: Left: Ratio of forward jets with and without multiple interactions as a function of jet transverse momentum
squared for three regions of proton momentum fraction carried by jet Right: The H1 forward jet cross section data
compared with RAPGAP 3.1 simulation. Multiple interactions are included as x,Q2, xjet and p2

Tjet dependent
weights to resolved component, calculated using PYTHIA 6.2

(pTjet > 3.5 GeV,xjet > 0.035, 20◦ > Θjet > 7◦ and 0.5 < p2
Tjet/Q

2 < 5) using PYTHIA 6.2 with
default settings in γp mode (MI in mode 2) with γ? momentum corresponding to several values of x and
Q2 within DIS kinematical phase space 0.0001 < x < 0.004 and 5 < Q2 < 85 GeV2.

In Fig. 1 (left) we show example of the ratio of number of the forward jets with and without MI,
here for x = 0.0004 and Q2 = 8 GeV2, as a function of p2

Tjet. It can be seen that effect of MI is quite
substantial in the lowest p2

Tjet bin. Treating the above mentioned ratios as weights depending on x, Q2,
xjet and p2

Tjet, we have generated inclusive forward jet cross section using RAPGAP 3.1 within above
mentioned H1 cuts. The Fig. 1 (right) shows the result of this calculation. The inclusive forward jet
cross section is enhanced by MI for about 15% in the lowest x bin, in fact improving description of the
data. The effect of MI diminishes quickly with increasing x as result of decreasing contribution of the
resolved photon component.

This very preliminary study suggests thatQ2 dependence of multiple interactions can be studied at
HERA. This will require large statistics and an improved understanding of the underlying QCD evolution
in forward jet production.
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Abstract
Our presentation centers on the consequences of s-channel unitarity, mani-
fested by soft re-scatterings of the spectator partons in a high energy diffrac-
tive process, focusing on the calculations of gap survival probabilities. Our
emphasis is on recent estimates relevant to exclusive diffractive Higgs pro-
duction at the LHC. To this end, we critically re-examine the comparison of
the theoretical estimates of large rapidity gap hard di-jets with the measured
data, and remark on the difficulties in the interpretation of HERA hard di-jet
photoproduction.

1 Introduction
A large rapidity gap (LRG) in an hadronic, photo or DIS induced final state is experimentally defined
as a large gap in the η − φ lego plot devoid of produced hadrons. LRG events were suggested [1–4]
as a signature for Higgs production due to a virtual W −W fusion subprocess. An analogous pQCD
process, in which a colorless exchange (”hard Pomeron”) replaces the virtual W, has a considerably
larger discovery potential as it leads also to an exclusive p + H + p final state. Assuming the Higgs
mass to be in the range of 100− 150GeV , the calculated rates for this channel, utilizing proton tagging
are promissing. Indeed, LRG hard di-jets, produced via the same production mechanism, have been
observed in the Tevatron [5–17] and HERA [18–29]. The experimental LRG di-jets production rates are
much smaller than the pQCD (or Regge) estimates. Following Bjorken [3, 4], the correcting damping
factor is called ”LRG survival probability”.

The present summary aims to review and check calculations of the survival probability as applied
to the HERA-Tevatron data and explore the consequences for diffractive LRG channels at LHC with a
focus on diffractive Higgs production.

We distinguish between three configurations of di-jets (for details see Ref. [13–17]):

1) A LRG separates the di-jets system from the other non diffractive final state particles. On the
partonic level this is a single diffraction (SD) Pomeron exchange process denoted GJJ.

2) A LRG separates between the two hard jets. This is a double diffraction (DD) denoted JGJ.
3) Centrally produced di-jets are separated by a LRG on each side of the system. This is a central

diffraction (CD) two Pomeron exchange process denoted GJJG. This mechanism also leads to
diffractive exclusive Higgs production.

We denote the theoretically calculated rate of a LRG channel by Fgap. It was noted by Bjorken
[3, 4] that we have to distinguish between the theoretically calculated rate and the actual measured rate
fgap

fgap = 〈| S |2〉 · Fgap. (1)

The proportionality damping factor [30–33] is the survival probability of a LRG. It is the probability of
a given LRG not to be filled by debris (partons and/or hadrons). These debris originate from the soft
re-scattering of the spectator partons resulting in a survival probability denoted | Sspec(s) |2, and/or from
the gluon radiation emitted by partons taking part in the hard interaction with a corresponding survival
probability denoted | Sbrem(∆y) |2,

〈| S(s,∆y) |2〉 = 〈| Sspec(s) |2〉 · 〈| Sbrem(∆y) |2〉. (2)
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s is the c.m. energy square of the colliding particles and ∆y is the large rapidity gap. Gluon radiation
from the interacting partons is strongly suppressed by the Sudakov factor [34]. However, since this
suppression is included in the perturbative calculation (see 4.3) we can neglect 〈| Sbrem(∆y) |2〉 in our
calculations. In the following we denote 〈 | Sspec |2〉 = S2. It is best defined in impact parameter space
(see 2.1)). Following Bjorken [3, 4], the survival probability is determined as the normalized integrated
product of two quantities

S2 =

∫
d2b |MH(s, b) |2 P S(s, b)∫

d2b |MH(s, b) |2 . (3)

MH(s, b) is the amplitude for the LRG diffractive process (soft or hard) of interest. P S(s, b) is the
probability that no inelastic soft interaction in the re-scattering eikonal chain results in inelasticity of the
final state at (s, b).

The organization of this paper is as follows: In Sec.2 we briefly review the role of s-channel uni-
tarity in high energy soft scattering and the eikonal model. The GLM model [30–33] and its consequent
survival probabilities [35–37] are presented in Sec.3, including a generalization to a multi channel re-
scattering model [38,39]. The KKMR model [40–44] and its survival probabilities is presented in Sec.4.
A discussion and our conclusions are presented in Sec.5. An added short presentation on Monte Carlo
calculations of S2 is given in an Appendix.

2 Unitarity
Even though soft high energy scattering has been extensively studied experimentally over the last 50
years, we do not have, as yet, a satisfactory QCD framework to calculate even the gross features of
this impressive data base. This is just a reflection of our inability to execute QCD calculations in the
non-perturbative regime. High energy soft scattering is, thus, commonly described by the Regge-pole
model [45,46]. The theory, motivated by S matrix approach, was introduced more than 40 years ago and
was soon after followed by a very rich phenomenology.

The key ingredient of the Regge pole model is the leading Pomeron, whose linear t-dependent
trajectory is given by

αIP (t) = αIP (0) + α′IP t. (4)

A knowledge of αIP (t) enables a calculation of σtot, σel and dσel
dt , whose forward elastic exponential

slope is given by

Bel = 2B0 + 2α′IP ln
(
s

s0

)
. (5)

Donnachie and Landshoff (DL) have vigorously promoted [47, 48] an appealing and very simple Regge
parametrization for total and forward differential elastic hadron-hadron cross sections in which they offer
a global fit to all available hadron-hadron and photon-hadron total and elastic cross section data. This
data, above PL = 10GeV , is excellently fitted with universal parameters. We shall be interested only
in the DL Pomeron with an intercept αIP (0) = 1 + ε, where ε = 0.0808, which accounts for the high
energy growing cross sections. Its fitted [49] slope value is α′IP = 0.25GeV −2.

2.1 S-channel unitarity
The simple DL parametrization is bound to violate s-channel unitarity at some energy since σel grows
with energy as s2ε, modulu logarithmic corrections, while σtot grows only as sε. The theoretical problems
at stake are easily identified in an impact b-space representation.

The elastic scattering amplitude is normalized so that

dσel
dt

= π | fel(s, t) |2, (6)
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Fig. 1: A pictorial illustration of a high energy b-space elastic amplitude bounded by unitarity and analytic-
ity/crossing. In the illustration we have an input amplitude which violates the eikonal unitarity bound and an
output amplitude obtained after a unitarization procedure.

σtot = 4πImfel(s, 0). (7)

The elastic amplitude in b-space is defined as

ael(s, b) =
1

2π

∫
dqe−iq·bfel(s, t), (8)

where t = −q2. In this representation

σtot = 2

∫
d2b Im[ael(s, b)], (9)

σel =

∫
d2b | ael(s, b) |2, (10)

σin = σtot − σel. (11)

As noted, a simple Regge pole with αIP (0) > 1 will eventually violate s-channel unitarity. The
question is if this is a future problem to be confronted only at far higher energies than presently avail-
able, or is it a phenomena which can be identified through experimental signatures observed within the
available high energy data base. It is an easy exercise to check that the DL model [47, 48], with its fitted
global parameters, will violate the unitarity black bound (see 2.2) at very small b, just above the present
Tevatron energy. Indeed, CDF reports [50] that ael(b = 0,

√
s = 1800) = 0.96 ± 0.04. A pictorial

illustration of the above is presented in Fig.1. Note that the energy dependence of the experimental SD
cross section [13–17] in the ISR-Tevatron energy range is much weaker than the power dependences
observed for σel. Diffractive cross sections are not discussed in the DL model.

2.2 The eikonal model
The theoretical difficulties, pointed out in the previous subsection, are eliminated once we take into
account the corrections necessitated by unitarity. The problem is that enforcing unitarity is a model
dependent procedure. In the following we shall confine ourselves to a Glauber type eikonal model
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[51]. In this approximation, the scattering matrix is diagonal and only repeated elastic re-scatterings are
summed. Accordingly, we write

ael(s, b) = i
(

1− e−Ω(s,b)/2
)
. (12)

Since the scattering matrix is diagonal, the unitarity constraint is written as

2Im[ael(s, b)] = | ael(s, b) |2 + Gin(s, b), (13)

with
Gin = 1 − e−Ω(s,b). (14)

The eikonal expressions for the soft cross sections of interest are

σtot = 2

∫
d2b
(

1 − e−Ω(s,b)/2
)
, (15)

σel =

∫
d2b
(

1 − e−Ω(s,b)/2
)2
, (16)

σin =

∫
d2b
(

1 − e−Ω(s,b)
)
, (17)

and

Bel(s) =

∫
d2b b2

(
1 − e−Ω(s,b)/2

)

2
∫
d2b

(
1 − e−Ω(s,b)/2

) . (18)

From Eq.(14) it follows that P S(s, b) = e−Ω(s,b) is the probability that the final state of the two initial
interacting hadrons is elastic, regardless of the eikonal rescattering chain. It is identified, thus, with
P S(s, b) of Eq.(3).

Following our implicit assumption that, in the high energy limit, hadrons are correct degrees of
freedom, i.e. they diagonalize the interaction matrix, Eq.(12) is a general solution of Eq.(13) as long as
the input opacity Ω is arbitrary. In the eikonal model Ω is real and equals the imaginary part of the iterated
input Born amplitude. The eikonalized amplitude is imaginary. Its analyticity and crossing symmetry
are easily restored. In a Regge language we substitute, to this end, sαIP → sαIP e−

1
2
iπαIP .

In the general case, Eq.(13) implies a general bound, | ael(s, b) |≤ 2, obtained when Gin = 0.
This is an extreme option in which asymptotically σtot = σel [52]. This is formally acceptable but not
very appealing. Assuming that ael is imaginary, we obtain that the unitarity bound coincides with the
black disc bound, | ael(s, b) |≤ 1. Accordingly,

σel
σtot
≤ 1

2
. (19)

3 The GLM Model
The GLM screening correction (SC) model [30–33] is an eikonal model originally conceived so as to
explain the exceptionally mild energy dependence of soft diffractive cross sections. It utilized the obser-
vation that s-channel unitarization enforced by the eikonal model operates on a diffractive amplitude in
a different way than it does on the elastic amplitude. The GLM diffractive damping factor is identical to
Bjorken’s survival probability.
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3.1 The GLM SC model
In the GLM model, we take a DL type Pomeron exchange amplitude input in which αIP (0) = 1 + ∆ >
0. The simplicity of the GLM SC model derives from the observation that the eikonal approximation with
a central Gaussian input, corresponding to an exponential slope of dσel

dt , can be summed analytically. This
is, clearly, an over simplification, but it reproduces the bulk of the data well, i.e. the total and the forward
elastic cross sections. Accordingly, the eikonal DL type b-space expression for Ω(s, b) is:

Ω(s, b) = ν(s) ΓS(s, b), (20)

where,

ν(s) = σ(s0)

(
s

s0

)∆

, (21)

R2(s) = 4R2
0 + 4α′IP ln(

s

s0
), (22)

and the soft profile is defined

ΓS(s, b) =
1

πR2(s)
e
− b2

R2(s) . (23)

It is defined so as to keep the normalization
∫
d2bΓS(s, b) = 1.

One has to distinguish between the eikonal model input and output. The key element is that the
power ∆, and ν, are input information, not bounded by unitarity, and should not be confused with DL
effective power ε and the corresponding total cross section. Since the DL model reproduces the forward
elastic amplitude, in the ISR-HERA-Tevatron range, well, we require that the eikonal model output will
be compatible with the DL results. Obviously, ∆ > ε. In a non screened DL type model with a
Gaussian profile the relation Bel = 1

2R
2(s) is exact. In a screened model, like GLM, Bel > 1

2R
2(s)

due to screening.

With this input we get

σtot = 2πR2(s)

[
ln

(
ν(s)

2

)
+ C −Ei

(
−ν(s)

2

)]
∝ ln2(s), (24)

σel = πR2(s)

[
ln

(
ν(s)

4

)
+ C − 2Ei

(
−ν(s)

2

)
+Ei (−ν(s))

]
∝ 1

2
ln2(s), (25)

σin = πR2(s){ln[ν(s)] + C −Ei[−ν(s)]} ∝ 1

2
ln2(s). (26)

Ei(x) =
∫ x
−∞

et

t dt, and C = 0.5773 is the Euler constant. An important consequence of the above is
that the ratio σel

σtot
is a single variable function of ν(s). In practice it means that given the experimental

value of this ratio at a given energy we can obtain an ”experimental” value of ν which does not depend
on the adjustment of free parameters.

The formalism presented above is extended to diffractive channels through the observation, traced
to Eqs.(3) and (14), that P S(s, b) = e−Ω(s,b). Accordingly, a screened non elastic diffractive cross
section is obtained by convoluting its b-space amplitude square with the probability P S .

The above has been utilized [30–33] to calculate the soft integrated single diffraction cross sec-
tion. To this end, we write, in the triple Regge approximation [53], the double differential cross section
M2dσsd
dM2dt

, where M is the diffracted mass. We, then, transform it to b-space, multiply by P S(s, b) and

integrate. The output M2dσsd
dM2dt

, changes its high energy behaviour from s2∆ modulu ln( ss0 ) (which is
identical to the behaviour of a DL elastic cross section) to the moderate behaviour of ln( s

s0
). Note also

a major difference in the diffractive b-space profile which changes from an input central Gaussian to an
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output peripheral distribution peaking at higher b. Consequently, the GLM model is compatible with the
Pumplin bound [54, 55].

σel(s, b) + σdiff (s, b)

σtot(s, b)
≤ 1

2
. (27)

3.2 Extension to a multi channel model
The most serious deficiency of a single channel eikonal model is inherent, as the model considers only
elastic rescatterings. This is incompatible with the relatively large diffractive cross section observed
in the ISR-Tevatron energy range. To this we add a specific problematic feature of the GLM model.
Whereas, σtot, σel and Bel are very well fitted, the reproduction of σsd, in the available ISR-Tevatron
range, is poorer. A possible remedy to these deficiencies is to replace the one channel with a multi
channel eikonal model, in which inelastic diffractive intermediate re-scatterings are included as well [38,
39,56]. However, we have to insure that a multi channel model does improve the diffractive (specifically
SD) predictions of the GLM model, while maintaining, simultaneously, its excellent reproductions [30–
33] of the forward elastic amplitude, as well as its appealing results on LRG survival probabilities [35–37]
to be discussed in 3.3.

In the simplest approximation we consider diffraction as a single hadronic state. We have, thus,
two orthogonal wave functions

〈Ψh | Ψd〉 = 0. (28)

Ψh is the wave function of the incoming hadron, and Ψd is the wave function of the outgoing diffractive
system initiated by the incoming hadron. Denote the interaction operator by T and consider two wave
functions Ψ1 and Ψ2 which are diagonal with respect to T. The amplitude of the interaction is given by

Ai,k = 〈ΨiΨk | T | Ψi′Ψk′〉 = ai,k δi,i′ δk,k′. (29)

In a 2× 2 model i, k = 1, 2. The amplitude ai,k satisfies the diagonal unitarity condition (see Eq.(13))

2Imai,k(s, b) = | ai,k(s, b) |2 +Gini,k(s, b), (30)

for which we write the solution

ai,k(s, b) = i

(
1 − e−

Ωi,k(s,b)

2

)
, (31)

and
Gini,k = 1− e−Ωi,k(s,b). (32)

Ωi,k(s, b) is the opacity of the (i, k) channel with a wave function Ψi × Ψk.

Ωi,k = νi,k(s) ΓSi,k(s, b) (33)

where

νi,k = σS0
i,k

(
s

s0

)∆

. (34)

The factorizable radii are given by

R2
i,k(s) = 2R2

i,0 + 2R2
0,k + 4α′IP ln(

s

s0
). (35)

ΓSi,k(s, b) is the soft profile of the (i,k) channel. The probability that the final state of two interacting
hadron states, with quantum numbers i and k, will be elastic regardless of the intermediate rescatterings
is

P Si,k(s, b) = e−Ωi,k(s,b) = {1 − ai,k(s, b)}2. (36)
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In the above diagonal representation, Ψh and Ψd can be written as

Ψh = αΨ1 + βΨ2, (37)

Ψd = −βΨ1 + αΨ2. (38)

Ψ1 and Ψ2 are orthogonal. Since | Ψh |2 = 1, we have

α2 + β2 = 1. (39)

The wave function of the final state is

Ψf = | T | Ψh ×Ψh〉 =

α2a1,1{Ψ1 ×Ψ1} + αβa1,2{Ψ1 ×Ψ2 + Ψ2 ×Ψ1} +

β2a2,2{Ψ2 ×Ψ2}. (40)

We have to consider 4 possible re-scattering processes. However, in the case of a p̄p (or pp) collision,
single diffraction at the proton vertex equals single diffraction at the antiproton vertex. i.e., a1,2 = a2,1

and we end with three channels whose b-space amplitudes are given by

ael(s, b) = 〈Ψh ×Ψh | Ψf 〉 = α4a1,1 + 2α2β2a1,2 + β4a2,2, (41)

asd(s, b) = 〈Ψh ×Ψd | Ψf 〉 = αβ{α2a1,1 + (α2 − β2)a1,2 + β2a2,2}, (42)

add(s, b) = 〈Ψd ×Ψd | Ψf 〉 = α2β2{a1,1 − 2a1,2 + a2,2}. (43)

In the numeric calculations one may further neglect the double diffraction channel which is exceedingly
small in the ISR-Tevatron range. This is obtained by setting a2,2 = 2a1,2 − a1,1. Note that in the limit
where β << 1, we reproduce the single channel model.

As in the single channel, we simplify the calculation assuming a Gaussian b-space distribution of
the input opacities soft profiles

ΓSi,k(s, b) =
1

πR2
i,k(s)

e
− b2

R2
i,k

(s)
. (44)

The opacity expressions, just presented, allow us to express the physical observables of interest as func-
tions of ν1,1, ν1,2, R

2
1,1, R

2
1,2 and β, which is a constant of the model. The determination of these

variables enables us to produce a global fit to the total, elastic and diffractive cross sections as well as the
elastic forward slope. This has been done in a two channel model, in which σdd is neglected [38]. The
main conclusion of this study is that the extension of the GLM model to a multi channel eikonal results
with a very good overall reproduction of the data. The results maintain the b-space peripherality of the
diffractive output amplitudes and satisfy the Pumplin bound [54, 55]. Note that since different experi-
mental groups have been using different algorithms to define diffraction, the SD experimental points are
too scattered to enable a tight theoretical reproduction of the diffractive data, see Fig.2.

3.3 Survival probabilities of LRG in the GLM model
The eikonal model simplifies the calculation of the survival probability, Eq.(3), associated with the soft
re-scatterings of the spectator partons. We can, thus, eliminate the nominator and denominator terms in
| MH(s, b) |2 which depend exclusively on s. In the GLM model we assume a Gaussian b-dependence
for | MH(s, b) |2 corresponding to a constant hard radius RH2. This choice enables an analytic solu-
tion of Eq.(3). More elaborate choices, such as dipole or multi poles distributions, require a numerical
evaluation of this equation.
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Fig. 2: Integrated SD data and a two channel model fit.

Define,

aH(s) =
R2(s)

RH
2
(s)

> 1. (45)

aH(s) grows logarithmically with s. As stated, Eq.(3) can be analytically evaluated with our choice of
Gaussian profiles and we get

S2 =
aH(s)γ[aH(s), ν(s)]

[ν(s)]aH (s)
, (46)

where γ(a, ν) denotes the incomplete Euler gamma function

γ(a, x) =

∫ x

0
za−1e−zdz. (47)

The solution of Eq.(46), at a given s, depends on the input values of RH2, R2 and ν(s). In the
GLM approach, RH2 is estimated from the excellent HERA data [57–59] on γ + p → J/Ψ + p. The
values of ν(s) and R2(s) are obtained from the experimental p̄p data. This can be attained from a global
fit to the soft scattering data [38]. Alternatively, we can obtain ν from the ratio σel

σtot
and then obtain the

value of R2 from the explicit expressions given in Eqs.(24,25,26). LHC predictions presently depend
on model calculations with which this information can be obtained. Once we have determined ν(s) and
aH(s), the survival probability is calculated from Eq.(46).

In the GLM three channel model we obtain for central hard diffraction of di-jets or Higgs a survival
probability,

S2
CD(s) =

∫
d2b

(
α4 P S1,1 ΩH

1,1
2

+ 2α2β2 P S1,2 ΩH
1,2

2
+ β4P S2,2 ΩH

2,2
2
)

∫
d2b
(
α4 ΩH

1,1
2

+ 2α2β2 ΩH
1,2

2
+ β4 ΩH

2,2
2
) . (48)

The hard diffractive cross sections in the (i,k) channel are calculated using the multi particle optical
theorem [53]. They are written in the same form as the soft amplitudes

ΩH
i,k

2
= νHi,k(s)

2
ΓHi,k(b), (49)

where,

νHi,k = σH0
i,k

(
s

s0

)∆H

. (50)
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As in the single channel calculation we assume that ΓHi,k(b) is Gaussian,

ΓHi,k(b) =
2

πR2
i,k

e
− 2 b2

R2
i,k . (51)

Note, that the hard radii RHi,k
2 are constants derived from HERA J/Ψ photo and DIS production [57–59].

As it stands, a three channel calculation is not useful since σdd is very small and the 3’d channel
introduces additional parameters which can not be constraint by the meager experimental information on
σdd [13–17]. In a two channel model Eq.(48) reduces to

S2
CD(s) =

∫
d2b

(
P S1,1 ΩH

1,1
2 − 2β2 (P S1,1 ΩH

1,1
2 − P S1,2 ΩH

1,2
2
)
)

∫
d2b
(

ΩH
1,1

2 − 2β2 (ΩH
1,1

2 − ΩH
1,2

2
)
) . (52)

A new, unpublished yet, model [60], offers an explicit S2 calculation for the exclusive NN → N +
LRG+ 2J + LRG+N final state, both in one and two channel eikonal models. We shall comment on
its output in the next subsection.

3.4 GLM S2 predictions
Following are a few general comments on the GLM calculations of S2, after which we discuss the
input/output features of the single and two channel models. Our objective is to present predictions for
LHC.

The only available experimental observable with which we can check the theoretical S 2 predic-
tions is the hard LRG di-jets data obtained in the Tevatron and Hera. A comparison between data and
our predictions is not immediate as the basic measured observable is fgap and not S2. The application of
the GLM models to a calculation of fgap depends on an external input of a hard diffractive LRG cross
section which is then corrected by S2 as presented above. Regardless of this deficiency, the introduction
of a survival probability is essential so as to understand the huge difference between the pQCD calcu-
lated Fgap and its experimental value fgap. A direct test of the GLM predictions calls for a dedicated
experimental determination of S2. The only direct S2 information from the Tevatron is provided by a
JGJ ratio measured by D0 [5–7] in which S2(

√
s= 630)

S2(
√
s= 1800)

= 2.2±0.8. This is to be compared with a GLM
ratio of 1.2− 1.3± 0.4 presented below.

The survival probabilities of the CD, SD and DD channels are not identical. The key difference is
that each of the above channels has a different hard radius. A measure of the sensitivity of S 2 to changes
in ν and aH is easy to identify in a single channel calculation which is presented in Fig.3. Indeed,
preliminary CDF GJJG data [17] suggest that fgap measured for this channel is moderately smaller than
the rate measured for the GJJ channel.

GLM soft profile input is a central Gaussian. This is over simplified, and most models assume
a power like dipole or multipole b-dependence of ΓS(s, b) and ΓH(s, b). Explicit comparisons [60] of
S2 obtained with different input profiles shows a diminishing difference between the survival probability
outputs, provided their effective radii are compatible.

Regardless of the attractive simplicity of the single channel model, one should add a cautious
reminder that the single channel model does not reproduce σsd well since its survival probabilities are
over-estimated. Consequently, we are inclined to suspect that the S2 values presented in Table 1 are
over-estimated as well.

As we noted, the soft input can be obtained from either a model fit to the soft scattering data
or directly from the measured values of σtot, σel and RH2. The first method is denoted F1C and the
second is denoted D1C. Note that having no LHC data, S2

DD(D1C), at this energy, is calculated on the
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Fig. 3: A contour plot of S2(1C) against ν(s) and aH(s).

Table 1: Survival probabilities

√
s (GeV) S2

CD(F1C) S2
CD(D1C) S2

SDincl
(F1C) S2

SDincl
(D1C) S2

DD(F1C) S2
DD(D1C)

540 14.4% 13.1% 18.5% 17.5% 22.6% 22.0%

1800 10.9% 8.9% 14.5% 12.6% 18.2% 16.6%

14000 6.0% 5.2% 8.6% 8.1% 11.5% 11.2 %

basis of model estimates for the total and elastic cross sections. The constant hard radius RH2
= 7.2

is deduced from HERA J/Ψ photoproduction forward exponential slope which shows only diminishing
shrinkage [57,58]. This is a conservative choice which may be changed slightly with the improvement of
the Tevatron CDF estimates [61] of RH2. The two sets of results obtained are compatible, even though,
S2(D1C) is consistently lower than S2(F1C). The S2 output presented above depends crucially on the
quality of the data base from which we obtain the input parameters. The two sets of Tevatron data at
1800GeV have a severe 10− 15% difference resulting in a non trivial ambiguity of the S 2 output.

The global GLM two channel fit [38] reproduces the soft scattering data (including SD) remark-
ably well with β = 0.464. Its fitted parameters are used for the soft input required for the S 2 calcu-
lations. Our cross section predictions for LHC are: σtot = 103.8mb, σel = 24.5mb, σsd = 12mb
and Bel = 20.5GeV −2. The input for the calculation of S2 requires, in addition to the soft parameters,
also the values of νHi,k and RHi,k

2. The needed hard radii can be estimated, at present, only for the CD
channel, where we associate the hard radii RH

1,1 with the hard radius obtained in HERA exclusive J/Ψ
photoproduction [57,58] andRH1,2 with HERA inclusive J/Ψ DIS production [59]. Accordingly, we have

RH1,1
2

= 7.2GeV −2, and RH1,2
2

= 2.0GeV −2. We do not have experimental input to determine νHi,k. We
overcome this difficalty by assuming a Regge-like factorization σH0

i,k /σ
S0
i,k = constant. Our predictions

for the CD survival probabilities are: 6.6% at 540GeV , 5.5% at 1800GeV and 3.6% at 14000GeV .

These results may be compared with a recent, more elaborate, eikonal formulation [60] aiming to
calculate the survival probability of a final exclusive N + LRG + 2J(orH) + LRG +N state. These
calculations were done in one and two channel models. The one channel S2

CD predicted values are 14.9%
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at 540GeV , 10.8% at 1800GeV and 6.0% at 14000GeV . These values are remarkably similar to the
GLM one channel output. In the two channel calculations the corresponding predictions are 5.1%, 4.4%
and 2.7%, which are marginally smaller than the GLM two channel output numbers.

In our assessment, the two channel calculations provide a more reliable estimate of S 2 since they
reproduce well the soft scattering forward data. Our estimate for the survival probability associated with
LHC Higgs production is 2.5% − 4.0%.

4 The KKMR Model
The main part of this section (4.1-4.3) was written by V.A. Khoze, A.D. Martin and M. Ryskin (KMR)
and is presented here without any editing.

The KKMR model calculation [40–44] of the survival probabilities is conceptually quite similar
to the GLM model, in as much as unitarization is enforced through an eikonal model whose parame-
ters provide a good reproduction of the high energy soft scattering data. However, the GLM model is
confined to a geometrical calculation of S2 for which we need just the value of RH2, without any speci-
fication of the hard dynamics. This value is an external input to the model. The KKMR model contains
also a detailed pQCD calculation of the hard diffractive proccess, specifically, central diffractive Higgs
production. Consequently, it can predict a cross section for the channel under investigation.

4.1 KKMR model for soft diffraction
The KMR description [41] of soft diffraction in high energy pp (or pp̄) collisions embodies

(i) pion-loop insertions in the bare Pomeron pole, which represent the nearest singularity generated
by t-channel unitarity,

(ii) a two-channel eikonal which incorporates the Pomeron cuts generated by elastic and quasi-elastic
(with N ∗ intermediate states) s-channel unitarity,

(iii) high-mass diffractive dissociation.

The KKMR model gives a good description of the data on the total and differential elastic cross
section throughout the ISR-Tevatron energy interval, see [41]. Surprisingly, KMR found the bare Pomeron
parameters to be

∆ ≡ α(0) − 1 ' 0.10, α′ = 0. (53)

On the other hand it is known that the same data can be described by a simple effective Pomeron pole
with [47, 48, 62]

αeff
IP (t) = 1.08 + 0.25 t. (54)

In this approach the shrinkage of the diffraction cone comes not from the bare pole (α ′ = 0), but has
components from the three ingredients, (i)–(iii), of the model. That is, in the ISR-Tevatron energy range

“α′eff” = (0.034 + 0.15 + 0.066) GeV−2 (55)

from the π-loop, s-channel eikonalisation and diffractive dissociation respectively. Moreover, eikonal
rescattering suppresses the growth of the cross section and so ∆ ' 0.10 > ∆eff ' 0.08.

Since the model [41] embodies all the main features of soft diffraction KMR expect it to give
reliable predictions for the survival probability S2 of the rapidity gaps against population by secondary
hadrons from the underlying event, that is hadrons originating from soft rescattering. In particular, KMR
predict S2 = 0.10 (0.06) for single diffractive events and S2 = 0.05 (0.03) for exclusive Higgs boson
production, pp→ p+H + p, at Tevatron (LHC) energies.
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Fig. 4: Schematic diagram for central exclusive production, pp → p + X + p. The presence of Sudakov form
factors ensures the infrared stability of the Qt integral over the gluon loop. It is also necessary to compute the
probability, S2, that the rapidity gaps survive soft rescattering.

4.2 Calculation of the exclusive Higgs signal
The basic mechanism for the exclusive process, pp → p + H + p, is shown in Fig. 4. The left-hand
gluon Q is needed to screen the colour flow caused by the active gluons q1 and q2. Since the dominant
contribution comes from the region Λ2

QCD � Q2
t � M2

H , the amplitude may be calculated using
perturbative QCD techniques [40, 63]

MH ' N
∫
dQ2

t

Q4
t

fg(x1, x
′
1, Q

2
t , µ

2)fg(x2, x
′
2, Q

2
t , µ

2), (56)

where the overall normalisation constant N can be written in terms of the H → gg decay width [40,64].
The probability amplitudes (fg) to find the appropriate pairs of t-channel gluons (Q, q1) and (Q, q2) are
given by the skewed unintegrated gluon densities at the hard scale µ, taken to be 0.62 MH . Since
the momentum fraction x′ transfered through the screening gluon Q is much smaller than that (x)
transfered through the active gluons (x′ ∼ Qt/

√
s � x ∼ MH/

√
s � 1), it is possible to express

fg(x, x
′, Q2

t , µ
2), to single log accuracy, in terms of the conventional integrated density g(x) [65–68].

The fg’s embody a Sudakov suppression factor T , which ensures that the gluon does not radiate in the
evolution from Qt up to the hard scale µ ∼MH/2, and so preserves the rapidity gaps.

It is often convenient to use the simplified form [40]

fg(x, x
′, Q2

t , µ
2) = Rg

∂

∂ lnQ2
t

[√
Tg(Qt, µ) xg(x,Q2

t )

]
, (57)

which holds to 10–20% accuracy.1 The factor Rg accounts for the single logQ2 skewed effect [67]. It is
found to be about 1.4 at the Tevatron energy and about 1.2 at the energy of the LHC.

4.3 The Sudakov factor
The Sudakov factor Tg(Qt, µ) reads [65, 66, 69]

Tg(Qt, µ) = exp

(
−
∫ µ2

Q2
t

αS(k2
t )

2π

dk2
t

k2
t

[∫ 1−∆

∆
zPgg(z)dz +

∫ 1

0

∑

q

Pqg(z)dz

])
, (58)

with ∆ = kt/(µ + kt). The square root arises in (57) because the (survival) probability not to emit any
additional gluons is only relevant to the hard (active) gluon. It is the presence of this Sudakov factor
which makes the integration in (56) infrared stable, and perturbative QCD applicable2 .

1In the actual computations a more precise form, as given by Eq. (26) of [68], was used.
2Note also that the Sudakov factor inside t integration induces an additional strong decrease (roughly as M−3 [44]) of the

cross section as the mass M of the centrally produced hard system increases. Therefore, the price to pay for neglecting this
suppression effect would be to considerably overestimate the central exclusive cross section at large masses.
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Table 2: Compilation of S2 values obtained in the KKMR model

√
s (GeV) S2

2C(CD) S2
2C(SDincl) S2

2C(DD)

540 6.0% 13.0% 20.0%

1800 4.5% 10.0% 15.0%

14000 2.6% 6.0% 10.0%

It should be emphasized that the presence of the double logarithmic T -factors is a purely classical
effect, which was first discussed in 1956 by Sudakov in QED. There is strong bremsstrahlung when
two colour charged gluons ‘annihilate’ into a heavy neutral object and the probability not to observe
such a bremsstrahlung is given by the Sudakov form factor3 . Therefore, any model (with perturbative or
non-perturbative gluons) must account for the Sudakov suppression when producing exclusively a heavy
neutral boson via the fusion of two coloured particles.

More details of the role of the Sudakov suppression can be found in J. Forshaw’s review in these
proceedings [34]. Here KMR would like to recall that the T -factors in [44, 70] were calculated to single
log accuracy. The collinear single logarithms were summed up using the DGLAP equation. To account
for the ‘soft’ logarithms (corresponding to the emission of low energy gluons) the one-loop virtual cor-
rection to the gg → H vertex was calculated explicitly, and then the scale µ = 0.62 MH was chosen
in such a way that eq.(58) reproduces the result of this explicit calculation. It is sufficient to calculate
just the one-loop correction since it is known that the effect of ‘soft’ gluon emission exponentiates. Thus
(58) gives the T -factor to single log accuracy.

In some sense, the T -factor may be considered as a ‘survival’ probability not to produce any
hard gluons during the gg → H fusion subprocess. However, it is not just a number (i.e. a numerical
factor) which may be placed in front of the integral (the ‘bare amplitude’). Without the T -factors hidden
in the unintegrated gluon densities fg the integral (56) diverges. From the formal point of view, the
suppression of the amplitude provided by T -factors is infinitely strong, and without them the integral
depends crucially on an ad hoc infrared cutoff.

4.4 Summary of KKMR S2 predictions
Table 2 shows a compilation of S2 values in the KKMR model. A comparison with the corresponding
GLM two channel model is possible only for the available GLM CD channel, where, the KKMR output
is compatible with GLM. KKMR SD and DD output are compatible with the corresponding GLM single
channel numbers. Overall, we consider the two models to be in a reasonable agreement.

A remarkable utilization of the KKMR model is attained when comparing the HERA [18–27]
and CDF [8–12, 17] di-jets diffractive structure functions derived for the dynamically similar GJJ chan-
nels. To this end, the comparison is made between the kinematically compatible HERA F D

jj (Q2 =

75GeV 2, β) and the CDF FDjj (< E2
T >= 75GeV 2, β). The theoretical expectation is that FD

jj (β), as
measured by the two experiments, should be very similar. As can be seen in Fig.5, the normalizations of
the two distributions differ by approximately an order of magnitude and for very small β < 0.15 there
is a suggestive change in the CDF distribution shape. This large discrepancy implies a breaking of QCD
and/or Regge factorization. Reconsidering, it is noted, that HERA DIS data is measured at a high Q2

where the partonic interactions induced by the highly virtual photon are point like and, hence, S 2 = 1.
On the other hand, CDF GJJ measurement is carried out at 1800GeV and, as we saw, its survival prob-

3It is worth mentioning that the H → gg width and the normalization factor N in (56) is an ‘inclusive’ quantity which
includes all possible bremsstrahlung processes. To be precise, it is the sum of the H → gg + ng widths, with n=0,1,2,... . The
probability of a ‘purely exclusive’ decay into two gluons is nullified by the same Sudakov suppression.
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Fig. 5: The predictions for the diffractive di-jets production at the Tevatron (lower lines), obtained from two
alternative sets of HERA diffractive parton distributions I and II, compared with the CDF data (shaded area). The
upper lines correspond to the Tevatron prediction neglecting the survival probability correction.

ability is rather small. The convolution between the HERA determined GJJ F D
jj (β) and the β dependent

survival probabilities, as calculated by KKMR, provides the F D
jj (β) distribution corrected for the soft

rescattering of the spectator partons. This is shown in Fig.5 and provides an impressive reproduction of
the experimental distribution. We were informed [71] that this analysis was successfully redone with an
updated H1 produced structure function distribution.

The weak element in the above analysis is that it is crucially dependent on the H1 determined
FDjj (β) distribution. ZEUS has constructed a somewhat different structure function. Clearly, a very
different experimental determination of FD

jj (β), such as been recently suggested by Arneodo [72], will
re-open this analysis for further studies, experimental and theoretical.

4.5 A Comparison between KKMR and GLM
The approach of GLM and KKMR to the calculation of forward soft scattering in the ISR-Tevatron range
are basically similar. Both models utilize the eikonal model assuming different input soft profiles which
have, nevertheless, compatible effective radii. There are, though, a few particular differences between
the two sets of calculations:

1) The GLM model, with a Gaussian soft profile, is applicable only in the forward cone (|t| <
0.3GeV 2), where we have most of the data of interest. KKMR use a multipole power behaviour
profile which enables applicability over a, somewhat, wider t range, |t| < 0.5GeV 2. Note that,
the GLM output is not significantly changed with a multipole power behaviour profile provided its
radii are compatible with the Gaussian input [60].

2) The GLM input Pomeron trajectory is specified by ∆ = 0.12 and α′IP = 0.2. These evolve due
to eikonalisation to an effective output of ε = 0.08 and α′IP = 0.25. Note that, ∆ is obtained in
GLM as a fitted output parameter. In KKMR, the relatively high input ∆ ' 0.2 is theoretically
tuned by a pion loop renormalization resulting in an input value of ∆ ' 0.1. KKMR have a
more elaborate treatment of αIP (t) than GLM, resulting, nevertheless, with forward cone output
predictions similar to GLM. However, KKMR accounts for a somewhat wider t range than GLM
and reproduces the t dependence ofBel well. Similar results are obtained in a GLM version [39,56]
in which the soft profile is given by a dipole distribution. KKMR can predict a few differential
properties of S2, which are beyond the scope of GLM.
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3) Both models treat the high mass diffraction with the triple Pomeron formalism [53]. In GLM the
final SD cross section is obtained by a convolution of the input dσsd

d2b with P S(s, b). In KKMR
the treatment of the SD amplitude is more elaborate, ending, though, with no detailed SD data
reconstruction which is presented in GLM.

4) The LHC predictions of the two models for cross sections and slopes are compatible, with the
exception of σdd which is neglected in GLM and acquires a significant KKMR predicted value of
9.5mb.

GLM is a geometrical model where both the input hard LRG non corrected matrix element squared
and the soft elastic scattering amplitude, are approximated by central Gaussians in b-space. This property
enables us to easily calculate the survival probabilities which depend on ν, R2 and RH2 in a single
channel input, and on νi,k, R2

i,k and RHi,k
2 in a two channel input. As we have noted, the GLM model, on

its own, cannot provide a calculation of Fgap and fgap as it needs the hard radii as an external input. The
KKMR model is more sophisticated. This is attributed to the fact that the hard diffractive LRG process
is explicitly calculated in pQCD, hence the non corrected Fgap and the corrected fgap and FDjj are model
predictions. As we have just noted, given the hard diffractive matrix element, the actual calculation of the
diffractive LRG survival probability damping is almost identical to GLM. Keeping this basic observation
in mind, it is constructive to compare the features of the two models with a special interest on the input
assumptions and output differences of the two models.

The main difference between the two models is reflected in the level of complexity of their inputs.
GLM soft input is obtained from a simple eikonal model for the soft forward scattering, to which we add
the hard radii which are derived from the HERA data. KKMR calculations of P S are equally simple.
The calculation of the hard sector matrix elements are, naturally, more cumbersome. Given HERA
FDjj (Q2, β), a Tevatron diffractive FD

jj in which < ET > and Q2 are comparable, can be calculated,
parameter free, without the need to calculate the hard amplitude. But this is a particular case and, in
general, the KKMR calculation depends on an extended parameter base, such as the the input p.d.f. and
pQCD cuts. These input parameters are not constrained tightly enough.

The elaborate structure of the KKMR model provides a rich discovery potential which is reflected
in the model being able to define and calculate the dependence of S2 not only on b, but also on other
variables, notably β, and experimental cuts such as the recoil proton transverse momentum. GLM de-
pends on the hard radii external information obtained from HERA data. It lacks the potential richness
of KKMR. GLM can serve, though, as a standard through which we can compare different unitarized
models. Given such a model, we can extract effective values for ν, R2 and RH2 and proceed to a simple
calculation of S2. We shall return to this proposed procedure in the final discussion.

Even though both GLM and KKMR are two channel models, they are dynamically different. GLM
two channel formulation relates to the diversity of the intermediate soft re-scatterings, i.e. elastic and
diffractive for which we have different soft amplitudes ai,k, each of which is convoluted with a different
probability P Si,k which depends on a different interaction radius R2

i,k. In the KKMR model the two chan-
nels relate to two different dynamical options of the hard process. In model A the separation is between
valence and sea interacting partons. In model B the separation is between small and large dipoles. The
two models give compatible results. The key point, though, is that the KKMR opacities Ωi,k, in the
definition of P Si,k, differ in their normalization, but have the same b-dependence. Regardless of this dif-
ference the output of the GLM and KKMR models is reasonably compatible. The compatibility between
GLM and KKMR is not surprising since the explicit KKMR calculation of the hard LRG amplitude is
approximated relatively well by the GLM simple Gaussian.

Our final conclusion is that the two model output sets are compatible. The richness of the KKMR
model has a significant discovery potential lacking in GLM. On the other hand, the GLM simplicity
makes it very suitable as a platform to present different models in a uniform way, which enables a
transparent comparison.
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5 Discussion
As we shall see, at the end of this section, there is no significant difference between the values of σ tot pre-
dicted by DL and GLM up to the top Cosmic Rays energies. This is, even though, DL is a Regge model
without unitarity corrections. The explanation for this ”paradox” is that the DL amplitude violations of
s-unitarity are confined, even at super high energies, to small b which does not contribute significantly to
σtot. Note, though, that σel

σtot
grows in DL like sε whereas in GLM its growth is continuosly being mod-

erated with increasing s (see table in 5.3). The DL model predicts that S2 is identical to unity or very
close to it in the DL high-t model where a weak IPIP cut is added. The need for survival probabilities so
as to reproduce the the experimental soft SD cross section values and the hard di-jets rates, is the most
compelling evidence in support of unitarization at presently available energies. As such, the study of
high energy soft and hard diffraction serves as a unique probe substantiating the importance of s-channel
unitarity in the analysis of high energy scattering.

5.1 S2 in unitarized models
Most, but not all, of the unitarized models dealing with LHC S2 predictions have roughly the same
S2 values. This calls for some clarifications. The first part of our discussion centers on the correlated
investigation of two problems:

1) How uniform are the output predictions of different unitarization procedures?
2) How sensitive are the eikonal calculations to the details of the eikonal model they use?

We start with two non eikonal models which have contradictory predictions.

The first is a model suggested by Troshin and Tyurin [52]. In this model the single channel
unitarity constraint (Eq.(13)) is enforced with an asymptotic bound where Gin = 0 and |ael| = 2 i.e.
asymptotically, σtot = σel and P S(s, b) = 1. The parameters of the model are set so as to obtain
a ”normal” survival probability monotonically decreasing with energy up to about 2500GeV where
it changes its behavior and rises monotonically to its asymptotic limit of 1. Beside the fact that the
model has a legitimate but non appealing asymptotics, its main deficiency is that it suggests a dramatic
change in the systematics of S2 without being able to offer any experimental signature to support this
claim. Regardless of this criticism, this is a good example of a proper unitarity model whose results are
profoundly different from the eikonal model predictions.

Another non eikonal procedure is Goulianos flux renormalization model [17]. This is a phe-
nomenological model which formally does not enforce unitarity, but rather, a bound of unity on the
Pomeron flux in diffractive processes. Note that, the Pomeron flux is not uniquely defined so this should
be regarded as an ad hoc parametrization. Nevertheless, it has scored an impressive success in repro-
ducing the soft and hard diffractive data in the ISR-Tevatron range. The implied survival probabilities of
this procedure are compatible with GLM and KKMR. However, the model predicts suppression factors
for the diffractive channels which are t-independent and, thus, b-independent. The result is that, even
though the output diffractive cross section is properly reduced relative to its input, there is no change of
the output profile from its input Gaussian form. Consequently, the Pumplin bound is violated. We are
informed that Goulianos plans to improve his model by eikonalizing the output of his present model.

As noted, there are a few eikonal models on the market [73–80], and their predictions are com-
patible with GLM and KKMR. Reconsidering the procedure of these calculations, their compatibility is
not surprising once we translate their input to a GLM format. The GLM eikonal S 2 calculation has two
input sectors in either a single or a two channel version. They are the soft ν and R2, and the hard radius
RH

2. Since the soft input is based on a fit of the soft scattering data base, the potential variance in the
soft parameters is relatively small. The input hard radius is obtained from either the HERA data or a
theoretical calculation, be it a pQCD diagram or a Regge model. All in all, this is a reasonably stable
input. In this context, it is interesting to discuss the eikonal model of Block and Halzen [73], where
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the calculated survival probabilities for Higgs production through W-W fusion are seemingly too high,
S2(540) = 27%, S2(1800) = 21% and S2(14000) = 13%. Even though, Higgs production is a CD
process, the above S2 values are in agreement with the KKMR calculations of S2

DD with a relatively
high RH2

= 11GeV −2. In a proper S2
CD calculation, these high S2 values correspond to an even

higher RH2 ' 20GeV −2, which is far too high as an estimate of the hard radius of WW → H . A
possible interpretation of Block-Halzen results is to associate them with a soft, rather than a hard, LRG
CD process. This would couple with the non screened interpretation of CD Higgs through the soft CEM
model [74, 75], which predicts very high S2 values. Since the CEM model is not screened we may, as
well, assign a survival probability to its output result. This translates into S 2

CD = S2
BHS

2
CEM , providing

rather reasonable one channel predictions, S2
CD(540) = 18.9% and S2

CD(1800) = 7.2%.

Obviously, each of the eikonal models, quoted above has its own particular presentation and em-
phasis. They do, however, have compatible results reflecting the observation that their input translates
into similar values of ν, R2 and RH2.

5.2 Compatibility between HERA and the Tevatron di-jets data
Much attention has been given recently to the compatibility between the Tevatron and HERA DIS GJJ
data. The starting point made by KKMR and CDF is that rather than depend on a p.d.f. input to calculate
Fgap, we may use, the GJJ di-jets diffractive structure function, F D

jj , inferred from HERA DIS data
[18–27] and associate it with the FD

jj derived from the Tevatron GJJ data. As it stands, this procedure
ignores the role of the survival probability. Consequently, F D

jj obtained from the Tevatron is an order
of magnitude smaller than the HERA output [8–12, 17, 40–44]. This result led to speculations about a
possible breaking of QCD or Regge factorization or both. Once the Tevatron di-jets diffractive structure
function is rescaled by the appropriate survival probability, the compatibility between the Tevatron and
HERA DIS diffractive data is attained. The conclusion of this analysis is that the breaking of factorization
is attributed to the soft re-scatterings of the the colliding projectiles. Additional hard contribution to the
factorization breaking due to gluon radiation is suppressed by the Sudakov factor included in the pQCD
calculation (see 4.3).

One should note, though, that the H1 determination [18–27] of F D
jj is not unique. Arneodo [72]

has suggested a different FD
jj output based on HERA di-jets data which has a different normalization and

β dependences. Should this be verified, there might well be a need to revise the KKMR calculations.

The evolution of HERA FD
jj from high Q2 DIS to Q2 = 0 di-jets photoproduction has raised

additional concern with regard to the validity of the factorization theorems [28,29]. This is a complicated
analysis since one has to be careful on two critical elements of the calculations:

1) The determination of the ratio between direct and resolved exchanged photon (real or virtual). This
is a crucial element of the theoretical calculation since survival probability is applicable only to
the resolved photon component. For very high Q2 data the hard scattering process with the target
partons is direct. At Q2 = 0 there is a significant resolved photon contribution.

2) For di-jets production there is a big difference between the LO and the NLO pQCD calculated
cross sections [81–83]. Since the HERA analysis compares the pQCD calculation with the di-jets
measured cross section the normalization and shape of the theoretical input is most crucial in the
experimental comparison between the high Q2 and Q2 = 0 data.

On the basis of a NLO calculation, Klasen and Kramer [81, 82] conclude that they can reproduce the
photoproduction data with S2 = 0.34, applied to the resolved sector. This survival probability is in
agreement with KKMR and GLM calculations.

Regardless of the above, preliminary photoproduction GJJ HERA data [28, 29] suggest that both
the direct and resolved photon sectors are suppressed at Q2 = 0. A verification of this observation has
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Table 3: GLM two-channel predictions at a few energies

√
s [GeV] σDL

tot [mb] σGLM
tot [mb] σGLM

el [mb] σGLM
sd [mb] BGLM

el [GeV−2] SGLM
CD

2

540 60.1 62.0 12.3 8.7 14.9 0.066

1800 72.9 74.9 15.9 10.0 16.8 0.055

14000 101.5 103.8 24.5 12.0 20.5 0.036

30000 114.8 116.3 28.6 12.7 22.0 0.029

60000 128.4 128.7 32.8 13.2 23.4 0.023

90000 137.2 136.5 35.6 13.5 24.3 0.019

120000 143.6 142.2 37.6 13.7 24.9 0.017

severe consequences for our understanding of the evolution of the diffractive structure function from
DIS to photoproduction. It does not directly relate, though, to the issue of soft survival probability
which apply, per definition, only to the resolved photon sector. The suggested effect in the direct photon
sector should, obviously be subject to a good measure of caution before being substantiated by further
independent analysis.

5.3 Diffraction at energies above the LHC
We end with Table 3, which shows the GLM two channel predictions for energies including the LHC, and
up to the top Cosmic Rays energies. The, somewhat, surprizing observation is that the GLM calculated
total cross sections are compatible with the DL simple Regge predictions all over the above energy
range. This is a reflection of the fact that even at exceedingly high energies unitarization reduces the
elastic amplitude at small enough b values to be relatively insensitive to the calculation of σtot. On the
other hand, we see that σel becomes more moderate in its energy dependence and σel/σtot which is
23.6% at the LHC is no more than 26.4% at the highest Cosmic Rays energy, 120TeV . The implication
of this observation is that the nucleon profile becomes darker at a very slow rate and is grey (well below
the black disc bound) even at the highest energy at which we can hope for a measurment. A check of our
results at the Planck scale shows σtot = 1010mb and the profile to be entirely black. i.e., σel

σtot
= 1

2 .
σsd is even more moderate in its very slow rise with energy. The diminishing rates for soft and hard
diffraction at exceedingly high energies are a consequence of the monotonic reduction in the values of
S2 with a Planck scale limit of S2 = 0. This picture is bound to have its effect on Cosmic Rays studies.

Our LHC predictions are compatible with KMR. Note, though, that: i) σGLMsd is rising slowly
with s gaining 20% from the Tevatron to LHC. KMR has a much faster rise with energy, where, σKMR

sd

is gaining 77% − 92% over the same energy interval. ii) At the LHC BGLM
el = 20.5GeV −2, to be

compared with a DL slope of 19GeV −2 and a KMR slope of 22GeV −2. The GLM 30TeV cross
sections are compatible with Block-Halzen.
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Appendix: Monte Carlo modeling of gap survival
The following was contributed by Leif Lönnblad and is presented without any editing.
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An alternative approach to gap survival and factorization breaking is to implement multiple inter-
actions in Monte Carlo event generators. These models are typically based on the eikonalization of the
partonic cross section in hadronic collisions and can be combined with any hard sub process to describe
the additional production of hadrons due to secondary partonic scatterings. Some of these programs,
such as PYTHIA [84, 85] and HERWIG/JIMMY [86–88], are described in some detail elsewhere in these
proceedings [89]. Common for all these models is that they include exact kinematics and flavour conser-
vation, which introduces some non-trivial effects and makes the multiple scatterings process-dependent.
Also, the predictions of the models are very sensitive to the cutoff used to regularize the partonic cross
section and to the assumptions made about the distribution of partons in impact parameter space. Never-
theless, the models are quite successful in describing sensitive final-state observables such as multiplicity
distributions and jet-pedestal effects [89]. In particular this is true for the model in PYTHIA which has
been successfully tuned to Tevatron data4 by Rick Field [90], the so-called CDF tune A.

The PYTHIA model does not make any prediction for the energy dependence of the total cross
section - rather this is an input to the model used to obtain the distribution in the number of multiple
interactions. PYTHIA can, however, make predictions for gap survival probabilities. This was first done
for Higgs production via W-fusion [2], and amounts to simply counting the fraction of events which
do not have any additional scatterings besides the W-fusion process. The basic assumption is that any
additional partonic scattering would involve a colour exchange which would destroy any rapidity gap
introduced by W-fusion process. Since PYTHIA produces complete events, these can also be directly
analyzed with the proper experimental cuts. A similar estimate was obtained for the gaps between jets
process, both for the Tevatron and HERA case [91].

Recently, PYTHIA was used to estimate gap survival probabilities also for the case of central ex-
clusive Higgs production [92]. As in the case of gaps between jets, the actual signal process is not
implemented in PYTHIA, so direct analysis with proper experimental cuts was not possible. Instead a
similar hard sub process was used (standard inclusive Higgs production via gluon fusion in this case)
and the fraction of events without additional secondary partonic scatterings was identified with the gap
survival probability. Using the CDF tune A the gap survival probability was estimated to be 0.040 for
the Tevatron and 0.026 for the LHC. This is remarkably close both to the values used in [64] obtained in
the KKMR model [43], and to the GLM values presented in section 3.4 especially the two-channel ones
obtained in [60].
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[3] J. D. Bjorken, Int. J. Mod. Phys. A7, 4189 (1992).
[4] J. D. Bjorken, Phys. Rev. D47, 101 (1993).
[5] D0 Collaboration, S. Abachi et al., Phys. Rev. Lett. 72, 2332 (1994).
[6] D0 Collaboration, S. Abachi et al., Phys. Rev. Lett. 76, 734 (1996). hep-ex/9509013.
[7] D0 Collaboration, B. Abbott et al., Phys. Lett. B440, 189 (1998). hep-ex/9809016.
[8] CDF Collaboration, F. Abe et al., Phys. Rev. Lett. 74, 855 (1995).
[9] CDF Collaboration, F. Abe et al., Phys. Rev. Lett. 80, 1156 (1998).

[10] CDF Collaboration, F. Abe et al., Phys. Rev. Lett. 81, 5278 (1998).
[11] CDF Collaboration, T. Affolder et al., Phys. Rev. Lett. 84, 5043 (2000).
[12] CDF Collaboration, T. Affolder et al., Phys. Rev. Lett. 85, 4215 (2000).
[13] K. Goulianos (2003). hep-ph/0306085.
[14] K. Goulianos, J. Phys. G26, 716 (2000). hep-ph/0001092.

4Note that the model in PYTHIA has recently been revised [89]. However, the reproduction of Tevatron data is not as good
for the revised model.

SURVIVAL PROBABILITY OF LARGE RAPIDITY GAPS

239



[15] CDF Collaboration, K. Goulianos, Nucl. Phys. Proc. Suppl. 99A, 37 (2001). hep-ex/0011059.
[16] K. Goulianos (2004). hep-ph/0407035.
[17] K. Goulianos. Private communication to UM.
[18] ZEUS Collaboration, M. Derrick et al., Phys. Lett. B315, 481 (1993).
[19] ZEUS Collaboration, M. Derrick et al., Z. Phys. C68, 569 (1995). hep-ex/9505010.
[20] ZEUS Collaboration, M. Derrick et al., Phys. Lett. B356, 129 (1995). hep-ex/9506009.
[21] ZEUS Collaboration, M. Derrick et al., Phys. Lett. B369, 55 (1996). hep-ex/9510012.
[22] ZEUS Collaboration, J. Breitweg et al., Eur. Phys. J. C6, 43 (1999). hep-ex/9807010.
[23] H1 Collaboration, T. Ahmed et al., Nucl. Phys. B429, 477 (1994).
[24] H1 Collaboration, T. Ahmed et al., Phys. Lett. B348, 681 (1995). hep-ex/9503005.
[25] H1 Collaboration, C. Adloff et al., Z. Phys. C76, 613 (1997). hep-ex/9708016.
[26] F.-P. Schilling, Measurement and nlo dglap qcd interpretation of diffractive deep-inelastic

scattering at hera. Paper 089 submitted to EPS 2003 Conf. Aachen.
[27] A. A. Savin. Prepared for NATO Advanced Research Workshop on Diffraction 2002, Alushta,

Ukraine, 31 Aug - 6 Sep 2002.
[28] H. Abramowicz, ECONF C0406271, MONT04 (2004). hep-ex/0410002.
[29] O. Gutsche, Dijets in diffractive photoproduction and deep-inelastic scattering at hera.

Contribution No. 6-0177 submitted to ICHEP04, Beijing Aug 2004.
[30] E. Gotsman, E. M. Levin, and U. Maor, Z. Phys. C57, 677 (1993). hep-ph/9209218.
[31] E. Gotsman, E. M. Levin, and U. Maor, Phys. Rev. D49, 4321 (1994). hep-ph/9310257.
[32] E. Gotsman, E. M. Levin, and U. Maor, Phys. Lett. B353, 526 (1995). hep-ph/9503394.
[33] E. Gotsman, E. M. Levin, and U. Maor, Phys. Lett. B347, 424 (1995). hep-ph/9407227.
[34] J. Forshaw, Diffractive Higgs production: theory. These Proceedings.
[35] E. Gotsman, E. M. Levin, and U. Maor, Phys. Lett. B309, 199 (1993). hep-ph/9302248.
[36] E. Gotsman, E. Levin, and U. Maor, Nucl. Phys. B493, 354 (1997). hep-ph/9606280.
[37] E. Gotsman, E. Levin, and U. Maor, Phys. Lett. B438, 229 (1998). hep-ph/9804404.
[38] E. Gotsman, E. Levin, and U. Maor, Phys. Lett. B452, 387 (1999). hep-ph/9901416.
[39] E. Gotsman, E. Levin, and U. Maor, Phys. Rev. D60, 094011 (1999). hep-ph/9902294.
[40] V. A. Khoze, A. D. Martin, and M. G. Ryskin, Eur. Phys. J. C14, 525 (2000). hep-ph/0002072.
[41] V. A. Khoze, A. D. Martin, and M. G. Ryskin, Eur. Phys. J. C18, 167 (2000). hep-ph/0007359.
[42] V. A. Khoze, A. D. Martin, and M. G. Ryskin, Eur. Phys. J. C19, 477 (2001). hep-ph/0011393.
[43] A. B. Kaidalov, V. A. Khoze, A. D. Martin, and M. G. Ryskin, Eur. Phys. J. C21, 521 (2001).

hep-ph/0105145.
[44] A. B. Kaidalov, V. A. Khoze, A. D. Martin, and M. G. Ryskin, Eur. Phys. J. C33, 261 (2004).

hep-ph/0311023.
[45] P. D. B. Collins, An Introduction to Regge Theory and High-Energy Physics. Cambridge 1977,

445p.
[46] L. e. Caneschi, Current physics sources and comments vol. 3: Regge theory of low pt hadronic

interactions. North Holland Pub (1989).
[47] A. Donnachie and P. V. Landshoff, Phys. Lett. B296, 227 (1992). hep-ph/9209205.
[48] A. Donnachie and P. V. Landshoff, Z. Phys. C61, 139 (1994). hep-ph/9305319.
[49] M. M. Block, K. Kang, and A. R. White, Int. J. Mod. Phys. A7, 4449 (1992).
[50] CDF Collaboration, F. Abe et al., Phys. Rev. D50, 5535 (1994).
[51] T. T. Chou and C.-N. Yang, Phys. Rev. 170, 1591 (1968).
[52] S. M. Troshin and N. E. Tyurin, Eur. Phys. J. C39, 435 (2005). hep-ph/0403021.
[53] A. H. Mueller, Phys. Rev. D2, 2963 (1970).

E. GOTSMAN, E. LEVIN , U. MAOR, E. NAFTALI , A. PRYGARIN

240



[54] J. Pumplin, Phys. Rev. D8, 2899 (1973).
[55] J. Pumplin, Phys. Scripta 25, 191 (1982).
[56] T. Gitman. TAU M.Sc. Thesis, unpublished (2003).
[57] H1 Collaboration, C. Adloff et al., Phys. Lett. B483, 23 (2000). hep-ex/0003020.
[58] ZEUS Collaboration, S. Chekanov et al., Eur. Phys. J. C24, 345 (2002). hep-ex/0201043.
[59] H. Kowalski and D. Teaney, Phys. Rev. D68, 114005 (2003). hep-ph/0304189.
[60] E. Gotsman, H. Kowalski, E. Levin, U. Maor, and A. Prygarin. Preprint in preparation (2005).
[61] CDF Collaboration, F. Abe et al., Phys. Rev. Lett. 79, 584 (1997).
[62] A. Donnachie and P. V. Landshoff, Nucl. Phys. B231, 189 (1984).
[63] V. A. Khoze, A. D. Martin, and M. G. Ryskin, Phys. Lett. B401, 330 (1997). hep-ph/9701419.
[64] V. A. Khoze, A. D. Martin, and M. G. Ryskin, Eur. Phys. J. C23, 311 (2002). hep-ph/0111078.
[65] M. A. Kimber, A. D. Martin, and M. G. Ryskin, Phys. Rev. D63, 114027 (2001).

hep-ph/0101348.
[66] M. A. Kimber, A. D. Martin, and M. G. Ryskin, Eur. Phys. J. C12, 655 (2000). hep-ph/9911379.
[67] A. G. Shuvaev, K. J. Golec-Biernat, A. D. Martin, and M. G. Ryskin, Phys. Rev.

D60, 014015 (1999). hep-ph/9902410.
[68] A. D. Martin and M. G. Ryskin, Phys. Rev. D64, 094017 (2001). hep-ph/0107149.
[69] G. Watt, A. D. Martin, and M. G. Ryskin, Eur. Phys. J. C31, 73 (2003). hep-ph/0306169.
[70] A. B. Kaidalov, V. A. Khoze, A. D. Martin, and M. G. Ryskin, Eur. Phys. J. C31, 387 (2003).

hep-ph/0307064.
[71] V. Khoze. Private communication to UM, July 2005.
[72] M. Arneodo. Talk at HERA/LHC CERN Meeting and private communication to UM, Oct. 2004.
[73] M. M. Block and F. Halzen, Phys. Rev. D63, 114004 (2001). hep-ph/0101022.
[74] O. J. P. Eboli, E. M. Gregores, and F. Halzen, Phys. Rev. D61, 034003 (2000). hep-ph/9908374.
[75] O. J. P. Eboli, E. M. Gregores, and F. Halzen, Nucl. Phys. Proc. Suppl. 99A, 257 (2001).
[76] L. Frankfurt, M. Strikman, and C. Weiss, Annalen Phys. 13, 665 (2004). hep-ph/0410307.
[77] L. Frankfurt, M. Strikman, C. Weiss, and M. Zhalov (2004). hep-ph/0412260.
[78] V. A. Petrov and R. A. Ryutin, Eur. Phys. J. C36, 509 (2004). hep-ph/0311024.
[79] A. Bialas, Acta Phys. Polon. B33, 2635 (2002). hep-ph/0205059.
[80] A. Bialas and R. Peschanski, Phys. Lett. B575, 30 (2003). hep-ph/0306133.
[81] M. Klasen and G. Kramer, Eur. Phys. J. C38, 93 (2004). hep-ph/0408203.
[82] M. Klasen and G. Kramer, Phys. Rev. Lett. 93, 232002 (2004). hep-ph/0410105.
[83] A. B. Kaidalov, V. A. Khoze, A. D. Martin, and M. G. Ryskin, Phys. Lett. B567, 61 (2003).

hep-ph/0306134.
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Abstract
We summarize the contributions in Working Group II on “Multi-jet final states
and energy flows” related to the topic of jet production, multi-jet topologies
and multi-scale QCD. Different parton shower models will lead to system-
atic differences in the event topology. This may have a significant impact on
predictions for the LHC. Here we will look at a few examples, such as the
acceptance of H → ττ events and in applying a jet veto in the non-hadronic
H → WW → lνlν decay channel. We also study the effect of CCFM evolu-
tion on the jet veto and on the event topology at the LHC in the forward region.
Finally, we show that the choice of the QCD scale leads to large uncertainties
in e.g. the H → ττ analysis.

1 Introduction
In simulating high-energy interactions, the sequence of branchings such as q → qg, can be modelled
by calculating the exact amplitude of the Feynman diagrams, known as the matrix-element method, or,
alternatively, can be modelled using the parton-shower approach. Matrix elements are in principle the
exact approach but lead to increasingly complicated calculations in higher orders, and are therefore only
used for specific exclusive physics applications, such as background estimates with multiple hard jets
(see also [1]).

Since no exact way of treating partonic cascades exist, various Monte Carlo programs model
the parton showers in different ways. In HERWIG [2] the parton showers are performed in the soft
or collinear approximation, treating the soft gluon emission correctly. The shower is strictly angular or-
dered, where the angle between emitted partons is smaller at each branching. The hardest gluon emission
is then matched to the first order matrix-element. This matrix-element correction has recently been im-
plemented for gg → H , leading to harder jets, and thus a more stringent jet veto in e.g. the non-hadronic
decay H → WW → lνlν, where the jet veto is crucial to reduce the top background. PYTHIA [3]
applies the collinear algorithm with the cascade ordered according to the virtuality Q2. Corrections to
the leading-log picture using an angular veto, lead to an angular ordering of subsequent emissions. The
initial parton branchings are weighted to agree with matrix-elements. ARIADNE [4] on the other hand,
does not emit gluons from single partons, but rather from the colour dipoles between two dipoles, thus
automatically including the coherence effects approximated by angular ordering in HERWIG. From the
resulting two dipoles softer emission occurs, resulting in a pT ordering of subsequent emissions. ARI-
ADNE has proven to predict the event shapes at HERA accurately [5], and could be explored more
widely for simulation studies for the LHC.

The way parton showers are implemented affects the emission of soft gluons, and therefore affect
both the transverse momentum of the produced Higgs, as well as the pT of the balancing jets. In the
∗ Supported in part by the Polish Government grant KBN 1 P03 091 27 (years 2004-2006) and by the EU grant MTKD-

CT-2004-510126, in partnership with the CERN Physics Department.
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following we will discuss the effect of the different parton showers on the selection of H → ττ by
applying angular cuts on the jets and on the selection of H →WW → lνlν by rejecting events with jets
with large pT .

Both PYTHIA and HERWIG are general purpose leading order (LO) parton shower Monte Carlo
programs, based on LO matrix elements. MC@NLO [6] on the other hand, uses exact next-to-leading
order (NLO) calculations and is matched to the HERWIG parton shower Monte Carlo. Its total cross
section is normalized to NLO predictions. The different predictions of these programs for the high part
of the transverse momentum spectrum of the Higgs will be described in detail.

In the parton cascade as implemented in e.g. PYTHIA, the parton emissions are calculated using
the DGLAP approach [7], with the partons ordered in virtuality. DGLAP accurately describes high-
energy collisions of particles at moderate values of the Bjorken-x by resummation of the leading log
terms of transverse momenta ((αs lnQ2)n). However, to fixed order, the QCD scale used in the ladder
is not uniquely defined. Different choices of the scale lead to large differences in the average transverse
momentum of the Higgs in e.g. the processes gb→ bH and gg → bbH .

In the CCFM formalism [8] there is no strict ordering along the parton ladder in transverse energy,
contrary to the DGLAP formalism. The CASCADE Monte Carlo program [9] has implemented the
CCFM formalism, inspired by the low-x F2 data and forward jet data from HERA, and became recently
available for pp scattering processes. Until now, CASCADE only includes gluon chains in the initial
state cascade. Different sets of unintegrated gluon densities are available, which all describe HERA data
equally well [9]. Note, however, that it is questionable if these densities are constrained enough for Higgs
production, as discussed elsewhere in these proceedings [10].

CCFM is expected to provide a better description of the gluon evolution at very low values of x
compared to DGLAP, as it also takes leading-logs of longitudinal momenta ((αs lnx)n) into account.
Since the partons at the bottom of the ladder (furthest away from the hard scatter) are closest in rapidity
to the outgoing proton, effects might be expected in the forward region. The event topology in terms of
jets and charged multiplicity is investigated at rapidities 2<η<5, corresponding to the acceptance of the
LHCb detector.

2 MSSM Higgs production with the Yukawa bbH coupling induced mechanisms
In the MSSM, the Yukawa coupling of the heavy neutral Higgs bosons to the bottom quarks is strongly
enhanced for large tan(β) with respect its SM value, which makes the Higgs boson production in as-
sociation with bottom quarks the primary production mechanism in LHC pp collisions. Currently, the
inclusive cross section for this process is under good control up to NNLO, both in the so called fixed-
flavour-scheme (FFS) and varying-flavour-scheme (VFS). The impressive level of theoretical uncertainty
in the order of 15% is achieved on the predictions for the total cross-section for mH=120 GeV [11, 12].

The observability potential for the H → ττ channel [13] is, however, very sensitive to the topol-
ogy of the events, due to the reconstruction of the invariant mass of the tau-pair, using the collinear
approximation of τ -leptons decay, in order to account for the neutrino momenta. The impact of the event
topology on the final acceptance of the signal has been discussed elsewhere [14]. Here, we pursue the
subject further and we study more quantitatively the systematic effects from the parton shower model
and the choice of the QCD scale selected in the event generation.

Currently available Monte Carlo generators for the Higgs boson production are based on the LO
matrix elements, with the QCD part of physics event simulated with a parton shower approach. Clearly,
the kinematics of the Higgs boson (and therefore the final acceptance for the signal) depends strongly on
the algorithm used to simulate the QCD cascade. At tree level, the following exclusive processes have
been studied, combining the observability of events with and without spectator b-tagged jets accompa-
nying the reconstructed tau-pair: gb→ bH (VFS), gg → bb̄H (FFS), bb̄→ H (VFS) and gg → H .

For the purpose of the discussion presented here we have studied the SM Higgs boson production
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Fig. 1: The transverse momenta of the Higgs boson, pHiggs
T for 3 different shower models for each production

mechanism. The red solid line represents PYTHIA, the dashed green line ARIADNE and the dotted blue line
HERWIG events. The vertical scale gives the number of events per bin, and a total of 105 events have been
generated with each program.

with a mass of 120 GeV, decaying into a tau pair, where one tau decays hadronically and one leptonically.
The reconstruction of the Higgs boson mass and the selection criteria were performed at the level of gen-
erated particles (leptons, hadrons) or, where necessary (missing energy, b-jets), on objects reconstructed
from simplified simulation of the detector response [15].

2.1 Systematics from the choice of parton shower model
As discussed in the introduction, the various parton shower models predict different spectra of the trans-
verse momentum, pHiggs

T , of the produced Higgs boson. This leads to a large variation in the prediction
for the fraction of accepted events. The obvious starting point for the discussion is the Higgs boson trans-
verse momentum spectra in complete physics events 1. In case of the 2→2 and 2→3 processes, the pT of
the Higgs boson arrises predominantly from matrix elements, whereas in the 2→1 events pHiggs

T purely
comes from the parton shower. Therefore, the Higgs transverse momentum spectra differ significantly
for different models of the QCD cascade. Figure 1 shows these spectra for each production mechanism 2.

Clearly, the spectra of the Higgs boson transverse momenta show substantial dependence not only
on the topology of the hard process, but also on the shower model used in the simulation of the event.
The shower model as implemented in PYTHIA includes hard matrix element corrections for inclusive
gluon-gluon fusion, gg → H , hence leading to a harder spectrum compared to the one obtained from the
standard HERWIG shower. In this production mode the shower model from ARIADNE fails because of
the missing splitting kernel for g → qq̄. On the other hand, the ARIADNE model predicts the hardest
spectra for the process bb̄ → H . In this production channel, predictions from PYTHIA and HERWIG

1The AcerMC 2.4 framework [16] with interfaces to PYTHIA 6.2, ARIADNE 4.12 and HERWIG 6.5 was used to generate
events and AcerDET [15] was used to simulate the detector performance.

2The CTEQ5L parton density functions were used in all simulations. It has been checked that both final acceptance of the
signal and the mean Higgs boson transverse momentum is almost independent of the pdf parametrization. Uncertainties below
10% are observed by using CTEQ5L, CTEQ6L, MRST2001 interfaced with LHAPDF [17]).
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Table 1: The average transverse momenta of the Higgs boson and acceptance of selection criteria for different
hard processes and parton shower models. Events were generated with default initialization of these generators.
Columns marked PY, AR and HW denote results from PYTHIA, ARIADNE and HERWIG shower model respec-
tively.

Hard process gg→ H bb̄→ H

Shower model PY AR HW PY AR HW

< pHiggs
T (generated)> (GeV) 37.2 X 32.2 23.1 29.9 24.6

< pHiggs
T (accepted)> (GeV) 129.4 X 75.27 58.6 91.64 68.4

basic selection 14.2% X 12.7% 12.8% 13.8% 11.8%

+( cos(φ) >-0.9 , |sin(φ)| >0.2 ) 5.5% X 4.5% 2.9% 4.3% 2.7%

+(pmissT > 30 GeV, mlep−miss
T <50GeV) 3.8% X 2.3% 1.4% 2.3% 1.5%

+( mass window: 120 ± 20 GeV ) 2.4% X 1.3% 0.6% 1.3% 0.6%

+( 1 tagged b-jet) 0.4% 1.0% 0.4%

Hard process gb→ bH gg→ bb̄H

Shower model PY AR HW PY AR HW

< pHiggs
T (generated)> [GeV] 32.5 26.0 26.9 27.2 35.8 47.4

< pHiggs
T (accepted)> [GeV] 125.1 133.9 82.1 95.0 99.6 105.3

basic selection 13.3% 12.6% 11.7% 13.0% 13.6% 12.1%

+( cos(φ) > −0.9, |sin(φ)| >0.2 ) 4.4% 3.4% 3.2% 3.5% 5.1% 6.7%

+(pmissT > 30 GeV,mlep−miss
T <50GeV) 2.7% 2.4% 1.7% 2.0% 2.9% 3.8%

+( mass window: 120 ± 20 GeV ) 1.7% 1.5% 0.9% 1.1% 1.8% 2.6%

+( 1 tagged b-jet) 1.3% 1.4% 0.6% 0.9% 1.2% 2.1%

are in quite good agreement. However, almost a factor of two difference for the prediction of the mean
transverse momenta can be reported between PYTHIA and HERWIG in gg → bb̄H process.

Numerical values for the average Higgs boson transverse momentum in different production pro-
cesses and parton shower models are given in Table 1. It is important to stress that these results were
obtained with default settings of the parameters for each parton shower model.

The steps of the analysis that lead to the reconstruction of the tau-pair invariant mass are indi-
cated in Table 1, including the acceptances for all the discussed production processes and parton shower
models. They consist of the basic selection (including the trigger and pT and |η| cuts on the lepton and
jet), and the additional selection that is needed to improve the mass resolution of the accepted tau-pair.
The acceptance of the signal after the basic selection is rather stable, at the level of 12%-14% depending
on the production mechanism. The significant differences start to appear when a cut on the angle be-
tween the lepton and hadron is applied. A difference of almost a factor two is observed for the bb̄ → H
production process with the parton shower from the HERWIG or ARIADNE model, respectively.

For the final acceptance values, the uncertainty from the parton shower model varies between 85%
for inclusive gluon fusion to 135% for gg → bbH (between HERWIG and PYTHIA models). In the
case of the Higgs production through bb → H , predictions from HERWIG and PYTHIA models are
in excellent agreement. However, the prediction of the acceptance in this production channel differs
by 115% if the parton shower from ARIADNE is used. For the gb → bH production mechanism, the
uncertainty due to the shower model from either PYTHIA or HERWIG is about 90%.
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Fig. 2: Same as Fig. 1 but after selection presented in Table 1. The vertical scale in in number of events entering
given bin after selection procedure, in each case 105 events were initially generated.

The systematic theoretical uncertainty on the predictions for the final acceptance ranges from 85%
to 135% for the three different shower models studied here. The uncertainty is even larger, when the
requirement of an additional tagging b-jet is introduced, up to 170% for bb → H 3. Figure 2 shows the
Higgs boson transverse momentum for those events that passed all selection criteria. As can be observed,
the selection criteria rejected most of events with pHiggs

T < 40 GeV.

2.2 Systematics from the choice of QCD scale
Having considered here the available Monte Carlo generators with the overall precision of the leading
order only, large uncertainties are expected for the predictions coming from different scale choices.
Here we concentrate only on the effects on the event topology, neglecting the effects from the choice of
the QCD scale on the total cross-section. Table 2 shows the Higgs boson mean transverse momentum
and final acceptance of the signal for 2→2 and 2→3 processes for some possible choices in PYTHIA
and ARIADNE. The Q2 value sets the scale not only for the hard scattering process, but also for the
initial state parton shower. For the 2→1 production, the Q2 scale is naturally set to be the mass of the
Higgs boson mass. The uncertainty in the acceptance due to scale choice for the gg → bb̄H production
mechanism is about 60% in the case of PYTHIA and 25% in the case of ARIADNE parton shower
model. For the exclusive process gb→ bH , the uncertainties are 75% and 100%, respectively.

3 gg → H at the LHC: Uncertainty due to a Jet Veto
In the Higgs mass range between 155 and 180 GeV, H →W +W− → `ν`ν is considered to be the main
Higgs discovery channel [18, 19]. The signal consists of two isolated leptons with large missing ET and

3It should be stressed, that the problem of the efficiency of b-jet tagging was not touched upon, nor was the problem of
the efficiency for the reconstruction of the τ -jet. Discussing these effects, very important for complete experimental analysis,
would complicate the problem and dilute the aim of the phenomenological studies presented here.
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Table 2: The average transverse momenta of the Higgs boson and acceptance of selection criteria for different
scale choices. Events were generated with default initialization of these generators. Events marked PY and AR

denote results from PYTHIA and ARIADNE shower model respectively.

Hard process gb→ bH gg→ bb̄H

Q2 scale default ŝ 2ŝt̂û
ŝ2+t̂2+û2 default m2

b m2
b ŝ

<Q> (GeV) 94 257 49 27 4.8 120 255

< pHiggs
T (generated)> (GeV)[PY] 32.5 42.7 43.2 27.2 29.8 32.1 36.2

Acceptance (%) [PY] 1.7 2.6 2.96 1.1 1.3 1.4 1.8

< pHiggs
T (generated)> (GeV)[AR] 26.0 25.5 44.9 35.8 38. 35.3 34.5

Acceptance (%) [AR] 1.5 1.6 3.1 1.8 2.1 1.7 1.7

with a small opening angle in the plane transverse to the beam, due to spin correlations of the W -pair.
In order to reduce the top background, a jet veto has to be applied. The signal over background ratio is
found to be around 2:1 for Higgs masses around 165 GeV. For lower and higher Higgs masses, the signal
over background ratio decreases slightly [19]. The experimental cross section σmeas of the Higgs signal
and other final states is given by:

σmeas = Ns/(εsel × Lpp), (1)

with Ns being the number of signal events, εsel the efficiency after all signal selection cuts are applied
and Lpp the proton-proton luminosity. In order to get an estimate of the cross section uncertainty, the
statistical and systematic uncertainties have to be determined. The systematic uncertainties come from
the experimental selection, background and luminosity uncertainties. As the signal over background ratio
is small in the channel under study, the systematic uncertainties should be known precisely. This study
concentrates on the uncertainty of the signal efficiency due to the jet veto, by studying the systematics
using different Monte Carlo simulations. To do so, four different parton-shower Monte Carlo programs
were used, as described in the introduction. The effect of different parton shower models are discussed by
comparing PYTHIA 6.225 [3] and HERWIG 6.505 [2], whereas the comparison to MC@NLO 2.31 [6]
leads to an uncertainty estimate of higher-order effects 4. Then, also CASCADE 1.2009 [9] is studied to
compare the DGLAP approach to the CCFM formalism.

Jets are reconstructed using an iterative cone algorithm with a cone size of 0.5. The leading
particle (seed) of the jet is required to have a pT larger than 1 GeV. The pseudo-rapidity |η| of the jet
should be smaller than 4.5, corresponding to the CMS detector acceptance [20]. The event is rejected if
it contains a jet with a pT higher than 30 GeV. The Higgs mass for this study was chosen to be 165 GeV,
corresponding to the region of phase space with the highest signal over background ratio. First, all events
are studied without considering the underlying event. Finally, PYTHIA is also studied including different
underlying event schemes.

3.1 Matrix Element Corrections
At leading order, the transverse momentum of the Higgs boson, pHiggs

T , is zero. However, parton shower
Monte Carlos emit soft gluons which balance the Higgs and introduce a transverse momentum in LO
parton shower Monte Carlos. As the Higgs is balanced by jets, the transverse momentum is very sensitive
to the jet veto and therefore also the efficiency of a jet veto dependends stongly on pHiggs

T .

In Fig. 3, the normalized pHiggs
T spectra are shown for PYTHIA, HERWIG and MC@NLO. HER-

WIG and MC@NLO are very similar at low pT , as can be seen on the linear scale, which is to be expected
as the soft and collinear emissions of MC@NLO are treated by HERWIG. Figure 4 shows that PYTHIA

4In the following, HERWIG and PYTHIA use the pdf-set CTEQ5L, whereas MC@NLO uses CTEQ5M.
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T spectra for PYTHIA, HERWIG and MC@NLO in linear and logarithmic scale.
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Fig. 5: Efficiency of the jet veto of 30 GeV as a
function of pHiggs

T .

predicts a softer leading jet spectrum than HERWIG and therefore also a softer pHiggs
T spectrum. HER-

WIG implements angular ordering exactly and thus correctly sums the LL (Leading Log) and part of the
NkLL (Next-to..Leading Log) contributions. However, the current version of HERWIG available does
not treat hard radiations in a consistent way. Hence the spectrum drops quickly at high pT , see Fig. 3b).
PYTHIA on the other hand does not treat angular ordering in an exact way, but includes hard matrix ele-
ment corrections. Therefore PYTHIA looks more similar to MC@NLO at high pT . MC@NLO correctly
treats the hard radiation up to NLO, combining the high pT spectrum with the soft radiation of HERWIG.

In Fig. 5, the efficiency of the jet veto is shown for the three different Monte Carlos as a function
of pHiggs

T . One observes a strong dependency of pHiggs
T on the jet veto. Once a jet veto is defined, the

efficiency starts to drop quickly as soon as pHiggs
T is close to the pT used to define a jet veto. However, as

the transverse momentum of the Higgs can be balanced by more than one jet, the efficiency is not zero
above this value.

G. Corcella provided a preliminary version of HERWIG including hard matrix element corrections
for gg → H [21]. The hard matrix element corrections lead to harder jets, see Fig. 6, and therefore the jet
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Table 3: Efficiency of jet veto for MC@NLO, PYTHIA, HERWIG, HERWIG + ME Corrections and CASCADE

Efficiency for events with a Inclusive efficiency

pT Higgs between 0 and 80 GeV (all events)

MC@NLO 2.31 0.69 0.58

PYTHIA 6.225 0.73 0.62

HERWIG 6.505 0.70 0.63

HERWIG 6.505 + ME Corrections 0.68 0.54

CASCADE 1.2009 0.65 0.55

veto is more effective. At high pT , PYTHIA and HERWIG now show very similar predictions. Table 3
shows the efficiencies of the jet veto of 30 GeV for MC@NLO, PYTHIA and HERWIG with and without
matrix element corrections. In addition, the numbers for CASCADE are shown, which will be discussed
in more detail later. In the first row, the number of the efficiency for pHiggs

T between 0 and 80 GeV is
shown. The second column shows the inclusive efficiency for all events. One has to keep in mind that
after all selection cuts, only the low pT region is important [19].

In order to estimate the effect from the detector resolution on the jet veto, the ET of the jet is
smeared with the jet resolution of e.g. CMS, as given by [20]:

∆ET /ET = 118%/
√
ET + 7%. (2)

More jets at initially low pT are shifted to higher pT than vice versa, as the jets are generally soft.
However, the effect of the smearing is limited and the difference between the smeared and unsmeared
case is smaller than 1%.

In the last years, a lot of progress has been made in understanding the Higgs boson production
and decays on a theoretical basis. The gluon fusion cross section has been calculated up to NNLO [22].
Such corrections are known to increase the LO cross section by a factor of more than two. In order to
include these higher order corrections in a parton shower Monte Carlo, each event is reweighted with its
corresponding pT -dependent effective K-factor (which includes all selection cuts) [19]. This technique
can be applied to other processes which are sensitive to jet activity, e.g. the WW background for this
channel. The result is an overall effective K-factor of 2.04 for a Higgs mass of 165 GeV, which is only
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Table 4: Efficiency numbers for different underlying event tunings in PYTHIA.

Efficiency for events with a Inclusive efficiency
pT Higgs between 0 and 80 GeV (all events)

PYTHIA no UE 0.730 0.620
PYTHIA default 0.723 0.613
ATLAS tune 0.706 0.600
CDF tune 0.709 0.596

about 15% lower than the inclusive K-factor (without any cuts) for the same mass. This reweighting
method allows to optimize the selection cuts and thus also helps to improve the discovery potential.
We observe that the uncertaintiy of the jet veto efficiency does not change significantly including those
higher order corrections.

3.2 Underlying Event
So far all events were generated without considering the underlying event. However, to study a jet veto,
it is important to consider also the effect of the underlying event. Therefore, PYTHIA was studied
with different underlying event tuning schemes, which are the ATLAS Tune [23], CDF Tune A [24] and
PYTHIA default (MSTP(81)=1, MSTP(82)=3 [3]). The different tunings lead to approximately the same
efficiency, and also the difference in the efficiency with and without underlying event is smaller than 1%,
see Table 4.

3.3 Comparing to CCFM evolution
Finally, we compared the PYTHIA, HERWIG and MC@NLO predictions with the ones obtained using
CASCADE. One has to keep in mind that this Monte Carlo is dedicated to low-x physics, and is about
to be released for LHC physics applications. There were many improvements implemented during this
workshop. In Fig. 7, the pHiggs

T spectra for PYTHIA, HERWIG+ME Corrections, MC@NLO and CAS-
CADE are shown. The prediction from CASCADE lies within the ones from PYTHIA and HERWIG.
When looking at different pT regions, one generally observes that CASCADE produces more jets com-
pared to the other Monte Carlos, and the jets are harder. The jet veto efficiency as a function of the pT
of the Higgs is shown in Fig. 8, indicating that the main differences are in the low pT range and that the
efficiency for CASCADE is slightly smaller than unity at a pHiggs

T of zero. A reason for this is that the
Higgs boson is balanced by more than one jet, with at least one of the jets with a pT higher than 30 GeV
and thus vetoed. For the same reason, the efficiency in general is lower than for the other Monte Carlo
programs at low pHiggs

T . Results in the high pT region have to be studied carefully.

4 Forward Studies with CASCADE at LHC Energies
The applicability of DGLAP evolution [7] is known to be limited in the very forward region, that is at
small values of Bjorken-x, where ln(x) terms are expected to become large [25]. Since the partons at the
bottom of the ladder (furthest away from the hard scatter) are closest in rapidity to the outgoing proton,
effects might be expected in the forward region. The CCFM evolution [8] takes these BFKL-like terms
into account, and is implemented in the CASCADE Monte Carlo program [9].

We have studied the topology of forward particle and jet production in the LHCb detector at the
LHC. LHCb is a forward spectrometer covering roughly the forward region 1.8<η<4.9 [26]. Its main
goal is the study of CP violation in the B-meson sector and the measurement of rare B-decays. But its
very nature makes LHCb a suitable environment for QCD forward studies.
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The usage of another Monte Carlo program in LHCb is important in order to estimate the un-
certainty on the PYTHIA [3] predictions. In particular, the track multiplicity seen in the detector is an
important factor to take into account, as it affects the performance of the trigger, the tracking and the
B-tagging. But here we will concentrate on another aspect: the study of the QCD evolution itself, prov-
ing that LHCb has the potential to be a natural test bed of QCD in the forward region, complementing
the studies done at present at the Tevatron and the future studies to be made with the central detectors –
ATLAS and CMS – at the LHC. The predictions in the forward region as given by CASCADE are here
compared with that of PYTHIA, the default Monte Carlo generator used in LHCb. This is a “natural”
way to test CCFM versus DGLAP QCD evolution in the region of the phase space where differences are
most likely to show.

In what follows we will compare both predictions for the event kinematics and topology, and the
particle and jet production. We used CASCADE version 1.2009 “out of the box” and PYTHIA 6.227
with the LHCb tune. We used for the comparisons a sub-sample of the QCD processes of PYTHIA, as
CASCADE only includes (unintegrated) gluons. PYTHIA was run with the only sub-processes fg→fg,
gg→ ff and gg→ gg, and multiple interactions (MI) were also switched off, since they are as yet not
implemented in CASCADE; this version is denoted “PYTHIA gluon” in the plots. Another configuration
named “PYTHIA gluon incl MI” has the multiple interactions switched on, for a cross-check of the
influence of such inclusion. All the plots refer to minimum bias events.

4.1 Event Kinematics
Figure 9 shows the kinematic variables Q2 and Bjorken-x variables x1 and x2 (referring to both LHC
proton beams of energy Ep), using the definitions given below. For PYTHIA the standard definitions
from the PYPARS common block were used:

x1 = PARI(33) x2 = PARI(34);

Q2 = PARI(18),

whereas for CASCADE we set 5:

x1,2 =
(E + |pz|)in. parton 1,2

2Ep
;

5The two incoming partons in the hard interaction are obtained from the variables NIA1 and NIA2, corresponding to the
positions 4 and 6 in the CASCADE event record, whereas the outgoing partons are at positions 7 and 8.
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Q2 = p2
T out. parton.

There is a reasonable agreement between both Monte Carlo programs, although a direct comparison
seems difficult and unnatural given the definitions above. The phase space spanned by the kinematic
variables x1,2 and Q2 is shown also in Fig. 9 for PYTHIA.

4.2 Forward Particle Production
Some general event variables are compared in Fig. 10 in the region of the LHCb acceptance, 1.8<η<4.9,
including the charged track multiplicity, the acoplanarity (∆φ) of the outgoing partons, the average
track transverse momentum in the event <pT> and the maximum track transverse momentum pT,max.
The predictions from both Monte Carlo programs agree well – neglecting the multiple interactions in
PYTHIA – likely because the same final state parton showering is performed. The effect of including the
multiple interactions is seen mainly in the event multiplicity, as expected. Interesting is the distribution
of the acoplanarity of the two outgoing partons: PYTHIA predicts a strong (anti-)correlation whereas
CASCADE exibits a distribution that is nearly flat.
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distribution of the ratio of E2
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2 in the LHCb acceptance shows a comparison of the two scales. Jets were

selected with ET,jet > 1 GeV.

The number of charged tracks per unit rapidity, dN/dηtracks, and the differential distribution
of the number of charged tracks (in the LHCb acceptance) as a function of the transverse momentum
pT,tracks are also included in Fig. 10. Note that these 2 distributions were normalized to the mean
track multiplicity in the full and LHCb acceptance, respectively. The pT distributions compare very
well, leading us to conclude that the general hard dynamics of the event is predicted in a rather similar
way by both programs. CASCADE however, produces more forward tracks than PYTHIA, as the η-
distribution is clearly flatter than the rather steep distribution of PYTHIA. This is particularly true in the
region 5<η<8, just beyond the acceptance of the LHCb spectrometer – shown between the 2 vertical
dashed lines – , but could make LHCb a candidate environment to discriminate between the two predicted
forward behaviours.

4.3 Forward Jet Production
We have also looked at jet production. Jets were found in the laboratory frame with the KTCLUS
algorithm on all stable hadrons, in the longitudinally invariant inclusive mode. We looked at the jet
production in the LHCb acceptance with a rather loose selection of ET,jets > 1 GeV. The number of
jets found in PYTHIA or CASCADE is shown in Fig. 11. The number of events with no jets satisfying
ET,jet > 1 GeV inside 1.8<η<4.9 is much larger for PYTHIA. In other words, CASCADE predicts
a jet cross-section larger than PYTHIA, a fact already shown by the HERA experiments in low-x jet
analyses. This difference leads us to believe that strong angular ordering in CASCADE favours a “clus-
tered production” of particles and therefore the production of jets, whereas PYTHIA tends to give a more
spreaded transverse energy flow. Furthermore, though the effect is small, we already saw from Fig. 10
that the highest-pT track is somewhat softer in PYTHIA compared to CASCADE.

The rapidity distribution and the transverse energy distribution of the jets is also shown in Fig. 11;
they have been normalized to the average number of jets per event in the full acceptance and LHCb
acceptance, respectively. PYTHIA and CASCADE predict similar jets in the LHCb acceptance, but the
inclusion of multiple interactions gives a harder spectrum.
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Also shown are the event distributions in the LHCb acceptance of the highest-ET jet in the event,
ET,jet1, and the energy fraction of the proton carried by the highest-ET jet, xjet1 = Ejet1/Ep. The
hardest jet in the event is on average harder in CASCADE compared to PYTHIA. The distributions
of xjet and E2

T,jet/Q
2 are interesting in that they correspond to variables now in standard use within

the HERA experiments as a means of selecting samples where forward effects are expected. Indeed
both experiments have published a series of “forward QCD” analyses [25] applying cuts of the kind
E2
T,jet∼Q2 and xjet � xBjorken. The phase space is selected such that it suppresses jet production via

DGLAP evolution and enhances production from BFKL dynamics:

– DGLAP evolution is suppressed in the small phase space for Q2 evolution requiring E2
T,jet ∼ Q2;

– CCFM evolution enhanced when large phase space for x evolution requiring xjet � xBjorken.

At the LHC such a selection becomes rather delicate, since there are two proton beams and the com-
parison of xjet with xBjorken gets an ambiguity between the choice of x1 or x2. A way out – though it
lowers significantly the statistics – would be to make the selection based on xjet � max(x1, x2). From
the distributions presented in this paper we are lead to believe that such a forward selection is indeed
possible. But we leave this issue open for further investigation.

5 Summary
Various ways of treating parton showers have been compared, as implemented by the HERWIG, PYTHIA
and ARIADNE Monte Carlo programs. We have studied the uncertainties that arrise from these different
models to the pT -spectrum of the jets, and the pT -spectrum of the Higgs boson.

The theoretical systematic uncertainty on predictions for inclusive cross section at NNLO for
Higgs production with bbH Yukawa coupling is under good theoretical control with an uncertainty of
about 15% for a Higgs mass around 120 GeV. However, the predictions for the exclusive cross section
determined by the event selection of a simplified experimental analysis indicates at present an order by
magnitude larger uncertainty in e.g. H → ττ events. Uncertainties due to the shower model can reach
170% and depend strongly on the production mechanism. Another factor of two arises from the choice
of the QCD scale. Higher order Monte Carlo generators will therefore be mandatory to achieve better
precision on the theoretical predictions.

On the other hand, the uncertainty of the jet veto efficiency in the H → WW → lνlν decay
channel by using different Monte Carlo generators in the gg → H process is estimated to be around
10%. Including higher order QCD corrections does not enhance the uncertainty significantly. Also the
effect of including a realistic jet-ET resolution is very small. The effect of including an underlying event
in the simulation is smaller than 1%, and does not vary significantly for various tuning models.

Furthermore we have studied the predictions at the LHC using the CCFM formalism as imple-
mented in the full hadron level Monte Carlo generator. We conclude that CASCADE produces more
and harder jets compared to the other Monte Carlo programs, leading to a bigger uncertainty of the jet
veto efficiency in the small pHiggs

T range. In the forward region larger differences are expected between
the DGLAP and CCFM approach, but in the moderate forward rapidity range 2<η<5, as covered by the
LHCb detector, a fairly good agreement between CASCADE and PYTHIA is observed for most of the
distributions looked at, and despite their different philosophies. However, this result has to be treated
with care, as the program is only recently developped for proton physics at such high energies as pro-
duced in the future LHC. It also comes out of this simple study that CASCADE is indeed a potential
Monte Carlo tool to use for QCD studies at the LHC in the forward region. In the future one should
further investigate regions of phase space where large differences in behaviour are expected at the LHC
from DGLAP and BFKL dynamics. LHCb seems a natural experimental environment in which to study
such differences.

Finally, we would like to encourage the community by stating that it is very interesting and instruc-
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tive to study the predictions at the LHC by using tools developed and tuned at HERA, such as the CCFM
Monte Carlo CASCADE, and by using parton shower models such as ARIADNE, that have proven their
validity at HERA.
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[4] L. Lönnblad, Comput. Phys. Commun. 71, 15 (1992).
[5] ZEUZ Collaboration, S. Chekanov et al., Eur. Phys. J. C27, 531 (2003).
[6] S. Frixione and B. Webber, JHEP 0206, 029 (2002).
[7] V. Gribow and L. Lipatov, Sov. J. Nucl. Phys. 15, 438 and 675 (1971);

G. Altarelli and G. Parisi, Nucl. Phys. B126, 298 (1977);
Y. L. Dokshitzer, Sov. Phys. JETP 46, 641 (1977).

[8] M. Ciafaloni, Nucl. Phys. B296, 49 (1988);
S. Catani, F. Fiorani, and G. Marchesini, Nucl. Phys. B336, 18 (1990).

[9] H. Jung, Comput. Phys. Commun. 143, 100 (2002).
[10] J. Collins et al., Unintegrated parton density functions. These proceedings.
[11] R. Harlander and W. Kilgore, Phys. Rev. D68, 013001 (2003).
[12] J. Campbell, R. K. Ellis, F. Maltoni, and S. Willenbrock, Phys. Rev. D67, 095002 (2003).

hep-ph/0204093.
[13] ATLAS Collaboration, Detector performance and physics potential TDR, 1999.

CERN-LHCC-99-15, vol.II, ch.19.
[14] E. Richter-Was, T. Szymocha, and Z. Was, Phys. Lett. B589, 125 (2004). hep-ph/0402159.
[15] E. Richter-Was, AcerDET: a particle level fast simulation and reconstruction package for

phenomenological studies on high pt physics at LHC. Preprint hep-ph/0207355, 2002.
[16] B. Kersevan and E. Richter-Was, The Monte Carlo event generator AcerMC 2.0 with interfaces to

PYTHIA 6.2 and HERWIG 6.5. Preprint hep-ph/0405247, 2004.
[17] LHAPDF online manual, available on http://durpdg.dur.ac.uk/lhapdf.
[18] M. Dittmar and H. Dreiner, Phys. Rev. D55, 167 (1997).
[19] G. Davatz, G. Dissertori, M. Dittmar, M. Grazzini, and F. Pauss, JHEP 05, 009 (2004).
[20] CMS Collaboration, CMS TDR 6.2, 2002. CERN-LHCC-2002-26, ch.15, p.317.
[21] G. Corcella and S. Moretti, Phys. Lett. B590, 249 (2004).
[22] S. Catani, D. de Florian, and M. Grazzini, JHEP 0105, 025 (2001);

R. V. Harlander and W. B. Kilgore, Phys. Rev. D64, 013015 (2001);
R. V. Harlander and W. B. Kilgore, Phys. Rev. Lett. 88, 201801 (2002);
C. Anastasiou and K. Melnikov, Nucl. Phys. B646, 220 (2002);
C. Anastasiou and K. Melnikov, Phys. Rev. Lett. 93, 262002 (2004);
J. S. V. Ravindran and W. L. van Neerven, Nucl. Phys. B665, 325 (2003).

[23] I. D. A. Moraes, C. Buttar and P. Hodgson, available on
http://amoraes.home.cern.ch/amoraes/. ATLAS internal notes.

[24] R. Field, available on http://www.phys.ufl.edu/rfield/cdf/. CDF Note 6403.
[25] ZEUS Collaboration, S. Chekanov et al. (2005). hep-ex/0502029;

H1 Collaboration, C. Adloff et al., Nucl. Phys. B38, 3 (1999).
[26] LHCb Collaboration, LHCb reoptimized detector design and performance TDR, 2003.

CERN-LHCC-2003-030.

14

MULTI -JET PRODUCTION AND MULTI-SCALE QCD

255



Unintegrated parton density functions

John Collins1, Markus Diehl2, Hannes Jung2, Leif Lönnblad3 , Michael Lublinsky4 , Thomas Teubner5
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Abstract
An overview on activities to determine unintegrated parton density functions
is given and the concept and need for unintegrated PDFs is discussed. It is also
argued that it is important to reformulate perturbative QCD results in terms of
fully unintegrated parton densities, differential in all components of the parton
momentum. Also the need for non-linear BFKL evolution is discussed and
results using the BK equation supplemented by DGLAP corrections at short
distances is reviewed. Finally the use unintegrated generalized parton distri-
butions for hard diffractive processes is discussed.

1 Unintegrated parton density functions1

The parton distributions of hadrons still cannot be calculated from first principles, but have to be de-
termined experimentally. However, once the initial distributions f 0

i (x, µ2
0) at the hadronic scale (µ2 ∼

1 GeV2) are determined, different approximations allow to calculate the parton density functions (PDFs)
for different kinematic regions:

– DGLAP [1–4] describes the evolution with the scale µ2

– BFKL [5–7] describes the evolution in the longitudinal momenta x
– CCFM [8–11] describes the evolution in an angular ordered region of phase space while reproduc-

ing DGLAP and BFKL in the appropriate asymptotic limits

The different evolution equations attempt to describe different regions of phase space on the basis of in
perturbative QCD (pQCD).

1.1 Introduction to uPDFs and k⊥ factorization
In the collinear factorization ansatz the cross sections are described by x-dependent density functions
fi(x, µ

2) of parton i at a given factorization scale µ convoluted with an (on-shell) coefficient function
(matrix element):

σ(a+ b→ X) =

∫
dx1dx2fi(x1, µ

2)fj(x2, µ
2)σ̂ij(x1, x2, µ

2) (1)

with σ̂ij(x1, x2, µ
2) being the hard scattering process for the partons i+j → X . In this equation we have

left implicit all external kinematic variables, keeping only the variables used in the parton densities. This
ansatz is very successful in describing inclusive cross sections, such as the structure function F2(x,Q2)
at HERA or the inclusive production of vector bosons or Drell-Yan in proton proton collisions. The
free parameters of the starting distributions f 0

i (x, µ2
0) are determined such that after a DGLAP evolution

to the scale µ2 = Q2 and convolution with the coefficient functions the measured structure function
1Authors: Hannes Jung and Leif Lönnblad.
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F2(x,Q2) at HERA (and, usually, some other cross sections, e.g., in hadron-hadron and neutrino-hadron
scattering) are best described.

However, as soon as, for example, final-state processes are considered, the collinear factorization
ansatz becomes more and more unreliable, because neglecting the transverse momenta of the partons
during the (DGLAP) evolution leads to inconsistencies, as will be discussed in more detail in section 2.
Collinear factorization is only appropriate when (a) the transverse momentum (and virtuality) of the
struck parton(s) can be neglected with respect to Q, and (b) the integrals over these variables can be
treated as independent and unrestricted up to the scale Q. (Certain complications concerning high trans-
verse momentum partons are correctly treated by NLO and higher corrections to the hard scattering.)
When these requirements are not met, a more general treatment using unintegrated parton densities
(uPDFs) is better.

For example, in the small x regime, when the transverse momenta of the partons are of the same
order as their longitudinal momenta, the collinear approximation is no longer appropriate and high energy
or k⊥ - factorization has to applied, with the appropriate BFKL or CCFM evolution equations. Cross
sections are then k⊥- factorized [12–15] into an off-mass-shell (k⊥- dependent) partonic cross section
σ̂(x1, x2, k⊥1, k⊥2) and a k⊥- unintegrated parton density function (uPDF) F(z, k⊥):

σ =

∫
dx1dx2d

2k⊥1d
2k⊥2σ̂ij(x1, x2, k⊥1, k⊥2)F(x1, k⊥1)F(x2, k⊥2) (2)

The unintegrated gluon density F(z, k⊥) is described by the BFKL evolution equation in the region of
asymptotically large energies (small x). It is important to note that only when the k⊥dependence of
the hard scattering process σ̂ can be neglected, i.e. if σ̂(x1, x2, k⊥1, k⊥2) ∼ σ̂(x1, x2, 0, 0), then the
k⊥integration can be factorized and an expression formally similar to eq.(1) is obtained.

An appropriate description valid for both small and large x, is given by the CCFM evolution
equation, resulting in an unintegrated gluon densityA(x, k⊥, µ), which is a function also of the additional
evolution scale µ. This scale is connected to the factorization scale in the collinear approach.

Further examples where uPDFs are needed are the Drell-Yan and related processes at low trans-
verse momentum, as in the CSS formalism [16]. However, the relation between CSS method (which
does not need small x) and k⊥-factorization of the BFKL/CCFM kind (for small x) has not yet been
properly worked out.

1.2 Extraction and determination of uPDFs
In this section we will review how measurements of uPDFs have been extracted from DIS data at small x,
mostly from the inclusive structure function F2. For measurements of the uPDFs in Drell-Yan processes
using the CSS formalism, see [17].

From the DIS data, the uPDF can be obtained by adjusting the non-perturbative input distribu-
tion f0

i (x, µ2
0) and the free parameters of the perturbative evolution such that after convolution with the

appropriate off-shell matrix element (according to eq.(2)) a measured cross section is best described.

Applying k⊥-factorization to determine the uPDF from DIS data until now mainly the inclusive
structure function measurements of F2(x,Q2) at HERA have been used. The exceptions are those which
are simply derivatives of integrated PDFs, which then neglects fully the transverse momentum depen-
dence of the matrix element. Extracting a uPDF from the integrated PDF is appropriate only if the
k⊥-dependence of the hard scattering process σ̂ in eq.(2) can be neglected. In addition, contributions
from k⊥ > µ, which are present in a full calculation, are entirely neglected. It thus can only provide
an estimate of the proper kinematics in the collinear approach, which is otherwise fully neglected when
using integrated PDFs.
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Fig. 1: Comparison of different uPDFs at µ = 10 GeV.

Here we compare some of these parameterizations which have been obtained in different ways:

– CCFM set A0 was obtained using CCFM evolution in [18, 19].
– LDC standard was similarly obtained in [20] using LDC evolution [21], which is a reformulation

and generalization of CCFM.
– KKSL [22] was obtained from a combined BFKL and DGLAP evolution following [23].
– GLLM [24] was obtained applying the BK equation to HERA F2 measurements, as described in

Section 3.
– KMR is one of the more advanced derivatives of integrated PDFs, using Sudakov form factors

[25].

In Fig. 1 we show a comparison of the different uPDFs as a function of x and k⊥at a factorization
scale µ = 10 GeV. All the parameterizations are able to describe the measured F2(x,Q2) in the small
x range reasonably well, with a χ2/ndf ∼ 1. In Fig. 2 the same uPDFs are compared at a factorization
scale which is relevant at LHC energies, e.g. for inclusive Higgs production (µ = 120 GeV). One should
note that the uPDFs from KKSL and GLLM have no explicit factorization scale dependence, therefore
they are the same as in Fig 1.
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Fig. 2: Comparison of different uPDFs at µ = 120 GeV.

1.3 Extrapolation to LHC energies
All the parameterizations of uPDFs considered in this report give a fairly good fit to HERA F2 data. This
means that they are well constrained mainly in the region of small x and relatively small Q2, where the
bulk of the HERA data is concentrated. For higher x and Q2, a fit to HERA data is less constraining,
and indeed some of the parameterizations based on the CCFM and LDC evolution of the gluon alone are
only fitted in the small-x region (typically x < 0.01, Q2 < 100 GeV2).

When evolving the uPDFs to apply them to the processes of main interest at the LHC, such as
Higgs production, this is a serious concern. Although the x-values in such processes are typically below
0.01, the scales involved are of the order of 104 GeV2 or more. Through the evolution one then becomes
sensitive to larger x-values at lower scales where the current parameterizations are less constrained.

A notable exception is the KMR [25] densities which are obtained from a global fit of integrated
PDFs, which should give reliable prediction at LHC at least for integrated observables such as the inclu-
sive Higgs cross section. In contrast, it was shown in [20] that the CCFM [8–11] and LDC [21] evolved
uPDFs have unreasonably large uncertainties for such cross sections. On the other hand it was also
shown in [20] that there are some questions about the constraint of the actual k⊥ distribution of the KMR
uPDFs resulting eg. in a too soft p⊥ spectrum of W or Z production at the Tevatron for small transverse
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Fig. 3: k⊥distribution in different Q2 bins used in F2(x,Q2) at HERA.
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Fig. 4: Diagram of charm photoproduction, showing the sensitivity to the gluon transverse momentum

momenta. Hence, although the KMR prediction for inclusive quantities may be reliable at the LHC, the
predictions of eg. the detailed distribution of low-p⊥ Higgs may be questionable.

What is needed is clearly to obtain fits of the uPDFs, not only to HERA F2 data, but also to
observables more sensitive to higher x and Q2 values, as well as to observables directly sensitive to the
k⊥ distribution. To obtain such global fits there is a need for both theoretical and phenomenological
developments. Examples of the former is the inclusion of quarks in the CCFM evolution, while the latter
involves the development of k⊥-sensitive observables, where HERA data at small x, such as forward jet
or heavy quark production, will play an important role, as discussed in the following.

1.4 Global uPDF fits
Until now the uPDFs obtained from DIS were only determined and constrained by the inclusive structure
function F2(x,Q2). It is clear that the inclusive measurements are not very sensitive to the details of the
k⊥dependence. In Fig. 3 we show the k⊥distribution of the gluon in γ∗g∗ → qq̄ which is the relevant
process for F2 at small x. The k⊥-distributions in Fig. 3 are obtained with CASCADE [26, 27] using the
CCFM uPDFs. The bins in Q2 are typical for HERA F2 measurements. It is interesting to observe that
even at large Q2 essentially only the small k⊥region is probed by F2.

A larger lever arm for the k⊥distribution can be obtained with photoproduction of D∗ + jet events
at HERA. In Fig. 4 the relevant diagram is shown. The quantity xγ , normally designed to separate
direct from resolved photon processes, can be also used to distinguish small and large k⊥- regions. The
region of large xγ corresponds to measuring jets coming from the quark-box. The region of small xγ
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Fig. 5: k⊥distribution in different xγ bins obtained from D∗+jet photo-production at HERA.

corresponds to the situation where one of the jets originates from a gluon, as indicated in Fig. 4. Thus,
the transverse momentum of the gluon i can be probed, as shown in Fig. 5 for two different regions of
xγ using CASCADE . It is interesting to note that the average k⊥distribution for bottom production at the
Tevatron is similar to what it shown in Fig. 5.

To further constrain the uPDF it would be desirable to perform a common fit to inclusive measure-
ments like F2 and simultaneously to final state measurements.

Once the data sets and the sensitivity to the uPDFs have been identified, a systematic error treat-
ment of the data used in the uPDF fits can be performed. Until now, the uPDFs are not really the result
of a fit but rather a proof that the uPDF is consistent with various measurements.

A uPDF fit would require a systematic variation of the parameters used to specify the non-
perturbative input gluon distribution as well as a systematic treatment of the experimental systematic
uncertainties. Only then an uncertainty band of the uPDFs can be given. To consider the uncertainty of
the uPDF given from the spread of different available parameterizations is a very rough estimate.

1.5 Outlook and Summary
Clearly, the extraction of uPDFs from data is still in its infancy, especially if compared to the well
developed industry of fitting integrated PDFs. The uPDFs are only leading order parameterizations, they
have mainly been fitted to F2 data at small x, and besides the KMR and LDC parameterizations, no
attempts have been made to obtain unintegrated quark densities. Taken together, this means that the
applicability to LHC processes are uncertain. However, the field is maturing and we hope to soon be able
to do more global uPDF fits which will greatly enhance the reliability of the predictions for the LHC. In
doing so the small-x data from HERA will be very important, but also eg. Tevatron data will be able to
provide important constraints.

2 Need for fully unintegrated parton densities2

2.1 Introduction
Conventional parton densities are defined in terms of an integral over all transverse momentum and vir-
tuality for a parton that initiates a hard scattering. While such a definition of an integrated parton density
is appropriate for very inclusive quantities, such as the ordinary structure functions F1 and F2 in DIS,
the definition becomes increasingly unsuitable as one studies less inclusive cross sections. Associated

2Authors: John Collins and Hannes Jung.
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Fig. 6: (a) and (b): comparison between use of simple LO parton model approximation and of the use of k⊥
densities for the pT of cc̄ pairs in photoproduction, and for the xγ . (c) and (d): comparison of use of k⊥ densities
and full simulation.

with the use of integrated parton densities are approximations on parton kinematics that can readily lead
to unphysical cross sections when enough details of the final state are investigated.

We propose that it is important to the future use of pQCD that a systematic program be undertaken
to reformulate factorization results in terms of fully unintegrated densities, which are differential in both
transverse momentum and virtuality. These densities are called “doubly unintegrated parton densities”
by Watt, Martin and Ryskin [28, 29], and “parton correlation functions” by Collins and Zu [30]; these
authors have presented the reasoning for the inadequacy, in different contexts, of the more conventional
approach. The new methods have their motivation in contexts such as Monte-Carlo event generators
where final-state kinematics are studied in detail. Even so, a systematic reformulation for other processes
to use unintegrated densities would present a unified methodology.

These methods form an extension of k⊥-factorization. See Sec. 1 for a review of k⊥-factorization,
which currently involves two different formalisms, the BFKL/CCFM methods [5–11] and the CSS
method [16].

2.2 Inadequacy of conventional PDFs
The problem that is addressed is nicely illustrated by considering photoproduction of cc̄ pairs. In Figs. 6,
we compare three methods of calculation carried out within the CASCADE event generator [26, 27]:

– Use of a conventional gluon density that is a function of parton x alone.
– Use of a k⊥ density that is a function of parton x and k⊥. These are the “unintegrated parton

densities” (uPDFs) that are discussed in Sec. 1
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Fig. 7: Photon-gluon fusion.

– Use of a doubly unintegrated density that is a function of parton x, k⊥ and virtuality, that is, of the
complete parton 4-momentum.

The partonic subprocess in all cases is the lowest order photon-gluon-fusion process γ + g −→ c + c̄
(Fig. 7). Two differential cross sections are plotted: one as a function of the transverse momentum of the
cc̄ pair, and the other as a function of the xγ of the pair. By xγ is meant the fractional momentum of the
photon carried by the cc̄ pair, calculated in the light-front sense as

xγ =

∑
i=c,c̄(Ei − pz i)

2yEe
=
p−cc̄
q−
.

Here Ee is the electron beam energy and the coordinates are oriented so that the electron and proton
beams are in the −z and +z directions respectively.

In the normal parton model approximation for the hard scattering, the gluon is assigned zero
transverse momentum and virtuality, so that the cross section is restricted to pTcc̄ = 0 and xγ = 1, as
shown by the solid lines in Fig. 6(a,b). When a k⊥ dependent gluon density is used, quite large gluonic
k⊥ can be generated, so that the pTcc̄ distribution is spread out in a much more physical way, as given by
the dashed line in Fig. 6(a). But as shown in plot (b), xγ stays close to unity. Neglecting the full recoil
mass mrem (produced in the shaded subgraph in Fig 7) is equivalent of taking k2 = −k2

⊥/(1 − x) with
k2 being the virtuality of the gluon in Fig. 7, k⊥ its transverse momentum and x its light cone energy
fraction. This gives a particular value to the gluon’s k−. When we also take into account the correct
virtuality of gluon, there is no noticeable change in the pTcc̄ distribution — see Fig. 6(c) (dashed line) —
since that is already made broad by the transverse momentum of the gluon. But the gluon’s k− is able
to spread out the xγ distribution, as in Fig. 6(d) with the dashed line. This is equivalent with a proper
treatment of the kinematics and results in k2 = −(k2

⊥ + xm2
rem)/(1 − x), where mrem is the invariant

mass of the beam remnant, the part of the final state in the shaded blob in Fig. 7. This change can be
particularly significant if x is not very small.

Note that if partons are assigned approximated 4-momenta during generation of an event in a MC
event generator, the momenta need to be reassigned later, to produce an event that conserves total 4-
momentum. The prescription for the reassignment is somewhat arbitrary, and it is far from obvious what
constitutes a correct prescription, especially when the partons are far from a collinear limit. A treatment
with fully unintegrated PDFs should solve these problems.

If, as we claim, an incorrect treatment of parton kinematics changes certain measurable cross
sections by large amounts, then we should verify directly that there are large discrepancies in the distri-
butions in partonic variables themselves. We see this in Fig. 8. Graph (a) plots the gluonic transverse
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Fig. 8: Comparison of distributions in partonic variables between calculations with full parton kinematics and with
ordinary unintegrated PDFs.

momentum divided by the charm-pair mass. As is to be expected, the typical values are less than one, but
there is a long tail to high values. But the use of full parton kinematics does not have much of an effect,
the unintegrated parton distributions already providing realistic distributions in transverse momentum.

On the other hand, a simple collinear approximation for showering sets the remnant mass,mrem, to
zero. As can be seen from the formulae for the gluon virtuality, this only provides a good approximation
to the gluon kinematics if mrem is much less than k⊥. In reality, as we see from graph (b), there is a long
tail to large values of mrem/k⊥, and the tail is much bigger when correct kinematics are used. A more
correct comparison uses xm2

rem, with an extra factor of x. Even then, there is a large effect, shown in
graph (c). The vertical scale is logarithmic, so the absolute numbers of events are relatively small, but
the tail is broad. Finally, graph (d) shows that the distribution in mrem itself is very broad, extending to
many tens of GeV. This again supports the argument that unless a correct treatment of parton kinematics
is made, very incorrect results are easily obtained.

It is important to note that, for the cross sections themselves, the kinematic variables used in Fig. 6
are normal ones that are in common use. Many other examples are easily constructed. Clearly, the use of
the simple parton-model kinematic approximation gives unphysically narrow distributions. The correct
physical situation is that the gluon surely has a distribution in transverse momentum and virtuality, and
for the considered cross sections neglect of parton transverse momentum and virtuality leads to wrong
results. It is clearly better to have a correct starting point even at LO, for differential cross sections such
as we have plotted.
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2.3 Kinematic approximations
The standard treatment of parton kinematics involves replacing the incoming parton momentum k by its
plus component only: kµ 7→ k̂µ ≡ (k+, 0, 0T ). There are actually two parts to this. The first is to neglect
the − and transverse components of k with respect to the large transverse momenta in the calculation of
the numerical value of the hard-scattering amplitude; this is a legitimate approximation, readily corrected
by higher order terms in the hard scattering. The second part is to change the kinematics of the final-state
particles, p1 and p2, so that their sum is q plus the approximated gluon momentum. It is this second
part that is problematic, for it amounts to the replacement of the momentum conservation delta function
δ(4)(k + q − p1 − p2) by δ(4)(k̂ + q − p1 − p2). These delta-functions are infinitely different, point-
by-point. Only when integrated with a sufficiently smooth test function can they be regarded as being
approximately the same, as in a fully inclusive cross section.

In an event generator, the effect is to break momentum conservation, which is restored by an ad
hoc correction of the parton kinematics. Note that the change of parton kinematics is only in the hard
scattering, i.e., in the upper parts of the graphs. Parton kinematics are left unaltered within the parton
density part, and the integrals over k⊥ and virtuality are part of the standard definition of integrated
PDFs.

The situation is ameliorated by inclusion of NLO terms, and perhaps also by some kind of resum-
mation. But these do not correct the initial errors in the approximation, and lead to a very restricted sense
in which the derivation of the cross section can be regarded as valid. Furthermore, when much of the
effect of NLO terms is to correct the kinematic approximations made in LO, this is an inefficient use of
the enormous time and effort going into NLO calculations. A case in point is the BFKL equation, where
70% of the (large) NLO corrections are accounted for [31] by the correction of kinematic constraints in
the LO calculation.

2.4 Conclusions
The physical reasoning for the absolute necessity of fully unintegrated densities is, we believe, unques-
tionable. Therefore it is highly desirable to reformulate perturbative QCD methods in terms of doubly
unintegrated parton densities from the beginning. A full implementation will be able to use the full power
of calculations at NLO and beyond.

Among other things, a full implementation, as in [30], will provide extra factorization formulae
for obtaining the values of the unintegrated densities at large parton transverse momentum and virtuality.
This will incorporate all possible perturbatively calculable information, so that the irreducible nonpertur-
bative information, that must be obtained from data, will be at low transverse momentum and virtuality.
In addition, the implementation will quantify the relations to conventional parton densities. With the
most obvious definitions, the integrated PDFs are simple integrals of the unintegrated densities. How-
ever, in full QCD a number of modifications are required [30,32], so that the relations between integrated
and unintegrated PDFs are distorted.

The fact that we propose new and improved methods does not invalidate old results in their domain
of applicability. The work of Watt, Martin and Ryskin, and of Collins and Zu provides a start on this
project; but much remains to be done to provide a complete implementation in QCD; for example, there
is as yet no precise, valid, and complete gauge-invariant operator definition of the doubly unintegrated
densities in a gauge theory.

The outcome of such a program should have the following results:

1. Lowest order calculations will give a kinematically much more realistic description of cross sec-
tions. This may well lead to NLO and higher corrections being much smaller numerically than
they typically are at present, since the LO description will be better.
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2. It will also obviate the need for separate methods (resummation or the CSS technique), which are
currently applied to certain individual cross sections like the transverse-momentum distribution for
the Drell-Yan process. All these and others will be subsumed and be given a unified treatment.

3. A unified treatment will be possible for both inclusive cross sections using fixed order matrix
element calculations and for Monte-Carlo event generators.

4. For a long-term theoretical perspective, the doubly unintegrated distributions will interface to
methods of conventional quantum many-body physics much more easily than regular parton den-
sities, whose definitions are tuned to their use in ultra-relativistic situations.

This program is, of course, technically highly nontrivial if it is to be used in place of conventional
methods with no loss of predictive power. A start is made in the cited work.

Among the main symptoms of the difficulties are that the most obvious definition of a fully un-
integrated density is a matrix element of two parton fields at different space-time points, which is not
gauge-invariant. It is often said that the solution is to use a light-like axial gauge A+ = 0. However,
in unintegrated densities, this leads to divergences — see [32] for a review — and the definitions need
important modification, in such a way that a valid factorization theorem can be derived.

We also have to ask to what extent factorization can remain true in a generalized sense. Hadron-
hadron collisions pose a particular problem here, because factorization needs a quite nontrivial cancel-
lation arising from a sum over final-state interactions. This is not compatible with simple factorization
for the exclusive components of the cross section, and makes a distinction between these processes and
exclusive components of DIS, for example.

3 PDF extrapolation to LHC energies based on combined BK/DGLAP equations 3

3.1 Introduction
In recent years it became clear that the DGLAP evolution is likely to fail in certain kinematics associated
with the low x domain. This might be a dangerous problem for certain DGLAP based predictions made
for the LHC. The reasons for the failure are well known.

– DGLAP predicts a very steep rise of gluon densities with energy. If not suppressed this rise will
eventually violate unitarity.

– The leading twist evolution breaks down when higher twists become of the same order as the
leading one. We have to recall here that higher twists are estimated to rise with energy much faster
than the leading one [33].

– The DGLAP evolution is totally unable to describe physics of low photon virtualities.

It is most important to stress that NLO corrections are in principal unable to solve any of the above
problems, though they can potentially help to delay their onset.

Fortunately, a solution to the low x problem does exist. We have to rely on a nonlinear evolution
based on the BFKL dynamics. So far the best candidate on the market is the Balitsky-Kovchegov (BK)
equation [34, 35], which is a nonlinear version of the LO BFKL equation. Compared to the DGLAP
equation it has the following advantages:

– it accounts for saturation effects due to high parton densities.
– it sums higher twist contributions.
– it allows an extrapolation to large distances.

Though the BK evolution takes care of the low x domain, it misses the essential part of the short
distance physics correctly accounted for by the DGLAP evolution. The reason is that the BFKL kernel

3Author: Michael Lublinsky.
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involves the 1/z part only of the full gluon-gluon splitting function Pgg(z). Thus we have to develop
a scheme which in a consistent manner would use elements of both the equations. Such scheme was
proposed in Ref. [36] and realized in a successful fit to F2 data in Ref. [37].

One of the main problems of the DGLAP evolution is a necessity to specify the x dependence
of the distributions in the initial conditions of the evolution. The scheme which we propose generally
avoids this problem and thus can be used for future more elaborated analysis including NLO corrections
and the quark sector.

At low x it is very convenient to use the dipole picture. In this approach the structure function F2

can be expressed through the universal dipole cross section σdipole:

F2(y,Q2) =
Q2

4π2

∫
d2 r

∫
d z P γ

∗
(Q2; r, z) σdipole(r, y) . (3)

with the probability to find a dipole of the transverse size r in the photon‘s wavefunction given by

P γ
∗
(Q2; r, z)2 =

Nc

2π2

3∑

f=1

Z2
f

{
(z2 + (1− z)2) a2 K2

1 (a r) + 4Q2 z2 (1− z)2 K2
0 (a r)

}
,

where a2 = Q2z(1− z), Zf are the quark charges, and Ki the standard modified Bessel functions.

The dipole cross section is determined through the evolution of the imaginary part of the dipole
target elastic amplitude N subsequently integrated over the impact parameter b (in the analysis of Ref.
[37] the dependence on b was modeled):

σdipole(r, y) = 2

∫
d2 b N(r, y; b) .

In our approach, the amplitude Ñ is given by a sum of two terms

N = Ñ + ∆N

The first term Ñ follows from the solution of the BK equation whereas ∆N is a DGLAP correction to it
(Fig. 9). The strategy of the fit is the following. We trust the DGLAP evolution for x above x0 = 10−2.
The gluon density obtained as a result of this evolution is then used as a initial condition for the low
x evolution based on the BK equation. In practice the CTEQ6 gluon was used as an input. The large
distance behavior was extrapolated using the method proposed in Ref. [38]. The extrapolation is based
on the geometrical scaling [39], a phenomenon experimentally observed by HERA. The BK evolved
function N is fitted to the low Q2 data, with the effective proton size being the only fitting parameter
entering the b dependence ansatz. As the last step, the DGLAP correction ∆N is switched on and
computed by solving a DGLAP-type equation. An inhomogeneous N -dependent term in the equation
acts as a source term for ∆N . This allows to have zero initial condition for the DGLAP correction. 4

3.2 Results
We skip most of the technical details reported in Ref. [37] and present a result of the fit with χ2/d.o.f. '
1. Fig. 10 displays the results vs. a combined set of experimental data for x below 10−2. The solid line
is the final parameterization. The dashed line on plot (b) is the result without DGLAP corrections added.
Figure 11, a presents our results for the logarithmic derivative of F2 with respect to lnx. This graph
illustrates the hard-soft pomeron transition as a result of multiple rescattering of the BFKL pomeron.
The intercept decreases from the LO BFKL intercept of the order 0.3 to the hadronic value of the order
0.1. As clearly observed from Fig. 11a, the intercept depends strongly on the photon virtuality Q2 and
decreases towards hadronic value when the virtuality decreases. If we further increase the energy, the

12

UNINTEGRATED PARTON DENSITY FUNCTIONS

267



BK (evolution for N)

DGLAPN

N = 0

BK

r

1/x

r

x
N = 0

∆

0

N = N +      N N = N

0

∆

∆

evolution for      N∆

Fig. 9: The kinematic map for the solu-
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Fig. 10: Fit to the F2 structure function.

intercept would eventually vanish in accord with the unitarity requirements. The band of our estimates
for the value of saturation scale at LHC is displayed on Fig. 11b together with the most popular Golec-
Biernat Wüsthoff saturation model [40]. Based on our analysis we predict much stronger saturation
effects compared to the ones which could be anticipated from the GBW model. Though the power
growth of the saturation scale in both cases is given by the very same exponent of the order λ ' 0.3, we
had to take a much stronger saturation input at the beginning of the evolution.

4The initial condition for the BK equation is CTEQ gluon distribution. In the DGLAP-type equation for ∆N an initial
condition at r = r0 is required, which is set to zero and no modelling of the small x behavior is needed.
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Fig. 11: (a) The logarithmic derivative λ = ∂ lnF2/∂ ln 1/x plotted at low Q2 and very low x. (b) Saturation
scale. the hatched area defines a prediction band of Ref. [37]; dashed line is the GBW model.

Model predictions for FL at HERA and F2 at LHC can be found in Ref. [37]. Having determined
the dipole cross section we can relate it to the unintegrated gluon distribution f(k, y):

σdipole(r, y) =
4π2

Nc

∫
d k2

k4
[1 − J0(k r)] αs(k

2) f(k, y) . (4)

The relation (4) can be inverted for f which can be then used as an input for any computation based on the
kt factorization scheme. The data set for the dipole cross section σdipole as well as for the unintegrated
gluon f can be found in [24]. The uPDF is compared to other parameterizations in Fig.1.

3.3 Outlook
We have reported on, so far, the most advanced analysis of the F2 data based on combined BK/DGLAP
evolution equations. Though our approach incorporates most of the knowledge accumulated in saturation
physics, it is not yet fully developed. The next essential steps would be to include NLO corrections both
to BFKL and DGLAP. The quark sector should be also added into a unique scheme.

4 Generalized parton distributions5

The theoretical description of hard diffractive processes involves the gluon distribution in the proton.
Such processes have a proton in the final state which carries almost the same momentum as the incident
proton. Due to the small but finite momentum transfer, it is not the usual gluon distribution which
appears, but its generalization to nonforward kinematics. Prominent example processes are the exclusive
production of mesons from real or virtual photons (Figure 12a) when either the photon virtuality or the
meson mass provides a hard scale, virtual Compton scattering γ∗p→ γp, and the diffractive production
of a quark-antiquark pair (Figure 12b) in suitable kinematics. The generalized gluon distribution depends
on the longitudinal momentum fractions x and x′ of the emitted and reabsorbed gluon (which differ
because of the longitudinal momentum transfer to the proton) and on the invariant momentum transfer
t = −(p− p′)2. In its “unintegrated” form it depends in addition on the transverse momentum kt of the

5Authors: Markus Diehl and Thomas Teubner.
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Fig. 12: Example graphs for the diffractive production of (a) a vector meson V or (b) a quark-antiquark pair.
The large blob denotes the generalized gluon distribution of the proton and the small one the vector meson wave
function.
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p

Fig. 13: Graph for the exclusive diffractive production of a Higgs boson, p + p → p + H + p. The horizontal
blobs indicate generalized gluon distributions, and the vertical blob represents secondary interactions between the
projectiles.

emitted gluon. Another important process involving this distribution is exclusive diffractive production
of a Higgs in pp scattering (Figure 13), discussed in detail in [41]. Note that the description of this
process requires the gluon distribution to be unintegrated with respect to kt, whereas the processes in
γ(∗)p collisions mentioned above can be treated either in kt-factorization or in the collinear factorization
framework, where kt-integrated generalized parton distributions occur. Note also that Figures 12 and
13 show graphs for the process amplitudes: the cross section depends hence on the square of the gluon
distribution for Figure 12, and on its fourth power for Figure 13.

To extract the generalized gluon distribution from vector meson production data requires knowl-
edge of the meson wave function, which is an important source of uncertainty for the ρ0 and φ and, to a
lesser extent, for the J/Ψ. In this respect Υ production is by far the cleanest channel but experimentally
challenging because of its relatively low production rate. An approach due to Martin, Ryskin and Teub-
ner (MRT) [42] circumvents the use of the meson wave function by appealing to local parton-hadron
duality, where the meson production cross section is obtained from the one for open quark-antiquark
production, integrated over an interval of the invariant qq̄ mass around the meson mass. The choice of
that interval is then mainly reflected in an uncertainty in the overall normalization of the cross section.
Virtual Compton scattering γ∗p → γp does not involve any meson wave function and for sufficiently
large Q2 is again theoretically very clean.

By a series of steps one can relate the generalized gluon distribution to the usual gluon density,
obtained for instance in global parton distribution fits.

1. The t dependence is typically parameterized by multiplying the distribution at t = 0 with an expo-
nential exp(−b|t|), whose slope b has to be determined from measurement. In more refined models
this slope parameter may be taken to depend on the other kinematic variables of the process.
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Fig. 14: Data for the γ∗p → J/Ψ p cross section from H1 [47] and ZEUS [48, 49] compared to calculations in
the MRT approach [42, 46] with different gluon densities. The upper data points in the right panel correspond to
those in the left one. The ZEUS data has been shifted to theQ2 values of the H1 analysis using the Q2 dependence
measured by ZEUS, as described in [47]. Figure courtesy of Philipp Fleischmann (H1 Collaboration).

2. To leading logarithmic accuracy in log(1/x) one can neglect the difference between the longitu-
dinal momentum fractions of the two gluons. The amplitude for meson production is then pro-
portional to the usual gluon density evaluated at xg = (M2

V +Q2)/W 2, where MV is the meson
mass, Q2 the photon virtuality, and W the γ∗p c.m. energy. For phenomenology this leading loga-
rithmic approximation is however insufficient. A weaker approximation allows one to express the
amplitude in terms of the gluon density at xg times a correction factor for the kinematic asymmetry
(“skewing”) between the two momentum fractions [43].

3. The problem to relate the kt unintegrated gluon distribution to the kt integrated one is quite analo-
gous to the case of the usual forward gluon density (see Sect. 1.1), with some specifics concerning
Sudakov form factors in the nonforward case [44].

An overview and discussion of theoretical aspects and uncertainties in describing vector meson produc-
tion in this framework can be found in [45].

To illustrate the sensitivity of such processes to the gluon distribution we show in Figure 14 data
for photo- and electroproduction of J/Ψ compared to calculations in the MRT approach [46], with
different gluon densities taken as input to construct the generalized gluon distribution as just described.
The potential of such processes to constrain the gluon distribution is evident from this plot.

We finally note that the theoretical description of diffractive Higgs production in pp collisions is
very similar to the description of diffractive processes in ep scattering using kt factorization (much more
than to the description of, say, inclusive DIS in collinear factorization, which provides the main input
to the determination of conventional gluon densities at small x), see [41, 50] for further discussion. The
analysis of diffractive ep scattering is hence well suited to provide input to estimate the diffractive Higgs
cross section at the LHC.

Acknowledgments
This work is supported in part (JC) by the U.S. DOE.

16

UNINTEGRATED PARTON DENSITY FUNCTIONS

271



References
[1] V. Gribov and L. Lipatov, Sov. J. Nucl. Phys. 15, 438 and 675 (1972).
[2] L. Lipatov, Sov. J. Nucl. Phys. 20, 94 (1975).
[3] G. Altarelli and G. Parisi, Nucl. Phys. B 126, 298 (1977).
[4] Y. Dokshitser, Sov. Phys. JETP 46, 641 (1977).
[5] E. Kuraev, L. Lipatov, and V. Fadin, Sov. Phys. JETP 44, 443 (1976).
[6] E. Kuraev, L. Lipatov, and V. Fadin, Sov. Phys. JETP 45, 199 (1977).
[7] Y. Balitskii and L. Lipatov, Sov. J. Nucl. Phys. 28, 822 (1978).
[8] M. Ciafaloni, Nucl. Phys. B 296, 49 (1988).
[9] S. Catani, F. Fiorani, and G. Marchesini, Phys. Lett. B 234, 339 (1990).

[10] S. Catani, F. Fiorani, and G. Marchesini, Nucl. Phys. B 336, 18 (1990).
[11] G. Marchesini, Nucl. Phys. B 445, 49 (1995).
[12] L. Gribov, E. Levin, and M. Ryskin, Phys. Rep. 100, 1 (1983).
[13] E. M. Levin, M. G. Ryskin, Y. M. Shabelski, and A. G. Shuvaev, Sov. J. Nucl. Phys.

53, 657 (1991).
[14] S. Catani, M. Ciafaloni, and F. Hautmann, Nucl. Phys. B 366, 135 (1991).
[15] J. Collins and R. Ellis, Nucl. Phys. B 360, 3 (1991).
[16] J. C. Collins, D. E. Soper, and G. Sterman, Nucl. Phys. B250, 199 (1985).
[17] F. Landry, R. Brock, P. M. Nadolsky, and C. P. Yuan, Phys. Rev. D67, 073016 (2003).

hep-ph/0212159.
[18] H. Jung and G. Salam, Eur. Phys. J. C 19, 351 (2001). hep-ph/0012143.
[19] H. Jung, Un-integrated updfs in ccfm, 2004. hep-ph/0411287.
[20] L. Lonnblad and M. Sjodahl, JHEP 05, 038 (2005). hep-ph/0412111.
[21] B. Andersson, G. Gustafson, and J. Samuelsson, Nucl. Phys. B467, 443 (1996);

B. Andersson, G. Gustafson, and H. Kharraziha, Phys. Rev. D57, 5543 (1998). hep-ph/9711403.
[22] H. Jung, K. Kutak, K. Peters, and L. Motyka, Nonlinear gluon evolution and heavy quark

production at the lhc. These proceedings, 2005.
[23] K. Kutak and A. M. Stasto, Eur. Phys. J. C41, 343 (2005). hep-ph/0408117.
[24] M. Lublinsky, Parameterization of the dipole cross section and updf.

http://www.desy.de/~lublinm/.
[25] M. A. Kimber, A. D. Martin, and M. G. Ryskin, Phys. Rev. D63, 114027 (2001).

hep-ph/0101348.
[26] H. Jung, Comput. Phys. Commun. 143, 100 (2002). hep-ph/0109102.
[27] H. Jung and G. P. Salam, Eur. Phys. J. C19, 351 (2001). hep-ph/0012143.
[28] G. Watt, A. D. Martin, and M. G. Ryskin, Eur. Phys. J. C31, 73 (2003). hep-ph/0306169.
[29] G. Watt, A. D. Martin, and M. G. Ryskin, Phys. Rev. D70, 014012 (2004). hep-ph/0309096.
[30] J. C. Collins and X. Zu, JHEP 03, 059 (2005). hep-ph/0411332.
[31] J. Kwiecinski, A. D. Martin, and J. J. Outhwaite, Eur. Phys. J. C9, 611 (1999). hep-ph/9903439.
[32] J. C. Collins, Acta Phys. Polon. B34, 3103 (2003). hep-ph/0304122.
[33] J. Bartels, Z. Phys. C60, 471 (1993);

J. Bartels, Phys. Lett. B298, 204 (1993);
E. M. Levin, M. G. Ryskin, and A. G. Shuvaev, Nucl. Phys. B387, 589 (1992).

[34] I. Balitsky, Nucl. Phys. B 463, 99 (1996).
[35] Y. V. Kovchegov, Phys. Rev. D 60, 034008 (1999).
[36] M. Lublinsky, E. Gotsman, E. Levin, and U. Maor, Nucl. Phys A 696, 851 (2001).

17

J. COLLINS, M. DIEHL , H. JUNG, L. L ÖNNBLAD , M. LUBLINSKY, T. TEUBNER
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Abstract
We review the work discussed and developed under the topic “Resummation”
at Working Group 2 “Multijet final states and energy flow” , of the HERA-
LHC Workshop. We emphasise the role played by HERA observables in the
development of resummation tools via, for instance, the discovery and resum-
mation of non-global logarithms. We describe the event-shapes subsequently
developed for hadron colliders and present resummed predictions for the same
using the automated resummation program CAESAR. We also point to on-
going studies at HERA which can be of benefit for future measurements at
hadron colliders such as the LHC, specifically dijet Et and angular spectra and
the transverse momentum of the Breit current hemisphere.

1 Introduction
Resummed calculations are an invaluable tool, both for the understanding of perturbative QCD dynam-
ics at all orders as well as for extracting, as accurately as possible, QCD parameters such as the strong
coupling, quark masses and parton distribution functions. These parameters, which cannot be directly
computed from QCD perturbation theory itself, will be vital inputs in new physics searches at the LHC.
Moreover, resummed expressions are also an important stepping stone to probing observable distribu-
tions in regions where non-perturbative power corrections make a significant contribution. In this region
one may expect a smearing of the resummed perturbative result with a non-perturbative function (for
which one can adopt, for example, a renormalon-inspired model), and the resulting spectrum can be
confronted with data to test our understanding of non-perturbative dynamics. In all these aspects, HERA
data and observables have played an important role (sometimes significantly underrated in the literature)
in furthering our knowledge, without which accurate studies of several observables at the LHC would
simply not be possible.

A concrete example of HERA’s important role in this regard is the case of event shape distribu-
tions [1, 2], theoretical studies of which led to the finding of non-global single-logarithmic [3] effects
(discussed in more detail below). Prior to these studies it was widely believed that the HERA distribu-
tions, measured in the current hemisphere Breit frame, were trivially related to their e+e− counterparts.
Had such ideas, based on independent soft gluon emission by the hard partons, been applied directly to
similar variables at the LHC, such as energy flows away from jets, the accuracy of theoretical predictions
would have been severely compromised leading almost certainly to erroneous claims and conclusions.

Another area where HERA has played a vital role is in the testing of renormalon inspired models
for power corrections, most significantly the dispersive approach [4] to 1/Q power corrections, tested
against HERA event-shape distributions and mean-values [5]. The fact that HERA data seem to confirm
such models , where one can think of the power corrections as arising from the emission of a gluon with
transverse momentum O(ΛQCD), is significant for the LHC. This is because the agreement of the renor-
malon model with data demonstrates that the presence of initial state protons does not affect significantly
the form of 1/Q corrections. It thus sets limits on the additional non-perturbative contribution that may
potentially be generated by the flight of struck partons through the proton cloud, which therefore does
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not appear to be significant. Once again it is accurate resummed predictions [6] which have allowed us
access to the non-perturbative domain hence strengthening our understanding of power corrections.

One important aspect of resummed studies, till date, is that stringent comparisons of next-to–
leading logarithmic resummed predictions with data have only been carried out in cases involving ob-
servables that vanish in the limit of two hard partons. Prominent examples reflecting the success of this
program are provided by e+e− → 2 jet event shapes and DIS (1+1) jet event shapes as well as Drell-Yan
vector boson transverse momentum spectra at hadron colliders. At the LHC (and hadron colliders in gen-
eral) one already has two hard incoming partons and any observable dealing with final state jet production
would take us beyond the tested two hard parton situation. Thus dijet event shapes at hadron colliders
(discussed in detail later), which involve much more complicated considerations as far as the resum-
mation goes, represent a situation where NLL resummations and power corrections are as yet untested.
Bearing in mind the hadronic activity due to the underlying event at hadron colliders, it is important
to test the picture of resummations and power corrections for these multiparton event shapes in cleaner
environments. Thus LEP three-jet event shapes and similar 2 + 1 jet event shapes at HERA become
important to study in conjunction with looking at resummation of event shapes at hadron colliders.

Predictions for several LEP and HERA three-jet event shapes already exist (see e.g [7] and for a
full list of variables studied Ref. [8]) and at this workshop a prominent development presented was the
proposal of several dijet event-shapes in hadron-hadron collisions and the resummed predictions for their
distributions [9].

Existing HERA data can also be usefully employed to study soft gluon radiation dynamics from
multi-hard–parton ensembles, in the study of dijet Et and angular spectra. These quantities are somewhat
different from event shapes since one defines observables based on aggregate jet-momenta and angles
rather than directly constructing them from final-state hadron momenta. Examples are the transverse en-
ergy, Et, mismatch between the leading Et jets in dijet production and the azimuthal correlation between
jets φjj , once again refering to the highest Et jets in dijet production. For the former quantity there are
no direct experimental data as yet, but it is simply related to the dijet total rate in the region of symmetric
Et cuts for which data does exist . For the latter quantity similarly there are direct experimental data [10].
These observables have smaller hadronisation corrections scaling as 1/Q2 rather than 1/Q as for most
event shapes. They thus offer a good opportunity to test the NLL perturbative predictions alone without
necessarily probing non-perturbative effects at the same time 1.

At this workshop developments were reported on extending existing calculations [11] for cone
dijets, to different jet algorithms, such as the kt algorithm, comparing to fixed order estimates and per-
forming the leading order matching. Once the HERA data has been well described similar studies can
be carried out for hadron–hadron dijets. In fact predictions already exist for hadron-hadron dijet masses
near threshold [12] but are not in a form conducive to direct comparisons with data containing neither
the jet algorithms in the form actually employed in experiment, nor the matching to fixed order. How-
ever these calculations provided a useful starting point for the calculations presented here, which should
eventually lead to direct comparisons with data.

Another area where HERA may play an important role is to establish whether unaccounted for
small x effects may be significant in comparing theoretical resummations for e.g. vector boson pt spec-
tra with experimental data. It has been suggested that a non-perturbative intrinsic kt, growing steeply
with x, is required to accomodate HERA data for semi-inclusive DIS processes [13]. When this obser-
vation is extrapolated to the LHC kinematical region there is apparently significant small x broadening
in the vector boson pt distribution. Similar effects may well arise in the case of the Higgs boson too.
However DIS event shape studies in the Breit current hemisphere [6] apparently do not acquire such
corrections since they are well described by conventional NLL resummations supported by dispersive

1Although effects to do with intrinsic kt will eventually have to be accounted for similar to the case of Drell-Yan vector
boson pt spectra.
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power corrections [5], which are x independent 2. However there are some important caveats:

– Unlike vector boson pt spectra, event shapes receive 1/Q hadronisation corrections unrelated to
intrinsic kt. These could mask 1/Q2 terms originating from intrinsic kt which may yet contain the
x dependence in question.

– It has already been observed that including H1 data for Q < 30 GeV does spoil somewhat the
agreement with the dispersive prediction of universal power corrections to event shapes [6]. The
origin of this effect could well be extra non-perturbative kt broadening related to the effects de-
scribed above for vector boson pt.

To get to the heart of this matter a useful variable that has been suggested (see plenary talk by
G. Salam at the first meeting of this workshop) is the modulus of the vector transverse momentum
∑

i∈Hc

~kt,i of the current hemisphere in the DIS Breit frame. This quantity is simply related to the Drell-
Yan pt spectra and comparing theoretical predictions, presented here, with data from HERA should help
to finalise whether additional small-x enhanced non-perturbative terms are needed to accomodate the
data. We begin by first describing the results for hadron-hadron event shape variables, discussed by
G. Salam at this workshop. Then we describe the progress in studying dijet Et and angular spectra
(presented by M. Dasgupta and G. Corcella at the working group meetings). Finally we mention the
results obtained thus far, for the Qt distribution of the current hemisphere and end with a look at prospects
for continuing phenomenology at HERA, that would be of direct relevance to the LHC.

2 Event shapes for hadron colliders
Event shape distributions at hadron colliders, as has been the case at LEP and HERA, are important
collinear and infrared safe quantities, that can be used as tools for the extraction of QCD parameters,
for instance αs, by comparing theory and data. In contrast however to more inclusive sources of the
same information (e.g the ratio of 3 jet to 2 jet rates), event shape distributions provide a wealth of other
information, some of which ought to be crucial in disentangling and further understanding the different
physics effects, relevant at hadron colliders. These range from fixed-order predictions to resummations,
hadronisation corrections and, in conjunction with more detailed studies assesing the structure of, and
role played by, the underlying event (beam fragmentation).

Until recently there have only been limited experimental studies of jet-shapes at hadron colliders
[15] and no resummed theoretical predictions for dijet shape variables at hadron colliders. Rapid recent
developments (see Ref. [9] and references therin) in the field of perturbative resummations have now
made theoretical estimates possible for a number of such distributions, introduced in [9] which we report
on below.

The three main theoretical developments that have led to the studies of Ref. [9] are:

– Resummation for hadron-hadron dijet observables depends on describing multiple soft gluon emis-
sion from a system of four hard partons. The colour structure of the resulting soft anomalous di-
mensions is highly non-trivial and was explicitly computed by the Stony Brook group in a series
of papers (see e.g [12] and references therin).

– The discovery of non-global observables [3]. The realisation that standard resummation techniques
based on angular ordering/independent-emission of soft gluons by the hard-parton ensemble, are
not valid for observables that are sensitive to emissions in a limited angular range, has led to the
introduction of observables that are made global by construction. This means that one can apply
the technology developed by the Stony-Brook group to obtain accurate NLL predictions for these
observables, without having to resort to large Nc approximations.

2An exception is the jet broadening [14] but the x dependence there is of an entirely different origin and nature.
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Fig. 1: Cut around the beam direction beyond rapidity ηmax corresponding to the maximum rapidity reach of the
detectors.

– The advent of automated resummation [16]. The development of generalised resummation for-
mulae and powerful numerical methods to determine the parameters and compute the functions
thereof, has made it possible to study several variables at once rather than having to perform copi-
ous, and in some cases previously unfeasible, calculations for each separate observable.

We now discuss the different types of variables defined and resummed in [9]. The first issue
one has to deal with is the fact that experimental detectors have a limited rapidity range, which can be
modeled by a cut around the beam direction.

This cut would then correspond to a position in rapidity of the edge of the most forward detector
with momentum or energy resolution and the relevant values of the maximum rapidity for measurements
is 3.5 units at the Tevatron and 5 units at the LHC. One may then worry about gluon emissions beyond
this rapidity (i.e. inside the beam cut, see Fig. 1) that emit softer gluons into the allowed rapidity range,
outside the cones depicted in Fig. 1. Such a configuration would of course render the observable non-
global.

To get around this potential problem, one can employ an idea suggested for 3-jet observables such
as out-of–plane momentum flows in hadron-hadron collisions [17], which helps side-step the issue of
non-globalness. We note that all the observables studied here have the following functional dependence
on a soft emission, k, collinear to a given hard leg 3 (common to all event shapes studied here and in
other processes)

V (p̃, k) = d

(

kt

Q

)a

e−bηg(φ), (1)

where kt , η and φ are measured wrt a given hard leg and p̃ represent the set of hard parton momenta
including recoil against k while Q is the hard-scale of the process. We are particularly interested in
emissions soft and collinear to the beam (incoming) partons. Then an emission beyond the maximum
detector rapidity η ≥ ηmax corresponds to at most a contribution to the observable V ∼ e−(a+bmin)ηmax

with bmin = min(b1, b2) and b1 and b2 are the values of b associated with collinear emission near beam-
partons 1 and 2.

If one then choses to study the observable over a range of values such that

L ≤ (a + bmin)ηmax, L ≡ ln 1/V, (2)

then emissions more forward than ηmax do not affect the observable in the measured range of values. One
can thus include the negligible contribution from this region and do the calculation as if the observable
were global, ignoring the cut around the beam. Including the region beyond ηmax does not alter the NLL
resummed result in the suitably selected range Eq. 2.

3In general the values of parameters d, a, b and the function g depend on the observable considered. For more details and
constraints on the various parameters that ensure globalness and infrared and collinear safety etc., see Ref. [16].
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Fig. 2: The global transverse thrust distribution with the contribution from different partonic channels explicitly
displayed.

The price one has to pay is to limit the range of the study of the observable V , such that emissions
beyond ηmax make a negligible contribution. As we will mention later this is a more significant restriction
for some variables compared to others (depending on the parameters a and b) but a range of study can
always be found over which the observable can be treated as global.

2.1 Global event shapes
With the above caveat in place several variables can be safely studied (treated as global) over a wide
range of values. An explicit example is the global transverse thrust defined as:

T⊥,g ≡ max
~nT

∑

i |~q⊥i · ~nT |
∑

i q⊥i
, τ⊥,g = 1− T⊥,g , (3)

where the thrust axis ~nT is defined in the plane transverse to the beam axis. The probability P (v), that
the event shape is smaller than some value v behaves as:

P (v) = exp
[

−G12
αs

2π
L2 + · · ·

]

, L = ln 1/v, (4)

with G12 = 2CB + CJ , where CB and CJ represent the total colour charges of the beam and jet
(outgoing) partons. The above represents just the double-logarithmic contribution. The full result with
control of up to next-to–leading single-logarithms in the exponent is considerably more complicated. It
contains both the Stony-Brook colour evolution matrices as well as multiple emission effects (generated
by phase-space factorisation). The automated resummation program CAESAR [16] is used to generate
the NLL resummed result shown in Fig. 2. In this particular case the effect of the cut around the beam
direction can be ignored for values τ⊥,g ≥ 0.15e−ηmax . We note that it is advisable to leave a safety
margin between this value and the values included in measurement.

Other global variables studied include the global thrust minor and the three jet-resolution threshold
parameter y23. For detailed definitions and studies of these variables, the reader is refered to [9].
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Fig. 3: Figure depicting the central region marked C , containing the two hard jets.

We shall now proceed to look at two different ways of defining event shapes in a given central
region, which on its own would lead to non-globalness, and then adding terms that render them global.

2.2 Forward suppressed observables
Here we shall examine event shapes defined in a chosen central region C well away from the forward
detector edges.

First we define central ⊥ momentum, and rapidity:

Q⊥,C =
∑

i∈C

q⊥i , ηC =
1

Q⊥,C

∑

i∈C

ηi q⊥i (5)

and an exponentially suppressed forward term,

EC̄ =
1

Q⊥,C

∑

i/∈C

q⊥i e
−|ηi−ηC | . (6)

Then we can define an event shape in the central region C4 which on its own would be non-global since
we measure emissions just in C. The addition of EC̄ to the event-shape renders the observable global as
this term includes suitably the effect of emissions in the remaining region C̄. The exponential suppression
of the added term reduces sensitivity to emissions in the forward region which in turn reduces the effect
of the beam cut ηmax considerably, pushing its impact to values of the observable where the shape cross-
section is highly suppressed and thus too small to be of interest.

The event shapes are constructed as described stepwise below:

– Split C into two pieces: Up, Down
– Define jet masses for each

ρX,C ≡
1

Q2
⊥,C

(

∑

i∈CX

qi

)2
, X = U,D . (7)

Define sum and heavy-jet masses

ρS,C ≡ ρU,C + ρD,C , ρH,C ≡ max{ρU,C , ρD,C} . (8)

4There is considerable freedom on the choice of the central region. For instance this could be a region explicitly delimited
in rapidity or the two hard jets themselves.
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Fig. 4: NLL resummed predictions from CAESAR for the heavy jet-mass and the wide jet-broadening with the
minimum jet transverse energy E⊥,min values of 50 and 200 GeV as shown.

Define global extension, with extra forward-suppressed term

ρS,E ≡ ρS,C + EC̄ , ρH,E ≡ ρH,C + EC̄ . (9)

– Similarly: total and wide jet-broadenings

BT,E ≡ BT,C + EC̄ , BW,E ≡ BW,C + EC̄ . (10)

At the double-log level the results assume an identical form to Eq. 4 with G12 representing a com-
bination of total incoming (beam) and outgoing (jet) parton colour charges [9]. The full NLL resummed
results have a substantially more complex form and results from CAESAR [16] are plotted in Fig. 4.

2.3 Indirectly global recoil observables
Here we study observables that are defined exclusively in terms of particles in the central region but
are global. Such observables are already familiar from HERA studies. As an example, although the
current-jet broadening wrt the photon axis of the DIS Breit frame involves only particles that enter the
current hemisphere, the current quark acquires transverse momentum by recoil against remnant hemi-
sphere particles. This recoil means that the observable is indirectly sensitive to emissions in the remnant
hemisphere which makes the observables global.

To construct similar observables in the hadron-hadron case we observe that by momentum conser-
vation, the following relation holds :

∑

i∈C

~q⊥i = −
∑

i/∈C

~q⊥i (11)

which relates the sum of transverse momenta in C to that in the complementary region. Then the central
particles can be used to define a recoil term:

R⊥,C ≡
1

Q⊥,C

∣

∣

∣

∣

∣

∑

i∈C

~q⊥i

∣

∣

∣

∣

∣

, (12)

which contains an indirect dependence on non-central emissions.
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Fig. 5: The recoil thrust minor as predicted by CAESAR, with a cutoff before the divergence. Only a small fraction
of the cross-section is beyond the cutoff.

Now we can define event shapes explicitly in terms of central particle momenta in C. Examples
are the recoil jet-masses and broadenings

ρX,R ≡ ρX,C +R⊥,C , BX,R ≡ BX,C +R⊥,C , . . . (13)

It is clear that since these observables are defined in terms of central particles alone, the cut around
the beam direction is not an issue here. There is however another potential problem. Due to the addition
of the recoil term we lose direct exponentiation of the result in variable space. Exponentiation to NLL
accuracy only holds in impact-parameter or b space .

The physical effect in question here is similar to Drell-Yan QT spectra where there are two com-
peting mechanisms that lead to a given small QT , Sudakov suppression of soft emissions and vectorial
cancellation between harder emissions. Where the latter effect takes over (typically in the region where
single-logs are large αsL ∼ 1) we get a breakdown of the Sudakov result generated by CAESAR. This
result is of the general form:

P (V ) = eLg1(αsL)+g2(αsL)+···. (14)

The result for recoil observables produced by CAESAR will contain a divergence in the single-log func-
tion g2 and is cut before the divergence. Again for some variables this cut is at a position that significantly
reduces the range of possible phenomenological studies. For other variables the divergence is at values
of the observable that are sufficiently small so that only a few percent of the cross-section is beyond
the cutoff. An example of the former is the recoil transverse thrust where 15% of the cross-section lies
beyond the cut-off. For the recoil thrust minor, in contrast, the cutoff has only a moderate effect and
much less of the cross-section is cutoff, due to the divergence in g2.

Table 1 contains the different event shapes mentioned here and the impact of the two main limi-
tations we discussed, the beam-cut ηmax and the breakdown of resummation due to divergences of g2.
Additionally we mention the expected impact of hadronisation corrections (not yet computed in full) on
the different observables as well as the form of the estimated contribution from the underlying event.
The entries marked * are subject to uncertainty at present.

Further work is needed before the resummed expressions presented here can be compared with
data including the matching to fixed order and computation of the power corrections for the various
observables. This is currently in progress.
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Table 1: Event shapes and their characteristics

Event-shape Impact of ηmax

Resummation
breakdown

Underlying
Event Jet hadronisation

τ⊥,g tolerable∗ none ∼ ηmax/Q ∼ 1/Q
Tm,g tolerable none ∼ ηmax/Q ∼ 1/(

√
αsQ)

y23 tolerable none ∼ √
y23/Q∗ ∼ √

y23/Q ∗

τ⊥,E , ρX,E negligible none ∼ 1/Q ∼ 1/Q
BX,E negligible none ∼ 1/Q ∼ 1/(

√
αsQ)

Tm,E negligible serious ∼ 1/Q ∼ 1/(
√

αsQ)
y23,E negligible none ∼ 1/Q ∼ √

y23/Q ∗

τ⊥,R, ρX,R none serious ∼ 1/Q ∼ 1/Q
Tm,R, BX,R none tolerable ∼ 1/Q ∼ 1/(

√
αsQ)

y23,R none intermediate∗ ∼ √
y23/Q ∗ ∼ √

y23/Q ∗

Having discussed the hadron-hadron event shapes we now move on to describe resummed studies
concerning dijet production at HERA which can also be straightforwardly extended to hadron-hadron
collisons.

3 Dijet pt and angular spectra
It has been known for some time that dijet total rates cannot be predicted within fixed-order QCD if
symmetric cuts are applied to the two highest pt dijets [18]. While it was understood that the problems
are to do with constraints on soft gluon emission, the exact nature of this constraint was only made clear
in Ref. [11]. There it was pointed out that there are large double logarithms (aside from single logarithms
and less singular pieces) in the slope σ ′(∆) of the total rate, as a function of ∆ the difference in minimum
pt values of the two highest pt jets. These logarithms were resummed and it was shown that the slope of
the total rate σ′ → 0 as ∆ → 0. This leads to a physical behaviour of the total rate as reflected by the
data [10].

To perform the comparison to data accurately however, requires two improvements to be made to
the calculations of Ref. [11]. Firstly the exact same jet algorithm has to be employed in the theoretical
calculations and experimental measurements. The current algorithm used by H1 and ZEUS experiments
is the inclusive kt algorithm. At hadron colliders variants of the cone algorithm are used and it is in
fact a cone algorithm that was employed in Ref. [11]. However the details of the calculation need to
be ammended to define the cones in η, φ space as is done experimentally and calculations concerning
this were presented at the working group meeting. The second important step is matching to fixed order
estimates. We report below on the leading order matching to DISENT [19] while a full NLO matching
is still awaited.

We also introduce and study two variables of related interest, the first is the difference in pt,
between the highest pt jets ∆pt,jj = pt1 − pt2 (note that here we talk about the pt difference rather than
the difference in the minimum Ecut, that we mentioned earlier. The resummation of this distribution

dσ
d∆pt,jj

is essentially identical to that carried out in Ref. [11], except that here we compute the next-to–
leading logarithms in different versions of the jet algorithm, which should help with direct experimental
comparsions. We also perform the leading-order matching to DISENT.

Having developed the calculational techniques for dσ/d∆pt,jj it is then straightforward to gener-
ate the results for the distribution in azimuthal angle between jets dσ/dφjj which requires resummation
in the region φjj = π. These distributions have been measured at HERA and the Tevatron (most re-
cently by the D0 collaboration). Comparing the resummation with data would represent an interesting
challenge for the theory insofar as the status of resummation tools is concerned, and is potentially very
instructive.

A. BANFI , G. CORCELLA, M. DASGUPTA, Y. DELENDA, G.P. SALAM AND G. ZANDERIGHI

282



3.1 The ∆pt,jj and φjj distributions
We shall consider dijet production in the DIS Breit frame. For the jet definition we can consider either an
η, φ cone algorithm (such as the infrared and collinear safe midpoint cone algorithm) or the inclusive k t

algorithm. We shall point out to what level the two algorithms would give the same result and where they
can be expected to differ. We shall use a four-vector recombination scheme where the jet four-momentum
is the sum of individual constituent hadron four-momenta. We also impose cuts on the highest pt jets
such that |η1,2| ≤ 1 and pt1,t2 ≥ Emin.

We then consider the quantity ∆pt,jj = pt1 − pt2 which vanishes at Born order and hence the
distribution at this order is just dσ

dpt,jj
∝ δ(pt,jj).

Beyond leading order the kinematical situation in the plane normal to the Breit axis is represented
as before [11]:

~pt1 = pt1(1, 0) (15)

~pt2 = pt2 (cos(π ± ε), sin(π ± ε)) (16)
~kt = kt (cos φ, sin φ) (17)

Thus we are considering a small deviation from the Born configuration of jets back-to–back in azimuth,
induced by the presence of a soft gluon with transverse momentum kt � pt1,t2 (which is not recombined
by the algorithm with either hard parton) and with azimuthal angle φ. In the above ε represents the recoil
angle due to soft emission. We then have

∆pt,jj = |pt1 − pt2| ≈ |kt cos φ|, (18)

which accounts for the recoil ε to first order and hence is correct to NLL accuracy. Thus for the emission
of several soft gluons we have the pt mismatch given by

∆pt,jj = |
∑

i/∈j

kxi|, (19)

where kx denotes the single component of gluon transverse momentum, along the direction of the hard
jets, which are nearly back-to–back in the transverse plane. The sum includes only partons not merged
by the algorithm into the highest Et jets.

Similarly for the dijet azimuthal angle distribution5 , we have :

π − φjj ≈
1

pt
|
∑

i/∈j

kyi|. (20)

where φjj is the azimuthal angle between the two highest pt jets. Note that in the above we have set pt1 =
pt2 = pt since we are considering a small deviation from the Born configuration and this approximation
is correct to NLL accuracy. We also introduced ky , the component of soft gluon momentum normal to
the jet axis in the transverse plane.

In either of the above two cases, i.e the ∆pt,jj or φjj distributions, an identical resummation is
involved , due to the similar role of soft partons not recombined into jets. Henceforth we shall proceed
with just the ∆pt,jj resummation results, it being understood that similar considerations apply to φjj in
the region φjj ∼ π.

Assuming independent emission of soft gluons by the hard three-parton system (the incoming
parton and the two outgoing partons that initiate the dijets) and factorising the phase-space Eq. 19 as

5Note that the kinematical relations we derive here would be equally valid for dijets produced in hadron-hadron collisions
at the Tevatron or LHC and just the dynamics of multisoft gluon emission would be more complex.
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below6:

Θ



∆pt,jj − |
∑

i/∈j

kx,i|



 =
1

π

∫ ∞

−∞

db

b
sin(b∆pt,jj)

∏

i/∈j

eibkxi , (21)

the resummed result for the ∆pt,jj distribution can be expressed as

d3σ

dxdQ2d∆pt,jj
(Emin,∆pt,jj) =

∑

δ=q,g

∫ 1

x

dξ

ξ

∫ 1

0
dz

∑

a=T,L

Fa(y)Ca
δ (ξ, z, Emin)wδ(Q,∆pt,jj). (22)

In the above ξ and z are phase-space variables that parametrise the Born dijet configuration, Fa=T,L

denotes the y = Q2/xs dependence associated to the transverse or longitudinal structure function while
Ca is the Born matrix-element squared. The function w represents the result of resummation.

The resummed expression w requires some explanation. Its form is as follows

wδ(pt,jj) =

∫ ∞

0

db

b
sin(b∆pt,jj) exp[−Rδ(b)]S(b)qδ

(

x/ξ, 1/b2
)

. (23)

Note the fact that the exponentiation holds only in b space where b is the impact parameter. The func-
tion R(b) (we ignore the subscript δ which describes either incoming quarks or gluons) is the Sudakov
exponent which can be computed up to NLL accuracy,

R(b) = Lg1(αsL) + g2(αsL), L ∼ ln(bQ). (24)

while S(b) is the non-global contribution that arises from soft partons inside the jet emitting outside it.
qδ is the incoming quark or gluon density and its scale depends on the variable b. The functions g1 and
g2 are the leading-logarithmic and next-to–leading logarithmic resummed quantities.

For the leading logarithms g1 and a subset of next-to–leading logarithms g2, generated essentially
by exponentiation of the single-log result in b space, the cone and inclusive kt algorithms would give the
same result, which we have computed. Starting from terms that begin with α2

s ln2 b in g2 (specifically
two soft wide-angle gluons), the following two effects become important:

– For cone algorithms the implementation of the split/merge stage affects the g2 piece. Present
calculations [11] are valid to NLL accuracy if all the energy shared by overlapping jets is given
to the jet that would have highest pt. Note that this is different from merging the overlapping jets
themselves. If other merging procedures are used the calculation becomes more complex but is
still tractable.

– For the kt algorithm it is just being realised that running the algorithm generates terms that start at
α2

s ln2 b in the exponent, which are not correctly treated by naive Sudakov exponentiation. These
terms, which are generated by the clustering procedure, can also be numerically accounted for in
our case, but this is work in progress.

The effects that we mention above cause a similar impact on the final result as the non-global term S(b)
which was shown to be at around the 10% level in Ref. [11]. Hence the current results for the kt algorithm
that do not account for the recently found additional terms and only approximately for the non-global
logs, can be expected to change by around 10% when these effects will be included correctly.

We present in Fig. 6 preliminary results for the ∆pt,jj distribution matched to the leading order
DISENT prediction, using the kt algorithm. The matching at present combines quark and gluon channels
wheras ideally one would like to separate the incoming quark and gluon channels with the right weights

6We compute here the cross-section for the observable to be less than ∆pt,jj from which we can easily obtain the corre-
sponding distribution.
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Fig. 6: Figure showing the resummed result matched to fixed-order DISENT results for the variable ∆ = Q∆pt,jj .
Also shown, for comparison, are HERWIG results with matrix-element corrections and the DISENT result alone.

(O(αs) coefficient functions). This would be possible if, for instance, there was parton flavour informa-
tion explicit in the fixed order codes, a limitation of the fixed-order codes that needs to be addressed also
for hadron-hadron event shapes to be matched to NLO predictions.

We also present a comparison with HERWIG [20] results on the same quantity. The variable X in
the figure merely refers to the effect of using the jet pt as the hard scale rather than the photon virtuality
Q2, formally a NNLL effect. It is amusing to note the very good agreement of the resummation with
HERWIG but not too much can be read into it at this stage. Given the minor role of non-global effects
we would expect HERWIG and our predictions to indeed have a broad resemblence. However we should
mention that the resummed result in Fig. 6 is at present subject to change pending proper inclusion of non-
global logs and the effect of independent soft emission at large angles. The latter is partly included in the
results shown, through exponentiation of the one-gluon result as we pointed out before, but the clustering
procedure changes this result at about the same level as the non-global logs (O(α2

s ln2 b) in the exponent),
and this feature needs to be accounted for still. Secondly the matching to LO DISENT combines channels
and this spoils control over the α2

s ln2 Q/∆pt,jj term in the expansion of the resummation to NLO. A full
NLO matching with proper separation of the channels is awaited. The HERWIG curve also includes an
intrinsic kt component that lowers the height of the result at small pt,jj , which can be easily included in
the theoretical resummation but at present is excluded. Given these differences the very good agreement
one sees with HERWIG is expected to change to some extent although broadly speaking the shapes of
the two curves are expected to be similar. Similar conclusions apply for the φjj observable.

4 The vector Qt of the current hemisphere
Next we examine a quantity that, as mentioned in the introduction, makes a very good analogy with
Drell-Yan transverse momentum, Qt, distributions. Comparison of the resummation of this observable
with data could help to understand whether extra broadening of conventionally resummed Qt spectra,
is generated at small x. If so this will be a significant factor at the LHC. The observable in question is
the (modulus of) the vectorially summed transverse momenta of all particles in the Breit frame current
hemisphere:

Qt = |
∑

i∈Hc

~kt,i|. (25)
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Using momentum conservation this quantity is simply equal to the modulus of the transverse
momenta of emissions in the remnant hemisphere. These emissions can all be ascribed to the incoming
quark to NLL accuracy, apart from the soft wide-angle component where large-angle emissions in the
current hemisphere can emit softer gluons into the remnant hemisphere (the by now familiar non-global
logarithms).

The resummed result for this observable can be expressed as :

dσ

dQ2
T

∼ σ0

∫ ∞

0
bdbJ0(bQt) exp[−R(b)]S(b)q(x, 1/b2) (26)

where J0 is the zeroth order Bessel function, R(b) is the Sudakov exponent (the “radiator”) , S(b) the
non-global contribution and q denotes the quark distribution summed over quark flavours with appropri-
ate weights (charges).

The result for the radiator to NLL accuracy can be expressed, as before, in terms of a leading-log
and next-to–leading log function:

R(b) = Lg1(αsL) + g2(αsL), L = ln(bQ). (27)

We have

g1 =
CF

2πβ0λ
[−λ− ln(1− λ)], (28)

g2 =
3CF

4πβ0
ln(1− λ) +

KCF

4π2β2
0

[

λ

1− λ
+ ln(1− λ)

]

(29)

+
CF

2π

(

β1

β3
0

)[

−1

2
ln2 (1− λ)− λ + (1− λ)

1− λ

]

,

where we have λ = β0αs ln[Q2(b̄)2], b̄ = beγE/2 and K = (67/18 − π2/6)CA − 5/9nf .

It is straightforward to express the result directly in Qt space and one has for the pure NLL re-
summed terms:

dσ

dQ2
T

∼ d

dQ2
T

[

e−R(Q/Qt)−γER′(Q/Qt) Γ (1−R′/2)

Γ (1 + R′/2)
q(x,Q2

T )S(Q/Qt)

]

(30)

where R′ = dR/d ln(Q/Qt). The result has a divergence at R′ = 2 which is due to retaining just NLL
terms and is of the same nature as that discussed before for certain hadron-hadron event shapes and the
Drell-Yan Qt distribution. However in the present case the divergence is at quite low values of Qt, e.g
for Q = 100 GeV, the divergence is at around 0.5 GeV (depending on the exact choice for ΛQCD).
Thus it is possible to safely study the distribution down to Qt values of a few GeV using the simple
form Eq. 30. We note that is is also possible to eliminate the divergence if one defines the radiator such
that R(b) → R(b)θ(b̄Q− 1), which is a restriction that follows from leading-order kinematics (that one
assumes to hold at all orders). The resultant modification has only a negligible impact in the Qt range
that we expect to study phenomenologically.

After the matching to fixed-order is performed, we can probe the non-perturbative smearing e−gb2

that one can apply to the b space resummed result. Comparisons with data should hopefully reveal
whether the NLL resummed result + ‘intrinsic kt’ smearing, mentioned above, is sufficient at smaller
values of x or whether extra broadening is generated in the small x region, that has a significant effect
on the result. Data from H1 are already available for this distribution [21] and this should enable rapid
developments concerning the above issue.
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5 Conclusions
In this article we have provided a summary of the developments discussed at the HERA-LHC workshop
working group 2, concerning the topic of all-order QCD resummations. Specifically we have mentioned
recent work carried out for hadronic dijet event shapes, dijet Et and angular spectra and resummation of
the current-hemisphere transverse momentum distribution in the DIS Breit frame.

We have stressed the important role of HERA studies in the development of the subject from the
LEP era and the fact that, in this regard, HERA has acted as a bridge between LEP studies of the past
(although LEP analysis of data continues and is an important source of information) and future studies
at both the Tevatron and the LHC.

We have particularly tried to stress the continuing crucial role of HERA in testing all-order QCD
dynamics, especially in the context of multi-hard parton observables where studies are currently ongoing.
Careful experimental and theoretical collaborative effort is needed here in order to confirm the picture
developed for NLL resummations and power corrections. If this program is successful it will greatly ease
the way for accurate QCD studies at more complex hadronic environments, such as the LHC.
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Abstract
We compare different procedures for combining fixed-order tree-level matrix
element generators with parton showers. We use the case of W-production
at the Tevatron and the LHC to compare different implementations of the so-
called CKKW scheme and one based on the so-called MLM scheme using
different matrix element generators and different parton cascades. We find that
although similar results are obtained in all cases, there are important differ-
ences.

1 Introduction
One of the most striking features of LHC final states will be the large number of events with several
hard jets. Final states with 6 jets from tt̄ decays will have a rate of almost 1Hz, with 10-100 times
more coming from prompt QCD processes. The immense amount of available phase-space, and the large
acceptance of the detectors, with calorimeters covering a region of almost 10 units of pseudorapidity (η),
will lead to production and identification of final states with 10 or more jets. These events will hide or
strongly modify all possible signals of new physics which involve the chain decay of heavy coloured
particles, such as squarks, gluinos or the heavier partners of the top which appear in little-Higgs models.
Being able to predict their features is therefore essential.

To achieve this, our calculations need to describe as accurately as possible both the full matrix
elements for the underlying hard processes, as well as the subsequent development of the hard partons
into jets of hadrons. For the complex final-state topologies we are interested in, no factorization theorem
exists however to rigorously separate these two components, providing a constructive algorithm for the
implementation of such separation. The main obstacle is the existence of several hard scales, like the
jet transverse energies and dijet invariant masses, which for a generic multijet event will span a wide
range. This makes it difficult to unambiguously separate the components of the event which belong
to the “hard process” (to be calculated using a multiparton amplitude) from those developing during its
evolution (described by the parton shower). A given (N+1)-jet event can be obtained in two ways: from
the collinear/soft-radiation evolution of an appropriate (N + 1)-parton final state, or from an N -parton
configuration where hard, large-angle emission during its evolution leads to the extra jet. A factorization
prescription (in this context this is often called a “matching scheme”) defines, on an event-by-event basis,
which of the two paths should be followed. The primary goal of a matching scheme is therefore to avoid
double counting (by preventing some events to appear twice, once for each path), as well as dead regions
(by ensuring that each configuration is generated by at least one of the allowed paths). Furthermore,
a good matching scheme will optimize the choice of the path, using the one which guarantees the best
possible approximation to a given kinematics. It is possible to consider therefore different matching
schemes, all avoiding the double counting and dead regions, but leading to different results in view of
the different ways the calculation is distributed between the matrix element and the shower evolution.
As in any factorization scheme, the physics is independent of the separation between phases only if
we have complete control over the perturbative expansion. Otherwise a residual scheme-dependence is
left. Exploring different matching schemes is therefore crucial to assess the systematic uncertainties of
multijet calculations.
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In this work we present a first comparison of the three approaches which have been proposed so
far, the so-called CKKW scheme, the Lönnblad scheme, and the MLM scheme. After shortly reviewing
them, we present predictions for a set of W+multijet distributions at the Tevatron collider and at the
LHC.

2 Matching procedures
In general, the different merging procedures all follow a similar strategy:

1. A jet measure is defined and all relevant cross sections including jets are calculated for the process
under consideration. I.e. for the production of a final state X in pp-collisions, the cross sections
for the processes pp→ X + njets with n = 0, 1, . . . nmax are evaluated.

2. Hard parton samples are produced with a probability proportional to the respective total cross
section, in a corresponding kinematic configuration following the matrix element.

3. The individual configurations are accepted or rejected with a dynamical, kinematics-dependent
probability that includes both effects of running coupling constants and of Sudakov effects. In
case the event is rejected, step 2 is repeated, i.e. a new parton sample is selected, possibly with a
new number of jets.

4. The parton shower is invoked with suitable initial conditions for each of the legs. In some cases,
like, e.g. in the MLM procedure described below, this step is performed together with the step
before, i.e. the acceptance/rejection of the jet configuration. In all cases the parton shower is
constrained not to produce any extra jet; stated in other words: Configurations that would fall into
the realm of matrix elements with a higher jet multiplicity are vetoed in the parton shower step.

From the description above it is clear that the merging procedures discussed in this contribution differ
mainly

– in the jet definition used in the matrix elements;
– in the way the acceptance/rejection of jet configurations stemming from the matrix element is

performed;
– and in details concerning the starting conditions of and the jet vetoing inside the parton showering.

2.1 CKKW
In the original merging description according to [1, 2], which has been implemented [3] in SHERPA [4]
in full generality, the acceptance/rejection of jet configurations from the matrix elements and the parton
showering step are well-separated.

In this realisation of what is known as the CKKW-prescription the phase space separation for the different
multijet processes is achieved through a k⊥-measure [5–7]. For the case of hadron–hadron collisions,
two final-state particles belong to two different jets, if their relative transverse momentum

k
(ij)2
⊥ = 2 min

{
p

(i)
⊥ , p

(j)
⊥

}2 [
cosh(η(i) − η(j))− cos(φ(i) − φ(j))

]
(1)

is larger than a critical value, k2
⊥,0. In addition, the transverse momentum of each jet has to be larger

than k⊥,0. The matrix elements are then reweighted by appropriate Sudakov and coupling weights. The
task of the weight attached to a matrix element is to take into account terms that would appear in a
corresponding parton shower evolution. Therefore, a “shower history” is reconstructed by clustering the
initial and final state partons according to the k⊥-algorithm. The resulting chain of nodal k⊥-measures is
interpreted as the sequence of relative transverse momenta of multiple jet production. The first ingredient
of the weight are the strong coupling constants taken at the respective nodal values, divided by the value
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of αS used during the matrix element evaluation. The other part of the correction weight is provided by
NLL-Sudakov form factors defined by

∆q,g(Q,Q0) := exp


−

Q∫

Q0

dqΓq,g(Q, q)


 , (2)

where the integrated splitting functions Γq,g are given by

Γq,g(Q, q) :=





2CFαs(q)
πq

[
log Q

q − 3
4

]

2CAαs(q)
πq

[
log Q

q − 11
12

] (3)

and contain the running coupling constant and the two leading, logarithmically enhanced terms in the
limit when Q0 � Q. The two finite, non-logarithmic terms −3/4 and −11/12, respectively emerge
when integrating the non-singular part of the corresponding splitting function in the limits [0, 1]. Po-
tentially, when q/Q is not going to zero, these finite terms are larger than the logarithmic terms and
thus spoil an interpretation of the emerging NLL-Sudakov form factor as a non-branching probability.
Therefore, without affecting the logarithmic order of the Sudakov form factors, these finite terms are
integrated over the interval [q/Q, 1 − q/Q] rather than over [q, Q]. This way a Sudakov form factor
determines the probability for having no emission resolvable at scale Q0 during the evolution from a
higher scale Q to a lower scale Q0. A ratio of two Sudakov form factors ∆(Q,Q0)/∆(q,Q0) then gives
the probability for having no emission resolvable at scale Q0 during the evolution from Q to q. Having
reweighted the matrix element, a smooth transition between this and the parton shower region is achieved
by choosing suitable starting conditions for the shower evolution of the parton ensemble and vetoing any
parton shower emission that is harder than the separation cut k⊥,0.

Within SHERPA the required matrix elements are provided by its internal matrix element generator
AMEGIC++ [8] and the parton shower phase is handled by APACIC++ [9, 10]. Beyond the comparisons
presented here the SHERPA predictions for W+multijets have already been validated and studied for
Tevatron and LHC energies in [11, 12]. Results for the production of pairs of W -bosons have been
presented in [13].

2.2 The Dipole Cascade and CKKW
The dipole model [14,15] as implemented in the ARIADNE program [16] is based around iterating 2→ 3
partonic splitting instead of the usual 1 → 2 partonic splittings in a conventional parton shower. Gluon
radiation is modeled as being radiated coherently from a color–anticolor charged parton pair. This has
the advantage of eg. including first order correction to the matrix elements for e+e− → qq̄ in a natural
way and it also automatically includes the coherence effects modeled by angular ordering in conventional
showers. The process of quark antiquark production does not come in as naturally, but can be added [17].
The emissions in the dipole cascade is ordered according to invariant transverse momentum defined as

p2
⊥ =

s12s23

s123
, (4)

where sij is the squared invariant mass of parton i and j, with the emitted parton having index 2.

When applied to hadronic collisions, the dipole model does not separate between initial and final
state radiation. Instead all emissions are treated as coming from final state dipoles [18, 19]. To be able
to extend the dipole model to hadron collisions, extended colored objects are introduced to model the
hadron remnants. Dipoles involving hadron remnants are treated in a similar manner to the normal final-
state dipoles. However, since the hadron remnant is considered to be an extended object, emissions with

S. HÖCHE, F. KRAUSS, N. LAVESSON, L. L ÖNNBLAD , M. MANGANO, A. SCHÄLICKE AND . . .

290



small wavelength are suppressed. This is modeled by only letting a fraction of the remnant take part in
the emission. The fraction that is resolved during the emission is given by

a(p⊥) =

(
µ

p⊥

)α
, (5)

where µ is the inverse size of the remnant and α is the dimensionality.

There are two additional forms of emissions which need to be included in the case of hadronic
collisions. One corresponds to an initial state g → qq̄ [20]. This does not come in naturally in the dipole
model, but is added by hand in a way similar to that of a conventional initial-state parton shower [20].
The other corresponds to the initial-state q → gq (with the gluon entering into the hard sub-process)
which could be added in a similar way, but this has not been implemented in ARIADNE yet.

When implementing CKKW for the dipole cascade, the procedure is slightly different from what
has been described above [21, 22]. First, rather than just reconstructing emission scales using the k⊥-
algorithm, a complete dipole shower history is constructed for each state produced by the Matrix Element
generator, basically answering the question how would ARIADNE have generated this state. This will
produce a complete set of intermediate partonic states, Si, and the corresponding emission scales, p⊥i.

The Sudakov form factors are then introduced using the Sudakov veto algorithm. The idea is that
we want to reproduce the Sudakov form factors used in Ariadne. This is done by performing a trial
emission starting from each intermediate state Si with p⊥i as a starting scale. If the emitted parton has
a p⊥ higher than p⊥i+1 the state is rejected. This correspond to keeping the state according to the no
emission probability in Ariadne, which is exactly the Sudakov form factor.

It should be noted that for initial-state showers, there are two alternative ways of defining the
Sudakov form factor. The definition in eq. (2) is used in eg. HERWIG [23], while eg. PYTHIA [24,25] uses
a form which includes ratios of parton densities. Although formally equivalent to leading logarithmic
accuracy, only the latter corresponds exactly to a no-emission probability, and this is the one generated
by the Sudakov-veto algorithm. This, however, also means that the reconstructed emissions need not
only be reweighted by the running αS as in the standard CKKW procedure above, but also with ratios of
parton densities, which in the case of gluon emissions correspond to the suppression due to the extended
remnants in eq. (5) as explained in more detail in [22], where the complete algorithm is presented.

2.3 The MLM proceedure
In this approach we match the partons from the ME calculation to the jets reconstructed after the per-
turbative shower. Parton-level events are defined by a minimum ET threshold Emin

T for the partons,
and a minimum separation among them, ∆Rjj > Rmin. A tree structure is defined in analogy with
the CKKW algorithm, starting however from the colour-flow extracted from the matrix-element calcula-
tion [26], thus defining the scales at which the various powers of αs are calculated. However, no Sudakov
reweighting is applied. Rather, events are showered, without any hard-emission veto during the shower.
After evolution, a jet cone algorithm with cone size Rmin and minimum transverse energy Emin

T is ap-
plied to the final state. Starting from the hardest parton, the jet which is closest to it in (η, φ) is selected.
If the distance between the parton and the jet centroid is smaller than Rmin, the parton and the jet match.
The matched jet is removed from the list of jets, and matching for subsequent partons is performed. The
event is fully matched if each parton has a matched jet. Events which do not match are rejected. A typ-
ical example is when two partons are so close that they cannot generate independent jets, and therefore
cannot match. Rejection removes double counting of the leading double logarithms associated to the
collinear behaviour of the amplitude when two partons get close. Another example is when a parton is
too soft to generate its own jet, again failing matching. This removes double counting of some single
logarithms. For events which satisfy matching, it is furthermore required that no extra jet, in addition to
those matching the partons, be present. Events with extra jets are rejected, a suppression replacing the
Sudakov reweighting used in the CKKW approach. Events obtained by applying this procedure to the
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parton level with increasing multiplicity can then be combined to obtain fully inclusive samples span-
ning a large multiplicity range. Events with extra jets are not rejected in the case of the sample with
highest partonic multiplicity. The distributions of observables measured on this inclusive data set should
not depend on the value of the parameters Emin

T and Rmin, similar to the k⊥,0 independence of the
CKKW approach. This algorithm is encoded in the ALPGEN generator [27, 28], where evolution with
both HERWIG and PYTHIA are enabled. In the following studies, the results quoted as “ALPGEN” employ
the MLM matching scheme, and use ALPGEN for the generation of the parton-level matrix elements and
HERWIG for the shower evolution and hadronisation.

3 Examples and comparisons
We present in this Section some concrete examples. We concentrate on the case of W+multijet produc-
tion, which is one of the most studied final states because of its important role as a background to top
quark studies at the Tevatron. At the LHC, W+jets, as well as the similar Z+jets processes, will provide
the main irreducible backgrounds to signals such as multijet plus missing transverse energy, typical of
Supersymmetry and of other manifestations of new physics. The understanding of W+multijet produc-
tion at the Tevatron is therefore an essential step towards the validation and tuning of the tools presented
here, prior to their utilization at the LHC.

For each of the three codes we calculated a large set of observables, addressing inclusive proper-
ties of the events (pT spectrum of the W and of leading jets), geometric correlations between the jets,
and intrinsic properties of the jets themselves, such as energy shapes. In view of the limited space avail-
able here we present only a subset of our studies, which will be documented in more detail in a future
publication. An independent study of the systematics in the implementation of the CKKW prescription
in HERWIG and PYTHIA was documented in [29].

The comparison between the respective results shows a reasonable agreement among the three
approaches, but points also to differences, in absolute rates as well as in the shape of individual distri-
butions, which underscore the existence of an underlying systematic uncertainty. The differences are
nevertheless by and large consistent with the intrinsic systematic uncertainties of each of the codes, such
as the dependence on the generation cuts or on the choice of renormalization scale. There are also dif-
ferences due to the choice of parton cascade. In particular the ARIADNE cascade is quite different from a
conventional parton shower, and it has been shown in this workshop [30] that ARIADNE eg. gives a much
harder p⊥W spectrum than does HERWIG or PYTHIA. Now, although the hard emissions in the matching
proceedures should be described by the exact matrix element, the Sudakov formfactors in the ARIADNE

matching (and indirectly in the MLM scheme) are generated by the cascade. In addition, the events in the
ARIADNE matching are reweighted by PDF ratios in the same way as is done in the plain cascade. This
means that some properties of the cascade may affect also the hard emissions in the matching procedure
in these cases.

The existence in each of the codes of parameters specifying the details of the matching algorithms
presents therefore an opportunity to tune each code so as to best describe the data. This tuning should
be seen as a prerequisite for a quantitative study of the overall theoretical systematics: after the tuning
is performed on a given set of final states (e.g. the W+jets considered here), the systematics for other
observables or for the extrapolation to the LHC can be obtained by comparing the difference in extrap-
olation between the various codes. It is therefore auspicable that future analysis of Tevatron data will
provide us with spectra corrected for detector effects in a fashion suitable to a direct comparison against
theoretical predictions.

The following two sections present results for the Tevatron (pp̄ collisions at 1.96 TeV) and for
the LHC (pp at 14 TeV), considering events with a positively charged W . Jets are defined by Paige’s
GETJET cone-clustering algorithm, with a calorimeter segmentation of (∆η, ∆φ) = (0.1,6◦) and a cone
size of 0.7 and 0.4 for Tevatron and LHC, respectively. At the Tevatron (LHC) we consider jets with
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Fig. 1: Inclusive ET spectra of the leading 4 jets at the Tevatron (pb/GeV).

ET > 10(20) GeV, within |η| < 2(4.5). We use the PDF set CTEQ6L, with αS(MZ) = 0.118.

For our default distributions, the ALPGEN results for the Tevatron (LHC) were obtained using
parton level cuts of pT,min = 10(20) GeV, |η| < 2.5(5), Rjj < 0.7(0.4) and matching defined by
ETmin = 10 GeV and R = 0.7. The SHERPA samples have been generated using matrix elements
with up to four extra jets and the value of the merging scale has been chosen to k⊥,0 = 10(20) GeV,
respectively. Finally, for ARIADNE, the parton level cuts were pT,min = 10(20), Rjj < 0.5(0.35) and,
in addition, a cut on the maximum pseudorapidity of jets, ηjmax = 2.5(5.0).

In all cases, the analysis is done at the hadron level, but without including the underlying event.

3.1 Tevatron Studies
We start by showing in fig. 1 the inclusive ET spectra of the leading 4 jets. The absolute rate predicted
by each code is used, in units of pb/GeV. We notice that the ALPGEN spectrum for the first two jets is
softer than both SHERPA and ARIADNE, with the latter having even harder tails. The spectra for the third
and fourth jet are instead in very good agreement, both in shape and normalization. As an indication
of possible sources of systematics in these calculations, we rescaled the renormalization scale used in
ALPGEN by a factor of 1/2. As seen in fig. 2 the distributions for the leading jets is now in perfect
agreement with SHERPA, with an increase in rate for the third and fourth jet. These plots give us an idea
of the level of flexibility which is intrinsic in the calculation of higher-order jet production. One should
not forget that the rate for production of N jets is proportional to the N th power of αs, and the absence
of the full set of virtual corrections unavoidably leads to a large scale uncertainty.

Figure 3 shows the inclusive η spectra of the leading 4 jets, all normalized to unit area. The
asymmetry for the first two jets is due to the W+, which preferentially moves in the direction of the
proton (positive η). This is partially washed out in the case of the third and fourth jet. There is a good
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Fig. 2: Same as Fig. 1, but with the ALPGEN renormalization scale reduced by a factor 2.

agreement between the spectra of ALPGEN and SHERPA, while ARIADNE spectra appear to be broader, in
particular for the subleading jets. This broadening is expected since the gluon emissions in ARIADNE are
essentially unordered in rapidity, which means that the Sudakov form factors applied to the ME-generated
states include also a log 1/x resummation absent in the other programs.

The top-left plot of fig. 4 shows the inclusive pT distribution of the W+ boson, with absolute
normalization in pb/GeV. This distribution reflects in part the behaviour observed for the spectrum of the
leading jet, with ALPGEN slightly softer, and ARIADNE slightly harder than SHERPA. The |η| separation
between the W and the leading jet of the event is shown in the top-right plot. The two lower plots
show instead the distributions of |η(jet1) − η(jet2)| and |η(jet2) − η(jet3)|. These last three plots are
normalized to unit area. In all these cases, we observe once more a reflection of the behaviour observed
in the inclusive η distributions of the jets: ALPGEN is slightly narrower than SHERPA, and ARIADNE is
slightly broader.

3.2 LHC Predictions
In this section we confine ourselves to ALPGEN and SHERPA. It turns out that ARIADNE has a problem in
the reweighting related to the fact that initial-state g → qq̄ emissions, contrary to the gluon emissions, are
ordered both in p⊥ and rapidity. With the extra phase space available at the LHC this leads to unnatural
reconstructions which, in turn, gives rise to a systematically too high reweighting. A solution for this
problem is under investigation and a fuller comparison including ARIADNE will be documented in a
future publication.

Following the same sequence of the Tevatron study, we start by showing in fig. 5 the inclusive
ET spectra of the leading 4 jets. The absolute rate predicted by each code is used, in units of pb/GeV.
The relative behaviour of the predictions by ALPGEN and SHERPA follows the pattern observed in the
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Fig. 3: Inclusive η spectra of the leading 4 jets at the Tevatron, normalized to unit area.

Tevatron case, with ALPGEN being softer in the case of the leading two jets. We do not notice however
a deterioration of the discrepancy going from the Tevatron to the LHC, suggesting that once a proper
tuning is achieved at lower energy the predictions of two codes for the LHC should be comparable.

Figure 6 shows the inclusive η spectra of the leading 4 jets, all normalized to unit area. The
asymmetry now is not present, because of the symmetric rapidity distribution of the W + in pp collisions.
As in the case of the Tevatorn, jet production in ALPGEN is slightly more central than in SHERPA.

The top-left plot of fig. 7 shows the inclusive pT distribution of the W+ boson, with absolute
normalization in pb/GeV. The |η| separation between the W and the leading jet of the event is shown
in the top-right plot. The two lower plots show instead the distributions of |η(jet1) − η(jet2)| and
|η(jet2) − η(jet3)|. These last three plots are normalized to unit area. As before, the features of these
comparisons reflect what observed in the inclusive jet properties.

4 Conclusions
This document summarizes our study of a preliminary comparison of three independent approaches to
the problems of merging matrix element and parton shower evolution for multijet final states. Overall,
the picture shows a general consistency between the three approaches, although there are occasional
differences. The origin of these differences is under study. It could be based on intrinsic differences
between the matching schemes, as well as to differences between the different shower algorithms used
in the three cases. We expect nevertheless that these differences be reconciled with appropriate changes
in the default parameter settings for the matching schemes, as partly supported by the few systematic
studies presented here. Validation and tuning on current Tevatron data is essential, and will allow to
reduce the systematics.
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Fig. 4: Top left: inclusive p⊥(W+) spectrum, pb/GeV. Bottom left: |η(W+) − η(jet1)| (unit area). Top right:
|η(jet1)− η(jet2)| and bottom right: |η(jet2)− η(jet3)| (unit area).

It is also important to compare these models to HERA data. However, besides some preliminary
investigations for ARIADNE [31], there is no program which properly implement a CKKW or MLM
matching scheme for DIS. The energy of HERA is, of course, lower, as are the jet multiplicities and jet
energies, but HERA has the advantage of providing a large phase space for jet production which is not
mainly determined by the hard scale, Q2, but rather by the total energy, giving rise to large logarithms
of x ≈ Q2/W 2 which need to be resummed to all orders. This is in contrast to the Tevatron, where
the phase space for additional jets in W-production mainly are determined by mW . However, when
going to the LHC there may also be important effects of the increased energy, and there will be large
logarithms of x ∝ mW/

√
S present, which may need to be resummed. The peculiar treatment of the

available phase space in the plain ARIADNE cascade means that some logarithms of x are resummed in
contrast to conventional initial-state parton cascades. This feature survives the matching procedure and
is the reason for the broader rapidity spectra presented in the figures above. In DIS this is reflected by
the increased rate of forward jets, and such measurements are known to be well reproduced by ARIADNE

while conventional parton showers fail. It would be very interesting if the matching of these conventional
showers with higher order matrix elements would improve the description of forward jets. In that case
the extrapolation of the Tevatron results to the LHC would be on much safer grounds.

As our study of the LHC distributions suggests, the increase in energy exhibits the same pattern
of discrepancies observed at the Tevatron. We therefore expect that if different algorithms are tuned on
the same set of data, say Tevatron W+jets, they will extrapolate in the same way to the LHC or to
different final states, for example multijet configurations without W bosons. While these systematics
studies can be performed directly at the Monte Carlo level, only the availability of real measurements
from the Tevatron can inject the necessary level or realism in these exploration. We look forward to the
availability of such data.
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Fig. 5: Inclusive ET spectra of the leading 4 jets at the LHC (pb/GeV).

Fig. 6: Inclusive η spectra of the leading 4 jets at the LHC, normalized to unit area.
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Fig. 7: Top left: inclusive ptT (W+) spectrum, pb/GeV. Bottom left: |η(W+) − η(jet1)| (unit area). Top right:
|η(jet1)− η(jet2)| and bottom right: |η(jet2)− η(jet3)| (unit area).
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equation in QCD∗
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Abstract
A new class of the constrained Monte Carlo (CMC) algorithms for the QCD
evolution equation was recently discovered. The constraint is imposed on the
type and the total longitudinal energy of the parton exiting QCD evolution
and entering a hard process. The efficiency of the new CMCs is found to be
reasonable.

This brief report summarizes the recent developments in the area of the Monte Carlo (MC) tech-
niques for the perturbative QCD calculations. Most of it was done at the time of the present HERA–LHC
workshop, partial results being presented at several of its meetings. At present, two papers, [1] and [2],
demonstrating the principal results are already available. Generally, these MC techniques concern the
QCD evolution of the parton distribution functions (PDFs) Dk(x,Q), where k denotes the type of the
parton (quark, gluon), x the fraction of longitudinal momentum of the initial hadron carried by the par-
ton, and the size of the available real/virtual emission phase space is Q. The evolution equation describes
the response of the PDF to an increase of Q; Dk(x,Q) is an inclusive distribution and can be measured
almost directly in hadron — lepton scattering. On the other hand, it was always known that there ex-
ists in QCD an exclusive picture of the PDF, the so-called parton-shower process, in which Dk(x,Q) is
the distribution of the parton exiting the emission chain and entering the hard process (lepton–quark for
example). The kernel functions Pkj(Q, z), that govern the differential evolution equations of PDFs are
closely related to distributions governing a single emission process (i − 1) → i in the parton shower:
Pkiki−1

(Qi, xi/xi−1).

In other words, the evolution (Q-dependence) of PDFs and the parton shower represent two faces
of the same QCD reality. The first one (inclusive) is well suited for basic precision tests of QCD at
hadron–lepton colliders, while the second one (exclusive) provides realistic exclusive Monte Carlo mod-
eling, vitally needed for experiments at high-energy particle colliders.

At this point, it is worth stressing that, so far, we were referring to DGLAP-type PDFs [3] and their
evolution, and to constructing a parton-shower MC starting from them, as was done two decades ago and
is still done today. This involves a certain amount of “backward engineering” and educated guesses, be-
cause the classical inclusive PDFs integrate over the pT of the exiting parton. The so-called unintegrated
PDFs (UPDFs) Dk(x, pT , Q) would be more suitable for the purpose, leading to higher-quality QCD
calculations. UPDFs are, however, more complicated to handle, both numerically and theoretically. (It
is still a challenge to construct a parton-shower MC based consistently on the theoretically well defined
UPDFs.)

Another interesting “entanglement” of the evolution of PDFs on one side and of the parton shower
(PS) MC on the other side is also present in the modeling of the showering of the incoming hadron —
mostly for technical reasons and convenience. The Markovian nature of the QCD evolution can be
exploited directly in the PS MC, where partons split/decay as long as there is enough energy to dissipate
(final state) or the upper boundary Q of the phase space is hit (initial state). The multiparton distribution
in such a MC is a product of the evolution kernels. However, such a direct Markovian MC simulation of
a shower is hopelessly inefficient in the initial state, because the hard process accepts only certain types
∗Supported in part by the EU grant MTKD-CT-2004-510126, in partnership with the CERN Physics Department.
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and momenta of the incoming partons — most of the shower histories are rejected (zero MC weight) by
the hard process, in particular when forming narrow resonances such as electroweak bosons or Higgs
boson at the LHC. A well-known “workaround” is Sjöstrand’s backward evolution MC algorithm, used
currently in all PS MCs, e.g., HERWIG [4] and PYTHIA [5]. Contrary to the forward Markovian MC,
where the physics inputs are PDFs at low Q0 ∼1 GeV and the evolution kernels, in the backward evolu-
tion MC one has to know PDFs in the entire range (Q0, Q) from a separate non-MC numerical program
solving the evolution equation to provide look-up tables (or numerical parametrization) for them1.

The following question has been pending in the parton-shower MC methodology for a long time:
Could one invent an efficient “monolithic” MC algorithm for the parton shower from the incoming
hadron, in which no external PDFs are needed and the only input are PDFs at Q0 and the evolution
kernel (the QCD evolution being a built-in feature of the parton shower MC)? Another question rises
immediately: Why bother? Especially since this is a tough technical problem. This cannot still be
fully answered before the above technique is applied in the full-scale (four-momentum level) PS MC.
Generally, we hope that this technique will open new avenues in the development of the PS MC at the
next-to-leading-logarithmic (NLL) level. In particular, it may help in constructing PS MCs closely re-
lated to unintegrated structure functions and, secondly, it may provide a better integration of the NLL
parton shower (yet to be implemented!) with the NLL calculation for the hard process.

The first solution of the above problem of finding an efficient “constrained MC” (CMC) algorithm
for the QCD evolution was presented in refs. [1, 6]. This solution belongs to what we call a CMC class
II, and it relies on the observation that all initial PDFs at Q0 can be approximated by const · xη−1

0 ; this is
to be corrected by the MC weight at a later stage. This allows elimination of the constraint x =

∏
i zi, at

the expense of x0, keeping the factorized form of the products of the kernels. Simplifying phase-space
boundaries in the space of zi is the next ingredient of the algorithm. Finally, in order to reach a reasonable
MC efficiency for the pure bremsstrahlung case out of the gluon emission line, one has to generate a 1/z
singularity in the G → G kernel in a separate branch of the MC. The overall efficiency of the MC is
satisfactory, as is demonstrated in Ref. [1] for the case of the pure bremsstrahlung out of the gluon and
quark colour charge. Generalization to the quark–gluon transition is outlined, but not yet implemented.
The main drawback of this method is its algebraic complexity. Further improvement of its relatively low
MC efficiency is possible (even though it could lead to even more algebraic complexity).

The second, more efficient, CMC algorithm was presented in Ref. [2] (as well as during the Oc-
tober 2004 meeting of the workshop). It belongs to what we call a CMC class I. The main idea is
to project/map points from the hyperspace defined by the energy constraint x =

∏
i zi, into a simpler

hyperspace, defined by the hardest emission, x = min zi. This mapping is accompanied by the ap-
propriate MC weight, which compensates exactly for the deformation of the distributions involved, and
the bookkeeping of the hyperspace boundaries is rigorous. The above describes a CMC for the pure
bremsstrahlung segment of the gluon emission out of a quark or gluon chain. Many such segments are
interconnected by the quark–gluon transitions. The algebraic hierarchic reorganization of the emission
chain into a super-level of the quark–gluon transitions and sub-level of the pure bremsstrahlung is an
important ingredient in all CMC algorithms and will be published separately [7]. The basic observation
made in Ref. [8] is that the average number of super-level transitions is low, ∼ 1; hence for precision of
a 10−4 it is sufficient to limit it to three or four transitions. The integration/simulation of the super-level
variables is done efficiently using the general-purpose MC tool FOAM [9, 10]. The above proof of the
correctness of the CMC class I algorithm concept was given in Ref. [2] for the full DGLAP-type QCD
evolution with the LL kernels (including quark–gluon transitions).

1Backward evolution is basically a change in the order of the generation of the variables: Consider generating ρ(x, y), where
one generates first x according to ρ(x) =

R
dy ρ(x, y), and next y according to ρ(x, y), by means of analytical mappings of x

and y into uniform random numbers. However, such analytical mappings may not exist, if we insist on generating first x and
next y! Nevertheless, we may still proceed with the same method by “brute force”, if we pretabulate and invert numerically the
functions R(x) =

R x R
dx′dy′ ρ(x′, y′) and Rx(y) =

R y
dy′ ρ(x, y′). This is what is done in a more dimensional case of the

backward-evolution MC; it also explains why pretabulated PDFs are needed in these methods.
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Fig. 1: CMC of the one-loop CCFM versus the corresponding MMC for quarks; number of quark–gluon transitions
J = 0, 1, 2, 3, 4, and the total. The ratios in the lower plot are for n = 0, 1 and the total (blue).

Although our main aim is to construct the non-Markovian CMC class of algorithms, we have de-
veloped in parallel the family of Markovian MC (MMC) algorithms/programs, which provide numerical
solutions of the QCD evolution equations with high precision, ∼ 10−3. We use them at each step of the
CMC development as numerical benchmarks for the precision tests of the algorithms and their software
implementations. The first example of MMC for DGLAP at LL was defined/examined in Ref. [8] and
tested using the non-MC program QCDnum16 [11]2. In some cases our MMC programs stand ahead of
their CMC brothers; for instance, they already include NLL DGLAP kernels. A systematic description
of the MMC family of our MC toolbox is still under preparation [13].

The last development at the time of the workshop was an extension of the CMC type-I algorithm
from DGLAP to CCFM one-loop evolution [14] (also referred to as HERWIG evolution [15]), in which
the strong coupling constant gains z-dependence, αs(Q) → αs(Q(1 − z)), as advocated in Ref. [16],
confirmed by NLL calculations [17]. The above ansatz also compels introduction of a Q-dependent
IR cutoff, ε = Qε/Q: another departure from DGLAP. This version of the CMC is still unpublished.
Its version for the pure bremsstrahlung was presented at the March 2005 meeting of the workshop; in
particular a perfect numerical agreement with the couterpartner MMC was demonstrated. Recently both
CMC and MMC for the one-loop CCFM were extended to quark–gluon transitions, and again perfect
agreement was found.

For the detailed description of the new CMC algorithm, we refer the reader to the corresponding
papers [1] and [2] and workshop presentations3 . Here, let us only show one essential step in the devel-
opment of the CMC for the one-loop CCFM model — the mapping of the Sudakov variables for the pure
bremsstrahlung:

I =

∫ t1

t0

dt

∫ z1

0
dz α(Q(1 − z)) zPΘ

GG(z, t)

=
2

β0

∫ z1

0
dz

∫ t1

t0

dt
1

t̂+ ln(1− z)
θln(1−z)>t̂ε−t̂

1− z =
2

β0

∫ ymax

0
dy(z)

∫ 1

0
ds(t).

(1)

2It was also compared with the non-MC program APCheb [12].
3To be found at http://jadach.home.cern.ch/jadach/.
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The short-hand notation t̂ = t̂(t) ≡ t − tΛ and v = ln(1 − z) supplements that of Ref. [2] in use, and
the mapping reads

y(z) = ρ(v1; t̂1, t̂0) = ρ(v1 + t̂1)− θv1>tε−t0ρ(v1 + t̂0), s(t) =
ln(t̂+ v)

ρ′(v; t̂1, t̂0)
,

ρ′(v; t̂1, t̂0) = θv<tε−t0ρ
′(v + t̂1) + θv>tε−t0 [ρ′(v + t̂1)− ρ′(v + t̂0)],

(2)

where ρ(t) ≡ t̂(ln t̂ − ln t̂ε) + t̂ε − t̂. Once the above mapping is set, the same algorithm, with the
parallel shift yi → yi + Y , can be used in this case. The super-level of quark–gluon transitions is again
implemented using FOAM4. A numerical comparison of the corresponding CMC and MMC programs
is shown in fig. 1. The MC efficiency is comparable with that of the DGLAP case.

Summary: We have constructed and tested new, efficient, constrained MC algorithms for the
initial-state parton-emission process in QCD.
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QED⊗QCD Exponentiation and Shower/ME Matching at the LHC∗

B.F.L. Ward and S.A. Yost
Department of Physics, Baylor University, Waco, TX, USA

Abstract
We present the elements of QED⊗QCD exponentiation and its interplay with
shower/ME matching in precision LHC physics scenarios. Applications to sin-
gle heavy gauge boson production at hadron colliders are illustrated.

In the LHC environment, precision predictions for the effects of multiple gluon and multiple pho-
ton radiative processes will be needed to realize the true potential of the attendant physics program. For
example, while the current precision tag for the luminosity at FNAL is at the ∼ 7% level [1], the high
precision requirements for the LHC dictate an experimental precision tag for the luminosity at the 2%
level [2]. This means that the theoretical precision tag requirement for the corresponding luminosity
processes, such as single W,Z production with the subsequent decay into light lepton pairs, must be at
the 1% level in order not to spoil the over-all precision of the respective luminosity determinations at
the LHC. This theoretical precision tag means that multiple gluon and multiple photon radiative effects
in the latter processes must be controlled to the stated precision. With this objective in mind, we have
developed the theory of QED ⊗ QCD exponentiation to allow the simultaneous resummation of the
multiple gluon and multiple photon radiative effects in LHC physics processes, to be realized ultimately
by MC methods on an event-by-event basis in the presence of parton showers in a framework which
allows us to systematically improve the accuracy of the calculations without double-counting of effects
in principle to all orders in both αs and α.

Specifically, the new QED ⊗QCD exponentiation theory is an extension of the QCD exponen-
tiation theory presented in Refs. [3]1. We recall that in the latter references it has been established that
the following result holds for a process such as q + q̄′ → V + n(G) + X → ¯̀̀ ′ + n(g) + X:

dσ̂exp =
∑

n

dσ̂n = eSUMIR(QCD)
∞∑

n=0

∫ n∏
j=1

d3kj

kj∫
d4y

(2π)4
eiy·(P1+P2−Q1−Q2−

P
kj)+DQCD

∗ ˜̄βn(k1, . . . , kn)
d3P2

P 0
2

d3Q2

Q 0
2

(1)

where gluon residuals ˜̄βn(k1, . . . , kn) , defined by Ref. [3], are free of all infrared divergences to all
orders in αs(Q). The functions SUMIR(QCD), DQCD, together with the basic infrared functions
Bnls

QCD, B̃nls
QCD, S̃nls

QCD are specified in Ref. [3]. Here V = W±, Z,and ` = e, µ, `′ = νe, νµ(e, µ) re-
spectively for V = W+(Z), and ` = νe, νµ, `′ = e, µ respectively for V = W−. We call attention
to the essential compensation between the left over genuine non-Abelian IR virtual and real singulari-
ties between

∫
dPhβ̄n and

∫
dPhβ̄n+1 respectively that really allows us to isolate ˜̄βj and distinguishes

QCD from QED, where no such compensation occurs. The result in (1) has been realized by Monte
Carlo methods [3]. See also Refs. [5–7] for exact O(α2

s) and Refs. [8–10] for exact O(α) results on the
W,Z production processes which we discuss here.

∗Work partly supported by US DOE grant DE-FG02-05ER41399 and by NATO grant PST.CLG.980342.
1We stress that the formal proof of exponentiation in non-Abelian gauge theories in the eikonal approximation is given in

Ref. [4]. The results in Ref. [3] are in contrast exact but have an exponent that only contains the leading contribution of the
exponent in Ref. [4].
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The new QED ⊗ QCD theory is obtained by simultaneously exponentiating the large IR terms
in QCD and the exact IR divergent terms in QED, so that we arrive at the new result

dσ̂exp = eSUMIR(QCED)

∞∑
n,m=0

∫ n∏
j1=1

d3kj1

kj1

m∏
j2=1

d3k′j2
k′j2

∫
d4y

(2π)4

eiy·(p1+q1−p2−q2−
P

kj1−
P

k′
j2 )+DQCED

˜̄βn,m(k1, . . . , kn; k′1, . . . , k
′
m)

d3p2

p 0
2

d3q2

q 0
2

,

(2)

where the new YFS [11, 12] residuals, defined in Ref. [13], ˜̄βn,m(k1, . . . , kn; k′1, . . . , k
′
m), with n hard

gluons and m hard photons, represent the successive application of the YFS expansion first for QCD
and subsequently for QED. The functions SUMIR(QCED), DQCED are determined from their analogs
SUMIR(QCD), DQCD via the substitutions

Bnls
QCD→Bnls

QCD +Bnls
QED≡Bnls

QCED ,

B̃nls
QCD→ B̃nls

QCD + B̃nls
QED≡ B̃nls

QCED ,

S̃nls
QCD → S̃nls

QCD + S̃nls
QED ≡ S̃nls

QCED

(3)

everywhere in expressions for the latter functions given in Refs. [3]. The residuals ˜̄βn,m are free of all
infrared singularities and the result in (2) is a representation that is exact and that can therefore be used to
make contact with parton shower MC’s without double counting or the unnecessary averaging of effects
such as the gluon azimuthal angular distribution relative to its parent’s momentum direction.

In the respective infrared algebra (QCED) in (2), the average Bjorken x values

xavg(QED) ∼= γ(QED)/(1 + γ(QED))
xavg(QCD) ∼= γ(QCD)/(1 + γ(QCD))

where γ(A) = 2αACA
π (Ls − 1), A = QED, QCD, with CA = Q2

f , CF , respectively, for A = QED, QCD
and the big log Ls, imply that QCD dominant corrections happen an order of magnitude earlier than
those for QED. This means that the leading ˜̄β0,0-level gives already a good estimate of the size of the
interplay between the higher order QED and QCD effects which we will use to illustrate (2) here.

More precisely, for the processes pp → V +n(γ)+m(g)+X → ¯̀̀ ′+n′(γ)+m(g)+X , where
V = W±, Z,and ` = e, µ, `′ = νe, νµ(e, µ) respectively for V = W+(Z), and ` = νe, νµ, `′ = e, µ
respectively for V = W−, we have the usual formula (we use the standard notation here [13])

dσexp(pp → V + X → ¯̀̀ ′ + X ′) =∑
i,j

∫
dxidxjFi(xi)Fj(xj)dσ̂exp(xixjs), (4)

and we use the result in (2) here with semi-analytical methods and structure functions from Ref. [14]. A
Monte Carlo realization will appear elsewhere [15].

We do not attempt in the present discussion to replace HERWIG [16] and/or PYTHIA [17] – we
intend here to combine our exact YFS calculus with HERWIG and/or PYTHIA by using the latter to
generate a parton shower starting from the initial (x1, x2) point at factorization scale µ after this point
is provided by the {Fi}. This combination of theoretical constructs can be systematically improved with
exact results order-by-order in αs, where currently the state of the art in such a calculation is the work in
Refs. [18] which accomplishes the combination of an exact O(αs) correction with HERWIG. We note
that, even in this latter result, the gluon azimuthal angle is averaged in the combination. We note that
the recent alternative parton distribution function evolution MC algorithm in Refs. [19] can also be used
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in our theoretical construction here. Due to its lack of the appropriate color coherence [20], we do not
consider ISAJET [21] here.

To illustrate how the combination with Pythia/Herwig can proceed, we note that, for example, if
we use a quark mass mq as our collinear limit regulator, DGLAP [22] evolution of the structure functions
allows us to factorize all the terms that involve powers of the big log Lc = ln µ2/m2

q − 1 in such a way
that the evolved structure function contains the effects of summing the leading big logs L = ln µ2/µ2

0

where we have in mind that the evolution involves initial data at the scale µ0. The result is therefore
independent of mq for mq ↓ 0. In the context of the DGLAP theory, the factorization scale µ represents
the largest p⊥ of the gluon emission included in the structure function. In practice, when we use these
structure functions with an exact result for the residuals in (2), it means that we must in the residuals
omit the contributions from gluon radiation at scales below µ. This can be shown to amount in most
cases to replacing Ls = ln ŝ/m2

q − 1 → Lnls = ln ŝ/µ2 but in any case it is immediate how to limit the
pT in the gluon emission 2 so that we do not double count effects. In other words, we apply the standard
QCD factorization of mass singularities to the cross section in (2) in the standard way. We may do it
with either the mass regulator for the collinear singularities or with dimensional regularization of such
singularities – the final result should be independent of this regulator. This would in practice mean the
following: We first make an event with the formula in (4) which would produce an initial beam state at
(x1, x2) for the two hard interacting partons at the factorization scale µ from the structure functions {Fj}
and a corresponding final state X from the exponentiated cross section in dσ̂exp(xixjs) ; the standard Les
Houches procedure [23] of showering this event (x1, x2, X) would then be used, employing backward
evolution of the initial partons. If we restrict the pT as we have indicated above, there would be no
double counting of effects. Let us call this pT matching of the shower from the backward evolution and
the matrix elements in the QCED exponentiated cross section.

However, one could ask if it is possible to be more accurate in the use of the exact result in
(2)? Indeed, it is. Just as the residuals ˜̄βn,m(k1, . . . , kn; k′1, . . . , k

′
m)are computed order by order in

perturbation theory from the corresponding exact perturbative results by expanding the exponents in (2)
and comparing the appropriate corresponding coefficients of the respective powers of αnαm

s , so too can
the shower formula which is used to generate the backward evolution be expanded so that the product
of the shower formula’s perturbative expansion, the perturbative expansion of the exponents in (2), and
the perturbative expansions of the residuals can be written as an over-all expansion in powers of αnαm

s

and required to match the respective calculated exact result for given order. In this way, new shower

subtracted residuals, { ˆ̄̃
βn,m(k1, . . . , kn; k′1, . . . , k

′
m)}, are calculated that can be used for the entire gluon

pT phase space with an accuracy of the cross section that should in principle be improved compared with
the first procedure for shower matching presented above. Both approaches are under investigation.

Returning to the general discussion, we compute, with and without QED, rexp = σexp/σBorn.
For this ratio we do not use the narrow resonance approximation; for, we wish to set a paradigm for
precision heavy vector boson studies. The formula which we use for σBorn is obtained from that in (4)
by substituting dσ̂Born for dσ̂exp therein, where dσ̂Born is the respective parton-level Born cross section.
Specifically, we have from (1) the ˜̄β0,0-level result

σ̂exp(x1x2s) =
∫ vmax

0
dvγQCEDvγQCED−1FYFS(γQCED)eδYFS σ̂Born((1− v)x1x2s) (5)

where we intend the well-known results for the respective parton-level Born cross sections and the value
of vmax implied by the experimental cuts under study. What is new here is the value for the QED⊗QCD
exponent

γQCED =
{

2Q2
f

α

π
+ 2CF

αs

π

}
Lnls (6)

where Lnls = ln x1x2s/µ2 when µ is the factorization scale.
2Here, we refer to both on-shell and off-shell emitted gluons.
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The functions FYFS(γQCED) and δYFS(γQCED) are well-known [12] as well:

FYFS(γQCED) =
e−γQCEDγE

Γ(1 + γQCED)
,

δYFS(γQCED) =
1
4
γQCED + (Q2

f

α

π
+ CF

αs

π
)(2ζ(2)− 1

2
),

(7)

where ζ(2) is Riemann’s zeta function of argument 2, i.e., π2/6, and γE is Euler’s constant, i.e.,
0.5772 . . . Using these formulas in (4) allows us to get the results

rexp =


1.1901 , QCED ≡ QCD+QED, LHC
1.1872 , QCD, LHC
1.1911 , QCED ≡ QCD+QED, Tevatron
1.1879 , QCD, Tevatron.

(8)

We see that QED is at the level of .3% at both LHC and FNAL. This is stable under scale variations [13].
We agree with the results in Refs. [5, 6, 8–10] on both of the respective sizes of the QED and QCD
effects. The QED effect is similar in size to structure function results found in Refs. [24–28], for further
reference.

We have shown that YFS theory (EEX and CEEX) extends to non-Abelian gauge theory and allows
simultaneous exponentiation of QED and QCD, QED⊗QCD exponentiation. For QED⊗QCD we find
that full MC event generator realization is possible in a way that combines our calculus with Herwig and
Pythia in principle. Semi-analytical results for QED (and QCD) threshold effects agree with literature
on Z production. As QED is at the .3% level, it is needed for 1% LHC theory predictions. We have
demonstrated a firm basis for the completeO(α2

s, ααs, α
2) results needed for the FNAL/LHC/RHIC/ILC

physics and all of the latter are in progress.
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PHOTOS as a pocket parton shower: flexibility tests for the algorithm∗
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Abstract
PHOTOS is widely used for generation of bremsstrahlung in decays of particles
and resonances in LHC applications. We document here its recent tests and
variants. Special emphasis is on those aspects which may be useful for new
applications in QED or QCD.

Recently version 2.14 of the PHOTOS Monte Carlo algorithm, written for bremsstrahlung genera-
tion in decays became available. In Ref. [1] detailed instructions on how to use the program are given.
With respect to older versions [2,3] of PHOTOS, it now features: improved implementation of QED inter-
ference and multiple-photon radiation. The numerical stability of the code was significantly improved as
well. Thanks to these changes, PHOTOS generates bremsstrahlung corrections in Z and W decays with a
precision of 0.1%. This precision was established in [4] with the help of a multitude of distributions and
of a specially designed numerical test (SDP), see Ref. [1], section 5 for the definition. The tests for other
channels, such as semileptonic K decays and leptonic decays of the Higgs boson and the τ -lepton, are
presented in [4] as well. In those cases the level of theoretical sophistication for the reference distribution
was lower though.

In this note we will not repeat a discussion of the design properties, but we will recall the main
tests that document robustness and flexibility of the PHOTOS design. The results of the comparisons of
PHOTOS running with different options of separation of its physical content into functional parts of the
algorithm will be shown. The design of the program, i.e. the relation between the parts of the algorithm
remained unchanged for these tests. This aspect may be of broader use and may find extensions in future
applications, also outside the simple case of purely QED bremsstrahlung in decays.

In the calculations that led to the construction of PHOTOS we had to deal with the diagrams gener-
ated by photon couplings to the charged fermions, scalars or vectors. They were definitely simpler than
the ones required for the QCD, nonetheless they offered a place to develop solutions which may be of
some use there as well. Having such possibility in mind, yet not having any extension to QCD at hand,
we have called PHOTOS a pocket parton shower. We hope that the methods we developed would be useful
for QCD at least as pedagogical examples.

We begin with a presentation of the components of the PHOTOS algorithm using operator language.
The consecutive approximations used in the construction of the crude distribution for photon generation,
and the correcting weights used to construct the physically complete distributions are listed, but can not
be defined in detail here. Instead, we present the variations of the algorithm. Comparisons between
different options of the algorithm provide an important class of technical tests, and also help to explore
the limits of the universality of the PHOTOS solution. The results of some of these tests will be listed later
in the contribution (for the remaining ones and the details we address the reader to refs. [1, 4]). In the
comparisons we use the SDP universal test based on MC-TESTER [5] as in Ref. [1]. We skip its definition
here as well.

The starting point for the development of PHOTOS was the observation that, at first order, the
bremsstrahlung corrections in the Z → µ+µ− process can be written as a convolution of the Born-level
distribution with the single-photon emission kernels for the emission from µ+ and µ−.
∗Supported in part by the EU grant MTKD-CT-2004-510126, in partnership with the CERN Physics Department, and the
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The formulae for the emission kernels are 3-dimensional and can be parametrized using the angles
and the invariant mass, which are the same variables as those used in the parametrization of the three-
body phase space (the kernels use only a subset of the complete set of phase-space parametrization
variables). The remaining two angular variables, not used in the kernels, can be identified as the angles
defining the orientation of the µ+ and/or µ− directions (for a detailed definition, see e.g. [2]).

The principle of the single-photon algorithm working on n-body decay is to replace a point in the
n-body phase space Ω2, with either the point in the original Ω2, or the point in the (n + 1)-body phase
space Ω3 (with generated photon). The overall normalization of the decay rate has to change as well and,
for example, in the case of Z → µ+µ−, due to the action of the single-photon algorithm, it needs to be
multiplied by a factor of 1 + 3

4
α
π .

Subsequent steps of the PHOTOS algorithm are described in terms of the evolution operators. Let
us stress the relations of these operators to the matrix elements and phase-space parametrizations. We
will present the decomposition of the operators in the top–down order, starting with the definition of Rα,
the operator describing the complete PHOTOS algorithm for single emission (which at least in the case of
Z and leptonic τ decays originates from field theory calculations without any approximation). Then, we
will gradually decompose the operators (they differ from decay channel to decay channel) so that we will
end up with the single well-defined, elementary operator for the emission from a single charged particle
in the final state. By aggregation of these elementary operators, the Rα may be reconstructed for any
decay channel. Let us point out that the expression of theoretical calculations in the form of operators is
particularly suitable in computer programs implementation.

We skip here a separate discussion of the factorization properties, in particular to define/optimize
the way the iteration of R’s is performed in PHOTOS. Not only the first-order calculations are needed, but
also higher-order ones, including mixed virtual–real corrections. For practical reasons, the Rα operator
needs to be regularized with the minimum energy for the explicitly generated photons: the part of the
real-photon phase space, under threshold, is integrated, and the resulting factor is summed with the
virtual correction.

• 1

Let us define the five steps in Rα separation. In the first one, the Rα is replaced by (we use
two-body decay as an example) Rα = RI(RS(µ+) + RS(µ−)), where RI is a generalized interference
operator and RS is a generalized operator responsible for photon generation from a single, charged
decay-product.

Let us point out here, that we use the word interference here having in mind its usual quantum-
mechanical sense. The interference is introduced simultaneously for the real and the virtual photon
correction. As a consequence, it changes, for instance, the hard-photon energy spectrum, and the action
of RI looks like kinematic reshuffling of events around the phase space. This interpretation of the
interference was particularly clear in the case of the Z decays where the RI operator can introduce exact
and complete first-order radiative corrections.

It is important to firstly define the amplitudes, the sum of which is squared, in physically meaning-
ful way, that is in gauge-invariant way, to produce interference. Our approach has changed with time, and
we relaxed this requirement; at present we simply request that the action of RI properly introduces inter-
ference effects. We also require that the generalized interference operator respects energy–momentum
conservation, and also overall normalization of the distribution under construction. The freedom of
choice in the separation of Rα into RI and RS we obtained this way is used to create different variants
of the PHOTOS algorithm.
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The RS operator acts on the points from the Ω2 phase space, and the results of its action belong
either to Ω2 or to Ω3. The domain of the RI operator has to be Ω2 + Ω3, and the results are also in
Ω2 + Ω3. In our solution we required that RI acts as a unit operator on the Ω2-part of its domain and,
with some probability, returns the points from Ω3 back to the original points in Ω2, thus reverting the
action of the RS .

Let us stress that in practical applications, to ease the extension of the algorithm to “any” decay
mode, we used in PHOTOS a simplification for RI . Obviously, the exact representation of the first-order
result would require RI to be decay-channel-dependent. Instead, we used an approximation that ensures
the proper behaviour of the photon distribution in the soft limit. Certain deficiencies at the hard-photon
limit of the phase space appear as a consequence, and are the subject of studies that need to be performed
individually for every decay channel of interest. The comparisons with matrix-element formulae, as
in [6], or experimental data, have to be performed for the sake of precision; they may result in dedicated
weights to be incorporated into PHOTOS. In principle, there is no problem to install a particular decay-
channel matrix element, but there has not been much need for this yet. So far, the precision of the
PHOTOS algorithm could always be raised to a satisfactory level by implementing some excluded parts of
formulae, being the case of W decay [6] an exception.

The density generated by the RS operator is normally twice that of real photons at the end of
generation and all over the phase space; it can also overpopulate only those regions of phase space where
it is necessary for RI . The excess of these photons is then reduced by Monte Carlo with the action of
RI .

• 2

In the next step of the algorithm construction, we have separated RS = RBRA, where RB was
responsible for the implementation of the spin-dependent part of the emission, and the RA part was
independent of the spin of the emitting final-state particle. Note that this step of the algorithm can
be performed at the earlier stage of generation as well, that is before the full angular construction of
the event. RB is again, as RI , it moves the hard bremsstrahlung events in excess back to the origi-
nal no-bremsstrahlung ones. RB operates on the internal variables of PHOTOS rather than on the fully
constructed events.

• 3

The definition of the RI , RB , RA operators was initially based on the inspection of the first-order
matrix elements for the two-body decays. In the general solution for RA, the process of multiple-body
decay of particle X is temporarily replaced by the two-body decay X → CY , in which particle X
decays to the charged particle C , which “emits” the photon, and the “spectator system” Y . The action of
the operator is repeated for each charged decay product: the subsequent charged particle takes the role
of the photon emitter C; all the others, including the photons generated in the previous steps, become
a part of the spectator system Y . The independence of the emissions from each charged product then
has to be ensured. This organization works well and can be understood with the help of the exact
parametrization of multibody phase space. It is helpful for iteration in multiple-photon emission. It also
helps to implement some genuine second-order matrix elements. This conclusion can be drawn from an
inspection of the second-order matrix elements, as in [7].

• 4

In the next step, we decompose the RA operator, splitting it in two parts: RA = RaRx. The Rx
operator generates the energy of the (to be generated) photon, and Ra generates its explicit kinematic
configuration.

PHOTOSAS A POCKET PARTON SHOWER: FLEXIBILITY TESTS FOR THE ALGORITHM
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The Rx operator acts on points from the Ω2 phase space, and generates a single real number x; the
Ra operator transforms this point from Ω2 and the number x to a point in Ω3, or leaves the original point
in Ω2. Note that again, as RI , the Ra operator has to be unitary and has to conserve energy–momentum1 .

An analogy between Rx and the kernel for structure-function evolution should be mentioned.
However, there are notable differences: the x variable is associated more with the ratio of the invariant
mass of decay products of X , photon excluded, and the mass ofX , than with the fraction of energy taken
away by the photons from the outgoing charged product C . Also, Rx can be simplified by moving its
parts to Ra, RS or even RI . Note that in Rx the contributions of radiation from all charged final states
are summed.

• 5

The Rx operator is iterated, in the solutions for double, triple, and quartic photon emission. The
iterated Rx can also be shifted and grouped at the beginning of the generation, because they are free
from the phase-space constraints. The iterated Rx takes a form similar to a formal solution for structure-
function evolution, but with exceptionally simple kernels. The phase-space constraints are introduced
later, with the action of the Ra operators. Because of this, the iteration of Rx can go up to fixed or
infinite order. The algorithm is then organized in two steps. At first, a crude distribution for the number
of photon candidates is generated; then, their energies are defined. For that purpose we can perform a
further separation: Rx = RfR0RN , where the R0 operator determines whether a photon candidate has
to be generated at all, and Rf defines the fraction of its energy (without energy–momentum-conservation
constraint). From the iteration ofR0, we obtain a Poisson distribution, but any other analytically solvable
distribution would be equally good.

The overall factor, such as 1 + 3
4
α
π in Z leptonic partial width, does not need to be lost. It finds its

way to theRN , which is a trivial overall normalization constant in the case of the final-state radiation dis-
cussed here. In the cases where precision requirements are particularly high, the users of PHOTOS should
include this (process-dependent) factor into the decay tables in their main generator for decays. However,
until now, the effects on the normalization due to RN are too small and were usually neglected. We rise
the attention to this point, because it may be important for generalizations, when different organization
of Rf , R0 and RN may be enforced by the properties of the matrix elements.

————

The input data for the algorithm are taken from the event record, the kinematic configurations of
all particles, and the mother–daughter relations between particles in the decay process (which could be a
part of the decay cascade) should be available in a coherent way.

This wraps up, a basic, presentation of the steps performed by the PHOTOS algorithm. For more
details see [1, 8].

Tests performed on the algorithm:

1. The comparison of PHOTOS running in the quartic-photon emission mode and the exponentiated
mode for the leptonic Z and W decays may be found on our web page which documents the results
of the tests [4]. The agreement in branching ratios and shapes of the distributions is better than

1On the contrary, theRx operator can not, in general, fulfill the unitarity requirement. For example, the part ofRα leading to
1 + 3

4
α
π

for the Z decay can not be placed elsewhere but inRx. The energy–momentum conservation does not apply directly to
Rx, as it does not change the kinematic configuration, but only supplements it with x, the energy of the photon to be generated.
However, for multiple-photon generation, the limits for generated x for subsequent generated photons are the same as for the
first photon, which may be in potential conflict with energy–momentum conservation constraint.
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0.07% for all the cases that were tested. It can be concluded that changing the relative order for
the iterated R0 and the rest of Rα operators does not lead to significant differences. This test, if
understood as a technical test, is slightly biased by the uncontrolled higher-than-fourth-order terms
which are missing in the quartic-emission option of PHOTOS. Also, the technical bias, due to the
minimal photon energy in generation, present in the fixed-order options of PHOTOS may contribute
to the residual difference.

2. The comparison of PHOTOS with different options for the relative separation between RI and RS .
The tests performed for the fixed-order and exponentiated modes indicated that the differences in
results produced by the two variants of the algorithm are below the level of statistical error for
the runs of 108 events. In the code these two options are marked respectively as VARIANT-A and
VARIANT-B.

3. The comparisons of PHOTOS with different algorithms for the implementation of the RI operator.
In PHOTOS up to version 2.12, the calculations were performed using internal variables in the
angular parametrization. This algorithm was limited to the cases of decays of a neutral particle
into two charged particles. In later versions, the calculations are performed using the 4-momenta
of particles, hence for any decay mode. The tests performed for leptonic Z decays indicated that
the differences are below the statistical error of the runs of 108 events.

4. The comparisons of PHOTOS with different options for the relative separation between R0 and Rx,
consisting of an increase in the crude probability of hard emission at R0. The tests performed for
the exponentiated mode of PHOTOS indicated that the differences are below the statistical error of
the runs of up to 108 events.

5. The remaining tests, including new tests for the effects of the interference weights in cascade
decays, are more about the physics content of the program than on the technical or algorithmic
aspects. They are presented in Ref. [1] and the results are collected on the web page [4].

Multiple options for PHOTOS running and technical compatibility of results even for 108 event
samples generated in a short CPU cycle time are encouraging. They indicate the potential for algorithm
extensions. Note that PHOTOS was found to work for decays of up to 10 charged particles in the final
state.
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Introduction to heavy quarks (charm and beauty)

O. Behnke, M Cacciari, M. Corradi, A. Dainese, A. Geiser, A. Meyer, M. Smizanska, U. Uwer, C. Weiser

Perturbative QCD is expected to provide reliable predictions for the production of bottom and (to
a lesser extent) charm quarks since their masses are large enough to assure the applicability of pertur-
bative calculations. A direct comparison of perturbative QCD predictions to heavy-flavour production
data is not straightforward. Difficulties arise from the presence of scales very different from the quark
masses that reduce the predictivity of fixed-order theory, from the non-perturbative ingredients needed
to parametrize the fragmentation of the heavy quarks into the observed heavy hadrons, and from the
limited phase space accessible to present detectors. Moreover, a breakdown of the standard collinear
factorization approach can be expected at low-x. The study of heavy-quark production in hadronic inter-
actions and in e–p collisions at HERA has been therefore an active field in the effort to overcome these
difficulties and to get a deeper understanding of hard interactions.

Besides its intrinsic interest, a precise understanding of heavy-quark production is important at the
LHC because charm and beauty from QCD processes are relevant backgrounds to other interesting pro-
cesses from the Standard Model (e.g., Higgs to bb̄) or beyond. Theoretical and experimental techniques
developed at HERA in the heavy-quark field, such as heavy-quark parton densities or b-tagging, are also
of great value for future measurements at the LHC.

The present status of heavy-quark production theory is critically reviewed in the first contribution.
The second contribution summarizes the present heavy-flavour data from HERA and gives an outlook
of what can be expected from HERA-II. The potential of the LHC experiments for charm and beauty
physics is reviewed in the third contribution. Then the relevance of saturation and low-x effects to heavy-
quark production at HERA and at the LHC are discussed. The non-perturbative aspects of heavy-quark
fragmentation and their relevance to HERA and LHC are discussed in the next contribution. Finally, a
comparison of different theoretical predictions for HERA and the LHC based on different approaches is
presented.
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Abstract
We review some of the main theoretical aspects of heavy quark production at
HERA that will be important for understanding similar processes at the LHC.

1 Introduction
The value for the LHC physics program of heavy quark production studies at HERA consists not only
of measured quantities such as parton distributions, heavy quark masses etc. but at least as much of
the theoretical ideas on heavy quark production that were developed and refined in the course of these
studies. The strong experimental interest in heavy quark observables at HERA has led to a significantly
increased understanding of the benefits and limitations of finite order calculations. It has stimulated
theorists to deepen their insight into the issue of when a heavy quark should be treated as a parton, and it
has provoked novel proposals to explain the hadronization of heavy quarks. In what follows we review
and critically assess some of these ideas.

2 Heavy quark production
The study of heavy quarks, historically plagued by low production rates and large uncertainties, has now
entered the regime of ‘precision physics’. On the one hand, the larger centre-of-mass energies of the
colliders running now (Tevatron, HERA) and in the near future (LHC) lead to a much more copious
production yield. On the other hand, technological advances such as the introduction of microvertex
detectors based on semiconductor devices allow for much better tagging of the produced heavy flavours,
and hence better measurements. Needless to say, an equally substantial improvement of the theoretical
calculations has been needed in order to match this progress and therefore deliver predictions with an
accuracy at least as good as that of the experimental measurements. Properly testing and constraining
the theoretical calculations will in turn help in refining the predictions for the LHC.

One example for which a good theoretical accuracy at the LHC is desirable is in calculating the
total Z boson production rate, a process which can be used as a luminosity candle and which we would
like to have under control at the one per cent level. One channel contributing to this process is gluon-
gluon fusion followed by bottom-antibottom annihilation, gg → bb̄ → Z . This channel provides about
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5% of the total Z yield [1]: hence, it must be under control at the 20% level in order to achieve the
sought-for final 1% accuracy.

As it turns out, it is more efficient and more reliable to rewrite this in terms of a perturbatively
calculated parton distribution function (PDF) for the bottom quark, i.e. as the effective process bb̄ →
Z . The theoretical tools that we use to construct such heavy quark parton distribution functions must
therefore be tested by employing them in other theoretical predictions, to be compared to the available
experimental data. In the following section we shall list a number of examples where this is done.

From the point of view of ‘standard’ perturbative QCD calculations, the situation has not changed
since the beginning of the ’90s: fully massive next-to-leading order (NLO) calculations were made
available for hadron-hadron [2–6], photon-hadron [7–9] (i.e. photoproduction) and electron-hadron [10–
13] (i.e. Deep Inelastic Scattering, DIS) collisions. These calculations still constitute the state of the
art as far as fixed order results are concerned, and they form the basis for all modern phenomenological
predictions.

Over the years, and with increasing experimental accuracies, it however became evident that per-
turbative QCD alone did not suffice. In fact, real particles - hadrons and leptons - are observed in the
detectors, not the unphysical quarks and gluons of perturbative QCD. A proper comparison between the-
ory and experiment requires that this gap be bridged by a description of the transition. Of course, the
accuracy of such a description will reflect on the overall accuracy of the comparison. When the precision
requirements were not too tight, one usually employed a Monte Carlo description to ‘correct’ the data,
deconvoluting hadronization effects and extrapolating to the full phase space. The final ‘experimental’
result could then easily be compared to the perturbative calculation. This procedure has the inherent
drawback of including the bias of our theoretical understanding (as implemented in the Monte Carlo)
into an experimental measurement. This bias is of course likely to be more important when the correc-
tion to be performed is very large. It can sometimes become almost unacceptable, for instance when
exclusive measurements are extrapolated by a factor of ten or so in order to produce an experimental
result for a total photoproduction cross section or a heavy quark structure function.

The alternative approach is to present (multi)differential experimental measurements, with cuts
as close as possible to the real ones, which is to say with as little theoretical correction/extrapolation
as possible. The theoretical prediction must then be refined in order to compare with the real data
that it must describe. This has two consequences. First, one has to deal with differential distributions
which, in certain regions of phase space, display a bad convergence in perturbation theory. All-order
resummations must then be performed in order to produce reliable predictions. Second, differential
distributions of real hadrons depend unavoidably on some non-perturbative phenomenological inputs,
fragmentation functions. Such inputs must be extracted from data and matched to the perturbative theory
in a proper way, pretty much like parton distribution functions of light quarks and gluons are.

In the following sections we review the state of the art of theoretical calculations of heavy quark
production in a number of high energy processes, pointing out similarities and differences. In particolar,
resummations aimed at improving the theoretical description of heavy quark production at large trans-
verse momentum or large photon virtuality in DIS (Section 3), small centre-of-mass energy (Section 5)
and large centre of-mass energy (Section 6) are described in some detail.

3 Collinear resummations and heavy quark PDFs
Perturbative calculations of heavy quark production contain badly converging logarithmic terms of quasi-
collinear origin in higher orders when a second energy scale is present and it is much larger than the heavy
quark mass m. Examples are the (square root of the) photon virtuality Q2 in DIS and the transverse
momentum pT in either hadroproduction or photoproduction. Naming generically E the large scale, we
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can write schematically the cross section for the production of the heavy quark Q as

σQ(E,m) = σ0

(
1 +

∑

n=1

αns

n∑

k=0

cnk lnk
[
E2

m2
+O

(m
E

)])
, (1)

where σ0 stands for the Born cross section, and the coefficients cnk can contain constants as well as
functions of m and E, vanishing as powers of m/E when E � m.

Resummation approaches bear many different names, (ZM-VFNS, ACOT, FONLL, BSMN to
name but a few) but they all share the goal of resumming leading (αns lnn(E2/m2), LL) and sometimes
also next-to-leading (αns lnn−1(E2/m2), NLL) logarithmic terms to all orders in the cross section above.
This is achieved by discarding power suppressed m/E terms, and factoring all the logarithms into a
resummation factor, to be obtained via Altarelli-Parisi evolution of an initial condition set at the heavy
quark mass scale,

σresQ (E,m) = σ0C(E,µ)f(µ,m) = σ0C(E,µ)E(µ, µ0)f(µ0,m) , (2)

where µ and µ0 represent artificial factorization scales, to be taken of order E and m respectively. The
‘products’ between the various functions actually hide convolution operations with respect to momentum
fractions, not explicitly shown as arguments. C(E,µ) is a perturbatively calculable coefficient function,
which does not contain large logarithms thanks to the choice µ ' E. The function f(µ,m) can represent
either a parton distribution or a fragmentation function for a heavy quark, and contains the resummation
of the collinear logarithms. Due to the large heavy quark mass, its initial condition f(µ0,m) can be
calculated in perturbation theory [14, 15]: this is the distinctive feature that sets heavy quark parton
and fragmentation functions apart from light flavour ones, whose initial conditions are instead entirely
non-perturbative and must be fitted to data.

Once a massless but resummed result, valid in the E � m region, is obtained, one would like
to interpolate it with a fixed order cross section, valid instead in the E ' m region, so as to retain
predictivity over the whole E range.

The differences between the various approaches are then to be found essentially in two points:

– the perturbative order to which the initial condition f(µ0,m) is evaluated, and the perturbative
accuracy of the evolution;

– the way the matching with the fixed order calculation is performed.

We summarize below the features of the most commonly used implementations.

3.1 ACOT - Aivazis, Collins, Olness, Tung
This approach was the first to try to improve the prediction of the heavy quark structure functions
F c2 (Q2,m2

c) and F b2 (Q2,m2
b) at large Q2 � m2

c ,m
2
b , by moving potentially large logarithms ln(Q2/m2)

into heavy quark parton densities [16, 17]. A general all-order analysis of factorization for the total in-
clusive F2(Q2) in this context was presented in [18].

3.2 Simplified ACOT and ACOT(χ)1

The original ACOT prescription [16, 17] has been simplified in [19] along lines suggested in [18, 20].
In a nutshell, diagrams with initial state heavy quark legs can be treated as if they represented massless
quarks. More generally, the diagrams can be manipulated by power suppressed terms provided that
higher order diagrams are regularized consistently. ACOT(χ) [21, 22] explores this freedom to improve
on the threshold behaviour of partonic heavy quark schemes by enforcing the physical pair-production

1Contributed by S. Kretzer
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threshold on a term-by-term basis. Heuristically, it comes down to a simple re-scaling of Bjorken-x, i.e.
in LO

F cc̄2 ∝ c(χ)|χ=xBj(1+4m2/Q2) . (3)

Physical arguments –mostly kinematic– have been given in [21–23], here we will establish the connection
with the FONLL terminology of Section 1.3.3 while focusing on the inclusive DIS process. Much of the
following has appeared before, in one form or another, in the literature [16–19, 24–28].

We formulate ACOT(χ) as an explicit manipulation of resummed terms of the perturbative series.
We follow [24] in notation and add an O

(
α1
s

)
fixed order (FO) calculation to an all order collinearly

resummed (RS) result. In RS heavy quark mass dependence other than logarithmic is neglected. When
we remove double-counting terms from FO + RS the zero mass limit (FOM0) of the FO calculation
will be required as an auxiliary quantity. Just as in RS, only asymptotic mass logarithms are retained in
FOM0. We write therefore, as usual,

σACOT (Q,m) = FO + (RS− FOM0)×G (4)

where G is an arbitrary operation which behaves like G = 1 +O
(
m2

Q2

)
. In [24] G was chosen to be an

overall multiplicative factor. More generally, it can be seen as an operation which only modifies, with
O(m2/Q2) power-suppressed terms, perturbative coefficients beyond those which have been explicitly
calculated, and which are therefore unknown anyway. Any choice for G with this behaviour is therefore
legitimate.

To motivate the ACOT(χ) choice for G we first re-write more explicitly the three terms given
above in the case of inclusive DIS:

FO = αs g ⊗̃H(Q,m) (5)

FOM0 = αs

(
g ⊗ P (0)

qg ln
µ2

m2
+ g ⊗ Cg

)
(6)

RS = c(x) + αs (g ⊗ Cg + c⊗ Cq) (7)

where H(Q,m) is the massive coefficient function for the FO gluon fusion process, Cg and Cq are
the gluon and light quark coefficient functions (the MS scheme is implied), and g and c are the gluon
and charm (i.e. heavy quark) parton distribution functions (both the coefficient functions and the PDFs
depend, of course, on the factorization scale µ ' Q). P (0)

qg is the leading order Altarelli-Parisi splitting
vertex. The symbol ⊗̃ ≡

∫ 1
χ dξ/ξ ... denotes a threshold-respecting convolution integral. One can

convince oneself that the standard convolution ⊗, with x → χ in the lower limit of integration, only
differs by ⊗̃ by power-suppressed terms, ⊗̃ = ⊗ + O(m2/Q2).

The combined result (4) reads now

σACOT (Q,m) = FO + (RS− FOM0)×G

= αs g ⊗̃H +

[
c(x)− αs g ⊗ P (0)

qg ln
µ2

m2
+ αs c⊗ Cq

]
×G , (8)

and we recognize the Krämer-Olness-Soper simplified ACOT framework of [19]2 if we set G = 1.
Different choices for G can still be made, but natural demands are that:

– In kinematic regions where FO represents the relevant physics (i.e. Q ∼ m), G should efficiently
suppress uncontrolled spurious higher order terms in the square bracket of eq.(8).

– For computational efficiency, the simple c(x) term alone should provide an optimized effective
O
(
α0
s

)
approximation.

2See Eqs. (7), (8) there. General choices for G correspond to the discussion above these equations.
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The ACOT(χ) scheme implements these requests by making an implicit choice for G which corresponds
to writing

σACOT (χ)(Q,m) = FO + (RS− FOM0)×G

= αs g ⊗̃H +

[
c(χ)− αs g ⊗̃P (0)

qg ln
µ2

m2
+ αs c ⊗̃Cq

]
. (9)

Further details on ACOT(χ) can be found in [21–23]. These articles also contain a more intuitive per-
spective of ACOT(χ). Moreover, [22] describes a PDF set that is consistent with ACOT(χ) applications.

3.3 BSMN - Buza, Smith, Matiounine, van Neerven
In Refs. [29–33] the treatment of heavy quarks as a parton was fully explored through next-to-next-
leading order (NNLO), based on a precise two-loop analysis of the heavy quark structure functions
from an operator point of view. This analysis yielded a number of results. One result is important
beyond the observable at hand: the authors obtained the complete set of NNLO matching conditions for
parton evolution across flavor thresholds. They found that, unlike at NLO, the matching conditions are
discontinuous at the flavor thresholds. These conditions are necessary for any NNLO calculation at the
LHC, and have already been implemented in a number of evolution packages [34, 35].

Furthermore, their two-loop calculations explicitly showed that the heavy quark structure func-
tions in such a variable flavor approach are not infrared safe: one needs to either define a heavy quark-jet
structure function, or introduce a fragmentation function to absorb the uncancelled divergence. In either
case, a set of contributions to the inclusive light parton structure functions must be included at NNLO.

A dedicated analysis [36] for charm electroproduction showed that even at very large Q2 one
could not distinguish the fixed order NLO calculation of [10] and the NNLO VFNS calculations of [31],
given the experimental data available in the year 2000. This demonstrates the possibility that the large
logarithms ln(Q2/m2) together with small coefficients can in the end have little weight in the overall
hadronic cross section.

3.4 FONLL - Fixed Order plus Next-to-Leading Log resummation
This approach was developed for improving the large-pT differential cross section for heavy quark pro-
duction in hadron-hadron collisions [37]. It was successively extended to photoproduction [38], and in
a second phase a matching to the fixed order NLO calculations was performed [24, 39]. The FONLL
acronym refers specifically to the matched version.

From the point of view of perturbative logarithms, it contains a NLO-accurate initial condition and
full NLL evolution. It therefore reproduces the full NLL structure of the NLO calculation, and resums to
all orders the large logarithms with NLL accuracy.

The matching with the fixed order result is performed according to the following master formula
(see eq.(16) of [24]):

σFONLL
Q (pT ,m) = FO + (RS− FOM0)G(m, pT ) , (10)

where FO stands for the NLO fixed order massive calculation, FOM0 for its m/pT → 0 limit (where
however ln pT /m terms and non-vanishing terms are kept), and RS for the massless, resummed calcu-
lation3. The RS−FOM0 subtraction is meant to cancel the terms which are present in both RS and FO.
This difference starts therefore at order α2

s with respect to the Born cross section: at large pT it resums

3This term might also be referred to as a ‘zero-mass variable flavour number scheme’ (ZM-VFNS) contribution. However
this name, while by itself completely general, has been used in the past for specific approaches with different overall perturbative
accuracies. We shall therefore avoid its use. It will be understood that ‘RS’ in this approach has full NLL accuracy.
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correctly the NLL terms, at small pT it only contains spurious terms, which are suppressed by the func-
tion G(m, pT ) = p2

T /(p
2
T + c2m2), with c = 5, in order to ensure a physically correct behaviour. The

choice of the suppression factor was motivated in [24] by the observation that the massless limit starts
to approach the massive hadroproduction calculation at O(α3

s) only for pT > 5m. Below this value
the massless limit returns unreliable results, and its contribution must therefore be suppressed. It is im-
portant to realize that G(m, pT ) only affects terms which are beyond the control of perturbation theory,
and therefore it does not spoil the NLO+NLL accuracy. The choice to control such terms by means
of an ad-hoc function might seem a somewhat unpleasant characteristic of this approach. However, it
simply portraits the freedom one has in performing the matching, and does not represent a shortcoming
of the approach: different matching procedures will simply make other implicit or explicit choices for
G(m, pT ).

For the sake of making comparisons with other approaches easier, the formula (10) can be rewritten
with some more details as follows:

σFONLL
Q (pT ,m) =

∑

ij∈L
FiFj σij→QX(pT ,m)

+


 ∑

ijk∈L+H
FiFj σ̂

MS
ij→kX(pT )Dk→Q −

∑

ij∈L
FiFj σij→QX(pT ,m;m→ 0)


G(m, pT ) .(11)

A few ingredients needing definition have been introduced. The kernel cross sections σij→QX(pT ,m)
are the massive NLO calculations for heavy quark production of Refs. [2–6]. When convoluted with the
PDFs for light flavours Fi (i ∈ L) they yield the FO term in eq. (10). The σij→QX(pT ,m;m → 0)
terms represent the m → 0 limit of the massive NLO cross sections, performed by sending to zero
m/pT terms while preserving ln(pT /m) contributions and non-vanishing constants. When convoluted
with light flavour PDFs they give FOM0. Finally, σ̂MS

ij→kX(pT ) are the massless MS-subtracted NLO
cross section kernels given in [40]. In addition to the light flavour PDFs, they are also convoluted with
the perturbatively-calculated parton distribution functions for the heavy quarks (i ∈ H) and with the
fragmentation functions describing the transformation of a parton into a heavy quark, Dk→Q [15], to
give the term RS.

The formula given above returns the differential cross section for heavy quark production, eval-
uated with NLO + NLL accuracy. In order to obtain the corresponding cross section for an observable
heavy meson it must still be convoluted with the proper scale-independent non-perturbative fragmenta-
tion function, extracted from experimental data, describing the heavy quark→ heavy hadron transition:

σFONLL
H (pT ,m) = σFONLL

Q (pT ,m)DNP
Q→H . (12)

Phenomenological analyses of charm- and bottom-flavoured hadrons production within the FONLL ap-
proach have been given in [41–45].

3.5 GM-VFNS - General mass variable flavour number scheme
This approach also combines a massless resummed calculation with a massive fixed order one, for pre-
dicting pT distributions in hadron-hadron collisions. One difference with respect to FONLL is that
this approach does not include the perturbative NLO parton-to-heavy-quark fragmentation functions
Dk→Q. Rather, it directly convolutes a properly MS subtracted cross section (with mass terms also in-
cluded, hence the ‘general mass’ name) with non-perturbative fragmentation functions for heavy mesons
DNP,MS
Q→H , fitted at LEP in a pure MS scheme. The cross section can be schematically written as

σGM−VFNS
H (pT ,m) =

∑

ij∈L
FiFj σ̂ij→QX(pT ,m)DNP,MS

Q→H +
∑

ijk∈L+H
FiFj σ̂

MS
ij→kX(pT )DNP,MS

k→H ,

(13)
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where the ‘massive-but-subtracted’ cross section kernels σ̂ij→QX(pT ,m) are defined by

σ̂ij→QX(pT ,m) ≡ σij→Q(pT ,m)− σij→QX(pT ,m;m→ 0) + σ̂MS
ij→QX(pT ) . (14)

The new kernels σ̂ij→QX(pT ,m) defined by this operation (of the form FO-FOM0+RS) can be con-
voluted with an evolved MS-subtracted fragmentation function, but they also retain power suppressed
m/pT terms. It should also be noted that the sum in the second term of (13) only runs over contributions
not already included in the first.

Recalling the way the perturbative parton-to-heavy-quark Dk→Q fragmentation functions are de-
fined in [15], setting

DNP,MS
k→H = Dk→QD

NP
Q→H , k ∈ L+H , (15)

and comparing eqs.(13) and (11), it can be seen that the GM-VFNS master formula is a reshuffling of
the FONLL one, up to higher-orders terms.

Two comments are worth making. The first is that due to the absence of the perturbative Dk→Q
terms, eq. (13) cannot reproduce the NLO heavy quark production cross section: even the normalization
must be extracted from the experimental data. Eq. (11), on the other hand, can reproduce the heavy
quark spectrum, and only the heavy quark→ heavy meson transition is fitted to data. The second remark
concerns the higher order power suppressed terms: since GM-VNFS implicitly makes a different choice
for the G(m, pT ) function, the results from the two approaches might differ considerably in the pT ∼ m
region since, while formally suppressed, such terms can be numerically important.

An example of a phenomenological application of the GM-VFNS scheme is given below.

3.6 Hadroproduction of heavy mesons in a massive VFNS4

Various approaches for next-to-leading-order (NLO) calculations in perturbative QCD have been applied
to one-particle-inclusive hadroproduction of heavy mesons. The general-mass variable-flavor-number
scheme (GM-VFNS) devised by us in Ref. [46, 47] is closely related to the conventional massless
variable-flavor-number scheme (ZM-VFNS), but keeps all m2/p2

T terms in the hard-scattering cross
sections, where m is the mass of the heavy quark and pT the transverse momentum of the observed me-
son, in order to achieve better accuracy in the intermediate region pT ≥ m. The massive hard-scattering
cross sections have been constructed in such a way that the conventional hard-scattering cross sections in
the MS scheme are recovered in the limit pT → ∞ (or m → 0). The requirement to adjust the massive
theory to the ZM-VFNS with MS subtraction is necessary, since all commonly used PDFs and FFs for
heavy flavors are defined in this particular scheme. In this sense, this subtraction scheme is a consistent
extension of the conventional ZM-VFNS for including charm-quark mass effects. It should be noted that
our implementation of a GM-VFNS is similar to the ACOT scheme [16,17], which has been extended to
one-particle-inclusive production of B mesons a few years ago [48]. As explained in the second paper
of Ref. [46, 47], there are small differences concerning the collinear subtraction terms. Furthermore, in
Ref. [48], the resummation of the final-state collinear logarithms has been performed only to leading log-
arithmic accuracy. The field-theoretical foundation of a GM-VFNS has been provided a few years ago
by a factorization proof including heavy-quark masses [18]. Therefore, it is possible to extract improved
universal parton distribution functions (PDFs) [22] and fragmentation functions (FFs) [49] from fits em-
ploying massive hard-scattering cross sections. From this perspective, it is important to compute massive
hard-scattering cross sections in a given massive scheme for all relevant processes. Explicit calculations
in the original ACOT scheme have been performed in Ref. [50,51] for inclusive and semi-inclusive deep-
inelastic scattering (DIS). Furthermore, our calculation in Ref. [46,47] for hadronic collisions completes
earlier work in the GM-VFNS on D-meson production in γγ and γp collisions [52–54], and it is planned
to extend our analysis to the case of heavy-meson production in DIS.

4Contributed by B.A. Kniehl and I. Schienbein.
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Fig. 1: QCD predictions for one-particle-inclusive production of D? mesons at the Tevatron Run II in comparison
with CDF data [57]. The results are shown for the average D? = (D?+ + D?−)/2. The solid lines have been
obtained with µR = µF = µ′F = mT . The upper and lower dashed curves represent the maximum and minimum
cross sections found by varying µR, µF, and µ′F independently within a factor of 2 up and down relative to the
central values while keeping their ratios in the range 0.5 ≤ µF/µR, µ

′
F/µR, µF/µ

′
F ≤ 2.

Next, we show predictions for the cross section dσ/dpT of D?-meson production obtained in the
GM-VFNS and the ZM-VFNS. The cross section has been scaled with p5

T in order to arrive at a flat
pT distribution, which is useful for visualizing the heavy-quark mass effects. The hard-scattering cross
sections are convoluted with the (anti-)proton PDFs and FFs for the transition of the final-state parton
into the observed D? meson. We use the CTEQ6M PDFs [55] and the FFs forD? mesons from Ref. [56].
As in the experimental analysis, the theoretical results are presented for the average (D?+ +D?−)/2. We
consider dσ/dpT at

√
S = 1.96 TeV as a function of pT with y integrated over the range−1.0 < y < 1.0.

We take the charm mass to be m = 1.5 GeV and evaluate α(nf )
s (µR) with nf = 4 and scale parameter

Λ
(4)

MS
= 328 MeV, corresponding to α(5)

s (mZ) = 0.1181. The results are presented in Fig. 1 for the
GM-VFNS (black lines) and the ZM-VFNS (red lines) in comparison with CDF data [57]. The solid
lines have been obtained with µR = µF = µ′F = mT . The upper and lower dashed curves represent
the maximum and minimum cross sections found by varying µR, µF, and µ′F independently within a
factor of 2 up and down relative to the central values requiring for their ratios to satisfy the inequalities
0.5 ≤ µF/µR, µ

′
F/µR, µF/µ

′
F ≤ 2. As can be seen, for large values of pT , the predictions of the GM-

VFNS nicely converge to the corresponding results in the ZM-VFNS. Both approaches lead to reasonable
descriptions of the data, but the inclusion of the positive mass effects clearly improves the agreement with
the data. It should be noted that the mass effects are largest for the upper curves of the uncertainty band,
which have been obtained with the smaller value of the renormalization scale implying a larger αs(µR).
At pT = 5 GeV, one observes an increase of the massless cross section by about 35%. A more detailed
comparison of the GM-VFNS with CDF data [57] including D0, D+, and D+

s mesons can be found in
Refs. [58, 59].

Residual sources of theoretical uncertainty include the variations of the charm mass and the em-
ployed PDF and FF sets. A variation of the value of the charm mass does not contribute much to the
theoretical uncertainty. Also, the use of other up-to-date NLO proton PDF sets produces only minor
differences. Concerning the choice of the NLO FF sets, we obtain results reduced by a factor of 1.2–1.3
when we use the NLO sets from Ref. [60], which is mainly caused by a considerably different gluon FF.
A more detailed discussion can be found in Ref. [56].
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Table 1: Process relevant for SM measurements and SUSY discoveries at the LHC which entail the use of bottom
in the initial state. All of them are known at least at NLO accuracy.

Name LO Process Interest Accuracy

single-top t-channel qb→ qt top EW couplings NLO

single-top tW-associated gb→ tW− Higgs bckg, top EW couplings NLO

Vector boson + 1 b-jet gb→ (γ, Z)b b-pdf, SUSY Higgs benchmark NLO

Vector boson + 1 b-jet +1 jet qb→ (γ, Z,W )bq single-top and Higgs bckgs NLO

Higgs inclusive bb̄→ (h,H,A) SUSY Higgs discovery at large tanβ NNLO

Higgs + 1 b-jet gb→ (h,H,A)b SUSY Higgs discovery at large tanβ NLO

Charged Higgs gb→ tH− SUSY Higgs discovery NLO

4 A case study in collinear resummation: b-quark PDF from Z + b production at LHC5

4.1 Introduction
The discovery of new physics at LHC will probably rely on the detailed understanding of standard-model
background processes. Outstanding among these is the production of weak bosons (W,Z) in association
with jets, one or more of which contains a heavy quark (Q = c, b). The prime example is the discovery
of the top quark at the Fermilab Tevatron, which required a thorough understanding of the W+jets
background, with one or more heavy-quark jets. The discovery of single-top-quark production via the
weak interaction will require an even more sophisticated understanding of this background [61, 62].

For many processes involving production of heavy quarks, there are two ways (schemes) to per-
form the calculation in QCD: the fixed-flavor-scheme (FFS) and variable-flavor-scheme (VFS). The main
practical difference between the two approaches is simple: in the VFS the heavy-quark can also be in the
initial state, and in that case is assumed to be massless, while in the FFS it appears only as a final state
(massive) particle. QCD factorisation tells us that if calculations could be performed at arbitrary high
order, the two schemes would be equivalent. At fixed order, on the other hand, differences arise and one
should choose that describing more effectively the kinematics of the process of interest. This freedom
has sometimes created intense and fruitful debates among the QCD practitioners (see, e.g., Ref. [63] for
a detailed comparison of Higgs boson production in association with bottom quarks). Here we just recall
the main two reasons for using a heavy-quark distribution function. First, it resums collinear logarithms
of the form lnQ/mQ to all orders, where Q is the scale of the hard scattering and mQ is the mass of the
heavy quark. Second, it simplifies the leading-order process, which often makes a higher-order calcula-
tion feasible. There are many processes in the standard model and in models beyond it, such as SUSY,
that are better described using a bottom in the initial state. In Table 1, we give a non-exhaustive list of
processes that will be relevant for QCD, EW and SUSY studies at the LHC, and the QCD order at which
they are known.

At present the b distribution function is derived perturbatively from the gluon distribution func-
tion [17,18,34,55]. Recently, direct, albeit not very precise, measurements of F b

2 have become available
that are compatible with the perturbative determination [64, 65]. In the light of its phenomenological
importance, a better direct determination of the b distribution function is certainly desirable.

To this aim it has been proposed to use the associated production of a photon and a b-jet via
gb → γb at the LHC [66]. This measurement suffers from two main limitations. The first is the large
contamination from charm which has a much larger cross section due to both the pdf and the electromag-

5Contributed by S. Diglio, F. Maltoni, F. Petrucci, A. Tonazzo and M. Verducci

M. CACCIARI , E. LAENEN, S.P. BARANOV, S. DIGLIO , T.O. EYNCK , H. JUNG, . . .

326



Fig. 2: Leading Order Feynman diagrams for associated production of aZ boson and a single high-pT heavy quark
(Q = c, b).

netic coupling. The second is that the theoretical prediction at NLO for an isolated photon is uncertain,
due to necessity of introducing a photon fragmentation function, which is at present poorly known.

In this note we follow the suggestion of Ref. [67] to use Z production in association with a b-jet
to extract information on the b-pdf. At leading order, it proceeds via gb → Zb, as shown in Fig. 2. This
process is known at NLO, including γ/Z interference effects. The advantages of using a γ/Z decaying
into leptons with respect to a real photon are noticeable. The NLO cross section is theoretically very well
known and, apart from the PDF’s, free of non-perturbative inputs. In addition, the competing process
gc → Zc is suppressed by the ratio of the couplings of the charm and the bottom to the Z , and makes
the b-pdf determination much cleaner.

The D0 Experiment at Tevatron has recently measured the cross-section ratio σ(Z + b)/σ(Z +
jet) [68], and their result is consistent with the NLO calculation.

As pointed out in [67], the measurement of this process at the LHC should be even more interesting
because the contribution of the leading order process, sensitive to the b content of the proton, is more
relevant than at the Tevatron. In addition, the total cross-section is larger by a factor 50, and the relative
contribution of background processes, mainly Z+c, is smaller. These features are summarised in Table 2,
taken from Ref. [67].

Table 2: Next-to-leading-order inclusive cross sections (pb) for Z-boson production in association with heavy-
quark jets at the Tevatron (

√
s = 1.96 TeV pp) and the LHC (

√
s = 14 TeV pp). A jet lies in the range pT > 15

GeV/c and |η| < 2 (Tevatron) or |η| < 2.5 (LHC). ZQ indicates events containing a heavy quark,Zj events which
do not contain a heavy quark.

Cross sections (pb) Tevatron LHC

Process ZQ inclusive

gb→ Zb 13.4± 0.9 ± 0.8± 0.8 1040+70
−60

+70
−100

+30
−50

gb→ Zbb 6.83 49.2

gc→ Zc 20.3+1.8
−1.5 ± 0.1+1.3

−1.2 1390 ± 100+60
−70

+40
−80

gc→ Zcc 13.8 89.7

Zj inclusive

qq → Zg, gq → Zq 1010+44
−40

+9
−2

+7
−12 15870+900

−600
+60
−300

+300
−500

Besides the possibility of extracting the b-pdf, Z + b represents also a benchmark and in some
cases a background to the search of the Higgs boson, when it is produced in association with a single
high-pT b quark [63]: the dominant leading-order subprocess for the production of a Higgs boson via
its coupling to the b is bb̄ → h; however, if the presence of a single b with high pT is demanded, the
dominant process becomes gb→ hb, with cross-sections of the order of tens of fb. The h can then decay
to the same final states as the Z; in particular, the decay h→ µ+µ− is enhanced in some models [69–71].
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A preliminary analysis on the potential of the ATLAS experiment to measure the Z+b-jet produc-
tion at the LHC is presented in the following.

4.2 A study of LHC measurement potential
A sample of Z+jet events generated using the PYTHIA Monte Carlo [72] was processed with a fast
simulation of the ATLAS detector, the ATLFAST package [73]. Only decays of the Z boson to µ+µ−

were taken into account. The signal was defined as the sample events containing a b quark with pT > 15
GeV/c and |η| < 2.5. The background samples containing respectively a c quark within the same cuts, or
a jet originating from a light quark or a gluon in the same range, were considered separately. The NLO
cross-sections computed in [67] were used for the signal and for these two classes of background, while
the cross-section given by PYTHIA was taken for the other types of events.

The experimental selection of Z+jet events with Z → µ+µ− required the detection of two muons
of opposite charge with pT > 20 GeV/c and |η| < 2.5 and one hadronic jet. The presence of two high-
pT muons ensures the possibility to have high trigger efficiency on this type of events. In addition, to
reject the contribution from virtual photons, the invariant mass Mµµ of the muon pair was required to be
close to the Z mass (80 GeV/c2 < Mµµ < 105 GeV/c2). About 50% of signal events are retained after
applying these cuts, the loss being equally due to the η acceptance and to the pT cut.

The selection of events where the jet originates from a b quark was based on two different tagging
methods, as described in the following. Their complementarity is still to be studied in detail, however
the comparison of two independent selections will be important to control the systematic uncertainties.

The first method to select Z+ b events was based solely on the presence of a third muon. Hadrons
containing a b quark give origin to prompt muon decays in about 12% of the cases. The efficiency of this
method, therefore, cannot exceed this value, however the background is also expected to be small. The
“third muon”, considered to be the muon from the b hadron decay, will in general be softer and closer to
a jet than the muons from the Z decay. The distribution of the transverse momentum of the third muon
in Z + j events is shown in Fig. 3. Different thresholds on the third muon pT were considered for the
final selection.

Fig. 3: Distribution of the transverse momentum of the third muon in a Z+jet sample, for signal events (left) and
for events with no b quark (right).

The second analysis used an inclusive method for b-tagging, based on the presence of secondary
vertices and of tracks with high impact parameter with respect to the primary vertex, originated from the
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Table 3: Expected efficiency, statistics and purity in a data sample corresponding to an integrated luminosity of 10
fb−1, using the soft muon tagging with different thresholds on the muon transverse momentum and the inclusive
b-tagging. Nb denotes the number of expected signal events as defined in the text,Nc the number of selected events
with a c jet with pT > 15 GeV and |η| < 2.5,Nother the selected events from other processes. The statistical error
on efficiencies and purities, due to the limited size of the simulated sample, is at the level of 1-2%.

Cut Efficiency N
pT>15 GeV, |η|≤2.5
b N

pT>15 GeV, |η|≤2.5
c Nother Purity

pµT > 4 GeV/c 4% 13990 6270 0 69%

pµT > 5 GeV/c 3% 11090 5210 0 69%

pµT > 6 GeV/c 2.5% 8430 4180 0 67%

incl. b-tag 14% 49500 17400 49600 43%

decay of the long-lived b hadrons. The ATLFAST package reproduces the ATLAS b-tagging capabilities
by applying the tagging efficiency on b jets and a mis-tag rate on non-b jets on a statistical basis, according
to the values set by the user to reproduce the actual detector performance. The efficiency of the inclusive
b-tagging on signal events, after the selection described above, is about 30%. The mistagging probability
is about 4% on c-quark jets and 0.5% on light jets.

The overall efficiency on signal events, the expected number of signal and background events
with an integrated luminosity of 10 fb−1 and the expected purity of the selected samples are reported in
table 3. With the fast simulation, the soft muon tagging capabilities are optimistic, in that full efficiency
and no mis-tag are assumed for the lepton identification; more realistic assumptions will be made when
the study is carried on with the full detector simulation. The efficiency on signal events achieved with
the inclusive b-tagging method, where the results of the fast simulation are more realistic, is higher than
with the soft muon tagging, while the purity of the selected sample is still quite good. Consistent results
were obtained with a full simulation of the ATLAS experiment, on a small statistics sample.

A better determination of the signal component in the selected sample will eventually be achieved
by exploiting the information on the transverse momentum of the b-jet or of the third muon.

Given the large statistics of the available data samples, the measurement will be limited by sys-
tematic effects.

The possibility to control the systematic effects directly from data samples has been explored, in
particular the evaluation of b-tagging performance and of the residual background.

The b-tagging efficiency can be checked using b-enriched samples. Based on previous experience
at Tevatron and LEP, we can expect a relative uncertainty of about 5%.

The background in the selected sample is mainly due to mis-tagged jets from c and light quarks.
This can be controlled by looking at the number of b-tagged jets in data samples that in principle should
contain no b-jets at first order. W+jet events, for example, will be available with large statistics and with
jets covering the full pT range of the signal. It can therefore be expected to estimate the background from
mis-tagging with a relative uncertainty at the level of few percent, as shown by the plots in figure 4.

4.3 Conclusions and outlook
Z boson production in association with a b-jet can provide information on the b-pdf.

A preliminary study of the Z+b channel using a fast simulation of the ATLAS detector has shown
that this type of event will be observed with very high statistics and good purity at the LHC. Given the
large statistics of the samples, the precision of the Z + b cross-section measurement will be limited by
systematic effects. Some possibilities to evaluate systematic uncertainties directly form the data have
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Fig. 4: Systematics due to mis-tagging of b-jets as evaluated fromW+jet events. Left: relative error on background
level per jet pT bin. Right: pT distribution of jets in event selected as Z + b; the error band on the background
contribution represents the systematic uncertainty, as derived from the previous plot.

been considered. An overall accuracy on the measurement at the level of 5% can be expected.

The availability of large samples opens interesting possibilities for the study of differential distri-
butions: for instance, measuring the cross-section as a function of the η and pT of the Z boson would
allow for the measurement of the b PDF as a function of the momentum fraction carried by the quark
inside the proton. These items are an additional topic for further studies.

5 Soft-gluon resummation6

QCD factorizes long- and short distance dynamics in inclusive cross sections with initial state hadrons
into non-perturbative, but universal parton distribution functions, and perturbatively calculable hard scat-
tering functions. Large remnants of the long-distance dynamics occur near the threshold edge of phase
space in the form of logarithmic distributions that are singular at the edge. Resummation [74,75] of these
effects organizes them to all orders in perturbation theory, and thereby extends the predictive power of
QCD.

Threshold resummation is now a well-established calculational scheme with systematically im-
provable accuracy. It allows organization of all subleading powers of the logarithmic enhancements, and
can be consistently matched to finite order perturbation theory. Resummed expressions, which take the
form of exponentiated integrals over functions of the running coupling, require however a prescription
for their numerical evaluation to handle a Landau pole singularity of the coupling. But for this intrinsic
ambiguity (which must cancel against ambiguities in power corrections), threshold resummation is just
as systematically improvable as the standard coupling constant expansion.

As stated earlier, the more differential a cross section, the better suited it is for phenomenology,
because one may incorporate detector-specific acceptance cuts and thereby reduce the need for extrapola-
tion. Therefore we should like to better understand the behavior of threshold-resummed expressions for
double-differential cross sections. A study for the inclusive threshold-resummed heavy quark structure
function can be found in Ref. [76]. Here we examine the differential structure function for the reaction

γ∗(q) + P(p)→ Q(p1) +X ′(p′2) (16)

6Contributed by T.O. Eynck and E. Laenen.
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which we write as
d2FQ2 (S, T1, U1)

dT1 dU1
(17)

We define the invariants

S = (p+ q)2 ≡ S′ −Q2, T1 = (p− p1)2 −m2,

U1 = (q − p1)2 −m2, S4 = S′ + T1 + U1 . (18)

The invariant mass squared of the final state X ′ is given by

M2
X′ = m2 + S4 (19)

so that the elastic (threshold) limit for the subprocess (16) is approached by S4 → 0. It may be con-
verted to the double-differential structure function in terms of the heavy quark transverse momentum and
rapidity, e.g.

d2FQk

d(pQT )2 dyQ
= S′

d2FQk
dT1 dU1

, (20)

where e.g. [11]

pQT =

[
S′T1U1 +Q2T 2

1 +Q2S′T1

S′2
−m2

](1/2)

. (21)

At the parton level one may define invariants equivalent to those in (18), which we will denote by using
lower case. The order-by-order perturbation theory expansion for the partonic version of this distribution
ω(s4, t1, u1) and its all-order resummation have the following schematic forms

ω = 1 + αs(L
2 + L+ 1) + α2

s(L
4 + L3 + L2 + L+ 1) + . . .

= exp



Lg1(αsL)︸ ︷︷ ︸

LL

+g2(αsL)

︸ ︷︷ ︸
NLL

+ . . .




C(αs)︸ ︷︷ ︸
constants

+ suppressed terms (22)

with
g1(λ)=

CF
πb0λ

[
λ+ (1− λ) ln(1− λ)

]
, λ = b0αs lnN . (23)

(We have also computed g2(λ); by including ever more gi functions in the exponent in Eq. (22) we
can increase the parametric accuracy of the resummation.) The symbol Li represents, in this case, the
logarithmically singular plus-distributions

[
lni−1(ρ)

ρ

]

+

(24)

with ρ = s4/m
2, or, after a Laplace transform

∫
dρ exp(−Nρ) by lniN . The conversion to momentum

space then requires a numerical inverse Laplace transform. For the case at hand one needs to compute

S′2
d2FQ2 (S4, T1, U1)

dT1 dU1
=

c+i∞∫

c−i∞

dN

2πi
eNS4/m2

φ̄g

(
N
S′ + T1

m2

)
ω
(
N,T1, U1

)
, (25)

with c the intercept of the contour with the real N axis, and φg(N) the gluon density in moment space.
We chose a toy density for the gluon PDF, and the minimal prescription [77] to perform the N integral.
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b) corr./LO of d2F2/dT1dS4
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Fig. 5: Expandability of the resummed expressions for d2F c
2 /dT1dS4 with NLL exponent (ratio to LO)

b) N4LO-kLN corr./LO of d2F2/dT1dS4
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Fig. 6: Tower resummation at N4LO− kLN , k ∈ {1, 2, 3} (N4LO− 2LN and N4LO− 3LN almost coincide).

In Fig. 5 we evaluate this expansion as a function of the recoil mass S4, and compare it to its finite order
expansions. We keep the variable T1 fixed at the average of its minimum and maximum allowed value.
Clearly, for reasonable values of S4 the resummed result is already well-approximated by its 2nd and 3rd
order expansions.

Another way to evaluate the resummed expression is in terms of towers of [78] L = lnN .

ω = h00(αs)

[
1 +

∞∑

k=1

(αs
π

)k (
ck1 L

2k + ck2 L
2k−1 + ck3 L

2k−2 + . . .
)]

. (26)

where the indicated coefficients ckj can be determined exactly. More accuracy here means including
more subleading towers. This method is equivalent, but not identical to the minimal prescription method.
In practice, one need only include the first 4 terms in each tower, the higher terms are vanishingly small.
The ambiguities mentioned earlier are shifted to far-subleading towers in this approach. To exhibit the
convergence of terms in the towers, it will be useful and illustrative to exhibit contributions of a particular
order in the strong coupling and the large logarithms. We will employ the notation

NkLO− lLN (27)

for finite order results, where k indicates the order in the strong coupling, the subscript N denotes
moments, and l expresses if only the leading term (l = 1, L2kN ), or also the next-to-leading term
(l = 2, L2k−1

N ) is included, etc. In Fig. 6 we see also in this approach a rapid convergence toward the
tower-resummed result.

A more complete study of the relevance of threshold resummation for electroproduction of heavy
quarks at HERA still awaits. We note that even if the size of the corrections does not cause much concern
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for the perturbative analysis of an observable, threshold resummation or its finite order approximations,
often lead to a reduction of scale dependence [79], indeed also seen in Ref. [76].

6 kt - factorization7

6.1 Introduction
The transverse momenta of the partons initiating a hard scattering process, like heavy quark production
via γg → QQ̄ or gg → QQ̄ in lepto- (hadro-) production, respectively, is mainly generated by the QCD
evolution, which can reach large values, in DGLAP up to the factorization scale, in BFKL/CCFM/LDC
even larger.

The typical transverse momenta of the gluons in a process gg → X for different masses M
of the system X are shown in Fig. 7 as a function of the momentum fraction x of one of the gluons
for LHC energies. The transverse momenta can become large, so that they cannot be neglected. A
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Fig. 7: Average tranverse gluon momenta kt in processes gg → X for different masses M of the system X

as a function of the momentum fraction of one of the gluons x. The thin lines indicate the RMS spread of the
distributions. In (b) is shown the definition of x, kt and M for a gluon induced process.

theoretical approach, formulated for small x, which takes into account the tranverse momenta is the
kt-factorization [80, 81] or semi-hard [82] approach.

In kt-factorization the cross section for any process pp→ X can be written as:

σ =

∫
dx1dx2

∫
dkt 1dkt 2A(x1, kt 1, q)A(x2, kt 2, q)σ̂(x1, x2, kt 1kt 2, q) (28)

with A(x, kt, q) being the un-integrated (kt-dependent) parton density function uPDF, q defines the
factorization scale and σ̂ is the partonic cross section. The off-shell matrix-elements σ̂ are calculated
in [80, 81].

7Contributed by S.P. Baranov, H. Jung, A.V. Lipatov and N.P. Zotov
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The effects of finite transverse momenta are present independent of the evolution scheme: uPDFs
can be defined also for the DGLAP evolution. A more detailed discussion on these effects can be found
in [83, 84].

It is interesting to note, that the kt-factorization approach (in LO αs) agrees very well with calcu-
lations performed in the collinear approach in NLO αs, which is shown in [85]. The main effect comes
from a more realistic treatment of the kinematics already in LO, which otherwise has to be covered in
NLO. The kt factorization approach, however, is strictly valid only at small x, where the virtuality of the
exchanged gluons can be identified with its tranverse momentum k2 ∼ −k2

t . The full expression for the
virtuality is [86]:

k2 =
−k2

t

1− x −
x ·m2

1− x (29)

with m being the recoiling mass of the hadronic system except the hard scattering process, taking into
account the history of the evolution process. For finite x the mass effects can be substantial.

6.2 Open bb̄ production and correlations at the LHC
Heavy quark production in the kt-factorization approach at HERA and the Tevatron was considered
already in many papers (see, for example, [82, 87–90]). In Ref. [91] the kt-factorization approach was
used for a more detailed analysis of the D0 and CDF experimental data. The effect of the initial gluon
tranverse momenta on the kinematics of the bb̄ production at the LHC were investigated [92]. The
renormalization and factorization scales were set equal to either the initial gluon virtualities, µ2

R =
µ2
F = q2

T1,2, or µ2
F = m2

bT , as is in the standard collinear QCD, and the quark mass of mb = 4.75 GeV
was used.

In Fig. 8a we show the transverse momentum distributions of B mesons at LHC energies. The
calculation was performed in the range |ηB | < 1 and the Peterson fragmentation with ε = 0.006 using
the KMS [93] parameterization for the un-integrated gluon density (see [83, 84]). The prediction for
the azimuthal correlations between the muons coming from B meson decays are shown in Fig. 8b with
pµt > 6 GeV and |ηµ| < 2.5. The azimuthal correlations indicate an important theoretical difference

Fig. 8: Prediction for B-meson production at the LHC using the KMS un-integrated gluon density. In a the pT
distribution of B-mesons is shown. In b the azimuthal µµ correlation coming from the B decays is shown.

between the collinear and kt-factorization approaches. In the collinear approximation at parton level and
leading order, the b quarks are be produced exactly back-to-back, which is clearly unphysical when the
gluon is evolved up to a large enough scale. Only starting with NLO a significant deviation from the
back-to-back scenario is found. Thus the NLO calculation has to correct for the wrong kinematics in LO
together with higher order corrections, leading to large K factors. In the kt-factorization, the transverse
momenta of the gluons are correctly treated already in LO. In the kt - factorization approach the NLO
corrections are therefore expected to be much smaller, since here only the purely dynamical corrections
have to be applied, whereas the kinematics are already correctly treated in LO.
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6.3 Quarkonium production and polarization at the LHC
Since the initial gluons have non-zero transverse momenta, they are off-shell, and they have a longitu-
dinal component in their polarization vector. Typically, the kt values of the two colliding gluons are
much different, as the parton evolution is equivalent to the random walk in the ln |kt| plane, not in kt
plane. Roughly speaking, the kt of one of the gluons can be neglected in comparison with that of the
other. So, in the initial state we have one nearly on-shell (transversely polarized) gluon and one off-shell
(longitudinally polarized) gluon. After the interaction, they convert into one on-shell gluon and a heavy
vector meson. Simple helicity conservation arguments show that the polarization of vector meson must
be longitudinal, in contrast with the ordinary parton model, where the initial gluons are both on-shell.
This effect has been already studied for the HERA [94] and Tevatron [95] conditions. Fig.9a shows the
predictions for the LHC energy obtained with KMS [93] parameterization for un-integrated gluon densi-
ties. The calculations are restricted to the pseudorapidity interval −2.5 < ηΥ < 2.5 and assume ATLAS
”µ6µ3” trigger cut, which means one muon with pt > 6 GeV and another muon with pt > 3 GeV.

(a) (b)

Fig. 9: Predictions of different theoretical approaches for quarkonium production. In (a) the fraction of lon-
gitudinally polarized Υ mesons is shown: solid histogram – collinear parton model, singlet + octet; dashed –
kt-factorization with KMS u.g.d.. In (b) the ratio of the production rates χb1/χb2 is shown: solid histogram –
collinear parton model, singlet + octet; dashed – kt factorization with KMS u.g.d.

Important effects are also seen in the production of P -wave bottomium states with different spins
χb1 and χb2. At the Tevatron energies, this process has been considered in Ref. [96], and the predictions
for the LHC are presented in Fig.9b. The P -wave states are assumed to be detected via the decay
χb → Υ + γ, with an additional requirement that the energy of the decay photon be greater than 2
GeV. The ratio of the production rates σ(χ1)/σ(χ2) is qualitatively different in the kt-factorization and
the collinear parton model. The underlying physics is clearly connected with gluon off-shellness. In the
collinear parton model, the relative suppression of χ1 states becomes stronger with increasing pT because
of the increasing role of the color-octet contribution: in this approach, the leading-order fragmentation of
an on-shell transversely polarized gluon into a vector meson is forbidden. In contrast with that, in the k t-
factorization approach, the increase in the final state pT is only due to the increasing transverse momenta
(and virtualities) of the initial gluons, and, consequently, the suppression motivated by the Landau-Yang
theorem becomes weaker at large pT .

6.4 Associated Higgs + jets production at the LHC
The dominant mechanism for Higgs production at the LHC is gluon-gluon fusion, and the calculations
can be significantly simplified in the large top mass limit (MH ≤ 2Mtop) [97].
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The differential cross section of the inclusive Higgs production pp̄ → H + X in the kt-factorization
approach has been calculated in [98, 99] and can be written as:

dσ(pp̄→ H +X)

dyH
=

∫
α2
s(µ

2)

288π

GF
√

2

x1x2m2
Hs

[
m2
H + p2

T

]2
cos2(∆ϕ)×

×A(x1,k
2
1T , µ

2)A(x2,k
2
2T , µ

2)dk2
1T dk

2
2T

d(∆ϕ)

2π
, (30)

where GF is the Fermi coupling constant, A(x,k2
T , µ

2) is the un-integrated gluon distribution, ∆ϕ the
azimuthal angle between the momenta k1T and k2T , and the transverse momentum of the produced
Higgs boson is pT = k1T + k2T . It should be noted, that this process is particularly interesting in
kt-factorization, as the transverse momenta of the gluons are in the same order as their longitudinal
momenta (∼ O(10 GeV)) [100].

The total inclusive Higgs production cross section at the LHC energies (
√
s = 14 TeV) is plotted

in Fig. 10(a) as a function of the Higgs mass in the mass range mH = 100 − 200 GeV. The solid line
is obtained by fixing both the factorization and renormalization scales at the default value µ = mH

with the J2003 (set 1) CCFM un-integrated gluon distribution [101]. In order to estimate the theoretical
uncertainties, we take µ = ξmH and vary the scale parameter ξ between 1/2 and 2 about the default
value ξ = 1. The uncertainty band is presented by the upper and lower dashed lines. We find that our
central values agree very well with recent NNLO results [102].

(a) (b)

Fig. 10: Higg production at the LHC. In (a) the total cross section for Higgs boson production as a function of
Higgs mass is shown: the solid curve corresponds to the default scale µ = mH , upper and lower dashed curves
- µ = mH/2 and µ = 2mH/2 respectively. In (b) the jet-jet azimuthal angle distribution in the Higgs+jet+jet
production at

√
s = 14 TeV. The kinematical cut |pjetT | > 20 GeV was applied for both jets. Solid and dashed

lines correspond to the J2003 (set 1) and J2003 (set 2) [101] u.g.d. respectively.

To demonstrate the capabilities of the kt-factorization approach, we calculate the azimuthal angle
∆φ distribution between the two final jets transverse momenta in the Higgs+jet+jet production process.
Our results are shown in Fig. 10(b). The dip at ∆φ = π/2 comes from the cos(∆ϕ) in eq.(30). In
the approach presented here, the kt of the initial gluons is approximately compensated by the transverse
momenta of the jets [103]: kT ' −pT,jet, and, consequently, ∆φ ' ∆ϕ applying a cut-off |pjetT | > 20
GeV. This dip is characteristic for the loop-induced Higgs coupling to gluons in the framework of fixed-
order perturbative QCD calculations [102]. Thus, we illustrate that the features usually interpreted as
NNLO effects are reproduced in the kt-factorization with LO matrix elements.

However, we see a very large difference (about one order of magnitude) between the predictions
based on the J2003 gluon densities set 1 and set 2 [101], showing the sensitivity to the shape of the
un-integrated gluon density.
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6.5 Conclusions
The finite kt of the initial state gluons significantly modifies the kinematics of the gluon-gluon fusion
process and leads to nontrivial angular correlations between the final state heavy quarks. The longitudinal
polarization of the initial off-shell gluons manifests in the longitudinal polarization of J/ψ and Υ mesons
at moderate pT and, also, affects the production rates of P -wave quarkonia.

The predictions in kt-factorization are very close to NNLO pQCD results for the inclusive Higgs
production at the LHC, since the main part of high-order collinear pQCD corrections is already included
in the kt-factorization. In the kt-factorization approach the calculation of associated Higgs+jets produc-
tion is much simpler than in the collinear factorization approach. However, the large scale dependence
of our calculations (of the order of 20−50%) probably indicates the sensitivity to the unintegrated gluon
distributions.

7 Baryon charge transfer and production asymmetry of Λ0/Λ̄0 in hadron interactions8

7.1 Introduction to the QGSM
The phenomenon of nonzero asymmetry of baryon production with nonbaryonic beams (π,µ,e) was
mentioned and explained in a few theoretical papers. Baryon charge can be transferred from proton or
nucleus targets through the large rapidity gap with the string junction. In baryonic beam reactions (p,A,
etc.) this effect is displayed in the valuable baryon/antibaryon spectrum asymmetry at y = 0. Every
theoretical discourse on baryon charge transfer appeals to the value of the intercept, αSJ(0), that is an
intercept of the Regge-trajectory of imaginary particles which consists only of string junctions from
baryon and antibaryon. Practically, the models that can account for this effect are only non perturbative
QCD phenomenological models: the Dual Parton Model (DPM) [104] and the Quark Gluon String Model
(QGSM) [105] as well as the DPMJET Monte Carlo expansion of these two models. Both analytical
models are similar and they were based on the common Regge asymptotic presentation of constituent
quark structure functions and string (quark) fragmentation functions. Here we are considering QGSM.
In the comparison to the other models, QGSM accounts for many Pomeron exchanges. This approach
works very well to give us the correct description of particle production cross sections at very high
energies. The QGSM procedures of constructing of quark/diquark structure functions and fragmentation
functions were presented in many previous publications. We take into consideration the π-p reaction
that gives similar asymmetries as the γ-p reaction. The spectra in this reaction are more sensitive to the
baryon excess in the region of positive xF than the spectra of baryons in p-p collisions.

7.2 Comparison with Experimental Data
The asymmetry A(y) between the spectra of baryons and antibaryons is defined as:

A(x) =
dNΛ0

/dx− dN Λ̄0
/dx

dNΛ0/dx+ dN Λ̄0/dx
, (31)

The EHS and the NA49 experiments have presented evidence for a nonzero baryon production asym-
metry in proton-proton fixed target interactions, measuring at y = 0 values of the order of 0.5 - 0.3.
In pion-proton interactions (E769) we can see the y dependence of the asymmetry and the measured
asymmetry, which was multiplied by a factor of 2 in order to be compared with the pp asymmetry.

The data from these experiments can be presented in one plot for A(∆y), where ∆y is the rapidity
distance from interacting target-proton (see Fig. 11). It is seen that the points are situated on the same
line. If we add the data from proton-nucleus experiments (HERA-B and RHIC) they are still approxi-
mately on this line. Only the STAR asymmetry point at

√
s = 130 GeV can be interpreted as a sign that

the curve is bent. And the result of the H1 experiment at HERA [106] calls certainly for a steeper curve.

8Contributed by O.I. Piskounova.
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Fig. 11: Asymmetry in Λ0 and Λ̄0 production and QGSM curves: αSJ (0)=0.5(dashed line) and αSJ (0)=0.9 (solid
line).

What means do we have in QGSM to describe this dependence? In Ref. [107] it was shown that the data
of the E769 and H1 experiments can not be described with the same value of αSJ(0): the points at lower
energy correspond to αSJ (0)=0.5, while the H1 point requires αSJ (0)=0.9.

7.3 Summary
The purpose of this contribution is to show the band of asymmetries that can be predicted for the LHC
experiments between the two possibilities given above for αSJ (0). The results are shown in Fig. 11. The
solid line represents the case of αSJ (0)=0.9. This curve fits the data at low energies (small ∆y) due to
varying the energy splitting between string junction and diquark configuration: 0.1*SJ+0.9*DQ. What
we had to tune also was the fragmentation parameter af=0.15 instead of 0.2 accepted in previous papers.
Also the curve for αSJ (0)=0.5 is shown in Fig. 11 with a dashed line. This line certainly doesn’t fit the
H1 point and gives a negligible asymmetry at the energy of the LHC experiments. Finally, we have the
prediction for strange baryon asymmetries at the LHC within the range: 0.003 < A < 0.04. The same
procedure has to be applied to charmed baryon asymmetry to get the predictions at LHC energy.
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Experimental overview of heavy quark measurements at HERA
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Abstract
Experimental results on heavy flavour production at HERA are reviewed in the
context of their relevance for future measurements at the LHC.

1 Introduction
Measurements of heavy flavour production at HERA can have significant impacts on the preparation
and understanding of heavy flavour measurements at the LHC, and on the understanding of background
processes to new physics discoveries [1]. The purpose of this contribution is to summarize the current
status of heavy flavour measurements at HERA, and provide an outlook on how they might improve in
the near future. The relation of these measurements to measurements at the LHC will be covered in
more detail in subsequent contributions [2–4]. Since the top quark is too heavy to be produced at HERA
with a significant rate, the term “heavy flavour” refers to b and c quarks only. The dominant diagram for
heavy flavour production at HERA is shown in Fig. 1. The theory of heavy quark production at HERA
is covered in the theoretical review section [5].

γ

p

e±

X

Q̄

Q

e±

Fig. 1: Feynman graph for the production of a heavy quark pair via the leading order boson-gluon-fusion (BGF)
process.

The interest in heavy flavour production arises from several aspects.

– Tagging a heavy flavour particle, e.g. inside a jet, establishes that this jet arises from a quark rather
than a gluon. The number of possible QCD diagrams is thus reduced, and specific QCD final states
can be studied more precisely than in inclusive measurements. This is even more true when both
quarks of a heavy flavour quark pair can be tagged.

– The charm and beauty masses (mb,mc � ΛQCD) provide energy scales which are large enough
to allow perturbative calculations using a “massive” scheme [6, 7]. All QCD-processes involving
heavy quarks should thus be reliably calculable. However, these mass scales often compete with
other scales occurring in the same process, such as the transverse momentum (pT ) of the heavy
quarks, or the virtuality of the exchanged photon, Q2. Since the perturbative expansion can not be
optimized for all scales at once, additional theoretical uncertainties enter which reduce the reliabil-
ity of the predictions. If one of the competing scales (pT , Q2) is much larger than the quark mass,
approximations in which the heavy quarks are treated as massless [8–14] can improve the relia-
bility. Mixed schemes [15–17] are also possible. Understanding and resolving these difficulties
should contribute to the understanding of multi-scale problems in general.
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– Tagging the final state also constrains the initial state. Therefore, heavy flavour measurements can
be used to measure or constrain parton density functions. In particular, Fig. 1 illustrates the direct
sensitivity to the gluon density in the proton. Alternatively, in appropriate kinematic ranges, the
initial state splitting of the gluon or photon into a heavy quark pair can be absorbed into the parton
density definition. If the mass can be neglected, the same diagram (or higher order variants of it)
can be reinterpreted as a way to measure the heavy flavour content of the proton or of the photon.
These can in turn be used to calculate cross sections for other processes, such as Higgs production
at the LHC.

– The production of “hidden” heavy flavour states (quarkonia) yields further insights into the inter-
play of (perturbative) heavy quark production and (non-perturbative) binding effects.

At HERA, the fraction of charm production vs. inclusive QCD processes is of order 10% in
the perturbative QCD regime. Reasonably large samples can therefore be obtained despite the par-
tially rather low tagging efficiency. Beauty production is suppressed with respect to charm produc-
tion by the larger b mass, and by the smaller coupling to the photon. The resulting total cross section
is two orders of magnitude smaller than the one for charm. Beauty studies at HERA are thus often
limited by statistics. Kinematically, beauty production at HERA is similar to top production at LHC
(mb/

√
sHERA ∼ mt/

√
sLHC ). On the other hand, in the “interesting” physics region beauty is pro-

duced as copiously at the LHC as charm is at HERA.

2 Open charm production
Charmed mesons are tagged at HERA in different ways. A typical mass distribution for the “golden”
channel D∗+ → D0π+, D0 → K−π+ (+ c.c.) is shown in Fig. 2 [20]. Despite the low branching ratio,
this channel yields large statistics charm samples of high purity. Fig. 3 [21] shows a corresponding D*
production cross section in photoproduction for different kinematic variables. In general, D* production
is well described by next-to-leading order QCD predictions, although the data often prefer the upper edge
of the theoretical error band. Some deviations are observed in particular regions of phase space. For
instance, there are indications that forward (i.e. in the direction of the proton) charm production might
be slightly larger than theoretical expectations (Fig. 3b). Also, there are regions of phase space which
effectively require four-body final states which are not covered by NLO calculations (see Fig. 5 in [1]).
In order to describe such phase space regions, either NNLO calculations, or parton shower extensions to
NLO calculations such as MC@NLO [18, 19] will be needed.

Other ways to tag charm include the reconstruction of a secondary vertex in a high resolution
Micro-Vertex-Detector (MVD) in addition to the reconstruction of a charmed meson mass (Fig. 4) [22],
or the reconstruction of inclusive multiple impact parameters resulting from the finite charm meson
lifetime. A resulting cross section for D+ production is shown in Fig. 5.

Since the charm mass of approximately 1.5 GeV is not very much above the threshold at which
perturbative calculations are believed to produce reliable results, the generally good agreement of per-
turbative QCD predictions with the data is highly nontrivial, and encouraging concerning the validity of
corresponding predictions for the LHC.

3 Open beauty production
Open beauty production is detected at HERA using essentially three different methods, related to the
large b mass or long b lifetime.

– If a jet is built out of the fragmentation and decay products of a b meson/quark, the transverse
momentum of the decay products with respect to the jet axis will be of order half the b mass.
This is significantly larger than for decay products of charm particles, or the transverse momenta
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Fig. 2: Total inclusive D∗± sample obtained by ZEUS for the HERA I data period in the golden decay channel
D∗+ → D0π+

s → (K−π+)π+
s .

induced by non-perturbative fragmentation effects, which are both of order 1 GeV or less. This
distribution of this transverse momentum, called prelT , can thus be used to measure the beauty
contribution to a given jet sample.

– Due to the CKM-suppressed weak deacy of the b quark, the lifetime of b hadrons is longer than
that of charmed particles. Furthermore, the larger decay angle due to the larger mass results in a
higher significance of the decay signature. Detectors with a resolution in the 100 µ region or better
can thus separate the beauty contribution from charm and light flavour contributions.

– Again due to their mass, b hadrons take a larger fraction of the available energy in the fragmentation
process. Furthermore, they produce decay products with sizeable transverse momentum even when
produced close to the kinematic threshold. Simple lower cuts on the transverse momentum of
such decay products therefore enrich the beauty content of a sample. Applying such cuts on two
different decay products (double tagging) often sufficiently enriches the beauty content such that
the remaining background can be eliminated or measured by studying the correlation between
these decay products.

An example for an analysis using the first two methods with muons from semileptonic b decays
is shown in Fig. 6 [23]. Some cross sections resulting from this type of analysis are shown in Fig. 3
of [1]. In general, reasonable agreement is observed between the data and corresponding NLO QCD
predictions, although, as in the charm case, the data tend to prefer the upper edge of the theoretical error
band. In some regions of phase space, e.g. at low pµT or high ηµ differences of up to two standard
deviations are observed. More precise measurements (section 8) will be needed to decide whether these
deviations are really significant.

An example for an analysis using the 2nd method only is shown in Fig. 7 [24], while an example
for an analysis using the third method is shown in Fig. 8 [25].
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Fig. 3: D∗± single differential cross sections in photoproduction as function of theD∗± transverse momentum and
pseudorapidity. The measurements are compared to NLO calculations in the massive (NLO), massless (NLL) and
mixed (FONLL) scheme.

Figure 9 shows a summary of the data/theory comparison for all HERA beauty results as a function
of Q2. For the measurements sensitive to b quarks with pbT ∼ mb or lower (black points) there is a trend
that the “massive” NLO QCD predictions [7] tend to underestimate the b production rate at very low Q2.
Depending on the chosen set of structure functions and parameters, a “mixed” prediction (VFNS) [16,17]
might describe the data better. For the higher pT measurements (red/grey points), no clear trend is
observed. Note that theoretical errors, which are typically of order 30%, are not shown. Fig. 10 shows a
similar compilation for all HERA measurements in photoproduction (Q2 < 1 GeV), now as a function of
the b quark pT . A similar trend is observed towards low pT (but note that several measurements appear
in both figures). Again, more precise measurements are needed to determine whether these trends can be
confirmed.

4 Quarkonium production
Inelastic heavy quarkonia, like open charm and beauty production, are produced at HERA via the process
of photon-gluon fusion. The two charm or beauty quarks hadronize to form a charmonium or bottomo-
nium state.
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Fig. 7: Upper left: significance S1 = δ/σ(δ) distribution per event for events that contain one selected track
associated to the jet axis. Lower left: significance S2 = δ/σ(δ) distribution per event of the track with the second
highest absolute significance for events with≥ 2 selected tracks associated to the jet. Right: S1 andS2 distributions
after subtracting the negatvie bins in the S1 and S2 distributions from the positive.
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Fig. 9: Ratio of beauty production cross section measurements at HERA to NLO QCD predictions in the massive
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the VFNS NLO calculations by MRST and CTEQ for the DIS kinematic regime Q2 > 2 GeV2 are also shown
(valid for comparison with the black low threshold points). Since theoretical errors are different for each point,
they are not included in this plot.

A number of models have been suggested to describe inelastic quarkonium production in the
framework of perturbative QCD, such as the color-singlet model (CSM) [33, 34], the color-evaporation
model [35, 36] and soft color interactions [37]. Comprehensive reports on the physics of charmonium
production are available [38, 39].

Recently the ansatz of non-relativistic quantum chromodynamics (NRQCD) factorization was in-
troduced. In the NRQCD approach non-perturbative effects associated with the binding of a qq̄ pair
into a quarkonium are factored into NRQCD matrix elements that scale in a definite manner with the
typical relative velocity v of the heavy quark in the quarkonium. This way, colour octet quark anti-
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Fig. 10: Ratio of beauty production cross section measurements in photoproduction at HERA to NLO QCD
predictions in the massive scheme as function of the transverse momentum of the b quark pTb. The dashed line
gives an indication of the size of the theoretical uncertianties.

quark states, carrying different angular momenta and color charges than the quarkonium, can contribute
to the charmonium production cross section. Theoretical calculations based on the NRQCD factoriza-
tion approach [40–42] are available in leading order [43–48]. In the NRQCD factorization approach
the size of the color octet contributions, which are described by long distance matrix elements (LDME),
are additional free parameters and have been determined in fits to the Tevatron data [49]. The NRQCD
factorization approach incorporates the color singlet model i.e. the state qq̄[1,3 S1] which is recovered in
the limit in which the long distance matrix elements for other qq̄ states tend to zero.

At HERA, cross sections measurements for photoproduction of J/ψ and ψ(2S) and for electro-
production of J/ψ mesons have been performed [52–55]. Bottomonium data are not available due to
statistical limitations of the data.

For J/ψ and ψ(2S) photoproduction, calculations of the color-singlet contribution are available
to next-to-leading order perturbation theory [50, 51]. Calculations which include the color octet contri-
butions as predicted by NRQCD are available in leading order.

Figure 11 shows the measurements of the J/ψ photoproduction cross section by the H1 collabo-
ration [52] and the ZEUS collaboration [53] which are in good agreement with each other. The variable
z (left figure) denotes the fraction of the photon energy in the proton rest frame that is transferred to the
J/ψ. Reasonable agreement is found between the HERA data and the NRQCD factorization ansatz in
leading order (LO, CS+CO). The uncertainty indicated by the open band is due to the uncertainty in the
color-octet NRQCD matrix elements. In contrast, the shaded band shows the calculation of the color-
singlet contribution (NLO, CS) which is performed to next-to-leading order in αs [50, 51]. This NLO,
CS contribution alone describes the data quite well without inclusion of color-octet contributions. Com-
parison between the NLO,CS prediction (shaded band) and the LO,CS prediction (dotted line) shows
that the NLO corrections are crucial for the description of the HERA photoproduction data.
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Fig. 12: Differential Charmonium photoproduction in comparison with a prediction using the color singlet-model
and kt factorization as implemented in the Monte Carlo generator CASCADE.

Charmonium production cross sections have also been calculated in the kt factorization approach
(see Refs. [56–58]). In these calculations the color-singlet model is used to describe the formation of
the charmonium state. Figure 12 shows a comparison of the H1 data with the predictions from the kt
factorization approach as implemented in the Monte Carlo generator CASCADE [59]. Good agreement
is observed between data and predictions for z < 0.8. At high z values, the CASCADE calculation
underestimates the cross section. The CASCADE predictions for the the p2

t,ψ dependence of the cross
section fit the data considerably better than the LO,CS calculation in the collinear factorization approach
(dotted curve in Fig. 11).

In fig 13 the differential cross sections for electroproduction of J/ψ mesons as measured by
H1 [54] and ZEUS [55] are shown as a function of z and compared with predictions from the color
singlet model (shaded band), with the NRQCD calculation [60] (CS+CO, open band), and also with
calculations in the kt factorization approach (dotted line) as provided by [58] and implemented in the
Monte Carlo generator CASCADE (dash-dotted line).
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(b)

Fig. 13: Differential cross sections dσ/dz a) without and b) with a cut on p∗2t,ψ > 1 GeV. The data are compared to
the NRQCD calculation (CS+CO, open band), the color-singlet contribution (CS, shaded band), with a prediction
in the kt factorization approach assuming the CSM (dotted line) and with the Monte Carlo generator CASCADE
(dash-dotted line).

In the left figure the data are seen to agree well with the predictions using the color singlet model
(shaded band and lines) while the full NRQCD calculation (open band), including color-octet contribu-
tions is wrong in shape and normalization. The agreement deteriorates when the cut p∗2t,ψ > 1 GeV is
applied (right Fig. 13). This cut is justified, however, as towards small p∗2t,ψ perturbation theory becomes
increasingly unreliable due to collinear singularities for the contributions e + g → e + cc̄[n] + g with
n=1S

(8)
0 and 3P

(8)
J [60].

In conclusion, NRQCD, as presently available in leading order, does not give a satisfactory de-
scription of the HERA data. In contrast, the color singlet model shows a reasonable description of the
HERA data, when implemented in calculations to next-to-leading order perturbation theory or in calcu-
lations in which the kt-factorization approach is used.

5 Charm and Beauty contributions to structure functions
To a good approximation, except at very high Q2, the cross section for inclusive deep inelastic electron
scattering off the proton at HERA can be described in terms of a single proton structure function F2 (for
formula see [1]). This structure function only depends on the photon virtuality, Q2, and on the Bjorken
scaling variable x. Assuming that the electron scatters off a single quark in the proton (0th order QCD,
quark-parton model) x can be reinterpreted as the fraction of the proton momentum carried by the struck
quark. This is a reasonable approximation for the light quark content of the proton.

For heavy quarks, the situation is a bit more complicated. Due to the heavy quark mass, on-shell
heavy quarks can not exist within the proton. Rather, the dominant process for heavy quark production
is the 1st order QCD BGF process depicted in Fig. 1. However, this process (and other higher order
processes) still contributes to electron scattering, and hence to F2. This can be interpreted in two ways.

In the massive approximation, heavy quarks are treated as being produced dynamically in the
scattering process. The heavy quark contribution to F2, frequently denoted as F cc̄

2 and F bb̄2 , therefore
indirectly measures the gluon content of the proton. If Q2 is large enough such that the quark mass can
be neglected (Q2 � (2mQ)2), the splitting of the gluon into a heavy quark pair can be reinterpreted to
occur within the proton. F cc̄

2 and F bb̄2 then measure the occurrence of virtual heavy quark pairs in the
proton, or the “heavy quark structure” of the proton.
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Fig. 14: F cc̄2 results as a function of x in bins of Q2, from the H1 and ZEUS D∗± analyses and from the H1
inclusive lifetime tagging measurements The data are compared to a NLO prediction using the ZEUS NLO fit
results for the proton parton densities.

For charm production, the condition Q2 � (2mQ)2 is valid for a large part of the HERA phase
space. For beauty, it is only satisfied at very large Q2. This is also the region most interesting for physics
at the LHC.

Similar arguments hold for the heavy quark structure of the photon.

As an example, Fig. 14 [24,31,61–63] shows F cc̄
2 as measured by the ZEUS and H1 collaborations.

A different representation of these results is shown in Fig. 6 of [1]. There, also F bb̄
2 is shown. Good

agreement is observed with QCD predictions. Parametrizations of heavy quark densities of the proton at
LHC energies should therefore be valid within their respective errors.

6 Charm fragmentation
The large cross section for charm production at HERA allows measurements of charm fragmentation
which are very competitive with e+e− measurements. As this topic is covered very nicely in [1] and [2]
it is not treated further here.

O. BEHNKE, A. GEISER, A. MEYER

352



b

b

e

p

Parton shower}

NLO

LO

e

b

b

e

p
Parton shower

NLO

LO

e

Parton shower
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7 Quark-antiquark correlations
Heavy quarks are always produced in pairs. An interesting way to check QCD is thus to verify whether
the kinematic correlations between the quark pair are correctly described by QCD.

Figure 15 shows different interpretations of the same higher order beauty production process.
These different interpretations partially manifest themselves in different kinematic regions of beauty
production phase space. If the highest virtuality part of the process occurs in the leading order BGF-like
subprocess (left), the two b quarks will be almost back-to-back in the detector transverse plane. The two
extra gluons can either be reabsorbed into the proton structure, recovering the original BGF graph, or
manifest themselves as visible “parton shower” activity in the direction of the proton. Alternatively, if the
dominant leading order subprocess is gluon exchange with one of the b quarks (right, “flavour excitation
in the photon”), this b quark will recoil against a gluon jet. At sufficiantly large momentum transfer (rare
at HERA), the second b quark can be treated as a “spectator”, and will approximately follow the initial
photon direction. At next-to-leading order, contributions to both processes are described by the same
Feynman graph, but the two extreme kinematic cases (and all variants in between) are still included. If
both heavy quarks are tagged, these different kinematic regions can be distinguished by measuring the
momentum and angular correlations between the two quarks.

Figure 16 [25] shows the angular correlations between the two muons originating from different
b quarks of a bb̄ pair. Reasonable agreement is observed with QCD predictions. The predominantly
back-to-back topology comfirms the dominance of the BGF-like contribution.

8 HERA II prospects
Both the HERA collider and its detectors have been upgraded in 2001/2 to provide more luminosity
with polarized electron beams, and improve heavy flavour detection. This program is called HERA II.
The luminosity accumulated so far already exceeds the HERA I luminosity. An integrated luminosity
up to 700 pb−1 is expected at the end of the HERA program in 2007. This enhances the statistics for
many studies by almost an order of magnitude with respect to HERA I. The improved detectors offer
further handles for improved heavy flavour measurements. H1 has improved the forward coverage of
its Micro-Vertex-Detector [68], and added a Fast Track Trigger [67]. ZEUS has implemented a Micro-
Vertex-Detector (MVD) [65] for the first time for HERA II, and has added an upgraded forward tracking
detector [66]. These improvements allow the application of measurement techniques which could not be
used at HERA I, and can be used to improve the data quality, add additional statistics, and/or cover new
phase space regions.
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Fig. 16: Differential cross section dσ/d∆φµµ for dimuon events from bb̄ decays in which each muon originates
from a different b(b̄) quark. The data (solid dots) are compared to the leading order + parton shower generators
PYTHIA and RAPGAP (histogram) and to massive NLO QCD predictions (shaded band).
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Fig. 17: Differential cross section as function of muon pT for dimuon + jet events in photoproduction. Preliminary
results from the first 33 pb−1 of HERA II data are compared to HERA I results and QCD predictions.

New detectors require time to fully understand their systematics, but first preliminary results have
already been obtained. Figure 17 [64] shows the cross section for beauty production obtained using
the new ZEUS MVD with the first 33 pb−1 of HERA II data, compared to the HERA I result. Good
agreement is observed.

The measurements which will profit most from the improved HERA II data sets include double
differential measurements such as the beauty and charm contributions to the proton structure function F2,
and multi-tag measurements to explicitly study quark-quark correlations. Statistical improvements of at
least one order of magnitude can be expected when the increased luminosity and improved measurement
techniques are combined.

9 Conclusions
Heavy flavour production at HERA is a very active field of research yielding multiple insights into the
applicability of perturbative QCD. The problem of multiple scales complicates the perturbative expan-
sions and limits the achievable theoretical precision. In general, QCD predictions agree well with the
data, although indications for deviations persist in specific regions of phase space. Some of these might
be attributable to missing NNLO or even higher order contributions.
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The overall reasonable agreement, as well as the self-consistency of the structure functions tested
by or derived from heavy flavour production at HERA, enhances confidence in corresponding cross-
section predictions at LHC, within their respective theoretical uncertainties.
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Abstract
We review selected aspects of the experimental techniques being prepared to
study heavy flavour production in the four LHC experiments (ALICE, ATLAS,
CMS and LHCb) and we present the expected performance for some of the
most significative measurements.

Coordinators: A. Dainese, M. Smizanska, and C. Weiser

1 Introduction1

Unprecedently large cross sections are expected for heavy-flavour production in proton–proton collisions
at the LHC energy of

√
s = 14 TeV. Next-to-leading order perturbative QCD calculations predict values

of about 10 mb for charm and 0.5 mb for beauty, with a theoretical uncertainty of a factor 2–3. Despite
these large cross sections, the LHC experiments, ALICE [1,2], ATLAS [3], CMS [4], and LHCb [5], will
have to deal with rejection of background coming from non-heavy flavour inelastic interactions for which
the predicted cross is about 70 mb. The four experiments will work at different luminosity conditions.
ATLAS and CMS are designed to work in a wide range of luminosities up to nominal 1034 cm−2s−1,
while the LHCb optimal luminosity will vary in the range (2–5) × 1032 cm−2s−1 and ALICE is designed
to work at 3× 1030 cm−2s−1 in proton–proton collisions. Luminosity conditions in ATLAS, CMS and
LHCb allow multiple interactions per bunch crossing, thus leading to requirements of even stronger
identification and selection of heavy-flavour events already at trigger level. The first task will be the
measurement of integrated and differential charm and beauty production cross sections in the new energy
domain covered at the LHC. ALICE will play an important role, having acceptance down to very low
transverse momentum, as we discuss in Section 4. These measurements can be performed within a
relatively short period of running. Afterwards, the heavy-flavour studies will focus on less inclusive
measurements addressing specific production mechanisms that allow to test higher order perturbative
QCD predictions, as well as on rare decays of heavy-flavour hadrons, that may carry information on New
Physics beyond the Standard Model. In order to meet these requirements dedicated and sophisticated
trigger strategies have been prepared by the LHC experiments.

2 Heavy flavour detection in the LHC experiments2

The four detectors that will take data at the LHC have different features and design requirements, but all
of them are expected to have excellent capabilities for heavy-flavour measurements. Their complemen-
tarity will provide a very broad coverage in terms of phase-space, decay channels and observables.

1Author: M. Smizanska
2Author: A. Dainese
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Fig. 1: Track impact parameter resolutions for the four LHC experiments. Note that for ALICE, ATLAS and CMS
the impact parameter is defined in the rφ plane, while for LHCb it is defined in the rz plane.

Experimentally, the key elements for a rich heavy-flavour program are track and vertex reconstruc-
tion and particle identification (PID).

Open charm and beauty mesons have typical life-times in the order of a ps (cτ values are about
125–300 µm for D mesons and 500 µm for B mesons) and the most direct detection strategy is the
identification of single tracks or vertices that are displaced from the interaction vertex. The detector
capability to perform this task can be characterized by the transverse impact parameter3 (d0) resolution.
All experiments will be equipped with high position-resolution silicon-detector layers, including pixel
detector for the innermost layers, for precise tracking and impact parameter measurement. Tracking is
done in the central (pseudo)rapidity region for ALICE (|η| < 0.9), ATLAS and CMS (|η| <∼ 2.5), and
in the forward region for LHCb (2 <∼ η <∼ 5). In Fig. 1 we show the d0 resolution, which is similar for
the different experiments, and better than 50 µm for pT >∼ 1.5–3 GeV. The inner detector systems of
ATLAS, CMS and ALICE will operate in different magnetic fields: The ALICE magnetic field will vary
within low values (0.2–0.5 T) leading to a very low pT cutoff of 0.1–0.2 GeV, while ATLAS (2 T) and
CMS (4 T) have higher cutoffs of 0.5 and 1 GeV, respectively, but better pT resolution at high pT (e.g.,
at pT = 100 GeV, δpT /pT ≈ 1–2% for ATLAS/CMS at central rapidity and ≈ 9% for ALICE).

Both lepton and hadron identification are important for heavy-flavour detection. D and B mesons
have relatively large branching ratios (BR) in the semi-leptonic channels, ' 10% to electrons and' 10%
to muons, and inclusive cross-section measurements can be performed via single leptons or di-leptons.
Alternatively, high-pT leptons can be used as trigger-level tags to select B→ J/ψ+X candidate events,
that provide more accurate cross section measurements. ALICE can identify electrons with pT > 1 GeV
and |η| < 0.9, via transition radiation and dE/dx measurements, and muons in the forward region,
2.5 < η < 4, which allows a very low pT cutoff of 1 GeV. CMS and ATLAS have a broad pseudorapid-
ity coverage for muons, |η| < 2.4 and |η| < 2.7, respectively, but they have a higher pT cutoff varying
between 4 and 6 GeV, depending on η. Both CMS and ATLAS have high-resolution electro-magnetic
calorimeters that will be used to identify electrons. Semi-leptonic inclusive measurements do not provide
direct information on the D(B)-meson pT distribution, especially at low pT , because of the weak corre-

3We define as impact parameter the distance of closest approach to the interaction vertex of the track projection in the plane
transverse to the beam direction.
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Fig. 2: Schematic acceptances in transverse momentum and pseudorapidity for open heavy flavour hadrons (indi-
cated as ‘Q-hadrons’) in the four LHC experiments. The high-pT coverages correspond to one year (i.e. 7 months)
of running at nominal luminosity (see beginning of this section).

lation between the lepton and the meson momenta. Therefore, for charm in particular, the reconstruction
of exclusive (hadronic) decays is preferable. In this case, hadron identification allows a more effective
rejection of the combinatorial background in the low-pT region. ALICE disposes of π/K/p separation
via dE/dx and time-of-flight measurements for p < 3–4 GeV and |η| < 0.9.

Figure 2 shows schematically the pT vs. η acceptances for charm (c) and beauty (b) hadrons in
the four experiments, as expected for one year of running at nominal luminosity (note that the value
of the luminosity is different for each experiment, as previously discussed). ATLAS and CMS have
similar acceptances for beauty measurements; the minimum accessible pT is relatively large because of
the strong magnetic fields, which in turn, together with the high luminosity, allow to cover transverse
momenta up to 200–300 GeV. The acceptance of LHCb, although centred at forward rapidity, has a
significant overlap, with those of ATLAS and CMS. The acceptance of ALICE for beauty overlaps with
ATLAS and CMS at central rapidity and with LHCb at forward rapidity. The moderate magnetic field
allows measurements down to transverse momenta of about 2 GeV for B mesons in the forward muon
arm and in the barrel, and down to about 1 GeV for D mesons in the barrel.

3 Beauty triggers at the LHC
3.1 ATLAS beauty trigger4

The ATLAS trigger consists of three levels [6]. Level-1 is implemented in hardware, whilst the higher
level triggers (level-2 and the Event Filter, EF) are based on general-purpose processors. The level-1
triggers are based on information from the calorimeter and muon trigger chambers. At higher trigger
levels, information from the Inner Detector (ID) and precision muon detector is included. The size of
the level-2 and EF processor farms is limited, which in turn limits the amount of data processing that
can be performed in the trigger. The B-trigger must, therefore, have the flexibility to adapt selections
both as the luminosity falls during a beam-coast and, over a longer time-scale, as the peak luminosity
of the LHC increases. This is achieved by using a di-muon trigger at the start of higher luminosity fills
and introducing additional triggers for lower luminosity fills or as the luminosity falls during a beam
coast [7].

4Author: J. Baines
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A di-muon trigger provides a very effective selection for a range of important channels, e.g.
B0

d → J/ψ(µ+µ−)K0
s , B→ K0?µµ and B→ ρ0µµ. The Level-1 muon trigger is efficient down to a

pT of about 5 GeV in the barrel region and about 3 GeV in the end-caps. However the actual thresholds
used for the di-muon trigger will be determined by rate limitations. For example, a pT threshold of 6 GeV
would give a di-muon trigger rate of about 600 Hz after level-1 at a luminosity of 2 × 1033 cm−2s−1.
These triggers are mostly due to muons from heavy flavour decays plus some single muons which are
doubly counted due to overlaps in the end-cap trigger chambers. The later are removed when the muons
are confirmed at level-2 using muon precision chambers and ID information from inside the level-1
Region of Interest (RoI). At the EF tracks are refit, inside regions identified by level-2, and specific se-
lections made on the basis of mass and decay length cuts. These consist of semi-inclusive selections,
for example to select J/ψ(µ+µ−) decays with a displaced vertex, and in some cases exclusive selec-
tions such as for B→ µ+µ−. The final trigger rate, after the EF, is about 20 Hz at a luminosity of
2× 1033 cm−2s−1.

At lower luminosities, additional triggers are introduced which are based on a single muon trigger
(pT >∼ 8 GeV) together with a calorimeter trigger. The calorimeter trigger identifies clusters of energy
deposition in the electromagnetic and hadronic calorimeter consistent with an electron or photon (EM
RoI) or a jet (Jet RoI). For hadronic final states, such as B0

s → D−s π
+ and B0

s → D−s a+
1 track are recon-

structed in the Inner Detector in RoI of about ∆η×∆φ = 1.0× 1.5. By limiting track reconstruction to
the part of the ID lying within the RoI, about 10% on average, there is potential for up to a factor of ten
saving in execution time compared to reconstruction in the full Inner Detector. Preliminary studies of
efficiency and jet-cluster multiplicity have been made using a fast simulation which includes a detailed
parameterization of the calorimeter. These studies indicate that a threshold on the jet cluster energy of
ET > 5 GeV gives a reasonable multiplicity, i.e. a mean of about two RoI per event for events contain-
ing a muon trigger. This threshold would give a trigger that is efficient for B0

s → D−s π
+ events with a

B-hadron pT above about 15 GeV.

Track reconstruction inside e/gamma RoI can be used to select channels such as Bd → K0?γ,
B0

d → J/ψ(e+e−)K0
s , and Bs → φγ. Preliminary studies show that a reasonable compromise between

RoI multiplicity and electron efficiency might be obtained with a cluster energy threshold ofET > 2 GeV.
This gives a mean RoI multiplicity of about one for events containing a muon trigger and is efficient
for channels containing an electron with pT > 5 GeV. Following the ID track reconstruction further
selections are made for specific channels of interest. These are kept as inclusive as possible at level-2
with some more exclusive selections at the EF.

In LHC running, there will be competing demands for resources in the level-2 and EF trigger
farms and for trigger band-width. By adopting a flexible strategy and making the maximum use of RoI
information to guide reconstruction at level-2 and the EF, the B-physics coverage of ATLAS can be
maximized.

3.2 CMS beauty trigger5

The Large Hadron Collider (LHC) will provide 40 MHz proton-proton collisions at the centre of mass
energy of 14 TeV. At the beginning a luminosity of 2×1033 cm−2s−1 is expected, corresponding to
20 fb−1 collected per year. Assuming the bb production cross section to be 0.5 mb, 1013 b-physics
events per year are foreseen: all kind of b-particles will be produced and studies will be performed not
only in B0

d, but also in B0
s meson system. A wide b-physics programme, including CP violation, B0

s −B
0
s

mixing and rare decays can therefore be covered by the CMS experiment. The apparatus will be equipped
with a very precise tracking system made with silicon microstrip and pixel detectors [8, 9].

The rate at which events can be archived for offline analyses is 100 Hz [10,11]. The trigger thresh-
olds are optimized for a wide physics discovery program with selection of high transverse momentum

5Author: R. Ranieri
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(pT ) processes. Low-pT events, as required for b-physics , are selected mainly by the first level muon
trigger, then an exclusive reconstruction of few relevant benchmark channels can separate interesting
events from the background. The b-physics programme could evolve with time following both the theo-
retical developments and the results which will be obtained in the next years by b-factories and Tevatron
experiments.

The lowest trigger level (Level-1) is based on the fast response of calorimeters and muon stations
with coarse granularity. No information on secondary vertices is available, hence the Level-1 selection
of b-physics events exploits the leptonic signatures from beauty hadron decays, therefore a single muon
or a di-muon pair is required. The Level-1 output at start-up will be 50 kHz. Several studies have been
done to optimize the trigger thresholds in order to have the possibility of selecting most of the interesting
physics signatures. A total of 3.6 kHz rate is dedicated to the Level-1 muon selection. It is obtained by
requiring a single muon with pT > 14 GeV or at least two muons with pT > 3 GeV.

A further selection is made during the High-Level trigger (HLT) by using also the information from
the tracking system. The CMS High-Level trigger is entirely based on a CPU farm with some thousand
CPUs. Each processor analyses a single event; in principle offline event reconstruction can be performed,
but in order to reduce the processing time fast track reconstruction has to be done. Some algorithms will
be dedicated to the fast reconstruction and identification of physics processes, thus allowing to start the
offline analysis directly from the online selection. They have to fulfill the HLT time constraint, hence they
have to be able to analyze and accept (or reject) data within the time limits imposed by the HLT latency.
To lower the execution time, which is due mainly to the processing of tracking system signals, track
reconstruction is preferably performed only in limited regions of the space (regional track reconstruction)
and stopped when a certain precision is reached in the measurement of some track parameters, such as
transverse momentum and impact parameter (conditional track finding). Invariant mass of b-hadrons can
thus be measured online with good resolution, allowing to select the searched event topologies.

An additional trigger strategy, which relies on the possibility of lowering the trigger thresholds
during the LHC beam coast or lower luminosity fills to collect more b-physics events is under study.

The rare decay B0
s,d→µ+µ− is triggered at Level-1 with 15.2% efficiency. At HLT, the two muons

are required to be opposite charged and isolated, to come from a displaced common vertex and have an
invariant mass within 150 MeV from the B0

s mass. The estimated background rate is below 2 Hz and
nearly 50 signal events are expected with 10 fb−1.

The determination of ∆ms and ∆Γs will be a valuable input for flavour dynamics in the Standard
Model and its possible extensions. The measurement of ∆ms is allowed by the B0

s→Ds
−π+ decay

followed by Ds
−→φπ− and φ→K+K−. The B0

s CP state at decay time is tagged by the charge of the
pion associated to the Ds (in this case the π+). The only way to trigger on these hadronic events is to
search for the muon coming from the decay of the other b quark in the event. In addition to the single
muon Level-1 trigger, it was studied the possibility of a combined trigger with a low-pT muon and a
soft jet. The CMS High-Level trigger algorithm reconstructs the charged particle tracks with only three
points by using the precise pixel detector. Topological and kinematical cuts are applied to reconstruct the
three resonances φ, Ds and B0

s . A 20 Hz output rate is achieved with about 1000 signal events in 20 fb−1.
Since the overall possible rate on tape is 100 Hz, the bandwidth allocated to this channel probably could
not exceed 5 Hz. If the fraction of events written to tape is scaled accordingly, more than 300 signal
events are expected for 20 fb−1. In order to fully cover the range allowed by the Standard Model, about
1000 events are needed.

The decay channel B0
s→J/ψφ is very important because it can not be studied with large accuracy

before LHC and can reveal hints for physics beyond the Standard Model. Events with a couple of muons
are passed to the HLT. The inclusive selection of J/ψ→µ+µ− decays, obtained with mass requirements
on the di-muon system, leads to a total of 15 Hz rate, 90% of which is made of J/ψ from b quarks. With
an additional amount of CPU time, perhaps sustainable by the HLT computing power, about 170 000
events are expected in 20 fb−1 with less than 2 Hz rate.
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3.3 LHCb beauty trigger6

The LHCb detector [5] is optimized for exploiting the B-physics potential of LHC. Together with excel-
lent vertexing and particle identification, an efficient trigger on a wide variety of B decays is one of the
main design requirements of the experiment.

The LHCb trigger system [12] is organized in three levels. The first one (L0) runs on custom
electronics and operates synchronously at 40 MHz, with a 4 µs latency. The remaining two trigger levels
(L1 and HLT) run on a shared farm of 1400 commercial CPUs. A brief description of the three trigger
levels and their performance follows.

L0 exploits the relatively high pT of B decay products. High pT candidates are identified both in
the calorimeter and in the muon system, with pT thresholds of about 3 and 1 GeV respectively. Compli-
cated events that would consume unreasonable time at higher levels are promptly vetoed in two different
ways. First, multiple primary vertex topologies are rejected by using two dedicated silicon layers of the
vertex detector. Secondly, events with large multiplicity, measured at a scintillating pad layer, are vetoed.
The input rate of events visible in the detector is about 10 MHz, with a bb content of 1.5%. L0 reduces
this rate by a factor of 10 while increasing the bb content to 3%. The typical efficiency of L0 is 90% for
channels with dimuons, 70% for radiative decays and 50% for purely hadronic decays.

At the 1 MHz input rate of L1 it becomes feasible to use tracking information, allowing for the
search for B vertex displacement signatures. Tracks are first searched at the vertex detector, and then
confirmed in two dedicated tracking layers (trigger tracker or TT) which provide a rough estimation of
the momentum of the tracks (δpT /pT ∼ 25%). The generic L1 decision is based on the presence of
two tracks with an impact parameter higher than 0.15 mm with a sufficiently high value of log(pT1 +
pT2). Alternative selection criteria are applied, based on the presence of tracks matched to L0 neutral
calorimeter objects and muon candidates. The output rate of L1 is 40 kHz with a bb content of 15%. The
efficiencies are at the level of 90, 80 and 70% for channels with di-muons, only hadrons and radiative
decays respectively.

The HLT [13] consists of two sequential layers. The first one refines the L1 decision with the all
the tracking information from the detector, improving the pT measurement to the level of δpT /pT ∼
1%. The rate is reduced to 13 kHz and the bb content is enriched to 30%. The second layer consists on a
series of alternative selections. A first group of them aims for maximal efficiency on the base-line physics
channels and the corresponding control samples, by making use of the complete reconstruction of the
decay vertex and its kinematical properties. These selections fill 200 Hz of bandwidth, while providing
efficiencies typically higher than 90%. The rest of selections aim for more generic signatures that will
provide robustness and flexibility to the trigger system. In addition, the samples selected will be useful
for calibration and systematic studies. The selections aim for generic J/ψ and D? (600 Hz and 300 Hz
respectively), and generic B decays (900 Hz). The latter is based on the detection of single muons with
high pT and impact parameter.

In total, 2 kHz of events will be written on tape, with an expected overall efficiency ranging
between 75% for channels with di-muons to 35% for purely hadronic final states.

4 Measurements in preparation at the LHC and expected performance
In the following we present, as examples, the expected performance for the detection of D and B mesons
in ALICE7, and for the study of bb azimuthal correlation in ATLAS. We also include a summary of the
capability of ALICE of quarkonia measurements (ψ family and Υ family).

6Author: H. Ruiz
7Given that ALICE is dedicated to the study of nucleus–nucleus collisions at the LHC, some of the presented results are

relative to Pb–Pb collisions at
√
s = 5.5 TeV per nucleon–nucleon collisions. These results can be taken as lower limits for

the performance in pp collisions, where the background contributions are much lower.
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4.1 Charm reconstruction in ALICE8

One of the most promising channels for open charm detection is the D0 → K−π+ decay (and charge
conjugate) that has a BR of 3.8%. The expected yields (BR × dN/dy at y = 0), in pp collisions at√
s = 14 TeV and in central Pb–Pb (0–5% σtot) at

√
sNN = 5.5 TeV are 7.5× 10−4 and 5.3× 10−1 per

event, respectively [14].

The main feature of this decay topology is the presence of two tracks with impact parameters
d0 ∼ 100 µm. The detection strategy [15] to cope with the large combinatorial background from the un-
derlying event is based on the selection of displaced-vertex topologies, i.e. two tracks with large impact
parameters and good alignment between the D0 momentum and flight-line, and on invariant-mass anal-
ysis to extract the signal yield. This strategy was optimized separately for pp and Pb–Pb collisions, as
a function of the D0 transverse momentum, and statistical and systematic errors were estimated [16,17].
The results, in terms of pT coverage and statistical precision, are found to be similar for the two colliding
systems [16, 17].

Figure 3 (left) shows the expected sensitivity of ALICE for the measurement of the D0 pT -
differential cross section in pp collisions, along with NLO pQCD [18] calculation results corresponding
to different choices of the charm quark mass and of renormalization and factorization scales. In the
right-hand panel of the figure we present the ratio ‘data/theory’ (‘default parameters/theory parameters’)
which better allows to compare the different pT -shapes obtained by changing the input ‘theory param-
eters’ and to illustrate the expected sensitivity of the ALICE measurement. The estimated experimental
errors are much smaller than the theoretical uncertainty band. We note that the data cover the region
at low transverse momentum where the accuracy of the pQCD calculation becomes poorer and where
novel effects, determined by the high partonic density of the initial state at LHC energies, may play an
important role (see “Small-x effects in heavy quark production” section of this report).

4.2 Beauty production measurements in ALICE9

The expected yields (BR × dN/dy at y = 0) for B → e± + X plus B → D (→ e± + X) + X ′ in pp
collisions at

√
s = 14 TeV and in central Pb–Pb (0–5% σtot) at

√
sNN = 5.5 TeV are 2.8 × 10−4 and

1.8× 10−1 per event, respectively [14].

The main sources of background electrons are: (a) decays of D mesons; (b) neutral pion Dalitz
decays π0 → γe+e− and decays of light mesons (e.g. ρ and ω); (c) conversions of photons in the beam
pipe or in the inner detector layers and (d) pions misidentified as electrons. Given that electrons from
beauty have average impact parameter d0 ' 500 µm and a hard momentum spectrum, it is possible to
obtain a high-purity sample with a strategy that relies on: electron identification with a combined dE/dx
and transition radiation selection, which allows to reduce the pion contamination by a factor 104; impact
parameter cut to reject misidentified pions and electrons from sources (b) and (c); transverse momentum
cut to reject electrons from charm decays. As an example, with d0 > 200 µm and pT > 2 GeV,
the expected statistics of electrons from B decays is 8 × 104 for 107 central Pb–Pb events, allowing the
measurement of electron-level pT -differential cross section in the range 2 < pT < 18 GeV. The residual
contamination of about 10%, acculated in the low-pT region, of electrons from prompt charm decays and
from misidentified charged pions can be evaluated and subtracted using a Monte Carlo simulation tuned
to reproduce the measured cross sections for pions and D0 mesons. A Monte-Carlo-based procedure
can then be used to compute, from the electron-level cross section, the B-level cross section dσB(pT >
pmin
T )/dy [17]. In the left-hand panel of Fig. 4 we show this cross section for central Pb–Pb collisions

with the estimated uncertainties. The covered range is 2 < pmin
T < 30 GeV.

B production can be measured also in the ALICE forward muon spectrometer, 2.5 < η < 4, ana-
lyzing the single-muon pT distribution and the opposite-sign di-muons invariant mass distribution [17].

8Author: A. Dainese
9Author: A. Dainese
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The main backgrounds to the ‘beauty muon’ signal are π±, K± and charm decays. The cut pT >
1.5 GeV is applied to all reconstructed muons in order to increase the signal-to-background ratio. For
the opposite-sign di-muons, the residual combinatorial background is subtracted using the technique
of event-mixing and the resulting distribution is subdivided into two samples: the low-mass region,
Mµ+µ− < 5 GeV, dominated by muons originating from a single b quark decay through b → c(→
µ+)µ− (BDsame), and the high-mass region, 5 < Mµ+µ− < 20 GeV, dominated by bb→ µ+µ−, with
each muon coming from a different quark in the pair (BBdiff ). Both samples have a background from
cc → µ+µ− and a fit is done to extract the charm- and beauty-component yields. The single-muon pT
distribution has three components with different slopes: K and π, charm, and beauty decays. Also in
this case a fit technique allows to extract a pT distribution of muons from B decays. A Monte Carlo
procedure, similar to that used for semi-electronic decays, allows to extract B-level cross sections for the
data sets (low-mass µ+µ−, high-mass µ+µ−, and pT -binned single-muon distribution), each set covering
a specific B-meson pT > pmin

T region, as preliminarly shown in Fig. 4 (right). Since only minimal cuts
are applied, the reported statistical errors are very small and high-pT reach is excellent. Systematic errors
are currently under study.

4.3 Study of bb correlations in ATLAS10

The ATLAS detector [19] is well engineered for studies of b-production, and together with the huge
rate of b-quark production that will be seen at LHC, offers great potential for the making of novel pre-
cise b production measurements. Correlations between b and b quarks and events with more than one
heavy-quark pair, bbbb, bbcc, bbss, that were difficult to access in previous experiments due to limited
statistics, will be investigated in detail. A new technique has been developed in ATLAS for measur-
ing correlations, and this will yield results that will shed new light on our understanding of the QCD
cross-section for bb-production.

A detailed study investigated a possibility of bb correlations measurement using the ∆φ(J/ψ-µ)
distribution, the azimuthal separation of a J/ψ and a muon [20–22]. This technique is expected to be
superior to earlier methods used at the Tevatron Run-1 based on muon–muon or muon–b-jet correlations.
The new method does not require separation cuts between the two objects. Such cuts were necessary to
control the background, but they required a model-dependent extrapolation of the results to full azimuthal
space [23]. Using a full simulation of the Inner Detector and the Muon Spectrometer of the ATLAS
detector [19] it is shown that such a distribution can be extracted from heavy flavour events at LHC.

ATLAS studies were done for two channels selected to measure the azimuthal angle difference
∆φ(bb) between b and b quarks:

b→ Bd → J/ψ(→ µµ)K0 , b→ µ+ X and b→ Bs → J/ψ(→ µµ)φ , b→ µ+ X .

The numbers of events expected for 30 fb−1 as might be achieved after 3 years of running at a luminosity
of 1033 cm2s−1 are 4.8×104 and 3.2×104 respectively for these channels. No isolation cuts are needed
to separate exclusively reconstructed B-decays from the muon produced in the semi-leptonic decay of
the other B-particle in the event. The reconstruction efficiency remains high in topologies where the
azimuthal angle difference ∆φ(J/ψ-µ) between J/ψ and the muon is small.

Special attention was devoted to background events in which the muon is produced from the decays
K±, π± → µ± +X instead of b→ µ+X . The study showed that this background is not problematic in
Bd decays, however it is important in the case of B0

s meson.

In summary, the results of the analysis suggest that backgrounds from K/π decays are small, and
that backgrounds from events containing 4 b quarks are relatively flat in ∆φ(J/ψ-µ). The efficiency of
the reconstruction of muons with this technique is also relatively flat in ∆φ(J/ψ-µ) and so we conclude
that corrections to the measured ∆φ(J/ψ-µ) distribution are likely to be small.

10Author: Th. Lagouri
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4.4 Quarkonia measurements in ALICE11

Heavy quarkonia states are hard, penetrating probes which provide an essential tool to study the earliest
and hottest stages of heavy-ion collisions [24]. They can probe the strongly interacting matter created
in these reactions on short distance scales and are expected to be sensitive to the nature of the medium,
i.e. confined or de-confined [25, 26]. The suppression (dissociation) of the heavy-quark resonances is
considered as one of the most important observables for the study of the QGP at the LHC (see Ref. [2]
for a recent review).

In ALICE, quarkonia will be measured in the di-electron channel using a barrel (|η| < 0.9) Tran-
sition Radiation Detector (TRD) [2] and in the di-muon channel using a forward Muon Spectrometer
(2.5 < η < 4) [2]. The complete spectrum of heavy-quark vector mesons (J/ψ, ψ ′, Υ, Υ′, Υ′′) can be
measured down to zero pT . In particular the good mass resolution allows to resolve the Upsilon family.

The Muon Spectrometer uses a low-pT trigger threshold, pT > 1 GeV, on single muons for
charmonia and a high-pT trigger, pT > 2 GeV, for bottonia detection. The TRD can trigger on single
electrons with pT > 3 GeV, which results in a minimum transverse momentum of triggered charmonia
of 5.2 GeV. Electron identification combined with the excellent vertexing capabilities of the inner
tracking system allows ALICE to distinguish direct charmonium production from secondary charmonium
production through B decays.

The energy density dependence will be studied by varying the impact parameters and by studying
in addition to the heaviest collision system (Pb–Pb) also intermediate mass and low mass A–A systems.
To determine the primary production cross-section of the resonances and the amount of pre-resonance
absorption, corresponding measurement have to be performed for pA and pp collisions.

11Author: A. Morsch
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Fig. 6: Acceptance for J/ψ and Υ as a function of y and pT for measurements in the di-muon channel and di-
electron channels. To give an idea of the effect of the trigger, the acceptances are shown without (solid) and with
(dashed) a sharp cut on the transverse momentum of single muons of 1 GeV/c (2 GeV/c) for J/ψ (Υ ) and for single
electrons of 3 GeV.

Table 1 shows the main quarkonia detection characteristics of the TRD and the Muon Spectrometer
and the acceptances for J/ψ and Υ as a function of y and pT are shown in Fig. 6.

Table 1: Main characteristics of quarkonia detection with the TRD and the Muon Spectrometer in ALICE.

Muon Spectrometer TRD
Acceptance 2.5 < η < 4 |η| < 0.9
Mass Resolution J/ψ 72 MeV 34 MeV
Mass Resolution Υ 99 MeV 93 MeV

In one year of pp running at 〈L〉 = 3 × 1030 cm−2s−1 ALICE will detect several 106 J/ψs and several
104 Υs in the di-muon channel. A Υ statistics of 102–103 can be obtained in the di-electron channel. For
the J/ψ we expect ≈ 104 untriggered low-pT and ≈ 104 high-pT triggered events.
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Abstract
We study small-x effects on heavy flavor production at the LHC in two ap-
proaches including nonlinear, saturation-motivated, terms in the parton evolu-
tion. One approach is based on collinear factorization, the other on kT fac-
torization. The prospects for direct experimental study of these effects in pp
collisions at the LHC are discussed.

Coordinators: A. Dainese, H. Jung, and R. Vogt

1 Introduction
HERA data are used to constrain the small x, moderateQ2 parton densities in two approaches. In the first,
HERA F2 data are refit using DGLAP evolution with the first nonlinear recombination terms. Recom-
bination slows the evolution so that, after refitting the data, the gluon distribution is enhanced relative to
that obtained by DGLAP alone. The resulting set of parton densities produces charm enhancement in pp
collisions at the LHC. On the other hand, assuming kT factorization, the unintegrated gluon distribution
is determined from the HERA F c

2 data, the only inclusive HERA measurements which directly accesses
the gluon density. Saturation effects are then included, reducing the small x gluon densities with little
distinguishable effect on F2. This approach leads instead to heavy flavor suppression at the LHC. After
a short general introduction, both approaches and their predicted effects on heavy quark production are
discussed in detail. Direct experimental study of these effects in pp collisions at the LHC may be able to
differentiate between the two approaches.

2 Small-x partons, absorption and the LHC1

2.1 Partons densities at low x?
Almost nothing is known about the behaviour of partons at low x. There are essentially no data available
for x < 10−4 with Q2 in the perturbative region and there is no reliable theory to extrapolate down in x.

In the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP)-based [1–4] global analyses, small-x
behaviour is driven by input distributions at a starting scale Q = Q0. Usually these ‘input’ distributions
are written in the form x−λ(1 − x)η where λ and η are free parameters fit to the data. So one can say
nothing without data in the x region of interest. Moreover, there may be large low-x contributions to the
gluon of the form (αs ln(1/x))n – the so-called Balitsky-Fadin-Kuraev-Lipatov (BFKL) effects [5–8],
beyond the DGLAP approximation.

1Authors: A.D. Martin and M.G. Ryskin
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The subscript B refers to scheme B which ensures energy-momentum conservation in the splitting.

Thus it seems better to discuss low-x behaviour in terms of BFKL-evolution. However there are
also problems here. The next-to-leading logarithm (NLL) corrections to the leading order (LO) BFKL
(CCFM) amplitude are known to be very large and one needs to resum such corrections to obtain a
relatively stable result. We cannot justify the perturbative QCD approach at low Q2 so that the solution
of the BFKL equation need to be matched to some non-perturbative amplitude at Q = Q0. This non-
perturbative distribution (analogous to the ‘input’ in the DGLAP case) is not known theoretically. Either
it has to be fit to low x data or some phenomenological model such as a Regge-based parametrization
has to be used.

After a reasonable resummation of the NLL corrections in the region where the starting virtuality
Q0 is not close to the final value of Q,Q > Q0, the resummed BFKL amplitude turns out to be similar to
that resulting from DGLAP evolution [9–14]. For example, the preasymptotic effects on the resummation
of the gluon-gluon splitting function are so large that the NLL BFKL power growth only sets in for
z < 10−5, as can be seen from Fig. 1. Moreover, the behaviour of the convolution Pgg⊗g/g, normalized
to g, in the NNLO DGLAP and NLL approximations is exactly the same down to z ∼ 10−4 [15].

Thus, in practice, the DGLAP and BFKL based approaches are rather close to each other in the
HERA kinematic regime. In both cases, the main problem is the low-x behaviour of the amplitude
at Q = Q0 where we need to phenomenologically determine possible non-perturbative contributions,
power corrections and so on.

2.2 The puzzle of the x−λ behaviour
Since the BFKL amplitude grows as a power of x, A ∝ x−λ, it will violate unitarity as x → 0. Indeed,
even after the NLL resummation, the expected power, λ ' 0.3, is rather large. Thus, we first discuss
absorption effects which tame the violation of unitarity. The upper limit of the small x behaviour of the
parton distributions a = g, q is given by the extrapolation

xa(x, q2) =

(
x0

x

)0.3

x0a(x0, q
2) (1)

below x0 = 0.001. The distributions are reliably determined from global parton analyses at x > x0.

On the other hand, it is reasonable to expect that at Q <∼ Q0 ∼ 1 GeV the behaviour will reflect
that of hadron-hadron interactions: λ = 0.08 [16]. Most likely the lower value of λ is explained by
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absorptive/screening effects in hadron-hadron collisions. So, for extrapolation down to x ∼ 10−7−10−6

we may regard λ = 0.08 as a lower limit since, in DIS, we expect smaller absorptive effects than those
in hadron-hadron interactions.

However, present global analyses, which do not allow for absorption effects, reveal that at Q ∼
1 − 1.5 GeV and low x, the sea quarks have a Pomeron-like behaviour, xq ∼ x−0.2, whereas the gluon
distribution has a valence-like behaviour, xg ∼ √x. This different behaviour is evident from Fig. 2,
which shows the behaviour of the gluon and sea quark distributions, xS = 2x(ū + d̄ + s̄) for Q2 =
2 GeV2. Such a result looks strange from the Regge viewpoint where the same vacuum singularity
(Pomeron) should drive both the sea quarks and the gluons since the same power is expected for sea
quarks and gluons, λg = λq.

This difference demonstrates that the actual situation is even more complicated. It is worth noting
that a simultaneous analysis of inclusive and diffractive DIS data indicates that, after accounting for
screening effects and allowing for some power corrections, it may be possible to describe the HERA
data with λg = λq = 0 [19]. The absorptive effects, estimated from fitting the diffractive DIS data,
enlarge the input gluon distribution at low x.

It may initially seem strange that accounting for absorptive effects gives a larger gluon density2

at low x and Q2. The point is that the only way to describe the data, which are sensitive to absorptive
effects, within the framework of DGLAP evolution without absorption, is to choose a very low ‘input’
gluon density in order to mimic the screening corrections ‘hidden’ in the data. Indeed, there is a tendency
for the gluon distribution to even become negative at low x and Q2. On the other hand, allowing for
absorption during DGLAP evolution (with the help of the Gribov-Levin-Ryskin (GLR) and Mueller-Qiu
(MQ), GLRMQ, equations [22,23]) the same data may be described with a larger and definitely positive
input gluon density at Q = Q0.

2.3 Estimates of absorptive effects: GLRMQ to BK
The saturation of parton densities (λ = 0) may be obtained using the Balitski-Kovchegov (BK) [24, 25]
equation, based on the BFKL equation, as well as the aforementioned GLRMQ equations. The latter
equation is based on DGLAP evolution. These equations sum the set of fan diagrams which describe the
rescattering of intermediate partons on the target nucleon. The screening caused by these rescatterings
prohibits the power growth of the parton densities.

2The same result was obtained in Ref. [20,21] – note, however, it was based on LO evolution and the large NLO correction
to Pqg will change the q, g relationship.
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The GLR equation for the gluon may be written symbolically as

∂xg

∂lnQ2
= Pgg ⊗ g + Pgq ⊗ q −

81α2
s

16R2Q2

∫
dy

y
[y g(y,Q2)]2 . (2)

The nonlinear shadowing term, ∝ −[g]2, arises from perturbative QCD diagrams which couple four
gluons to two gluons so that two gluon ladders recombine into a single gluon ladder. The minus sign
occurs because the scattering amplitude corresponding to a gluon ladder is predominantly imaginary.
The parameter R is a measure of the transverse area πR2 where the gluon density is sufficiently dense
for recombination to occur.

The BK equation is an improved version of the GLR equation. It accounts for the more precise
triple-pomeron vertex (first calculated in Ref. [26–28]) and can be used for the non-forward amplitude.
The GLR equation was in momentum space, whereas the BK equation is written in coordinate space
in terms of the dipole scattering amplitude N(x,y, Y ) ≡ Nxy(Y ). Here x and y are the transverse
coordinates of the two t-channel gluons which form the colour-singlet dipole and Y = ln(1/x) is the
rapidity. The BK equation reads

∂Nxy

∂Y
=

αsNc

π

∫
d2z

2π

(x− y)2

(x− z)2(y − z)2
{Nxz +Nyz −Nxy −NxzNyz} . (3)

For small dipole densities, N , the quadratic term in the brackets may be neglected and Eq. (3) reproduces
the conventional BFKL equation. However for large N , that is N → 1, the right-hand side of Eq. (3)
vanishes and we reach saturation when N = 1. The equation sums up the set of fan diagrams where at
small Y the target emits any number of pomerons (i.e. linear BFKL amplitudes) while at large Y we
have only one BFKL dipole.

Starting from the same initial conditions, the solution of the BK equation gives fewer small-x
partons than that predicted by its parent linear BFKL/CCFM equation3 .

In principle, it would appear more appropriate to use the BFKL-based BK equation to describe the
parton densities at low x. Unfortunately, however, the BK equation is only a model. It cannot be used
for numerical predictions. We discuss the reasons below.

2.4 Status of the BK equation
The Balitski-Kovchegov (BK) equation [24,25] is an attempt to describe saturation phenomena. However
it is just a ‘toy model’ and cannot, at present, be used to reliably estimate absorptive effects at small x.
The reasons are as follows:

– The BK equation is based on the LO BFKL/CCFM equation. We know that the NLL corrections
are large. We need to know the NLL corrections not only for the linear part of the evolution, but
also for the nonlinear term.

– Even neglecting the NLL corrections, we need to match the solution to a boundary condition at
rather low Q2. This boundary condition is not theoretically known.

– It sums a limited set of diagrams. The selection of diagrams (the fan graphs) was justified in the
region where absorptive effects are relatively small. When these corrections become important,
as in the saturation region, one has to allow for many other graphs whose contributions become
comparable to the fan diagram contributions4 .

3Analogously, starting from the same input (and not fitting the input to the data) the GLR equation gives fewer small-x
partons than that predicted by the parent linear DGLAP equation.

4Unfortunately the problem of summing all relevant diagrams has not been solved, even in the simpler case of Reggeon field
theory.
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– To solve the BK equation we need an initial condition at fixed x and all Q2. These conditions
are not well enough known. In particular, the maximum (saturation) value of the gluon density
depends on the radius: xg(x, q2) ∝ R2q2. At the moment, the radius R is a free parameter. It may
be small — the so-called ‘hot spot’ scenario. Moreover, we should account for the possibility of
dissociation of the target proton5 . The contribution coming from the dissociation is expected to
have a smaller R.

2.5 Relevance to, and of, the LHC
How do the uncertainties at low x affect the predictions for the LHC? Fortunately for inclusive production
of possible massive new particles with M >∼ 100 GeV, the partons are sampled at x values and scales M
reliably determined from NLO and NNLO global analyses. For illustration, we discuss W production
which has been studied in detail [29–31]. Central W production (yW = 0) at the LHC samples partons
at x = MW /

√
s = 0.006. However to predict the total cross section, σW , we need to integrate over

rapidity, important for |yW | <∼ 4 so that σW has some sensitivity to partons as low as x ∼ 10−4. The total
uncertainty on the NNLO prediction of σW has been estimated to be±4% [29]. Therefore W production
at the LHC can serve as a good luminosity monitor. To reduce the uncertainty in the prediction of σW
will require a better theoretical understanding of low x partons.

Of course, if the new particles are sufficiently massive, M >∼ 1 TeV, and produced by gluon fusion,
then the uncertainties due to the PDFs will be larger. However, there are situations where the scale is
considerably lower such as exclusive double-diffractive Higgs production which depends on the uninte-
grated gluon at Q2 ≈ 5 GeV2 with x ∼MH/

√
s ∼ 0.01. The absorptive effects are also expected to be

small here.

Turning the discussion around, is it possible for the LHC experiments to determine the behaviour
of partons in the x region below 10−4 at low scales? One possibility is µ+µ− Drell-Yan production in
which events are observed with the µ+µ− invariant mass as low as possible and the rapidity as large as
possible. For example, for Mµµ = 4 GeV and yµµ = 3, we sample quarks at x = 1.4 × 10−5. This
process predominantly samples the sea quark distributions. To study the small x behaviour of the gluon
at low scales we may consider χc production, or prompt photon production driven by the subprocess
gq → γq.

In practice, rather than χc, it may be better to study pp → J/ψ X as a function of yJ/ψ. This
process is also sensitive to the gluon distribution through the subprocesses gg → J/ψ g, gg → χ →
J/ψ γ. There are also contributions from the subprocesses gg → bb̄ with b→ J/ψ, and qq̄ → J/ψ. The
analysis of such data will be considerably helped by the detailed observations of prompt J/ψ and J/ψ
from b in central production at the Tevatron [32]. In fact, the first ever NLO global parton analysis [33]
used J/ψ data as a function of rapidity to constrain the gluon distribution.

The LHCb detector covers the rapidity region of 2 < η < 5 [34], and may be able to perform
some of the above measurements. There is another possibility. Since LHCb will operate at a luminosity
of 2 × 1032 cm−2s−1, there will usually be a single collision per bunch crossing and thus practically
no ‘pile-up’ problems. Installing a forward detector at LHCb would offer the possibility of observing
asymmetric events with one very large rapidity gap to probe the region of xIP ≤ 10−5.

3 Including nonlinear terms in gluon evolution: the GLRMQ and BK approaches
3.1 GLRMQ approach6

The DGLAP [1–4] evolution equations describe the scale evolution of the parton distribution functions
(PDFs) well in the region of large interaction scale, Q2 & 4 GeV2 [17, 35, 36]. However, toward small

5We know that these channels provide more than 30 − 40% of FD2 measured at HERA.
6Authors: K.J. Eskola and V.J. Kolhinen
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values of x and Q2, the gluon recombination terms start to play an increasingly important role. The
inclusion of correction terms which arise from fusion of two gluon ladders leads to nonlinear power
corrections to the DGLAP evolution equations. The first of these nonlinear corrections are the GLRMQ
terms.
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Fig. 3: Calculated F2(x,Q2) values compared with the H1 data.

With the GLRMQ corrections, the gluon evolution equation becomes

∂xg(x,Q2)

∂ lnQ2
=
∂xg(x,Q2)

∂ lnQ2

∣∣∣∣
DGLAP

− 9π

2

α2
s

Q2

∫ 1

x

dy

y
y2G(2)(y,Q2). (4)

We model the two-gluon density in the latter term on the right-hand side as

x2G(2)(x,Q2) =
1

πR2
[xg(x,Q2)]2, (5)

where R = 1 fm is the radius of the proton (we comment further on this later). The corrections to the
sea quark distributions are

∂xq(x,Q2)

∂ lnQ2
≈ ∂xq(x,Q2)

∂ lnQ2

∣∣∣∣
DGLAP

− 3π

20

α2
s

Q2
x2G(2)(x,Q2).

We have assumed that the higher-twist gluon term, GHT [23], is negligible.

Since these correction terms are negative, they slow down the evolution of the PDFs. Due to the
1/Q2 dependence, they also die out in the evolution so that at large scales Eqs. (4) and (6) relax into the
linear DGLAP equations.
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Fig. 4: Left: initial gluon distributions at Q2
0 = 1.4 GeV2. Right: evolution of gluon distributions for several fixed

values of x shows that the effect of the nonlinear terms vanishes as Q2 increases.

In order to study the interplay between the nonlinear corrections and the initial PDFs and observe
the nonlinear effects in fits to the DIS data, in Ref. [37] we compared the structure function F2(x,Q2) =∑

q e
2
q [xq(x,Q

2)+xq̄(x,Q2)], calculated with the nonlinearly-evolved PDFs, to the HERA H1 data [38].
As reference distributions we used the CTEQ5L and CTEQ6L PDF sets at large scales. We chose these
sets because the CTEQ collaboration uses only the large scale, Q2 > 4 GeV2, data in their fits, thus
avoiding some of the possible nonlinear effects appearing in the small x, Q2 < 4 GeV2 region in their
initial distributions.

At small x, sea quarks dominate F2 and the gluon distribution dictates its scale evolution. At
leading order (LO), the DGLAP contribution can be approximated as [39]:

∂F2(x,Q2)/∂ lnQ2 ≈ (10αs/27π)xg(2x,Q2) .

Larger xg(x,Q2) values correspond to faster F2(x,Q2) evolution. The scale evolution of F2(x,Q2) at
small x computed with CTEQ5L is too fast due to a large small-x small-Q2 gluon distribution. The
newer CTEQ6L set has much smaller gluon distribution in this region (see Fig. 4 (left)), giving a slower
evolution and hence a good fit to the H1 data.

Our goal in Ref. [37] was to determine whether the good fit to the data could be maintained using
the GLRMQ-corrected DGLAP scale evolution together with initial scale PDFs differing from CTEQ6L.
We constructed a new set of PDFs using the CTEQ5L and CTEQ6L distributions piecewise as baselines
at scales Q2 ∼ 3−10 GeV2 where the linear terms dominate the evolution and evolved them nonlinearly
to lower Q2. We then interpolated between the sets in x and assumed a power-like dependence at small-x
for gluons and sea quarks. These initial PDF candidates were then evolved to higher scales and compared
to the data. This iterative procedure was repeated until a sufficiently good fit to the data was found.

As a result, we obtained a new set of initial PDFs7, called EHKQS, which, when evolved using
the nonlinear DGLAP+GLRMQ evolution equations, produced an equally good or even better fit to the
H1 data relative to CTEQ6L, shown in Fig. 3. At Q2 ∼ 1.4 GeV2 and x ∼ 10−5, a good fit to the HERA
data requires the nonlinear evolution to be compensated by a larger gluon distribution than obtained with

7In fact, we produced three new sets of initial distributions, differing by the charm quark mass and parton distribution at the
initial scale, see Ref. [37] for more details. All sets produced equally good fits to the HERA data.
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DGLAP alone. The enhancement is a factor of ∼ 6 relative to CTEQ6L, as shown in Fig. 4 (left). The
Q2 dependence of EHKQS is compared to CTEQ6L and CTEQ5L in Fig. 4 (right) for several different
values of x.

We used R = 1 fm as the free proton radius in the two-gluon density term. We did not repeat the
calculations with different R but, depending on the transverse matter density of the free proton, some
∼ 20% uncertainty in R can be expected. Since the nonlinear contributions decrease as R increases,
a larger R would lead to reduced enhancement of the small x gluons below Q2 ∼ 10 GeV2. Thus,
minimizing the χ2 of the fit with respect to R is a future task.

3.2 BK approach8

A theoretical framework capable of describing the QCD evolution of parton densities taking gluon
rescattering (corresponding to nonlinear effects) into account is the Balitsky-Kovchegov (BK) equa-
tion [24,25,40–42]. The equation, based on the BFKL approach [6,7,43], may be used to determine the
unintegrated gluon density. The BK equation resums the BFKL pomeron fan diagrams with the triple
pomeron vertex derived in the high energy limit of QCD. In the doubly logarithmic limit, the BK equa-
tion reduces [25] to the collinear Gribov-Levin-Ryskin (GLR) equation [22]. It is the non-collinear limit,
however, which gives the dominant contribution to the triple pomeron vertex [44, 45]. We conclude that
GLR approach misses an essential part of the nonlinear gluon dynamics.

The solution to the BK equation, constrained by the low-x HERA data will be used to extrapolate
the parton densities to the LHC kinematical domain. Extrapolation is necessary as the LHC may probe
very low values of x, down to 10−7 for M = 10 GeV and η ∼ 9, where unitarity corrections may be
important even at relatively large scales of a few GeV2. Last but not least, unitarity corrections may also
break kT factorization. We will also discuss which processes may be affected.

This section is organized as follows. First we give a brief description of the formalism used to
determine the gluon evolution. Within this formalism, we fit the HERA charm structure function, F c

2 ,
data, the most relevant inclusive measurement directly sensitive to the gluon density. Using further
assumptions about the sea quarks, F2 can also be described well. The resulting gluon density is then
used to compute heavy quark production and to investigate the nonlinear effects. First we estimate bb̄
production at CDF and D0. Then, cross sections for heavy quark production at various LHC experiments
are estimated, tracing the impact of the unitarity corrections. Finally, conclusions are given.

The standard framework to determine parton evolution is the collinear DGLAP formalism. It
works rather well for inclusive quantities but, for more exclusive processes, the kT -factorization scheme
is more appropriate because both the longitudinal and transverse components of the gluon momenta are
considered. In this framework, the process-independent quantity is the unintegrated gluon distribution,
connected to the process-dependent hard matrix element via the kT -factorization theorem. Linear evo-
lution of the unintegrated gluon distribution may be described by one of the small x evolution equations
using the kT -factorization scheme, the BFKL and CCFM [46–49] equations. These equations are based
on resummation of large logarithmic pQCD corrections, αns lnm(1/x), and are equivalent at the leading
logarithmic level.

The very small x kinematic region is also the regime where the growth of the gluon density must
be tamed in order to preserve unitarity. Recently, a successful description of unitarity corrections to
DIS was derived within the color dipole formulation of QCD. This is the Balitsky-Kovchegov (BK)
equation which describes the BFKL evolution of the gluon in a large target, including a nonlinear term
corresponding to gluon recombination at high density.

In our analysis, we determine the unintegrated gluon distribution from the BK equation unified
with the DGLAP equation following KMS (Kwieciński, Martin and Staśto) [50–53]. We use the ab-
breviation KKMS (Kutak, Kwieciński, Martin and Staśto) [52, 53] for the unified nonlinear equation.

8Authors: H. Jung, K. Kutak, K. Peters, L. Motyka
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The linear part of this equation is given by the BFKL kernel with subleading ln(1/x) corrections, sup-
plemented by the non-singular parts of the DGLAP splitting functions. Thus resummation of both the
leading lnQ2 and ln(1/x) terms are achieved. The subleading terms in ln(1/x) are approximated by
the so-called consistency constraint and the running coupling constant. The nonlinear part is taken di-
rectly from the BK equation, ensuring that the unitarity constraints are preserved. One expects that
this framework provides a more reliable description of the gluon evolution at extremely small x, where
ln(1/x)� 1 and the unitarity corrections are important, than does DGLAP.

We give a short review of the KKMS equation, starting from the impact parameter dependent BK
equation. The equation for the unintegrated gluon density, h(x, k2, b), at impact parameter b from the
center of the target, becomes

∂h(x, k2, b)

∂ ln 1/x
=
αsNc

π
k2

∫

k2
0

dk′2

k′2

{
h
(
x, k′2, b

)
− h

(
x, k2, b

)

|k′2 − k2| +
h
(
x, k2, b

)

[4k′4 + k4]
1
2

}

−παs
(
1− k2ddk2

)2
k2

[∫ ∞

k2

dk′2

k′4
ln

(
k′2

k2

)
h(x, k′2, b)

]2

, (6)

the BFKL equation at LLx accuracy, extended by the negative recombination term. The (dimensionless)
unintegrated gluon distribution is obtained from h(x, k2, b) by integration over b,

f(x, k2) =

∫
d2b h(x, k2, b). (7)

A comment about the impact parameter treatment is in order. In Eq. (7), we assume that the evolution is
local in b. However, the complete BK equation results in some diffusion in the impact parameter plane.
This diffusion effect may be neglected if the target is much larger than the inverse of the saturation
scale. In this scheme, the impact parameter dependence enters through the initial condition at large x0,
h(x0, k

2, b) = f(x0, k
2)S(b) where f(x0, k

2) is the unintegrated gluon distribution. Note that, due to
nonlinearities, the b dependence of h(x, k2, b) does not factorize from x and k at low x.

The input profile function is assumed to be Gaussian, S(b) = exp(−b2/R2)/πR2, where R2

corresponds to the square of the average nucleon radius. Since the size of the target, R, sets the magnitude
of the initial parton density in the impact parameter plane, h(x0, k

2, b), the unitarity corrections depend
on R. At smaller R, gluons are more densely packed in the target and the nonlinear effects are stronger.

References [52, 53] proposed to combine Eq. (6) with the unified BFKL-DGLAP framework
developed in Ref. [50]. In this scheme, the (linear) BFKL part is modified by the consistency con-
straint [54, 55], resulting in the resummation of most of the subleading corrections in ln(1/x) which
arise from imposing energy-momentum conservation on the BFKL kernel [56–59]. In addition, we as-
sume that the strong coupling constant runs with scale k2, another source of important NLLx corrections.
Finally, the non-singular part of the leading order DGLAP splitting function and quark singlet distribu-
tion were included in the x evolution. The final improved nonlinear equation for the unintegrated gluon
density is

h(x, k2, b) = h̃(0)(x, k2, b)+

+ αs(k2)Nc
π k2

∫ 1
x
dz
z

∫
k2

0

dk′2
k′2

{
h(x
z
,k′2,b) Θ( k

2

z
−k′2)−h(x

z
,k2,b)

|k′2−k2| +
h(x
z
,k2,b)

|4k′4+k4| 12

}
+

+ αs(k2)
2π

∫ 1
x dz

[
(Pgg(z)− 2Nc

z )
∫ k2

k2
0

dk′2
k′2 h(xz , k

′2, b) + Pgq(z)Σ
(
x
z , k
′2, b
) ]

+

−π
(
1− k2 d

dk2

)2
k2
∫ 1
x
dz
z

[∫∞
k2

dk′2
k′4 αs(k

′2) ln
(
k′2
k2

)
h(z, k′2, b)

]2
.

(8)

The second line of the equation corresponds to the BFKL evolution. The theta function, Θ( k
2

z − k′2),
reflects the consistency constraint that generates the dominant part of the subleading BFKL corrections.
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Fig. 5: The unintegrated gluon distribution obtained from Eq. (8) as a function of x for different values of k2
T .

The solid lines correspond to the solution of the nonlinear equation with R = 2.8 GeV−1 while the dashed lines
correspond to the linear part.

The third line corresponds to the DGLAP effects generated by the part of the splitting function, Pgg(z),
that is not singular in the limit z → 0 and also by the quarks where Σ(x, k2, b2) corresponds to the
impact-parameter dependent singlet quark distribution. The nonlinear screening contribution following
from the BK equation is given in the last term. The inhomogeneous contribution, defined in terms of the
integrated gluon distribution, carries information about the transverse profile of the proton,

h̃(0)(x, k2, b) =
αs(k

2)

2π
S(b)

∫ 1

x
dzPgg(z)

x

z
g
(x
z
, k2

0

)
, (9)

at k2
0 = 1 GeV2. The initial integrated density at k2

0 is parameterized as

xg(x, k2
0) = N(1− x)ρ (10)

where ρ = 2.5. The size of the dense gluon system inside the proton is assumed to be R = 2.8 GeV−1,
in accord with the diffractive slope, Bd ' 4 GeV−2, of the elastic J/ψ photoproduction cross section at
HERA. In this process, the impact parameter profile of the proton defines the t dependence of the elastic
cross section, Bd ' R2/2, by Fourier transform. In the ‘hot-spot’ scenario, the radius can be smaller,
R = 1.5 GeV−1. We also use the hot spot value to compare with measurements and make predictions
for the LHC.

Equation (8) was solved numerically both in the linear approximation and in full. The method for
solving Eq. (8) was developed in Refs. [50, 52]. In Fig. 5, the effects of linear and nonlinear evolution
on the unintegrated gluon distribution are given as a function of x for k2 = 5 and 50 GeV2. Nonlinear
evolution leads to sizeable suppression at the smallest x values. While the nonlinear effects are small
in the HERA x range, they may be important at the LHC. In the following sections, we address the
importance of these nonlinear effects.

The initial distribution in Eq. (10) was obtained by fitting the HERA F c
2 measurements [60,61] us-

ing the Monte Carlo CASCADE [62,63] for evolution and convolution with the off-shell matrix elements.
We find χ2 per degree of freedom of 0.46 (1.17) for H1 (ZEUS). The fits were repeated both with the
standard KMS evolution without the nonlinear contribution and with extended KMS evolution including
the nonlinear part. The predicted F c

2 is equivalent for both linear and nonlinear evolution, independent of
R. Thus nonlinear evolution is only a small effect at HERA, even in the hot-spot scenario with R = 1.5
GeV−1.

In Fig. 6(a) we compare the measured F c
2 [61] to our prediction at Q2 = 4 GeV2. We have

determined our initial distribution from F c
2 since it is the only inclusive measurement at HERA directly
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KKMS evolution with different values of R.
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Fig. 7: Bottom production, measured by CDF, is compared to predictions using CASCADE with linear and non-
linear KKMS evolution, including two values of R. (a) The pT distribution of B meson decays to J/ψ. (b) The
azimuthal angle, ∆φ, distribution of bb̄ pair production smeared by the experimental resolution.

sensitive to the gluon distribution. However, we can also describe F2 [64] by making further assumptions
about the sea quark distribution, following the KMS approach. The agreement with the data, shown in
Fig. 6(b), is also quite good. There is only a small effect for Q2 > 5 GeV2, even in the hot-spot scenario
with R = 1.5 GeV−1.

Next, this constrained gluon density was used to calculate gg → bb̄ production at the Tevatron as
a cross check of the fit and the evolution formalism. We use mb = 4.75 GeV and a renormalization scale
in αs of Q2 = 4m2

b + p2
T . The predicted cross section was then compared to both CDF [65, 66] and

D0 [67] measurements. The predictions agree well with the data.

In Fig. 7(a) the cross section for B decays to J/ψ is shown as a function the J/ψ pT [65,66]. The
KKMS gluon density fits the data well in all three scenarios with deviations only appearing for pT > 12
GeV. It is interesting to note that the approach described here gives even better agreement than the NLO
collinear approach [68].
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In Fig. 7(b), the azimuthal angle distribution between the b and b̄ quarks, ∆φ, is given. The ∆φ
and bb̄ pT distributions are correlated since ∆φ < 180◦ corresponds to higher pair pT . Since the kT -
factorization formula allows the incoming gluons to have sizable transverse momenta, the calculated ∆φ
distribution agrees very well with the data for ∆φ > 60◦ with only smearing due to the experimental
resolution. The enhancement of the data relative to the calculations at low ∆φ requires further study.

Both plots compare linear (solid histograms) and nonlinear KKMS evolution (dotted and dashed
histograms) for R = 1.5 GeV−1 and 2.8 GeV−1 respectively. The nonlinear part of the evolution also
has no impact in this kinematic region.

4 Phenomenological applications: heavy quark production at the LHC
4.1 GLRMQ approach9

Since the HERA F2 data can be described by both linear DGLAP and nonlinear DGLAP+GLRMQ
evolution, as shown in Fig. 3 of Section 3.1, additional independent probes are needed. Here, we discuss
how charm quark production in pp collisions could probe the gluon enhancement predicted in Section 3.1
and described in detail in Ref. [20,21]. Charm production is an ideal choice since the charm mass is low
and its production is dominated by gluons. Assuming factorization, the inclusive differential charm cross
section is

dσpp→ccX(Q2,
√
s) =

∑

i,j,k=q,q,g

fi(x1, Q
2)⊗ fj(x2, Q

2)⊗ dσ̂ij→cc{k}(Q2, x1, x2) (11)

where σ̂ij→cc{k}(Q2, x1, x2) are the perturbatively calculable partonic cross sections for charm produc-
tion at scales Q2 ∼ m2

T � Λ2
QCD, x1 and x2 are the parton momentum fractions and fi(x,Q2) are the

proton parton densities. We assume that the renormalization and factorization scales are equal. Only the
leading order gg and qq channels are considered here.

The values of the charm quark mass and scale used in the calculations are chosen to give good
agreement with the total cross section data at NLO: m = 1.2 GeV and Q2 = 4m2 for standard DGLAP-
evolved NLO PDFs such as CTEQ6M [69] and MRST [70]. Nearly equivalent agreement may be ob-
tained with m = 1.3 GeV and Q2 = m2 [71,72]. Both choices assure that the PDFs are evaluated above
the minimum scales. While scales proportional to m are used in the total cross section, inclusive calcu-

lations of distributions also depend on the transverse momentum scale, pT , so that mT =
√
m2 + p2

T is
used instead [73].

To illustrate the effects of the nonlinear EHKQS distributions [37] of Section 3.1 on charm pro-
duction at the LHC, we show

R(y) ≡ dσ(EHKQS)/dy

dσ(CTEQ61L)/dy
and R(pT ) ≡ dσ(EHKQS)/dpT

dσ(CTEQ61L)/dpT
(12)

in Fig. 8 where y is the charm quark rapidity. The results are calculated for the maximum LHC pp, pPb
and Pb+Pb energies,

√
S = 14 (solid), 8.8 (dashed) and 5.5 (dot-dashed) TeV respectively. The results

form = 1.2 GeV and Q2 = 4m2
T are on the left-hand side while those withm = 1.3 GeV andQ2 = m2

T

are on the right-hand side.

The change in the slope ofR(y) occurs when one x drops below the minimum value of the EHKQS
set where further nonlinearities become important, xEHKQS

min = 10−5, and enters the unconstrained x

region. The minimum x of CTEQ61L is lower, xCTEQ61L
min = 10−6. While the EHKQS gluon distribution

is fixed at its minimum for x < xEHKQS
min , the CTEQ61L distribution continues to change until xCTEQ61L

min .

9Author: R. Vogt
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Fig. 8: We present R(y), (a) and (c), andR(pT ), (b) and (d), in pp collisions at
√
S = 14 (solid), 8.8 (dashed) and

5.5 (dot-dashed) TeV. The left-hand side shows m = 1.2 GeV and Q2 = 4m2
T , the right-hand side m = 1.3 GeV

and Q2 = m2
T .

In inclusive kinematics with an identified charm quark and fixed xT = 2mT /
√
S, the unconstrained x-

region contributes to charm production in the region

yl ≡ ln

(
1/xT −

√
1/x2

T − 1/xmin

)
≤ |y| ≤ ln

(
1/xT +

√
1/x2

T − 1/xmin

)
. (13)

The upper limit is close to the phase space boundary. Expanding the lower limit, yl, in powers of
x2
T /xmin � 1, yl ≈ ln[mT /(xmin

√
S)] ≥ ln[m/(xmin

√
S)]. If m = 1.2 GeV, the small x region con-

tributes to charm production at |y| ≥ yl = 2.2, 2.6 and 3.1 for
√
S = 14, 8.8 and 5.5 TeV, respectively.

The rather sharp turnover in R(y) indicates where the x < 10−5 region begins to contribute. For |y| > yl
and Q2 > 4 GeV2, as x decreases, the CTEQ61L gluon distribution increases considerably above that
of the EHKQS distribution. Thus R(y) < 1 at large rapidities when Q2 = 4m2

T . At midrapidity R(y)

is insensitive to the EHKQS extrapolation region, x < xEHKQS
min . Since R(y) is integrated over pT , it

not only reflects the enhancement at mT = m because Q2 ∝ m2
T and the pT distribution peaks around

pT ≈ 1 GeV. When Q2 = m2
T , the ratios are broad because the CTEQ61L gluon distribution is relatively

flat as a function of x for Q2 ∼ 2− 3 GeV2. The enhancement decreases and broadens with decreasing
energy.

Since the rapidity distributions are rather flat, there are still important contributions to the pT
distributions from the extrapolation region, up to ∼ 30% at

√
S = 14 TeV for m = 1.2 GeV and Q2 =

4m2. Thus the sensitivity of R(pT ) to the unconstrained region should be kept in mind. At the largest√
S, the contribution from the x < 10−5 region is greatest and if Q2 ≥ 4m2, xgCTEQ61L(x,Q2) >

xgEHKQS(x,Q2). Because the contribution from the region x < 10−5 decreases with
√
S, at low pT

R(pT ) decreases with energy. In contrast, for Q2 = m2
T , xgEHKQS(x,Q2) > xgCTEQ61L(x,Q2) and

the enhancement decreases with energy.

Because the DGLAP gluon distributions are already well constrained by HERA data, they cannot
absorb additional large effects. Therefore we conclude that, if a low-pT enhancement in the charm cross
section relative to the DGLAP-based result is observed in future experiments, it is a signal of nonlinear
effects on the PDF evolution.
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Fig. 9: (a) and (b) show bb production as a function of pair pT without cuts in 3 < |η| < 5 (a) and in the
ATLAS/CMS acceptance (b). The D0 meson pT distribution in the ALICE acceptance is shown in (c).

4.2 BK approach10

Since the Tevatron measurements are well described using the unintegrated parton densities constrained
by HERA and convoluted with the off-shell matrix elements, the same approach may be used for heavy
quark production at the LHC at e.g.

√
s = 14 TeV. As discussed previously, see also Fig. 5, heavy

quark production at this energy is already in the region where saturation effects may be relevant. In
the kinematic regions, such as at the LHC, where nonlinear evolution may become important, the cross
section will be suppressed due to the negative sign of the nonlinear term in Eq. (8).

First, we compute the bb̄ production cross section at 14 TeV without any experimental cuts. In
Fig. 9(a) the bb̄ differential cross section is shown as a function of pair pT in the forward region, 3 <
|η| < 5. We compare linear evolution (solid histogram), nonlinear evolution with R = 1.5 GeV−1

(dashed histogram) and R = 2.8 GeV−1 (dotted histogram). The grey band shows the uncertainty in the
linear result due to the b quark mass. We take a central value of 4.75 GeV (the solid histogram) and vary
mb from 4.5 to 5 GeV. The bb̄ pair results are shown since the pair pT is most sensitive to the gluon kT
and thus to the saturation effects. In the hot-spot scenario, saturation effects are visible for pTbb̄ < 5 GeV.
These saturation effects grow with rapidity, increasing the suppression to a factor of 3− 4 in the higher
rapidity regions. For larger R, the saturation effects are not very significant.

In Fig. 9(b), the bb̄ production cross section is computed within the ATLAS and CMS acceptance
(pT > 10 GeV and |η| < 2.5 for both the b and b̄ quarks, see Ref. [74]). With these cuts, the observed
suppression due to nonlinear effects nearly vanishes. This result suggests that kT factorization can safely
be applied in the central η region. Thus saturation effects due to nonlinear gluon evolution are seen only
for pTbb̄ < 10 GeV and at high η. This regime is accessible with upgraded ATLAS/CMS detectors or in
LHCb where the b quark pT can be measured to 2 GeV for 1.9 < η < 4.9. In this kinematic regime, the
hot-spot scenario predicts a factor of two suppression of the bb cross section.

Similarly, we investigated cc̄ production at ALICE. In ALICE, it will be possible to measure the
D0 down to pT ∼ 0.5 GeV in |η| < 0.9. The result is shown in Fig. 9(c) with mc = 1.5 GeV. In the
hot-spot scenario (dashed curve), a factor of two suppression occurs at pT ∼ 1 GeV.

10Authors: H. Jung, K. Kutak, K. Peters, L. Motyka
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5 Perspectives for experimental observation at LHC11

5.1 Introduction
In Section 4.1, charm production in pp collisions at the LHC was suggested as a promising way to study
the effects of nonlinear evolution on the parton densities. Due to gluon dominance of charm production
and the small values of x and Q2 probed, x ≈ 2 × 10−4 and Q2 ≈ 1.69 − 6 GeV2 at midrapidity
and transverse momentum12 pT ≈ 0, charm production at the LHC is sensitive to the gluon enhancement
arising from nonlinear evolution. The resulting charm enhancement was quantified in Ref. [20,21] by the
LO ratios of the differential cross sections computed with the nonlinearly-evolved EHKQS PDFs [37],
obtained from DGLAP+GLRMQ evolution, relative to the DGLAP-evolved CTEQ61L PDFs.

The enhancement of the nonlinearly-evolved gluons increases as x and Q2 decrease. Conse-
quently, the charm enhancement increases with center of mass energy,

√
S. Thus the maximum en-

hancement at the LHC will be at
√
S = 14 TeV and small charm quark transverse momentum. The

sensitivity of the charm enhancement to the value of the charm quark mass, m, as well as to the
choice of the factorization, Q2

F , and renormalization, Q2
R, scales was studied in Ref. [20, 21] assum-

ing Q2 = Q2
F = Q2

R ∝ m2
T where m2

T = p2
T + m2. The most significant charm enhancement occurs

when m and Q2/m2
T are both small. A comparison of the NLO total cross sections with low energy

data shows that the data prefer such small m and Q2 combinations [71, 72]. The largest enhancement is
obtained with m = 1.3 GeV and Q2 = m2

T , see Fig. 8 in Section 4.1.

In Section 4.1, only charm enhancement was described. Neither its subsequent hadronization
to D mesons nor its decay and detection were considered. In this section, we address these issues
to determine whether the charm enhancement survives hadronization and decay to be measured in the
ALICE detector [75]. The calculation described in that section was to leading order since the EHKQS
sets are evolved according to the LO DGLAP+GLRMQ equations using a one-loop evaluation of αs.
Thus these LO distributions should generally not be mixed with NLO matrix elements and the two-loop
αs. However, the charm quark total cross section is increased and the pT distribution is broadened at NLO
relative to LO [76]. Thus, to determine whether or not the enhancement is experimentally measurable,
we assume that the enhancement is the same at NLO and LO and employ a NLO cross section closest to
the calculation of the enhancement in Ref. [20, 21].

As described in Ref. [76], the theoretical K factor may be defined in more than one way, depending
on how the LO contribution to the cross section is calculated. In all cases, theO(α3

s) contribution to cross
section is calculated using NLO PDFs and the two-loop evaluation of αs. If the LO contribution is also
calculated using NLO PDFs and a two-loop αs, this is the “standard NLO” cross section. It is used
in most NLO codes, both in the global analyses of the NLO PDFs and in evaluations of cross sections
and rates [76]. The K factor formed when taking the ratio of the “standard NLO” cross section to the
LO cross section with the NLO PDFs [76], K (1)

0 , indicates the convergence of terms in a fixed-order
calculation [77]. On the other hand, if the LO contribution to the total NLO cross section employs
LO PDFs and the one-loop αs, we have a cross section which we refer to here as “alternative NLO”.
The K factor calculated taking the ratio of the “alternative NLO” cross section to the LO cross section
with LO PDFs [76], K (1)

2 , indicates the convergence of the hadronic cross section toward a result. If
K

(1)
0 > K

(1)
2 , convergence of the hadronic cross section is more likely [77]. This is indeed the case for

charm production [76]. We also note that K (1)
2 is a much weaker function of energy than K (1)

0 . Since,
in the absence of nonlinear NLO PDFs, the “alternative NLO” cross section is more consistent with the
calculated enhancement, we use this cross section to calculate the NLO D meson rates and pT spectra.
In both cases, the pT distributions have the same slope even though K (1)

2 , for the alternative NLO cross
section, is somewhat smaller. Thus, using a non-standard NLO calculation will not change the slope of
the pT distributions, distorting the result.

11Authors: A. Dainese and R. Vogt
12Here we use pT for the transverse momentum of the charm quark and pDT for the transverse momentum of the D meson.
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The LO and NLO calculations used to obtain the full NLO result in both cases can be defined by
modification of Eq. (11) in Section 4.1. We define the full LO charm production cross section as

dσ1L
LO =

∑

i,j=q,q,g

fLO
i (x1, Q

2
F )⊗ fLO

j (x2, Q
2
F )⊗ dσ̂LO

ij→cc(α
1L
s (Q2

R), x1, x2) (14)

where the superscript “LO” on dσ̂ij→cc indicates the use of the LO matrix elements while the superscript
“1L” indicates that the one-loop expression of αs is used. The LO cross section typically used in NLO
codes employs the NLO PDFs and the two-loop (2L) αs so that

dσ2L
LO =

∑

i,j=q,q,g

fNLO
i (x1, Q

2
F )⊗ fNLO

j (x2, Q
2
F )⊗ dσ̂LO

ij→cc(α
2L
s (Q2

R), x1, x2) . (15)

In either case, the NLO contribution, O(α3
s) for heavy quark production, is

dσO(α3
s) =

∑

i,j=q,q,g

fNLO
i (x1, Q

2
F )⊗ fNLO

j (x2, Q
2
F )⊗

∑

k=0,q,q,g

dσ̂NLO
ij→cck(α

2L
s (Q2

R), Q2
F , x1, x2) (16)

where the superscript “NLO” on dσ̂ij→cck indicates the use of the NLO matrix elements. The additional
sum over k in Eq. (16) includes the virtual (k = 0) and real (k = q, q or g depending on i and j) NLO
corrections. In the calculations of dσ2L

LO and dσO(α3
s), we use the value of Λ

(4)
QCD given for the NLO PDFs

and work in the MS scheme. The standard NLO cross section is then

dσstd
NLO = dσ2L

LO + dσO(α3
s) (17)

while our “alternative NLO” cross section is defined as

dσalt
NLO = dσ1L

LO + dσO(α3
s) . (18)

Since the enhancement in Ref. [20, 21] was defined using dσ1L
LO only, the best we can do is to use the

alternative NLO cross section in our analysis, as described below.

We now discuss how the enhancement is taken into account in the context of the NLO computation.
We calculate the LO inclusive charm pT distribution, d2σ/dpT dy, with the detected charm (anticharm)
quark in the rapidity interval ∆y with |y| < 1, motivated by the pseudorapidity acceptance of the ALICE
tracking barrel, |η| < 0.9. The rapidity, y2, of the undetected anticharm (charm) quark is integrated over.
The charm enhancement factor R(pT ,∆y) is then

R(pT ,∆y) =

∫

∆y
dy

∫
dy2

d3σ(EHKQS)

dpTdydy2∫

∆y
dy

∫
dy2

d3σ(CTEQ61L)

dpTdydy2

. (19)

Next, we assume that the enhancement calculated at LO is the same when calculated at NLO.
This is the only reasonable assumption we can make to test whether the enhancement can be detected
with ALICE which will measure the physical pDT distribution. The alternative NLO cross section is
therefore the closest in spirit to the LO computation in Ref. [20,21]. Thus, the enhanced NLO charm pT
distribution is

R(pT ,∆y) dσalt
NLO(∆y)/dpT . (20)

Our results are obtained with the same parameters used in Section 4.1, m = 1.2 GeV and Q2 = 4m2
T

as well as m = 1.3 GeV and Q2 = m2
T . These two choices are the baseline results against which other

parameter choices will be compared to see if the enhancement is detectable.
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5.2 From charm to D enhancement
To make a more realistic D meson distribution, we have modified the charm pT distribution by the
heavy quark string fragmentation in PYTHIA [78]. Charm events in pp collisions at

√
S = 14 TeV

are generated using PYTHIA (default settings) with the requirement that one of the quarks is in the
interval |y| < 1. The charm quarks are hadronized using the default string model. Since c and c quarks
fragment to D and D mesons13, respectively, in each event related (c,D) and (c,D) pairs can easily
be identified14 . These pairs are reweighted to match an arbitrary NLO charm quark pT distribution,
dN c

NLO/dpT . If dN c
PYTHIA/dpT is the charm pT distribution given by PYTHIA, each (c,D) pair is

assigned the weight

W(pT ) =
dN c

NLO/dpT
dN c

PYTHIA/dpT
(21)

where pT is the transverse momentum of the charm quark of the pair. Therefore, the reweighted final-
stateD distribution corresponds to the one that would be obtained by applying string fragmentation to the
NLO c-quark distribution. The resulting D distribution is significantly harder than that obtained using
the Peterson fragmentation function [79]. The enhancement survives after fragmentation although the D
enhancement is somewhat lower than that of the charm because for a given pDT , the D spectrum receives
contributions from charm quarks with pT >∼ pDT , where the charm enhancement is smaller.

5.3 Sensitivity to the enhancement
Figure 10 shows the double-differential D0 cross section, d2σD/dp

D
T dy, in |y| < 1 as a function of the

transverse momentum. The points represent the expected “data” measured by ALICE, obtained from
the alternative NLO cross section scaled by the enhancement factor R(pT ,∆y) defined in Eq. (19),
and modified by string fragmentation. The solid and dashed curves are obtained by applying string
fragmentation to the alternative NLO and standard NLO cc cross sections, respectively. Thus, the “data”
points include the enhancement while the curves do not. The horizontal error bars indicate the bin
width, the vertical error bars represent the statistical error and the shaded band gives the pT -dependent
systematic error. The 5% pT -independent systematic error on the normalization is not shown. (See
Ref. [80] for a discussion of the error analysis. The standard NLO cross section, Eq. (17), and the
O(α3

s) contribution to the alternative NLO cross section, Eq. (16), were calculated using the HVQMNR
code [81] with CTEQ6M and Λ

(4)
QCD = 0.326 GeV. The LO contribution to the alternative NLO cross

section, Eq. (14), was calculated using the CTEQ61L PDFs. Fragmentation was included as described
in Section 5.2. The enhancement, the difference between the data and the solid curves for pDT . 3 GeV,
is more pronounced for the larger mass and lower scale, on the right-hand side of Fig. 10.

There is a significant difference between the alternative and standard NLO distributions. Part of
the difference is due to the one- and two-loop evaluations of αs since α2L

s < α1L
s . However, the most

important contribution is the large differences between the LO and NLO gluon distributions, especially
at low scales [80].

In order to address the question of the experimental sensitivity to the effect of nonlinear gluon
evolution on low-pT charm production, we consider, as a function of pDT , the ratio of the simulated data,
including the enhancement, to alternative NLO calculations using a range of m and Q2 with PYTHIA
string fragmentation. We denote this ratio as “Data/Theory” and try to reproduce this ratio with NLO
calculations employing recent linearly-evolved PDFs and tuning m and Q2.

Since the enhancement has disappeared for pDT >∼ 5 GeV, we refer to this unenhanced region as
high pDT . The pDT region below 5 GeV, where the enhancement is important, is referred to as low pDT .
If no set of parameters can describe both the high- and low-pDT components of the distribution equally

13Here D ≡ D+, D0.
14Events containing charm baryons were rejected.
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Fig. 10: Comparison of the simulated ALICE data generated from R(pT ,∆y)dσalt
NLO with the alternative (solid)

and standard (dashed) NLO calculations. The effect of string fragmentation is included in the “data” points as well
as in the curves. The left-hand side shows the result for m = 1.2 GeV and Q2 = 4m2

T while the right-hand side is
the result for m = 1.3 GeV andQ2 = m2

T . The error bars on the data represent the statistical error and the shaded
band represents the pT -dependent systematic error. The 5% normalization error is not shown.

well, and, if the set that best reproduces the high-pDT part underestimates the low-pDT part, this would be
a strong indication of the presence of nonlinear effects.

The Data/Theory plots are shown in Fig. 11. The points with the statistical (vertical bars) and
pT -dependent systematic (shaded region) error correspond to the data of Fig. 10, including the enhance-
ment, divided by themselves, depicting the sensitivity to the theory calculations. The black squares on
the right-hand sides of the lines Data/Theory = 1 represent the 5% pT -independent error on the ratio
coming from the cross section normalization. This error is negligible relative to present estimates of
other systematic uncertainties (' 13%).

On the left-hand side, the thick solid curve withm = 1.2 GeV and Q2 = 4m2
T best agrees with the

high-pDT ratio by construction since R ≈ 1 at large pDT . It also shows the effect of the enhancement well
beyond the error band for pDT . 2 GeV. Better agreement with the data over the entire pDT range can be
achieved only by choosing a charm quark mass lower than 1.2 GeV, below the nominal range of charm
masses, as illustrated by the dashed curve for m = 1.1 GeV. Higher masses with Q2 = 4m2

T produce
much larger Data/Theory ratios than the input distribution. The ratio with m = 1.3 GeV and Q2 = m2

T

(dot-dot-dashed curve) gives a much larger ratio at low pDT and drops below ≈ 1 for pDT > 8 GeV.

We also present the ratio using the MRST parton densities (MRST2001 LO [36] in Eq. (14) and
MRST2002 NLO [82] in Eq. (16)) with m = 1.2 GeV and Q2 = 4m2

T . We find that this result also
agrees reasonably well with the CTEQ6 results for the same m and Q2. Thus, the enhancement seems to
be rather independent of the PDF. The CTEQ61L and the MRST2001 LO distributions are similar at low
x, suggesting that non-linearly evolved PDFs based on MRST2001 LO would produce an enhancement
like that of Ref. [20, 21].
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Fig. 11: Ratio of the generated ALICE data relative to calculations of the alternative NLO cross sections with
several sets of parameters and PYTHIA string fragmentation. The left-hand side shows the result form = 1.2 GeV
and Q2 = 4m2

T while the right-hand side is the result for m = 1.3 GeV and Q2 = m2
T .

On the right-hand side of Fig. 11 the thick solid curve, employing the same parameters as the
data, gives the best agreement at high pDT . We note that even though the results with Q2 = 4m2

T and
m ≤ 1.3 GeV lie closer to the data at low pDT and within the combined statistical and systematic error
at higher pDT , the curves with these parameters have the wrong slopes for pDT . 8 GeV. The statistical
sensitivity is expected to be good enough to distinguish the difference in curvature. The results with the
MRST PDFs do not alter the conclusions.

5.4 Conclusions
We have studied whether the EHKQS gluon distributions [37] could generate an observable D meson
enhancement in pp collisions at the LHC. Using the EHKQS LO PDFs and LO matrix elements for charm
quark production and PYTHIA string fragmentation forD meson hadronization, the enhancement indeed
survives to the D mesons.

The D meson enhancement, however, drops rapidly with transverse momentum. Therefore, D
measurement capability at small pDT is necessary to verify the effect experimentally. The ALICE detector
can directly reconstruct D0 → K−π+. We have demonstrated that, in the most optimistic case, the
enhancement can be detected above the experimental statistical and systematic errors. When the charm
mass is somewhat smaller, m = 1.2 GeV, but the scale is larger, Q2 = 4m2

T , it is more difficult to detect
the enhancement over the experimental uncertainties.
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Abstract
The fragmentation of heavy quarks into hadrons is a key non-perturbative in-
gredient for the heavy quark production calculations. The formalism is re-
viewed, and the extraction of non-perturbative parameters from e+e− and from
ep data is discussed.

Coordinator: M. Corradi

1 Introduction1

When we try to describe in QCD the production of a hadron we are always faced with the necessity to
take into account the non-perturbative hadronization phase, i.e. the processes which transform perturba-
tive objects (quarks and gluons) into real particles. In the case of light hadrons the QCD factorization
theorem [1–6] allows to factorize these non-perturbative effects into universal (but factorization-scheme
dependent) fragmentation functions (FF):

dσh
dpT

(pT ) =
∑

i

∫
dx

x

dσi
dpT

(pT
x

;µ
)
Di→h(x;µ) +O

(
Λ

pT

)
. (1)

In this equation, valid up to higher twist corrections of order Λ/pT (Λ being a hadronic scale of the order
of a few hundred MeV and pT for instance a transverse momentum), the partonic cross sections dσi/dpT
for production of the parton i are calculated in perturbative QCD, while the fragmentation functions
Di→h(x;µ) are usually extracted from fits to experimental data. Thanks to their universality they can
be used for predictions in different processes. The artificial factorization scale µ is a reminder of the
non-physical character of both the partonic cross sections and the fragmentation functions: it is usually
taken of the order of the hard scale pT of the process, and the fragmentation functions are evolved from
a low scale up to µ by means of the DGLAP evolution equations.

This general picture becomes somewhat different when we want to calculate the production of
heavy-flavoured mesons. In fact, thanks to the large mass of the charm and the bottom quark, acting as
a cutoff for the collinear singularities which appear in higher orders in perturbative calculations, one can
calculate the perturbative prediction for heavy quark production. Still, of course, the quark → hadron
transition must be described. Mimicking the factorization theorem given above, it has become customary
to complement the perturbative calculation for heavy quark production with a non-perturbative fragmen-
tation function accounting for its hadronization into a meson:

dσH
dpT

(pT ) =

∫
dx

x

dσpertQ

dpT

(pT
x
,m
)
Dnp
Q→H(x) . (2)

It is worth noting that at this stage this formula is not given by a rigorous theorem, but rather by some
sensible assumptions. Moreover, it will in general fail (or at least be subject to large uncertainties) in the
region where the mass m of the heavy quark is not much larger than its transverse momentum pT , since
the choice of the scaling variable is not unique any more, and O(m/pT ) corrections cannot be neglected.

1Author: M. Cacciari
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Basic arguments in QCD allow to identify the main characteristics of the non-perturbative frag-
mentation function Dnp

Q→H(x). In 1977 J.D. Bjorken [7] and M. Suzuki [8] independently argued that the
average fraction of momentum lost by the heavy quark when hadronizing into a heavy-flavoured hadron
is given by

〈x〉np ' 1− Λ

m
. (3)

Since (by definition) the mass of a heavy quark is much larger than a hadronic scale Λ, this amounts
to saying that the non-perturbative FF for a heavy quark is very hard, i.e. the quark loses very little
momentum when hadronizing. This can also be seen with a very simplistic argument: a fast-traveling
massive quark will lose very little speed (and hence momentum) when picking up from the vacuum a
light quark of mass Λ to form a heavy meson2.

This basic behaviour is to be found as a common trait in all the non-perturbative heavy quark
FFs derived from various phenomenological models. Among the most commonly used ones we can
cite the Kartvelishvili-Likhoded-Petrov [12], Bowler [13], Peterson-Schlatter-Schmitt-Zerwas [14] and
Collins-Spiller [15] fragmentation functions. These models all provide some functional form for the
Dnp
Q→H(x) function, and one or more free parameters which control its hardness. Such parameters are

usually not predicted by the models (except perhaps on an order-of-magnitude basis), and must be fitted
to the experimental data.

During the ’80s many such fits were performed, and these and similar functions were also included
in many Monte Carlo event generators. Eventually, some ‘best’ set of parameter values (for instance for
the PSSZ form) was determined [16] and subsequently widely used.

These first applications, given the limited accuracy of the available data, tended to overlook two
aspects which have become more important in recent years, when the accuracy of the data has vastly
improved:

– A non-perturbative FF is designed to describe the heavy quark→ hadron transition, dealing with
events mainly populated by soft gluons of energies of a few hundred MeV. However, if a heavy
quark is produced in a high energy event it will initially be far off shell: perturbative hard glu-
ons will be emitted to bring it on-shell, reducing the heavy quark momentum and yielding in the
process large collinear logarithms (for instance of the form αns logn(pT /m) in a transverse mo-
mentum differential cross section). Of course, the amount of gluon radiation is related to the
distance between the heavy quark mass scale and the hard scale of the interaction, and is therefore
process-dependent. One can (and it was indeed done) either fit different free parameters at different
centre-of-mass energies (or transverse momenta), or try to evolve directly the non-perturbative FF
by means of the DGLAP equations, hence including into it the perturbative collinear logarithms.
However, this is not what non-perturbative fragmentation functions are meant for, and doing so
spoils the validity of the relation in Eq. (3).

– Since only the final heavy hadron is observed, both the non-perturbative FF and the perturbative
cross section for producing the heavy quark must be regarded as non-physical objects. The details
of the fitted non-perturbative FF (e.g. the precise value(s) of its free parameter(s)) will depend on
those of the perturbative cross sections: different perturbative calculations (leading order, next-
to-leading order, Monte Carlo, ...) and different perturbative parameters (heavy quark masses,
strong coupling, ...) will lead to different non-perturbative FFs. These in turn will have to be used
only with a perturbative description similar to the one they have been determined with. Hence the
limited accuracy (and hence usefulness) of a ‘standard’ determination of the parameters [17].

The first point was addressed by Mele and Nason in a paper [18] which deeply changed the field of
heavy quark fragmentation, and essentially propelled it into the modern era. Mele and Nason observed

2More modern and more rigorous derivations of this result can be found in [9–11].
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Fig. 1: Power-law fits to the heavy quark pT distributions at LHC (left) and HERA (right) obtained with the NLO
programs MNR and FMNR. The resulting exponents are N = 4.5/3.8 for charm/beauty at LHC and N = 5.5/5.0
for c/b at HERA.

that, in the limit where one neglects heavy quark mass terms suppressed by a large energy scale, a
heavy quark cross section can be factored into a massless, MS-subtracted cross section for producing
a light parton, and a process-independent3 , perturbative heavy quark fragmentation function describing
the transition of the massless parton into the heavy quark:

dσpert,resQ

dpT
(pT ,m) =

∑

i

∫
dx

x

dσi
dpT

(pT
x

;µ
)
Di→Q(x;µ,m) +O

(
m

pT

)
. (4)

The key feature of this equation is that it is entirely perturbative: every term can be calculated in per-
turbative QCD. The perturbative fragmentation functions Di→Q(x;µ,m) (not to be confused with the
non-perturbative one Dnp

Q→H(x)) can be evolved via DGLAP equations from an initial scale of the order
of the heavy quark mass up to the large scale of the order of pT . This resums to all orders in the strong
coupling the collinear logarithms generated by the gluon emissions which bring the heavy quark on its
mass shell, leading to a more accurate theoretical prediction for dσQ/dpT .

Once a reliable perturbative cross section for the production of a heavy quark is established, one
is simply left with the need to account for its hadronization. For this purpose one of the functional
forms listed above can be used for the non-perturbative FF, and implemented as in Eq. (2), but using the
improved, resummed cross section given by Eq. (4). Since most of the the scaling-violation logarithms
are accounted for by the evolution of the perturbative FF, the non-perturbative one can now be scale-
independent and only contain the physics related to the hadronization of the heavy quark. It will always,
however, depend on the details of the perturbative picture used.

2 Extraction of heavy quark fragmentation parameters from e+e− and their impact on
HERA and LHC4

2.1 Importance of 〈x〉np

According to the factorization of the fragmentation functions (FF), the differential cross section dσ/dpT
for the production of a heavy hadron H can be written as the convolution of the perturbative heavy quark
differential cross section dσpert/dpT and the non-perturbative fragmentation function Dnp(x):

dσ

dpT
(pT ) =

∫
dx

x
Dnp(x)

dσpert

dpT

(pT
x

)
. (5)

3Mele and Nason extracted this function from the e+e− cross section, convincingly conjecturing its process independence,
which was successively established on more general grounds in [19]

4Author: M. Corradi
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Table 1: Test functions used in Fig. 2. The functions assume a value different from zero in the range given by the
third column.

Function D(x) parameters x range

Kartvelishvili (1− x)xα α = 2/δ − 3 [0, 1]

Peterson 1
x

(
1− 1

x − ε
(1−x)

)−2
ε [0, 1]

Gauss exp(−(x−µ2σ )2) µ=1−δ
σ=δ/2 [−∞,∞]

Box const. – [1− 2δ, 1]

Triangular: x− x0 x0 = 1− 3δ [1− 3δ, 1]

This convolution neglects mass terms O(mQ/pT ) and non-perturbative terms O(Λqcd/mQ).

The heavy quark pT distribution behaves at large pT like a power law dσpert/dpT = Cp−NT .
Figure 1 shows power-law fits to the pT distributions of heavy quarks at LHC and in photoproduction at
HERA as obtained from the NLO programs MNR [20] and FMNR [21]. For pT > 10 GeV N was found
to range from 3.8 (b at LHC) to 5.5 (c at HERA). Combining this power-law behavior with Eq. (5), the
hadron pT distribution is given by

dσ

dpT
(pT ) =

∫
dx xN−1 Dnp(x) Cp−NT =

dσpert

dpT
D̂np
N , (6)

where D̂np
N =

∫
dx xN−1 Dnp(x) is the N th Mellin moment of the non-perturbative FF.

The hadron distribution is therefore governed by the 4th - 5th Mellin moments of Dnp(x). It is
interesting to translate the Mellin moments into more intuitive central moments

µn =

∫
dx (x− 〈x〉)n Dnp(x) for n ≥ 2 (7)

where 〈x〉 =
∫
dxxDnp(x) is the mean value. The first Mellin moments, written in terms of 〈x〉 and µn,

are: D̂1 = 1 , D̂2 = 〈x〉 , D̂3 = 〈x〉2 + µ2 , D̂4 = 〈x〉3 + 3µ2〈x〉+ µ3.

In heavy quark fragmentation, the mean value of Dnp(x) can be written as 〈x〉 = 1 − δ where
δ = O(Λqcd/mQ) is small [11]. For any positive function with 〈x〉 = 1 − δ, defined in the interval
[0, 1], the central moments are limited by δ, |µn| ≤ δ. In practice, reasonable heavy quark fragmentation
functions are concentrated in a small region around 1 − δ and therefore the higher central moments are
small. To be specific, if the function is different from zero in a region of size ±Kδ (with K = O(1))
around 1 − δ then |µn| ≤ (Kδ)n. This means that the Mellin moments of reasonable FFs are given, to
a good approximation, by the mean value to the N − 1 power:

D̂N = 〈x〉N−1 +O(δ2). (8)

The expansion to δ2 involves the second central moment µ2: D̂N = 〈x〉N−1+ (N−1)!
2(N−3)!µ2〈x〉N−3+O(δ3).

For a reasonable FF and a perturbative distribution falling with the power −N , Eq. 6 and 8 give

dσ

dpT
(pT ) =

dσpert

dpQT
(pT ) (〈x〉np)N−1 +O(δ2). (9)

Therefore the effect of the non-perturbative FF is to introduce a shift in the normalisation that depends on
the average x, while the details of the shape of D(x) have negligible effect. To check that this reasoning
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Fig. 2: Effect of the convolution of the heavy quark transverse momentum distribution with different test functions
for different values of the non-perturbative FF 〈x〉 = 0.9 (left), 0.8 (center), 0.666 (right). For each 〈x〉, the
upper plot shows the test functions, the middle plot shows the perturbative pT distribution obtained with the MNR
program for beauty at LHC and the hadron pT distributions after the convolution with the test functions. The lower
plot shows the ratio of the different hadron pT distributions to the result obtained with the Peterson one.

works with realistic fragmentation functions and realistic perturbative pT distributions, various functions
with the same 〈x〉 but different shapes have been tested in convolution with the perturbative pT spectrum
for b production at LHC obtained with the NLO program MNR. The test functions considered are the
Peterson [14] and Kartvelishvili [12] fragmentation functions, a Gaussian distribution with σ = 1− µ, a
flat and a triangular distribution. Table 1 gives more detail about these functions. Three average values
were chosen: 〈x〉 = 0.9, 0.8, 0.666. Figure 2 shows the result of this test. For each average value, the
convolutions are very similar, even if the test functions are very different. For 〈x〉 = 0.9, 0.8, which
are typical beauty or charm values, the hadron spectra agree within few %. For the extreme value of
〈x〉 = 0.666, the results for the Peterson and Kartvelishvili functions give very similar hadron spectra
while the less realistic Gaussian and Box shapes differ at most 10% from Peterson at large pT and the
extreme Triangular function shows deviations up to ∼ 20%.

In conclusion the relevant fragmentation parameter for the inclusive hadron spectra at pp and ep
colliders is the mean value 〈x〉np of the non-perturbative FF. The next part will discuss, on the basis of
e+e− data, what values of 〈x〉np are relevant for different calculations.

2.2 Extraction of 〈x〉np from e+e− data
In e+e− interactions it is convenient to express the factorization ansatz, given for the heavy-hadron pT
in Eq. (5), in terms of the heavy-hadron momentum normalized to the maximum available momentum:

xp = pH/pHmax, where pHmax =
√

(1
2Ecms)2 −m2

H :

dσ

dxp
(xp) =

∫
dx

x
Dnp(x)

dσpert

dxp
(
xp
x

)

which corresponds to the following relation for the mean values: 〈xp〉 = 〈x〉np〈x〉pert where 〈xp〉 is the
mean hadron xp, 〈x〉np is the mean value of the non-perturbative FF and 〈x〉pert =

∫
dx x dσpert

dxp
is the

mean value of the perturbative distribution. Then, taking 〈xp〉 from experimental data and 〈x〉pert from a
particular perturbative calculation, it is possible to extract the value of 〈x〉np valid for that calculation as

〈x〉np = 〈xp〉/〈x〉pert. (10)
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Fig. 3: Average fragmentation function from the perturbative calculations for charm (left) and beauty (right) as a
function of the e+e− center of mass energy.

Two perturbative calculations will be considered to extract 〈x〉pert: a fixed-order (FO) next-to-
leading order (i.e. O(αS)) calculation and a calculation that includes also the resummation of next-to-
leading logarithms (NLL) and Sudakov resummation, both obtained with the HVQF program [19]. From
the point of view of fragmentation, the FO calculation only considers the emission of a gluon from one of
the two heavy quarks generated in the e+e− collision while the NLL calculation includes the evolution of
the FF from the hard interaction scale down to the scale given by the heavy quark mass. The parameters
used for the FO and NLL models are mc = 1.5 GeV, mb = 4.75 GeV, ΛQCD = 0.226 GeV and the
renormalisation and factorization scales µR = µF = Ecms. The starting scale for FF evolution in the
NLL model was chosen to bemQ. The theoretical uncertainty was obtained by varying independently the
normalisation and factorization scales by a factor 2 and 1/2 and taking the largest positive and negative
variations as the uncertainty.

The experimental data are also compared to the PYTHIA 6.2 Monte Carlo program [37] which
contains an effective resummation of leading-logarithms based on a parton-shower algorithm and which
is interfaced to the Lund fragmentation model. In this case the MC model gives directly 〈xp〉, while
〈x〉pert has been obtained taking the heavy quark at the end of the parton shower phase. The quark masses
have been set to mc = 1.5 GeV and mb = 4.75 GeV, and all the parameters were set to the default values
except for specific fragmentation parameters explained below. Three sets of fragmentation parameters
were chosen for charm: the default fragmentation (Lund-Bowler), a longitudinal string fragmentation of
the Peterson form with ε = 0.06 (MSTJ(11)=3, PARJ(54)=-0.06) and the Lund-Bowler fragmentation with
parameters re-tuned by the CLEO collaboration [28] (PARJ(41)=0.178, PARJ(42)=0.393, PARJ(13)=0.627). The
two sets chosen for beauty are the default Lund-Bowler fragmentation and the Peterson fragmentation
with ε = 0.002 (MSTJ(11)=3, PARJ(55)=-0.002). Figure 3 shows 〈x〉pert from the perturbative calculations
as a function of the centre of mass energy Ecms for charm and bottom.

2.3 Charm
Charm fragmentation data are available from various e+e− experiments. The most precise are those at the
Z0 pole at LEP (ALEPH [23], OPAL [22], DELPHI [24]) and near the Υ(4s) (ARGUS [27], CLEO [28],
BELLE [29]). Less precise data are available in the intermediate continuum region from DELCO [26] at
PEP and TASSO [25] at PETRA. Measurements in which the beauty component was not subtracted have
been discarded [38–40]. The experimental data are reported in Table 2. Only measurements relative
to the D∗±(2010) meson are considered, to avoid the complications due to cascade decays that are

HEAVY QUARK FRAGMENTATION

395



Table 2: Experimental results on the average fragmentation function in e+e− collisions forD∗ mesons and weakly
decaying beauty hadrons. The table reports, for each experiment, the published variable and the corrections ap-
plied to obtain 〈xp〉corr. All the measurement have been corrected for initial state radiation (ISR). Measurements
reported in terms of 〈xE〉 have been corrected to 〈xp〉. In the case of ARGUS the average has been calculated from
the full distribution. In the case of TASSO the error on the average was re-evaluated using the full distribution
since the published error seems incompatible with the data. DELCO reports a fit with a Peterson distribution that
has been translated into 〈xp〉corr. Systematical and statistical uncertainties, where reported separately, have been
added in quadrature. The ALEPH beauty measurement refers to B+ and B0 mesons only (i.e. excluding Bs and
Λb), a MC study shows that this correspond to underestimating 〈xp〉corr by ∼ 0.1% only, which is negligible.

Charm (D∗) Ecms Measured Value ISR corr. xE → xp 〈xp〉corr

measurement (GeV) variable (%) (%)
OPAL [22] 92 〈xE〉 0.516+0.008

−0.005 ± 0.010 +0.4 −0.4 0.516± 0.012
ALEPH [23] 92 〈xE〉 0.4878± 0.0046± 0.0061 +0.4 −0.4 0.488± 0.008
DELPHI [24] 92 〈xE〉 0.487± 0.015± 0.005 +0.4 −0.4 0.487± 0.016
TASSO [25] 36.2 〈xE〉 0.58± 0.02 +6.7 −1.8 0.61± 0.02
DELCO [26] 29 ε∗Pet. 0.31+0.10

−0.08 +6.3 - 0.55± 0.03
ARGUS [27] 10.5 〈xp〉 0.64± 0.03 +4.2 - 0.67± 0.03
CLEO [28] 10.5 〈xp〉 0.611± 0.007± 0.004 +4.2 - 0.637± 0.008
BELLE [29] 10.58 〈xp〉 0.61217± 0.00036± 0.00143 +4.2 - 0.6379± 0.0016

Beauty (Bwd) Ecms Measured Value ISR corr. xE → xp 〈xp〉corr

measurement (GeV) variable (%) (%)
OPAL [30] 92 〈xE〉 0.7193± 0.0016± 0.0038 +0.3 −0.9 0.715± 0.004
SLD [31] 92 〈xE〉 0.709± 0.003± 0.005 +0.3 −0.9 0.705± 0.006
ALEPH [32] 92 〈xE〉 0.716± 0.006± 0.006 +0.3 −0.9 0.712± 0.008
DELPHI [33] 92 〈xE〉 0.7153± 0.0007± 0.0050 +0.3 −0.9 0.711± 0.005
JADE [34] 36.2 〈xE〉 0.76± 0.03± 0.04 +5.4 −3.5 0.77± 0.06
DELCO [35] 29 〈xE〉 0.72± 0.05 +4.8 −4.7 0.72± 0.05
PEP4-TPC [36] 29 〈xE〉 0.77± 0.04± 0.03 +4.8 −4.7 0.77± 0.07

present for ground state mesons. Charm quarks originating from gluon splitting rather than from the
virtual boson from e+e− annihilation may be relevant at LEP energies. This contribution is anyway
already subtracted in the published data considered here, and it is consistently not considered in the
perturbative calculations. Most of the experiments published the mean value of the x distribution. The
only exception is ARGUS, for which the mean value was computed from the published distribution.
Some of the experiments give the results directly in terms of xp, others in terms of the energy fraction
xE = 2EH/Ecms. The latter has been corrected to xp using the PYTHIA MC. The difference between
〈xp〉 and 〈xE〉 can be as large as 12% at Ecms = 10.5 GeV and reduces to less than 1% at Ecms =
92 GeV. Since the low-mass measurements are already given in terms of xp, the applied corrections
from xE to xp was always small. QED corrections are also needed to compare the experimental data
to the QCD predictions. The initial state radiation (ISR) from the electrons has the effect of reducing
the energy available for the e+e− annihilation and therefore to reduce the observed value of 〈xp〉. A
correction, obtained by comparing the PYTHIA MC with and without ISR, was applied to the data to
obtain 〈xp〉corr. The correction is ∼ 4% at Ecms = 10.5 GeV, is largest in the intermediate region and is
negligible at Ecms = 92 GeV.

Only LEP data at Ecms = 92 GeV were used to extract 〈x〉np since the factorization of the non-
perturbative FF could be spoiled by large O(mQ/Ecms) terms at lower energies. Table 3 reports the LEP
average 〈xp〉corr, the perturbative results at 92 GeV and the resulting 〈x〉np for NLL and FO calculations
as well as 〈x〉 and 〈x〉pert from PYTHIA. Figure 4 (left) shows 〈xp〉 obtained by multiplying the pertur-
bative calculations with the corresponding 〈x〉np, compared to the experimental data and to the PYTHIA

MC with different fragmentation parameters.
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Fig. 4: Average fragmentation function as a function of the center of mass energy for charm (left) and beauty
(right). The plots show the experimental results and the curves from NLL and FO theory with a non-perturbative
fragmentation obtained using the data at the Z0 energy. The curves from PYTHIA 6.2 with different fragmentation
choices are also shown. The experimental points at the Υ(4s) and Z0 resonances are shown slightly displaced in
the horizontal axis for better legibility.

With the non-perturbative 〈x〉np = 0.849 ± 0.018 obtained at LEP energies, the NLL calculation
can reproduce all the data within a quite small theoretical uncertainty. The FO calculation is instead too
flat to reproduce the data even considering its large theoretical uncertainty band. The non-perturbative
fragmentation 〈x〉np obtained at LEP energy for the FO calculation is quite small (0.65 ± 0.04) since
it compensates the effect of the FF evolution that is missing in the perturbative part. Therefore FO
calculations with 〈x〉np extracted at LEP energy undershoot drastically the data at the Υ(4s).

The PYTHIA MC with the Lund-Bowler fragmentation reproduces the data reasonably well. The
result with default parameters is slightly above the data while the result with the parameters tuned by the
CLEO collaboration is slightly below. Both are compatible within the experimental uncertainty with all
the experimental values with the exception of the very precise measurement from Belle from which they
differ anyway by less than 2%. PYTHIA with the Peterson fragmentation with ε = 0.06 reproduces well
the LEP data but is too low at lower energies.

2.4 Beauty
In the case of beauty we consider fragmentation measurements for the mix of weakly decaying hadrons
Bwd. Precise measurements are available only at the Z 0 peak (SLD [31], ALEPH [32], OPAL [30],
DELPHI [33]). Lower energy measurements from PEP (PEP4-TPC [36], DELCO [35]) and PETRA
(JADE [34]) have larger uncertainties. As for charm, corrections have been applied for ISR and to
convert 〈xE〉 to 〈xp〉. The data are shown in Table 2 and the results in Table 3 and Figure 4 (right).
Since precise data are available only at a single energy, it is impossible to test the energy beaviour of the
theoretical predictions. As in the charm case, the energy dependence of PYTHIA and NLL theory are
similar, while the FO prediction is much more flat, suggesting that also for beauty the non-perturbative
fragmentation obtained for FO at the Z0 could not be applied at lower energy. PYTHIA with Peterson
fragmentation with ε = 0.002 reproduces the data, while the default Lund-Bowler fragmentation is too
soft.
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Table 3: Average fragmentation functions at the Z0 resonance for charm (top) and beauty. The table shows the
average of the experimental data, the results from the NLL and FO calculations and from the PYTHIA MC with
different fragmentation parameters. For the NLL and FO calculations 〈xp〉np is obtained by dividing the average
from the experimental data by the perturbative result 〈xp〉np = 〈xp〉corr/〈xp〉pert.

Charm (D∗) @ 92 GeV 〈xp〉corr 〈xp〉pert 〈xp〉np

Data 0.495± 0.006 – –
NLL – 0.583± 0.007 0.849± 0.018

FO – 0.76± 0.03 0.65± 0.04

PYTHIA Def. 0.500 0.640 –
PYTHIA CLEO 0.484 0.640 –
PYTHIA Pet. ε = 0.06 0.490 0.640 –

Beauty (Bwd) @ 92 GeV 〈xp〉corr 〈xp〉pert 〈xp〉np

Data 0.7114± 0.0026 – –
NLL – 0.768± 0.010 0.927± 0.013

FO – 0.83± 0.02 0.85± 0.02

PYTHIA Def. 0.686 0.773 –
PYTHIA Pet. ε = 0.002 0.710 0.773 –

2.5 Effect on predictions for heavy quark production at HERA and LHC
Going back to the heavy-hadron production in ep and pp collisions, Eq. 9 shows that the uncertainty
on the differential heavy-hadron cross section dσ/dpT is related to the uncertainty on the average non-
perturbative fragmentation by

∆(dσ/dpT ) = N∆(〈x〉np),

where −N is the exponent of the differential cross section.

The state of the art calculations for photo- and hadro-production (FONLL [41, 42]) include NLO
matrix elements and the resummations of next-to-leading logarithms. The appropriate non-perturbative
fragmentation for FONLL is therefore obtained with the NLL theory which has the same kind of per-
turbative accuracy [43]. Since the NLL calculation gives a good description of e+e− data, it seems
appropriate to use the value and the uncertainty of 〈x〉np as obtained from e+e− data at the Z0 peak.
The relative error for the D∗ fragmentation is ∆〈x〉np/〈x〉np = 2% which translates into an uncertainty
of 9% on charm production at large pT at LHC (N = 4.5) of 9%. For beauty, the relative uncer-
tainty ∆〈x〉np/〈x〉np = 1.4% translates into an uncertainty on large-pT B-hadron production at LHC
(N = 3.8) of 5.3%. These uncertainty are smaller or of the order of the perturbative uncertainties of
the calculation. Nevertheless, it should be noted that this approach is only valid for large transverse mo-
menta. At small transverse momenta the factorization ansatz breaks down and large corrections of order
mQ/pT may appear. Therefore, for the low-pT region, the uncertainty on the pT distribution is large and
difficult to evaluate.

For processes such as DIS and for particular observables FONLL calculations are not available.
The best theory available in this case is the fixed order NLO theory. In this case the situation is complex
since the equivalent FO calculation for e+e− does not reproduce the experimental data. The proposed
solution is to vary 〈x〉np from the same value obtained in the NLL case (that would be correct at low
pT , where the FF evolution is irrelevant) to the value obtained at the Z 0 energy (that would be valid
at pT ∼ 100 GeV). Therefore we consider for charm 〈x〉np = 0.075 ± 0.010 and for beauty 〈x〉np =
0.089±0.004. When these values are transported to heavy-hadron production at LHC, the corresponding
uncertainties on dσ/dpT at large pT are 60% for charm and 20% for beauty. Therefore the NLO fixed
order calculations cannot be used for precise predictions of the charm (and to a lesser extent beauty)
production at pp and ep colliders.
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Table 4: Proposed value and uncertainty on 〈x〉np to be used with FO-NLO and FONLL programs for photo-
and hadro-production of D∗ mesons and weakly decaying B hadrons. The corresponding value and range for the
Peterson ε and for the Kartvelishvili α parameters are also reported. The last columns show the corresponding
relative uncertainty on dσ/dpT at LHC (assuming a negative power N = 4.5/3.8 for charm/beauty) and HERA
(N = 5.5/5.0 for c/b).

〈xnp〉 ε(min : max) α(min : max) ∆〈xnp〉/〈xnp〉 ∆σ/σ ∆σ/σ

(LHC) (HERA)

FONLL D∗ 0.849± 0.018 0.0040(0.0027 : 0.0057) 10(9 : 12) 2.1% 9% 12%

FONLL Bwd 0.927± 0.013 0.00045(0.00026 : 0.00072) 24(20 : 30) 1.4% 5% 7%

FO-NLO D∗ 0.75± 0.10 0.02(0.004 : 0.08) 5(3 : 10) 13% 60% 70%

FO-NLO Bwd 0.89± 0.04 0.0015(0.0004 : 0.004) 15(10 : 25) 4.5% 20% 22%

D*

c
p

c

γ

thrust

D* hemisphere

D*

Fig. 5: Hemisphere method

In the FO-NLO and FONLL programs the hadron distributions are obtained by reducing the quark
momenta according to a given fragmentation functions. Typical fragmentation functions used in these
programs are the Peterson and Kartvelishvili forms. Table 4 summarises the proposed values and uncer-
tainties for 〈x〉np to be used with FO-NLO and FONLL calculations and reports the corresponding values
and ranges for the Peterson and Kartvelishvili parameters. Similar ranges are used in the calculations
presented in the section on “Benchmark cross sections” in these proceedings.

3 Measurements of the charm quark fragmentation function at HERA5

The differential cross section for the inclusive production of a heavy hadron H from a heavy quark h can
be computed in perturbative QCD (pQCD) as a convolution of a short-distance cross section σ̂(ph) with
a fragmentation function Dh

H(z):

dσ(pH) =

∫
dzdphdσ̂(ph)Dh

H(z)δ(p − zph) (11)

The quantity z is the fractional momentum of the heavy quark h which is transferred to the heavy hadron
H , and the normalized fragmentation function Dh

H(z) gives the probability to observe the hadron H with
a momentum fraction z.

The precise definition of D(h)
H (z) is in some sense arbitrary. Due to the short and long-distance

processes involved, the fragmentation function contains a perturbative and a non-perturbative component.

5Authors: J. Bracinı́k and G. Grindhammer

HEAVY QUARK FRAGMENTATION

399



Since the former can be calculated only up to some order in the strong coupling, the non-perturbative
component in practice will have to absorb some of the missing higher order corrections. The calculable
perturbative part can be absorbed into the definition of σ̂(ph). Since for heavy quarks perturbative gluon
emission do not lead to collinear divergencies, the perturbative evolution is well defined, and it is possible
to absorb them into σ̂(ph) and to perform perturbative evolution down to a scale of the heavy quark mass
mh. In this case the non-perturbative fragmentation function Dh

H(z) accounts for the transition of an
almost on-shell quark h into a heavy hadron H .

According to the QCD factorization theorem, the non-perturbative fragmentation functions (FF)
depend neither on the type of the hard process nor on the scale at which the heavy quark h is originally
produced. This implies universality of FF and allows - if valid - to extract fragmentation functions from
data for one particular reaction (usually e+e− annihilation) and to use them to predict cross sections
for other reactions (e.g. in pp and ep-collisions). In order to be able to check the reliability of pQCD
predictions, it is necessary to check the universality of FF.

In practice, different theoretically motivated functional forms for Dh
H(z) are used, depending on

one more free parameters which are fitted to data. Among frequently used expressions are those by
Peterson et al. [14] and by Kartvelishvili et al. [12].

From Equation 11 it is clear that Dh
H(z) cannot be measured directly, since all observables are

convoluted with the perturbative cross section. In case of ep and pp scattering there are additional
convolutions with the parton density functions of one or two interacting hadrons. However, there are
some observables which are more sensitive to Dh

H(z) then others.

In e+e−, a convenient way to study fragmentation is to study the differential cross section of a
heavy meson as a function of a scaled momentum or energy z. A customary experimental definition6 of
z is z = EH/Ebeam, where Ebeam is the energy of the beams in the center-of-mass system. In leading
order, i.e. without gluon emissions, it is also the energy of the charm and anti–charm quark and is equal
to Dh

H(z). In contrast to e+e− annihilation the choice of a fragmentation observable in ep collisions is
more difficult. Two different observables have been used so far, both of them having the feature that in
leading order QCD, the z-distributions are equal to Dh

H(z).

In the case of what is called here the jet method, the energy of the charm quark is approximated by
the energy of the charm-jet, tagged by a D∗-meson, which is considered to be part of the jet. The scaling
variable is then defined as zjet = (E + pL)D∗/(E + p)jet.

The idea of the so called hemisphere method (see Figure 5) is to exploit the special kinematics
of charm events in ep collisions. The dominant charm production process has been shown to be boson-
gluon fusion. If such an event is viewed in the photon-proton center-of-mass frame, the photon puts its
full energy into the hard subprocess, while the proton interacts via a gluon, which typically carries only
a small fraction of the proton momentum. As the result, both quarks produced, c and c̄, move in the
direction of the photon. Assuming no initial gluon kT and no gluon radiation, their transverse momenta
are balanced (see Fig. 5, left).

This can be seen best by projecting the quark momenta onto the plane perpendicular to the γ-p
axis. In this plane it is possible to distinguish rather efficiently between the products of the fragmentation
of the charm quark and its antiquark. The momenta of all particles are projected onto the plane and the
thrust axis in this plane is found (see Fig. 5, right). The plane is then divided into two hemispheres by
the line perpendicular to the thrust axis. All particles, lying in the hemisphere containing the D ∗-meson
are marked and their three-momenta and energy are summed-up to give the hemisphere’s momentum
and energy, which is used to approximate the momentum and energy of the respective charm/anti-charm
quark. The scaling variable zhem is then defined as zhem = (E + pL)D∗/

∑
hem(E + p).

The ZEUS collaboration has provided preliminary results [44] on a measurement of normalized
differential cross sections of D∗-mesons as a function of zjet. The measurement was done in photopro-

6Sometime there are slightly different definitions of z [28] in case of heavy meson production close to threshold.
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Fig. 7: Normalized differential cross section of D∗-meson as a function of zjet and zhem in DIS as measured by
H1.

duction, in the kinematic range Q2 < 1 GeV2 and 130 < W < 280 GeV. The D∗-mesons were recon-
structed using the ’golden channel’ D∗ → D0πs → Kππs and were required to be in the central rapidity
region |η| < 1.5 and to have pT > 2 GeV. Jets were reconstructed using the inclusive k⊥ algorithm.
They fulfill the conditions |ηjet| < 2.4 and ET,jet > 9 GeV. The jets were reconstructed as massless
jets. The beauty contribution to the D∗-meson cross section, which amounts to about 9%, was subtracted
using the prediction of PYTHIA. The scaling variable was calculated as zjet = (E+pL)D∗/(2Ejet). The
cross section as a function of zjet is shown in Fig. 6. The uncertainties due to choice of the model used
to correct for detector effects, and the subtraction of the beauty component were the largest contributions
to the total uncertainty.

The H1 collaboration has recently presented preliminary results [45] on the normalized differential
cross section also of D∗-mesons as a function of both zhem and zjet. Their measurement was performed
in the kinematic range 2 < Q2 < 100 GeV2 and 0.05 < y < 0.7. The D∗-mesons were reconstructed
using the ’golden channel’ with |η| < 1.5 in the central rapidity region and pT > 1.5 GeV. The jets were
reconstructed using the inclusive k⊥ algorithm in the photon-proton center of mass frame, using the
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massive recombination scheme. The jets were required to have ET,jet > 3 GeV. The scaling variables
were calculated as zjet = (E + pL)D∗/(E + p)jet and zhem = (E + pL)D∗/

∑
hem(E + p) and are

shown in Fig. 7. The resolved contribution was varied between 10 and 50% and the beauty contribution
as predicted by the model was varied by a factor of two. The resulting uncertainties are part of the
systematic error of the data points. For these distributions, the contribution of D∗-mesons coming from
the fragmentation of beauty, as predicted by RAPGAP, was subtracted. It amounts to about 1.3% for the
hemisphere method and 1.8% for the jet method. The dominant systematic errors are due to the model
uncertainty and the signal extraction procedure.

Both collaborations used the normalized z-distributions to extract the best fragmentation parame-
ters for a given QCD model.

In case of ZEUS, PYTHIA was used together with the Peterson fragmentation function. The MC
was fit to the data using a χ2-minimization procedure to determine the best value of ε. The result of the
fit is ε = 0.064 ± 0.006+0.011

−0.008 .

The H1 collaboration used RAPGAP 3.1 interfaced with PYTHIA 6.2. The contribution due to
D∗-mesons produced in resolved photon processes (in DIS), which amounts to 33% as predicted by
the model, has been included in addition to the dominant direct photon contribution. The Peterson and
Kartvelishvili parametrizations were both fitted to the data. The results are shown in Table 5.

Table 5: Extracted fragmentation parameters for zjet and zhem from H1.

Parametrization Hemisphere Jet Suggested

Method Method range

Peterson ε 0.018+0.004
−0.004 0.030+0.006

−0.005 0.014 < ε < 0.036

Kartvelishvili α 5.9+0.9
−0.6 4.5+0.5

−0.5 4 < α < 6.8

The parameter of the Peterson fragmentation function as measured by ZEUS and H1 do not agree
with each other. This may be due to the different phase-space regions covered by the two measurements
(photoproduction versus DIS, ET,jet > 9 GeV versus ET,jet > 3 GeV ) and most importantly, the
parameters were extracted for two different models7. More detailed investigations are needed to resolve
this question.

The fragmentation function parameters extracted by H1 with the hemisphere and the jet method
differ by less than 3 σ. At the present level of statistical and systematic errors it is not possible to exclude
a statistical fluctuation. On the other hand, the potential discrepancy may be a sign of deficiencies in the
modelling of the hadronic final state in RAPGAP.

The measured zhem distribution of H1 is compared to data from the ALEPH [23], OPAL [22]
and CLEO [28] collaborations in Fig. 8 (left) and to ZEUS [44] and Belle [29] in Figure 8 (right)8 .
The results of H1 are in rough agreement with recent data from CLEO and Belle, taken at at 10.5 and
10.6 GeV, corresponding roughly to the average energy of the system at H1. Differences beyond the
measurement errors can be observed. However, this may be due to the somewhat different definitions
used for the fragmentation observable z, different kinematics, different processes, or it may be a sign of
the violation of universality.

While the z distributions don’t need to agree, the fragmentation parameters, which are extracted
from them, should agree. This can be expected only, if a model with consistent parameter settings is
used which provides an equally good description of the different processes at their respective scales.

7While ZEUS has used the default parameters for PYTHIA, H1 has taken the tuned parameter values of the ALEPH collab-
oration [46]

8Data points were taken from the figure in [29] and [44].
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the one from the hemisphere method from H1. All distributions are normalized to unit area from z = 0.4 to z = 1.

The values of the Peterson fragmentation parameter, as extracted by different experiments within the
PYTHIA/JETSET models, are summarized in Table 6.

Table 6: Extracted fragmentation parameters from e+e− annihilation data by ALEPH [23], OPAL [22] and
BELLE [29] and from ep data by ZEUS [44] and H1 [45].

PARAMETRIZATION ALEPH OPAL BELLE ZEUS H1: zhem H1: zjet

Peterson ε 0.034± 0.0037 0.034± 0.009 0.054 0.064+0.013
−0.010 0.018+0.004

−0.004 0.030+0.006
−0.005

Kartvelishvili α —- 4.2± 0.6 5.6 —- 5.9+0.9
−0.6 4.5+0.5

−0.5

Contrary to expectations, discrepancies between various experiments can be seen. A consistent phe-
nomenological analysis of these data is therefore needed in order to resolve the reasons for the discrep-
ancies.

The measurement of the charm fragmentation function at HERA provides an important test of our
understanding of heavy quark production. We may hope that HERA II data and a phenomenological
analysis of existing data will bring new insights in this area.
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Abstract
Reference heavy-flavour cross sections at HERA and LHC have been com-
puted following different theoretical approaches and the results have been
compared.

Coordinators: M. Corradi, A. Dainese

1 Introduction

This section presents a comparison of cross sections for HERA and LHC calculated according to differ-
ent theoretical approaches. Different programs were used to calculate the same reference cross sections,
using, as far as possible, the same input parameters and a consistent method to evaluate uncertainties. In
this way it is possible to identify processes and kinematical regions in which different approaches give
the same answer and regions where they differ. Unified criteria to evaluate the theoretical uncertainty
should also allow to understand what approach is expected to be more precise. Moreover these calcula-
tions, which incorporate up-to-date parameters and PDF parametrisations, can be used as a reference for
experiments and for further theoretical predictions. The cross sections presented here, are available in
computer-readable format from the web page

�������������
	�	�	���
������������������������������ ����!��#" ��$�� %&�'��(�! ��)��
,

where figures in color can also be found.

2 Programs

A list of the programs used for the cross section calculations is given below. For further details see the
references and the theoretical review on heavy quark production in these proceedings.

– MNR [1] is a fixed-order (FO) NLO program for heavy-flavour hadro-production, it was used for
LHC cross sections;

– FMNR [2, 3] is an extension of the previous program to photoproduction, it was used for photo-
production at HERA;

– HVQDIS [4, 5] is a FO-NLO program for heavy-flavour production in deep-inelastic scattering
(DIS), it has been used for DIS at HERA;

– FONLL [6, 7] provides matched massive-massless calculations with NLO accuracy and resum-
mation of large pT logarithms. It is available for hadro- and photo-production and was used for
HERA photoproduction and LHC cross sections;

– GM-VFNS [8–11] is a calculation in the generalised massive variable flavour number scheme. It
has been used for charmed hadron pT spectra at LHC and in photoproduction at HERA;
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Table 1: The table shows input parameter to the different programs with the corresponding lower and upper values
used for the uncertainty: ΛQCD, the quark masses, the proton and photon parton densities, the fraction of c quarks
decaying into a D∗ meson, and the parameters used for fragmentation. The fragmentation form are abbreviated to
Pet. for Peterson, Kart. for Kartvelishvili, Def. for the default PYTHIA fragmentation

Parameter program central value lower/upper

Λ5
QCD all 0.226 GeV fix

mc all 1.5 GeV 1.3/1.7 GeV

mb all 4.75 GeV 4.5/5.0 GeV

p-PDF all-CASCADE CTEQ6.1 [15] MRST2002 [16]/Alekhin [17]

CASCADE CCFM A0 –

γ-PDF FMNR, FONLL AGF [18] GRV [19]

f(c → D∗) all 0.235 fix

c fragmentation: (F)MNR,HVQDIS Pet. [20] εc = 0.021 0.002/0.11

FONLL BCFY r = 0.1 0.06/0.135

GM-VFNS [9] -

CASCADE, RAPGAP Pet. εc = 0.075 Def./εc = 0.05

b fragmentation: (F)MNR,HVQDIS Pet. εb = 0.001 0.0002/0.004

FONLL Kart. α = 29.1 25.6/34.0

CASCADE, RAPGAP Pet. εb = 0.002 Def./εb = 0.005

– CASCADE 1.2009 [12] is a full Monte Carlo program based on unintegrated parton densities and
KT factorisation. It has been used to calculate cross sections for Photoproduction and DIS at
HERA and for LHC;

– RAPGAP 3 [13] is a multi-purpose MC program for ep collisions, it implements heavy-flavour
production through the boson-gluon-fusion process γ∗g → QQ̄ at leading order. It has been used
for DIS at HERA. Both CASCADE and RAPGAP use PYTHIA [14] routines for fragmentation.

3 Parameters and uncertainties

The different calculations were compared using the same input parameters and, where possible, with
total uncertainty bands computed in a consistent way. The total uncertainty band includes the effect of
the uncertainty on the input parameters and on the missing higher orders in the perturbative expansion.

3.1 Perturbative uncertainty

The perturbative uncertainty was obtained by varying the renormalisation and factorisation scales inde-
pendently in the range 0.5µ0 < µF , µR < 2µ0, while keeping 1/2 < µR/µF < 2, were µ0 is the
nominal value, typically set to the transverse mass p2

T +m2
Q or to 4m2 +Q2 in the DIS case. The largest

positive and negative variations were taken as the perturbative uncertainty band.

3.2 Input parameters

The uncertainty from the input parameters was obtained by varying each parameter the central value.
An effort was made within the working group to find the best central value and uncertainty for the
input parameters. The values used for the perturbative parameters Λ5

QCD, mc, mb as well as the parton
distribution functions (PDF) for the proton and for the photon are reported in Table 1.
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For practical reasons, rather than using the full treatment of the PDF uncertainty, few different
parametrisations were tried and it was checked that the choice of the PDF set always gives a small
contribution to the total uncertainty band. In the case of CASCADE, the CCFM A0 parametrisation was
used as the central value while the PDF parametrisations A0+ and A0-, obtained from fits to DIS data
with different renormalisation scales, were used in conjunction with the variation of the renormalisation
scale.

Since the different programs have different perturbative contents, different parameters for the non-
perturbative fragmentation function were used. The values were chosen in order to correspond to the
same average fragmentation in e+e− collisions as explained in the section on heavy quark fragmentation
in these proceedings. Table 1 reports the fragmentation form and the corresponding parameters used in
the different programs.

In the FONLL calculation for charm, the BCFY [21] fragmentation parameter r was varied in
conjunction with the variation of the charm mass since different values of r are obtained from e+e− data
for different mc [22]. Similarly for beauty, the Kartvelishvili [23] parameter α was varied in conjunction
with the variation of the b mass [23]. For GM-VFNS, the fragmentation functions and fractions were
taken from [9].

The total uncertainty band was obtained from the sum of the uncertainties added in quadrature
coming from the parameter variations and the perturbative uncertainty.

4 Results

4.1 HERA Photoproduction

The results for HERA Photoproduction are given as ep cross-sections for 0.2 < y < 0.8 (y is the Bjorken
variable while Y is the rapidity in the laboratory frame) and Q2 < 1 GeV2. The beam energies have been
set to Ee = 27.52 GeV, Ep = 920 GeV with the proton beam going in the positive rapidity direction.

Figure 1 shows the differential cross sections as a function of the charm quark transverse momen-
tum (a) and pseudorapidity (b). In (c) and (d) the same cross sections are given for the charmed D∗

meson. A meaningful comparison can be performed only for the hadron variables, which are the real
physical observables, since the quark level may be defined differently in different approaches. The FO
calculation (FMNR) shows a large uncertainty (∼ 60%) at the hadron level due to the related uncertainty
on the fragmentation parameters. The resummed programs FONLL and GM-VFNS have much smaller
uncertainty and are within the FMNR uncertainty band. The central values from FMNR and FONLL
coincide at low transverse momenta. GM-VFNS, instead, tends to grow unphysically at low pT (D∗).
As can be seen in (c), the quark-level disagreement between FO (FMNR) and FONLL calculations is
consistently removed at the hadron-level. The unintegrated-PDF Monte Carlo CASCADE tends to be
above the other calculations, in particular at large pT . In the case of beauty (Fig. 2) the uncertainty bands
are smaller (∼ 20% for FMNR), CASCADE and FMNR are in good agreement. Due to the large b mass,
the resummed calculation FONLL (not shown) is expected to be similar to the fixed-order one (FMNR).
For both beauty and charm, FMNR and FONLL show a shoulder at positive rapidities (b, d) due to the
“hadron-like” component of the photon that is not present in CASCADE.

Figure 3 shows the different components of the FMNR uncertainty band for charm and beauty.
The uncertainties for quark production are typically dominated by the perturbative scale uncertainty with
the exception of the low transverse momentum region (pT ∼ mQ) where the uncertainty from the quark-
mass can dominate. For hadron production, the fragmentation dominates the FMNR uncertainty at large
pT . The PDF uncertainty was found to be small. Resummed calculation have smaller uncertainty bands
due to the smaller perturbative and fragmentation contributions at large pT .
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Charm photoprodutcion at HERA
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Fig. 1: Cross sections for charm photoproduction at HERA (Q2 < 1 GeV2, 0.2 < y < 0.8). The differential
cross sections as a function of the pT of the c quark for rapidity |Y | < 2 and as a function of the rapidity of the
c quark for pT > 2.5 GeV are shown in (a), (b). Plots (c) and (d) show similar cross sections for the production
of a D∗ meson. The cross sections are shown for FMNR (shaded band), FONLL (empty band with dashed lines),
GM-VFNS (empty band with dotted lines) and CASCADE (empty band with full lines).

Beauty photoproduction at HERA
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Fig. 2: Cross sections for beauty photoproduction at HERA (Q2 < 1 GeV2, 0.2 < y < 0.8). The differential cross
sections in pT and rapidity of the b quark are shown in (a), (b). Plots (c) and (d) show the cross sections for the
production of a weakly-decaying B hadron as a function of pT (B) and Y (B). The cross sections are shown for
FMNR (shaded band) and CASCADE (empty band with full lines).
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FMNR uncertainties
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Fig. 3: Breakdown of the different components of the FMNR uncertainty for dσ/dpT for charmed (a) and beauty
(b) hadrons in photoproduction at HERA. The plots show the ratio of the upper/lower side of each uncertainty to the
nominal value. The following sources of uncertainty are shown: quark mass (mQ), parton density parametrisation
(PDF), fragmentation parameter and the perturbative uncertainty from scale variations.

4.2 HERA DIS

Heavy quark production in DIS is not available in the matched massive-massless approach (except for
total cross sections). Therefore the DIS comparison was limited to the FO-NLO program HVQDIS, the
unintegrated-PDF MC CASCADE and the RAPGAP Monte Carlo. The DIS cross sections at HERA are
reported as dσ/d log10(x) for different bins of Q2 and are intended at the Born level, without electroweak
corrections. Figure 4 shows, for each Q2 bin, the inclusive charm cross-section, the cross section for
observing a D∗ meson in the “visible” range pT (D∗) > 1.5 GeV, |Y (D∗)| < 1.5 and for observing a
muon in the range pT (µ) > 3 GeV, |Y (µ)| < 2. The three calculations are compatible at intermediate
values of x (∼ 10−3). At large x and low Q2, CASCADE and RAPGAP drop to zero much faster than
HVQDIS. At low x RAPGAP is significantly larger than HVQDIS while both are within the uncertainty
band given by CASCADE. A similar behavior is seen for beauty (Fig. 5). The uncertainty on HVQDIS,
not given here, is expected to be small (∼ 10 − 20% for beauty [24]). The high-x discrepancy between
HVQDIS and the other two calculations seems therfore to be beyond the program uncertainties and
deserves further investigations.

4.3 LHC

For LHC, we computed the cross sections in pp collisions at
√

s = 14 TeV.

Figures 6 and 7 show the single inclusive cross sections as a function of pT , at quark (upper
panels) and hadron (lower panels) level, for charm and beauty, respectively. Two rapidity intervals
are considered: |Y | < 2.5, approximately covering the acceptance of the barrel detectors of ATLAS
(|η| < 2.5), CMS (|η| < 2.5), and ALICE (|η| < 0.9); 2.5 < |Y | < 4, approximately covering the
acceptance of LHCb (2 < η < 5) and of the ALICE muon spectrometer (2.5 < η < 4).

For charm, we compare the fixed-order NLO results from MNR to the results from the CASCADE

event generator, from the GM-VFNS calculation and from the FONLL calculation. The agreement is in
general good, in particular in the low-pT region; at high-pT CASCADE predicts a larger cross section than
the other calculations, especially at forward rapidities. The FONLL central prediction is in agreement
with that of the FO NLO calculation at low pT , while deviating from it at high pT , where it gives a
smaller cross section.

For beauty, we compare FO NLO (MNR), FONLL and CASCADE. Again, there is agreement
at low pT , where, as expected, the FONLL result coincides with the MNR result. At high pT , both
CASCADE and FONLL predict a larger cross section than the MNR central values, but all models remain
compatible within the theoretical uncertainties. At forward rapidities, for beauty as for charm, CASCADE

gives a significantly larger cross section than MNR.
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CHARM DIS
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Fig. 4: Charm cross sections in DIS at HERA. Each plot shows the distribution of log10(x) in a different Q2

range for the inclusive cross-section, the cross-section for a D∗ meson in the “visible” range p T (D∗) > 1.5 GeV,
|Y (D∗)| < 1.5 and the cross-section for a muon from charm decay in the range pT (µ) > 3 GeV, |Y (µ)| < 2. The
thick curves show the central value from HVQDIS, the thin curves represent the uncertainty band from CASCADE

and the shaded area shows the uncertainty band from RAPGAP. The fluctuations in the muon cross sections are
due to the limited statistics.

BEAUTY DIS
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Fig. 5: Beauty cross sections in DIS at HERA. Each plot shows the distribution of log10(x) in a different Q2

range for the inclusive cross-section, the cross section for a hadron containing a b quark in the “visible” range
pT (B) > 3 GeV, |Y (B)| < 2 and the cross section for a muon from beauty decay in the range pT (µ) > 3 GeV,
|Y (µ)| < 2. The thick curves show the central value from HVQDIS, the thin curves represent the uncertainty band
from CASCADE and the shaded area shows the uncertainty band from RAPGAP. The muon distributions are not
given for HVQDIS.
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Fig. 6: Cross sections for charm production in pp collisions at the LHC with
√

s = 14 TeV. The differential cross
sections in pT for c quark in the two rapidity ranges |Y | < 2.5 and 2.5 < |Y | < 4 are shown in the upper panels.
The lower panels show the cross sections for the production of a D∗ meson as a function of pT (D∗) in the same
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Fig. 7: Cross sections for beauty production in pp collisions at the LHC with
√

s = 14 TeV. The differential cross
sections in pT for b quark in the two rapidity ranges |Y | < 2.5 and 2.5 < |Y | < 4 are shown in the upper panels.
The lower panels show the cross sections for the production of a beauty hadron as a function of pT in the same
rapidity ranges.
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Fig. 8: Breakdown of the different components of the uncertainty on dσ/dpT for charmed (a) and beauty (b)
hadrons at LHC as obtained from MNR. The plots show the ratio of the upper/lower side of each uncertainty to the
nominal value. The following sources of uncertainty are shown: quark mass (mQ), parton density parametrisation
(PDF), fragmentation parameter and the perturbative uncertainty from scale variations.

Figure 8 shows the breakdown of the uncertainties for hadron production as obtained with MNR.
The perturbative component dominates at LHC. Only the fragmentation component for charm hadron
production becomes comparable in size to the perturbative one at large pT .

4.4 Q-Q̄ correlations

The azimuthal separation between the two heavy quarks ∆φ(QQ̄) and the transverse momentum of the
quark-antiquark system pT (QQ̄) are particularly sensitive to higher-order effects since at leading order
their distributions are delta functions peaked at ∆φ(QQ̄) = π and pT (QQ̄) = 0. The distribution of
these variables is therefore a direct probe of QCD radiation and is well suited for comparing different
calculations.

Figures 9 and 10 show the heavy-quark pair pT distribution and the quark-antiquark relative az-
imuthal angle distribution for charm and beauty at LHC, respectively. For both distributions, the two
quarks of the pair are required to have |Y | < 2.5; also minimum pT selections are applied to mimic the

effect of realistic experimental cuts (pQ
T > 3 GeV and pQ̄

T > 6 GeV). In the region near ∆φ(QQ̄) = π
and pT (QQ̄) = 0, where the cancellation of soft and collinear divergencies occur, the fixed-order NLO
calculation gives an unphysical negative cross section with next to a large positive peak. A larger binning
would be needed to average this behavior and produce a more physical results. The CASCADE MC, has
a more realistic behavior. Both calculations have a non-zero value at ∆φ(QQ̄) = 0 related to “gluon-
splitting” events. A similar result was found for HERA as shown in Figure 11. This kind of distribution
is expected to be well described by programs that merge NLO matrix elements to the parton-shower MC
approach such as MC@NLO [25].

5 Conclusions

Heavy-flavour cross sections for HERA and LHC, obtained with fixed-order NLO programs, with matched
massive/massless calculations and within the KT -factorisation approach have been compared. Similar
results are found for photoproduction at HERA and for the LHC. As expected the resummed calcula-
tions were found to be compatible with the fixed-order results but have smaller uncertainties at large pT .
Resummed calculations for charm in two different schemes (GM-VFNS and FONLL) are anyway some-
what incompatible both at HERA and LHC, suggesting that their uncertainty may be underestimated.
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Fig. 9: Q-Q̄ correlations for charm at LHC: pT of the cc̄ pair (left) and azimuthal angle ∆φ between the c and the
c̄ (right). For both cross sections, the following kinematic cuts are applied: |Y c| < 2.5, |Y c̄| < 2.5, pc

T > 3 GeV,
pc̄

T > 6 GeV.

0 5 10 15 20 25 30-0.1

-0.05

0

0.05

0.1

0.15

 [GeV]
T

   pbb
0 5 10 15 20 25 30

 [
m

b
/G

eV
]

T
/d

p
σd

-0.1

-0.05

0

0.05

0.1

0.15

FO NLO (MNR)

CASCADE

|y| < 2.5

0 0.5 1 1.5 2 2.5 3-0.5

-0.4

-0.3

-0.2

-0.1

-0

0.1

0.2

0.3

0.4

0.5

| [rad]φ∆   |bb

0 0.5 1 1.5 2 2.5 3

 [
m

b
/r

ad
]

φ∆
/dσd

-0.5

-0.4

-0.3

-0.2

-0.1

-0

0.1

0.2

0.3

0.4

0.5

|y| < 2.5

Fig. 10: Q-Q̄ correlations for charm at LHC: pT of the bb̄ pair (left) and azimuthal angle ∆φ between the b and the
b̄ (right). For both cross sections, the following kinematic cuts are applied: |Y b| < 2.5, |Y b̄| < 2.5, pb

T > 3 GeV,
pb̄

T > 6 GeV.

Photoproduction at HERA

1

10

10 2

0 1 2 3

a)

∆φ(cc)

d
σ/

d
∆φ

   
(n

b
)

pt(c)>2.5 GeV

FMNR

Cascade

10
-2

10
-1

1

10

0 1 2 3

b)

∆φ(bb)

d
σ/

d
∆φ

   
(n

b
)

pt(b)>2.5 GeV

Fig. 11: Azimuthal Q-Q̄ correlations in photoproduction at HERA for charm (a) and beauty (b). One of the two
quarks was required to be in the “visible” region p T (Q) > 2.5 GeV and |Y (Q)| < 2.

BENCHMARK CROSS SECTIONS FOR HEAVY-FLAVOUR PRODUCTION

413



The KT -factorisation program CASCADE predicts larger cross sections than the other approaches
at large pT at LHC and for charm at HERA. The comparison for DIS was limited to FO-NLO and a MC
program with leading order matrix elements. Large discrepancies, which deserve further investigations,
were found in this case. A comparison with experimental data would be needed for further understanding
of the quality of the available calculations.
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Abstract
We summarize the main activities of the Working Group on Diffraction in
this workshop, which cover a wide range of experimental, phenomenological
and theoretical studies. Central themes are exclusive and inclusive diffraction
at HERA and the LHC, multiple interactions and rapidity gap survival, and
parton saturation.

1 Forward proton tagging at the LHC as a means to discover new physics
The use of forward proton tagging detectors at CMS and ATLAS as a means to search for and identify the
nature of new physics at the LHC was one of the major topics of discussion at the workshop. The process
of interest is the so-called ‘central exclusive’ production process pp → p⊕ φ⊕ p, where ⊕ denotes the
absence of hadronic activity (a ‘gap’) between the outgoing intact protons and the decay products of the
central system φ. The final state therefore consists of only the decay products of the system φ, which
can be seen in the central detectors, and the two outgoing protons, which must be detected at some point
downstream of the interaction point where they emerge far enough from the LHC beams. To this end, the
feasibility of installing proton tagging detectors at 420 m from the interaction points of ATLAS and/or
CMS, at a suitable time after the initial start-up of the LHC, is currently being assessed [1]. These would
complement and increase the acceptance of the detectors already planned in the 220 m/240 m region
by CMS / TOTEM and ATLAS. The choice of the 420 m region is set by the central system masses of
interest; protons which lose approximately 60 GeV of their longitudinal momentum — the interesting
range from the point of view of Higgs boson searches — emerge from the beam in this region.

The motivation for these studies stems from the unique properties of central exclusive production.
Firstly, the mass of the central system φ can be measured to high accuracy by measuring the four-
momenta of the outgoing protons alone, without reference to the central system (the so-called ‘missing
mass method’ [2]). The achievable mass resolution and the acceptance as a function of mass of the
420 m detectors (in combination with the already planned 220 m proton detectors) are discussed in detail
in these proceedings [3,4]. The resolution can be as good as 1 GeV for a Higgs boson of mass 140 GeV.
As an example, in the case of a 140 GeV Standard Model Higgs decaying to two W bosons, and the
subsequent leptonic decays of one or both of the W ’s to leptons plus neutrinos, six events are expected
with no modification of the level-1 trigger thresholds of ATLAS and CMS for 30 fb−1 of delivered
luminosity. We discuss the trigger issues in more detail below. This number is expected to double if
realistic changes are made to the leptonic trigger thresholds [5].
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A second crucial advantage is that, to a good approximation, the central system φ is produced
in the Jz = 0, C and P even state, and an absolute determination of the quantum numbers of any
resonance is possible by measuring correlations between the outgoing proton momenta. Observation of
any resonance production with associated proton tags, therefore, allows a determination of its quantum
numbers, something that is difficult to do in any other process at the LHC. Such a determination could
be made with only a few ‘gold-plated’ events.

Thirdly, states which would otherwise be very difficult to detect in conventional channels can be
detected in the central exclusive channel. Perhaps the best-studied example is the high tanβ region of the
MSSM, where over 100 signal events can be detected with backgrounds lower by an order of magnitude
or more, within 30 fb−1 of delivered luminosity at the LHC [6]. There are extensions to the MSSM in
which central exclusive production becomes in all likelihood the only method at the LHC of isolating the
underlying physics. One example [7] is the case where there are non-vanishing CP phases in the gaugino
masses and squark couplings. In such scenarios, the neutral Higgs bosons are naturally nearly degenerate
for large values of tanβ and charged Higgs masses around 150 GeV. In such scenarios, observing the
mass spectrum using forward proton tagging may well be the only way to explore such a Higgs sector at
the LHC. Explicit CP -violation in the Higgs sector can be observed as an asymmetry in the azimuthal
distributions of the tagged protons [8].

From an experimental perspective, the key issue along with the mass resolution and acceptance
is the level-1 (L1) trigger efficiency. The problem is that detectors at 420 m from the interaction points
of ATLAS or CMS are too far away to participate in a L1 trigger decision without an increase in the
trigger latency. This means that the central detectors, or forward detectors up to 220 m, must be relied
upon to keep candidate events until the signals from 420 m can be used in higher level trigger decisions.
A full description of the work done at the workshop is presented in Refs. [9, 10] in these proceedings.
The most difficult case is that of a low-mass (120 GeV) Higgs boson decaying in the b-quark channel
(a decay mode that will not be observed in any other measurement at the LHC). The relatively low
transverse momenta of the b-jets necessitate L1 jet ET thresholds as low as 40 GeV. Thresholds that
low would result in a L1 trigger rate of more than 50 kHz, because of the QCD background, and thus
would essentially saturate the available output bandwidth. The output rate of a 2-jet L1 trigger condition
with thresholds of 40 GeV per jet can be kept at an acceptable level of order 1 kHz in the absence of
pile-up (i.e. for a single proton–proton interaction per bunch crossing) by either using the TOTEM T1
and T2 detectors (or the ATLAS forward detectors) as vetoes — central exclusive events have no energy
in these regions — or by requiring that a proton be seen in the TOTEM (or ATLAS) detectors at 220 m
on one side of the interaction point. This gives a sufficient reduction of the QCD background event rate.
At higher luminosities, up to 2 × 1033 cm−2 s−1, where pile-up is present, it is necessary to combine a
220 m tag with additional conditions based on event topology and on HT , the scalar sum of all L1 jet ET

values. These L1 trigger conditions result in signal efficiencies between 15% and 20%. A further 10%
of the Higgs events can be retained by exploiting the muon-rich final state in the H → bb̄ mode, with no
requirements on the forward detectors. Other interesting decay channels, such as WW and ττ , should
be possible at the highest luminosities (1× 1034 cm−2 s−1) since both ATLAS and CMS will trigger on
such events routinely using only the central detectors.

As well as upgrading the proton tagging capabilities of ATLAS and CMS, there was also discus-
sion of upgrading the very forward region of CMS to extend the pseudo-rapidity coverage up to |η| ∼ 11.
This would allow proton x values down to 10−8 to be probed, opening up an unexplored region of small-x
parton dynamics [11].

In summary, central exclusive production provides an excellent means of measuring the masses of
new particles with a precision at the 1 GeV level, irrespective of the decay mode of the particles. It also
provides a clean way of unambiguously determining the quantum numbers of any resonances produced
in the central exclusive process (including Standard Model and MSSM Higgs bosons) at the LHC.

M. A RNEODO, J. BARTELS, A. BRUNI, B. E. COX, M. DIEHL , J. FORSHAW, M. GROTHE, . . .

418



In certain regions of the MSSM, and indeed for any scenarios in which the new particles couple
strongly to gluons, central exclusive production may be the discovery channel1. The challenge is to
design and build proton tagging detectors with the capability to measure the momentum loss of the
outgoing protons at the 1 GeV level.

2 Theory of diffractive Higgs production
It is a fact that the theoretical predictions for central exclusive production suffer from several sources of
uncertainty. The theoretical framework is presented and critically assessed in the contribution by Forshaw
[13]. The emphasis is on the calculations of the Durham group, which are performed within perturbative
QCD. The use of perturbative QCD is shown to be justified, with around 90% of the contribution to the
Standard Model Higgs production cross-section (mH = 120 GeV) coming from the region where the
gluon virtualities are all above 1 GeV.

One of the main sources of uncertainty in the perturbative calculation arises from a lack of knowl-
edge of the proton’s generalized, unintegrated gluon distribution function, and so far estimates are based
upon theoretically motivated corrections to the more familiar gluon distribution function. It is hard to
make an accurate assessment of the uncertainty arising from this source, but currently a factor of 2 un-
certainty on the Higgs production cross-section is probably not unrealistic. Measurements of exclusive
diffraction at HERA can help constrain the generalized gluon distribution in kinematics similar to the
one relevant for exclusive Higgs production at the LHC [14]. High-quality data are now available for
ep → e J/Ψ p. Exclusive production of Υ mesons and deeply virtual Compton scattering ep → eγp in-
volve smaller theoretical uncertainties, but are experimentally more demanding and should be explored
in more detail with HERA II data.

Since the focus is on exclusive final states such as p ⊕ H ⊕ p, it is necessary to sum the Su-
dakov logarithms which arise in perturbation theory. One must go beyond summing the leading double
logarithms and sum also the single logarithms. Without the single logs, one vastly underestimates the
production rate. Unfortunately, perturbative emissions are not the only way to spoil the exclusive nature
of the final state: extra particles can also be produced as a result of soft interactions between the colliding
protons. To account for such soft interactions is clearly outside of the scope of perturbation theory and
one is forced to resort to non-perturbative models. It is universally assumed that one can estimate the
effect of forbidding additional particle production by simply multiplying the perturbative cross-section
by an overall ‘gap survival’ factor [15]. The two most sophisticated models of this factor are discussed
in some detail and compared with each other in the contribution of Gotsman et al. [16]. It turns out
that, although the approaches are different in many respects, they tend to predict very similar values for
the gap survival factor. Nevertheless, both models are essentially multi-channel eikonal models and one
would like to test them against data. Fortunately that is possible: data from HERA and the Tevatron
already tend to support the theoretical models and future measurements at the LHC will allow one to
further constrain them.

Uncertainties in the gluon densities and in our knowledge of gap survival can be reduced as we
test our ideas against data, both at present colliders and at the LHC itself. Fortunately, these uncertainties
essentially factorize (from the hard subprocess which produces the central system) into a universal ‘ef-
fective gluon luminosity’ function. Thus one can hope to extract the important physics associated with
the production of the central system by first measuring the luminosity function in a ‘standard candle’ pro-
cess. The ideal candidate is pp → p + γγ + p [17] since the hard subprocess is well known (gg → γγ)
and the effective gluon luminosity can be extracted over a wide kinematic range. In this way one might
hope to extract the effective coupling of any centrally produced new physics to two gluons.

1For a recent review of the physics case for FP420, see [12] and references therein.
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During the period of the workshop, Monte Carlo codes have been developed which simulate the
theoretical predictions for both interesting signal processes and also the associated backgrounds. These
codes are now routinely used, for example, to help develop the case for the installation of low-angle
proton detectors at the LHC, and new processes are being added with time. A review and comparison of
the various Monte Carlos is to be found in the contribution of Boonekamp et al. [18].

3 Diffractive structure functions and diffractive parton distributions
The cross-section for the reaction ep → eXp can be expressed in terms of the diffractive structure
functions FD

2 and FD
L , in analogy to the way in which dσ/dx dQ2 is related to the structure functions

F2 and FL for inclusive DIS, ep → eX . The function FD
2 describes the proton structure in processes

in which a fast proton is present in the final state; FD
L corresponds to longitudinal polarization of the

virtual photon. Since in diffractive events the proton typically loses a fraction of less than 0.02–0.03
of its initial momentum, the parton participating in a diffractive interaction has a fractional momentum
which is also less than 0.02–0.03. Diffractive DIS thus probes the low-x structure of the proton, in a way
complementary to that provided by non-diffractive DIS.

Diffractive structure functions, like the usual ones, can be expressed as the convolution of universal
partonic cross-sections and a specific type of parton distribution functions, the diffractive PDFs. This is
the so-called diffractive factorization theorem. Diffractive PDFs can be determined by means of QCD
fits similar to those used for extracting the standard PDFs from the F2 data.

Several measurements of FD
2 are available from the H1 and ZEUS collaborations. Three alterna-

tive approaches have been used to select diffractive events:

1. a fast proton is required in the final state; this can be done only be means of a proton spectrometer
able to detect scattered protons which do not leave the beam pipe (see e.g. [19]);

2. a rapidity gap in the forward direction is required;
3. the different shape of the MX distribution for diffractive and non-diffractive events is exploited.

Method 1 selects the reaction ep → eXp with a high degree of purity; the acceptance of proton spec-
trometers is, however, small, yielding comparatively small samples. Methods 2 and 3 select the reaction
ep → eXY , as opposed to ep → eXp, with Y a proton or a low-mass system. Samples selected
with these two methods may include some contamination from non-diffractive processes. Method 3
suppresses the contribution of subleading exchanges (i.e. Reggeon and pion exchanges, as opposed to
Pomeron exchange), which is instead present in the samples selected with methods 1 and 2.

Results obtained with the three methods are presented and compared in these proceedings [20].
Methods 2 and 3 yield results for FD

2 which are higher than those obtained with the LPS by factors
as large as 1.4, depending on the degree of forward coverage. This normalization difference is due
to the proton-dissociative background (from ep → eXY ) and is relatively well understood. Having
corrected for this effect, the results of the three methods exhibit, at present, a fair degree of agreement.
However, differences in the shapes of the Q2, β and xIP dependences become apparent especially when
comparing the results obtained with method 3 and those obtained with methods 1 and 2. The origin of
these differences is at present not clear. An urgent task for the HERA community is to understand these
discrepancies and provide a consistent set of measurements of FD

2 .

Several NLO fits of the FD
2 data were discussed at the workshop [20–22]. The corresponding

parametrizations are available in Ref. [23]. The diffractive PDFs are dominated by gluons, as expected
given the low-x region probed, with the density of gluons larger than that of quarks by a factor 5–
10. There are significant discrepancies between the results of the fits, reflecting, at least in part, the
differences in the fitted data. In addition, Martin, Ryskin and Watt [22] argue that the leading-twist
formula used in Refs. [20,21] is inadequate in large parts of the measured kinematics, and use a modified
expression which includes an estimate of power-suppressed effects.
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The discrepancies between the various diffractive PDFs, while not fully understood, are at the
moment the best estimate of their uncertainties. Here as well, it is imperative that the HERA community
provide a consistent set of diffractive PDFs. Not only are they important for our understanding of the
proton structure, but they are also an essential input for any calculation of the cross-sections for inclusive
diffractive reactions at the LHC — which are interesting in themselves in addition to being a potentially
dangerous background to the central exclusive production processes discussed in Sections 1 and 2.

No direct measurement exists of FD
L . The dominant role played by gluons in the diffractive parton

densities implies that the leading-twist FD
L must also be relatively large. A measurement of FD

L to
even modest precision would provide an independent and theoretically very clean tool to verify our
understanding of the underlying dynamics and to test the gluon density extracted indirectly in QCD fits
from the scaling violations of FD

2 . This is discussed in Ref. [24].

4 Diffractive charm and dijet production at HERA
As mentioned in Section 2, the possibility to observe central exclusive processes depends critically on
the survival probability of large rapidity gaps. This probability is not unity as a consequence of the
rescattering between the spectator partons in the colliding hadrons: these interactions generate final-state
particles which fill the would-be rapidity gap and slow down the outgoing proton or antiproton [16]. This
is why the diffractive factorization theorem [25] is expected to fail for hadron–hadron scattering — and
therefore also for resolved photoproduction, where the photon acts as a hadron.

In pp̄ collisions at the Tevatron, breaking of diffractive factorization was indeed observed. The
fraction of diffractive dijet events at CDF is a factor 3 to 10 smaller than that predicted on the basis of
the diffractive parton densities obtained at HERA. Similar suppression factors were observed in all hard
diffractive processes in proton–antiproton collisions.

In photoproduction processes, however, the situation is far from clear at the moment. A recent
ZEUS result [26] indicates that the cross-section for diffractive photoproduction of D∗ mesons, a process
dominated by the direct photon component, is well described by NLO QCD predictions based on the
diffractive PDFs. This lends support to the idea that in direct processes the photon is pointlike and
that the diffractive factorization theorem holds in this case. Conversely, diffractive dijet data from H1
and ZEUS are better described by a global suppression of both the direct and resolved contribution.
A discussion of how this might be understood is given in Refs. [27, 28], where a critical study of the
factorization scheme and scale dependence of resolved and direct contributions is presented.

5 Multiple scattering at HERA and the LHC
A thorough analysis of the event structure at the LHC will have to take into account contributions from
multiple-parton interactions, i.e. from interactions involving more than one parton in each of the colliding
protons. Such multiple interactions are expected to be particularly important in the region of small lon-
gitudinal momentum fractions and not too high momentum scales. At HERA there are several pieces of
evidence that multiple interactions are present; the strongest one comes from the observation of diffrac-
tive final states in deep-inelastic electron–proton scattering. A useful tool for analysing these multiple
interactions are the so-called AGK cutting rules. During this workshop several groups have studied their
application to HERA and to future LHC scattering processes.

The theoretical basis of the AGK rules in perturbative QCD has been outlined in Ref. [29], and a
few first applications to HERA and to LHC scattering processes have been addressed. The contribution
by Watt et al. [30] uses the AGK rules for deriving, from the measured diffractive structure function,
absorptive corrections to the inclusive structure function F2. An iterative scheme is then set up which
leads to corrected parton densities: at low Q2 and small x, they tend to be higher than those without
absorptive corrections. In particular, they seem to weaken the trend of the gluon density becoming
negative, which has been seen in the global parton analyses of both MRST2004 and CTEQ6.
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The study presented in Ref. [31] is based upon a specific saturation model that has been suc-
cessfully applied both to the total γ∗p cross-section and to the diffractive process γ∗p → J/Ψ p. An
analysis of this model, based upon the AGK rules, leads to the conclusion that contributions of multiple
interactions to F2 are quite sizeable, even for Q2 as large as 40 GeV2.

6 Parton saturation: from HERA to the LHC
A key experimental finding of HERA is the strong rise of structure functions at small x, which implies
a high density of small-x gluons in the proton. From theoretical considerations, it is clear that for
sufficiently large parton densities, dynamics beyond what can be described by leading-twist factorization
and linear DGLAP evolution must become important. If the associated momentum scale is high enough,
the strong coupling is still small enough to serve as an expansion parameter, but at very high gluon
densities the gluon potential can be so strong that the non-linear term gsf

abcAb
µAc

ν in the gluon field
strength is as large as the linear term ∂µAa

ν − ∂νAa
µ. High parton densities thus offer the possibility to

study QCD in a strongly non-linear regime, and the effective theory of such a ‘colour glass condensate’
is reviewed in Ref. [32]. A possible link between the strong gluon fields in this description and QCD
instantons is discussed in Ref. [33].

The theory and phenomenology of parton saturation are in rapid development, of which the work-
shop could only provide a snapshot. Data on both inclusive and diffractive deeply inclusive scattering, in
particular their very similar energy dependence at given Q2, suggest that saturation effects are relevant in
HERA kinematics, see Ref. [34] and references therein. When saturation is important, the usual parton
densities cease to be the key input quantities for describing physical processes. For many reactions a suit-
able quantity is instead the colour-dipole cross-section — a concept that has been successfully applied in
HERA phenomenology. An important theoretical laboratory to study saturation effects is provided by
the non-linear Balitsky–Kovchegov equation. In a contribution to the workshop, this equation has been
applied to the colour-dipole cross-section for the proton [35]. To describe saturation in pp collisions in
general requires non-perturbative functions that can be written as matrix elements of Wilson line oper-
ators; one of these functions is the colour-dipole cross-section just mentioned [32]. The formulation of
suitable evolution equations for pp scattering is an active area of research [36].

7 Rapidity gaps in electroweak processes
Diffractive processes are characterized by rapidity gaps. Such gaps can also originate from the exchange
of a photon, a W or a Z boson (see for example Ref. [15]). Selecting events with large rapidity gaps filters
out specific final states and, at the same time, leads to better-constrained event kinematics. However, the
event rate is lowered by the gap survival probability, as discussed in the previous sections.

The contribution by Amapane et al. [37] discusses the possibility to study the scattering of longi-
tudinally polarized vector bosons (VL) in pp collisions with the CMS detector at the LHC. VLVL fusion
may lead to Higgs production; should the Higgs boson not exist, the cross-section for VLVL scattering
will deviate from the Standard Model prediction at high invariant masses of the VLVL system. In all
cases, VLVL scattering should shed light on the mechanism behind the electroweak symmetry breaking.
Preliminary studies based on Pythia and a fast simulation of the CMS detector are encouraging. It will
be interesting to investigate in more detail the potential of the rapidity-gap signature for improved signal
extraction and background control.

Large rapidity gaps at hadron colliders can also be due to photon exchange. In this case, a direct
tagging of high-energy photon interactions can be achieved by using forward proton detectors [38]. Both
photon–photon and photon–proton interactions at the LHC have been studied [39]. Some of these events
can be used to scan the gap survival probability in impact parameter space, which would help to constrain
models for gap survival. A reference point is given by single W boson photoproduction, which has been
studied theoretically in this context [40] and is being investigated at HERA.
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Finally, diffractive photoproduction of Υ mesons, currently being studied at HERA, can be ac-
cessed at the LHC in an extended range of small x. This will provide a very clean channel to study the
generalized gluon distribution (see Section 2) and can be seen as a complement to measurements of the
usual gluon distribution at very small x, for instance in forward jet production at the LHC.
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Diffraction for non-believers
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Abstract
Diffractive reactions involving a hard scale can be understood in terms of
quarks and gluons. These reactions have become a valuable tool for inves-
tigating the low-x structure of the proton and the behavior of QCD in the high-
density regime, and they may provide a clean environment to study or even
discover the Higgs boson at the LHC. In this paper we give a brief introduc-
tion to the description of diffraction in QCD. We focus on key features studied
in ep collisions at HERA and outline challenges for understanding diffractive
interactions at the LHC.

1 Introduction
In hadron-hadron scattering a substantial fraction of the total cross section is due to diffractive reactions.
Figure 1 shows the different types of diffractive processes in the collision of two hadrons: in elastic scat-
tering both projectiles emerge intact in the final state, whereas single or double diffractive dissociation
corresponds to one or both of them being scattered into a low-mass state; the latter has the same quantum
numbers as the initial hadron and may be a resonance or continuum state. In all cases, the energy of the
outgoing hadrons a, b or the states X , Y is approximately equal to that of the incoming beam particles,
to within a few per cent. The two (groups of) final-state particles are well separated in phase space and
in particular have a large gap in rapidity between them.

Fig. 1: Elastic scattering, single diffractive dissociation and double diffractive dissociation in the collision of two
hadrons a and b. The two (groups of) final-state hadrons are separated by a large rapidity gap (LRG). The zigzag
lines denote the exchange of a Pomeron (IP ) in the t-channel. There are further graphs, not shown, with multiple
Pomeron exchange.

Diffractive hadron-hadron scattering can be described within Regge theory (see e.g. [1]). In this
framework, the exchange of particles in the t-channel is summed coherently to give the exchange of
so-called “Regge trajectories”. Diffraction is characterized by the exchange of a specific trajectory, the
“Pomeron”, which has the quantum numbers of the vacuum. Regge theory has spawned a successful
phenomenology of soft hadron-hadron scattering at high energies. Developed in the 1960s, it predates
the theory of the strong interactions, QCD, and is based on general concepts such as dispersion rela-
tions. Subsequently it was found that QCD perturbation theory in the high-energy limit can be organized
following the general concepts of Regge theory; this framework is often referred to as BFKL after the
authors of the seminal papers [2].
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Fig. 2: Distribution of the intensity I in the diffraction of light of wavelength λ from a circular target of size R0.

It is clear that a t-channel exchange leading to a large rapidity gap in the final state must carry zero
net color: if color were exchanged, the color field would lead to the production of further particles filling
any would-be rapidity gap. In QCD, Pomeron exchange is described by the exchange of two interacting
gluons with the vacuum quantum numbers.

The effort to understand diffraction in QCD has received a great boost from studies of diffractive
events in ep collisions at HERA (see e.g. [3] for further reading and references). The essential results of
these studies are discussed in the present paper and can be summarized as follows:

– Many aspects of diffraction are well understood in QCD when a hard scale is present, which
allows one to use perturbative techniques and thus to formulate the dynamics in terms of quarks
and gluons. By studying what happens when the hard scale is reduced towards the non-perturbative
region, it may also be possible to shed light on soft diffractive processes.

– Diffraction has become a tool to investigate low-momentum partons in the proton, notably through
the study of diffractive parton densities in inclusive processes and of generalized parton distribu-
tions in exclusive ones. Diffractive parton densities can be interpreted as conditional probabilities
to find a parton in the proton when the final state of the process contains a fast proton of given four-
momentum. Generalized parton distributions, through their dependence on both longitudinal and
transverse variables, provide a three-dimensional picture of the proton in high-energy reactions.

– A fascinating link has emerged between diffraction and the physics of heavy-ion collisions through
the concept of saturation, which offers a new window on QCD dynamics in the regime of high
parton densities.

Perhaps unexpectedly, the production of the Higgs boson in diffractive pp collisions is drawing more
and more attention as a clean channel to study the properties of a light Higgs boson or even discover
it. This is an example of a new theoretical challenge: to adapt and apply the techniques for the QCD
description of diffraction in ep collisions to the more complex case of pp scattering at the LHC. A first
glimpse of phenomena to be expected there is provided by the studies of hard diffraction in pp̄ collisions
at the Tevatron.

1.1 A digression on the nomenclature: why “diffraction” ?
Physics students first encounter the term “diffraction” in optics. Light of wavelength λ impinging on
a black disk of radius R0 produces on a distant screen a diffraction pattern, characterized by a large
forward peak for scattering angle θ = 0 (the “diffraction peak”) and a series of symmetric minima and
maxima, with the first minimum at θmin ' ±λ/(2R0) (Fig. 2). The intensity I as a function of the
scattering angle θ is given by

I(θ)

I(θ = 0)
=

[2J1(x)]2

x2
' 1− R2

0

4
(kθ)2, (1)
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Fig. 3: Compilation of proton-proton elastic cross section data as a function of t. The symbol P indicates the
momentum of the incoming proton in a fixed target experiment and

√
s the center-of-mass energy in a pp collider

setup.

where J1 is the Bessel function of the first order and x = kR0 sin θ ' kR0 θ with k = 2π/λ. The
diffraction pattern is thus related to the size of the target and to the wavelength of the light beam.

As shown in Fig. 3, the differential cross section dσ/dt for elastic proton-proton scattering, pp→
pp, bears a remarkable resemblance to the diffraction pattern just described (see e.g. [4]). At low values
of |t| one has

dσ
dt (t)

dσ
dt (t = 0)

' e−b|t| ' 1− b (Pθ)2, (2)

where |t| ' (Pθ)2 is the absolute value of the squared four-momentum transfer, P is the incident proton
momentum and θ is the scattering angle. The t-slope b can be written as b = R2/4, where once again
R is related to the target size (or more precisely to the transverse distance between projectile and target).
A dip followed by a secondary maximum has also been observed, with the value of |t| at which the dip
appears decreasing with increasing proton momentum. It is hence not surprising that the term diffraction
is used for elastic pp scattering. Similar t distributions have been observed for the other diffractive
reactions mentioned above, leading to the use of the term diffraction for all such processes.

1.2 Diffraction at HERA ?!
Significant progress in understanding diffraction has been made at the ep collider HERA, where 27.5 GeV
electrons or positrons collide with 820 or 920 GeV protons. This may sound peculiar: diffraction is a
typical hadronic process while ep scattering at HERA is an electro-weak reaction, where the electron
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Fig. 4: Schematic diagram of inclusive diffractive DIS, ep→ eXp. Four-momenta are indicated in parentheses.

radiates a virtual photon (or a Z or W boson), which then interacts with the proton.1 To understand
this, it is useful to look at ep scattering in a frame where the virtual photon moves very fast (for instance
in the proton rest frame, where the γ∗ has a momentum of up to about 50 TeV at HERA). The virtual
photon can fluctuate into a quark-antiquark pair. Because of its large Lorentz boost, this virtual pair
has a lifetime much longer than a typical strong interaction time. In other words, the photon fluctuates
into a pair long before the collision, and it is the pair that interacts with the proton. This pair is a small
color dipole. Since the interaction between the pair and the proton is mediated by the strong interaction,
diffractive events are possible.

An advantage of studying diffraction in ep collisions is that, for sufficiently large photon virtuality
Q2, the typical transverse dimensions of the dipole are small compared to the size of a hadron. Then the
interaction between the quark and the antiquark, as well as the interaction of the pair with the proton, can
be treated perturbatively. With decreasing Q2 the color dipole becomes larger, and at very low Q2 these
interactions become so strong that a description in terms of quarks and gluons is no longer justified. We
may then regard the photon as fluctuating into a vector meson – this is the basis of the well-known vector
meson dominance model – and can therefore expect to see diffractive reactions very similar to those in
hadron-hadron scattering.

A different physical picture is obtained in a frame where the incident proton is very fast. Here, the
diffractive reaction can be seen as the deep inelastic scattering (DIS) of a virtual photon on the proton
target, with a very fast proton in the final state. One can thus expect to probe partons in the proton in a
very specific way. For suitable diffractive processes there are in fact different types of QCD factorization
theorems, which bear out this expectation (see Sects. 2 and 3).

2 Inclusive diffractive scattering in ep collisions
Figure 4 shows a schematic diagram of inclusive diffractive DIS. The following features are important:

– The proton emerges from the interaction carrying a large fraction xL of the incoming proton mo-
mentum. Diffractive events thus appear as a peak at xL ≈ 1, the diffractive peak, which at HERA
approximately covers the region 0.98 < xL < 1 (see the left panel of Fig. 5). The right panel of
Fig. 5 shows that large values of |t| are exponentially suppressed, similarly to the case of elastic
pp scattering we discussed in Sect. 1.1. These protons remain in the beam-pipe and can only be
measured with detectors located inside the beam-pipe.

– The collision of the virtual photon with the proton produces a hadronic final state X with the
photon quantum numbers and invariant mass MX . A large gap in rapidity (or pseudorapidity) is
present between X and the final-state proton. Figure 6 shows a typical diffractive event at HERA.

1For simplicity we will speak of a virtual photon in the following, keeping in mind that one can have a weak gauge boson
instead.
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Fig. 5: Left: Differential cross section dσ/dxL for the process ep → eXp (from [5]). The diffractive peak at
xL ≈ 1 is clearly visible. Right: Differential cross section dσ/dt for the same process for xL > 0.99 (from [6]).
The average |t| of this spectrum is 〈|t|〉 ≈ 0.15 GeV2.

Diffractive ep scattering thus combines features of hard and soft scattering. The electron receives a large
momentum transfer; in fact Q2 can be in the hundreds of GeV2. In contrast, the proton emerges with its
momentum barely changed.

2.1 Diffractive structure functions
The kinematics of γ∗p→ Xp can be described by the invariants Q2 = −q2 and t = (P − P ′)2, and by
the scaling variables xIP and β given by

xIP =
(P − P ′) · q

P · q =
Q2 +M2

X − t
W 2 +Q2 −M2

p

, β =
Q2

2(P − P ′) · q =
Q2

Q2 +M2
X − t

, (3)

where W 2 = (P + q)2 and the four-momenta are defined in Fig. 4. The variable xIP is the fractional
momentum loss of the incident proton, related as xIP ' 1−xL to the variable xL introduced above. The
quantity β has the form of a Bjorken variable defined with respect to the momentum P − P ′ lost by the
initial proton instead of the initial proton momentum P . The usual Bjorken variable xB = Q2/(2P · q)
is related to β and xIP as βxIP = xB .

The cross section for ep → eXp in the one-photon exchange approximation can be written in
terms of diffractive structure functions FD(4)

2 and FD(4)
L as

dσep→eXp

dβ dQ2 dxIP dt
=

4πα2
em

βQ4

[(
1− y +

y2

2

)
F
D(4)
2 (β,Q2, xIP , t)−

y2

2
F
D(4)
L (β,Q2, xIP , t)

]
, (4)

in analogy with the way dσep→eX/(dxB dQ2) is related to the structure functions F2 and FL for inclusive
DIS, ep→ eX . Here y = (P ·q)/(P ·k) is the fraction of energy lost by the incident lepton in the proton
rest frame. The structure function FD(4)

L corresponds to longitudinal polarization of the virtual photon;
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Fig. 6: A DIS event with a large rapidity gap (LRG) observed with the ZEUS detector at HERA. The scattered
proton escapes into the beam-pipe. The symbol ∆η denotes the difference in pseudorapidity between the scattered
proton and the most forward particle of the observed hadronic system X . Pseudorapidity is defined as η =

− ln tan(θ/2) in terms of the polar angle θ measured with respect to the incoming proton direction, which is
defined as “forward”.

γ∗ γ∗

β X

(a)
p(P) p(P’)

 

X
xB

(b)
p(P)

Fig. 7: Parton model diagrams for deep inelastic diffractive (a) and inclusive (b) scattering. The variable β is the
momentum fraction of the struck quark with respect to P − P ′, and xB its momentum fraction with respect to P .

its contribution to the cross section is small in a wide range of the experimentally accessible kinematic
region (in particular at low y). The structure function FD(3)

2 is obtained from F
D(4)
2 by integrating over t:

F
D(3)
2 (β,Q2, xIP ) =

∫
dt F

D(4)
2 (β,Q2, xIP , t). (5)

In a parton model picture, inclusive diffraction γ∗p→ Xp proceeds by the virtual photon scatter-
ing on a quark, in analogy to inclusive scattering (see Fig. 7). In this picture, β is the momentum fraction
of the struck quark with respect to the exchanged momentum P − P ′ (indeed the allowed kinematical
range of β is between 0 and 1). The diffractive structure function describes the proton structure in these
specific processes with a fast proton in the final state. FD

2 may also be viewed as describing the struc-
ture of whatever is exchanged in the t-channel in diffraction, i.e. of the Pomeron (if multiple Pomeron
exchange can be neglected). It is however important to bear in mind that the Pomeron in QCD cannot be
interpreted as a particle on which the virtual photon scatters, as we will see in Sect. 2.5.

Figures 8 and 9 show recent H1 data [7] on FD(3)
2 at fixed xIP as a function of β for different Q2

bins, and as a function of Q2 for different bins of β.2 The data have two remarkable features:
2To be precise, the H1 data are for the so-called reduced diffractive cross section, which equals FD(3)

2 if FDL can be
neglected.
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Fig. 8: Left: the diffractive structure function of the proton as a function of β (from [7]). Right: the structure
function of the proton as a function of xB (from [8]). The two highlighted bins show the different shapes of FD2
and F2 in corresponding ranges of β and xB at equal Q2.

Fig. 9: Left: the diffractive structure function of the proton as a function of Q2 (from [7]). Right: the structure
function of the proton as a function of Q2 (from [9]).
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– FD2 is largely flat in the measured β range. Keeping in mind the analogy between β in diffractive
DIS and xB in inclusive DIS, this is very different from the behavior of the “usual” structure
function F2, which strongly decreases for xB & 0.2 (see Fig. 8).

– The dependence on Q2 is logarithmic, i.e. one observes approximate Bjorken scaling. This in-
dicates the applicability of the parton model picture to inclusive γ∗p diffraction. The structure
function FD2 increases with Q2 for all β values except the highest. This is reminiscent of the
scaling violations of F2, except that F2 rises with Q2 only for xB . 0.2 and that the scaling vio-
lations become negative at higher xB (see Fig. 9). In the proton, negative scaling violations reflect
the presence of the valence quarks radiating gluons, while positive scaling violations are due to the
increase of the sea quark and gluon densities as the proton is probed with higher resolution. The
FD2 data thus suggest that the partons resolved in diffractive events are predominantly gluons. This
is not too surprising if one bears in mind that these partons carry only a small part of the proton
momentum: the struck quark in the diagram of Fig. 7a has a momentum fraction βxIP = xB with
respect to the incident proton, and xIP . 0.02 – 0.03 in diffractive events.

2.2 Diffractive parton distributions
The conclusion just reached can be made quantitative by using the QCD factorization theorem for inclu-
sive diffraction, γ∗p → Xp, which formalizes the parton model picture we have already invoked in our
discussion. According to this theorem, the diffractive structure function, in the limit of large Q2 at fixed
β, xIP and t, can be written as [10–12]

F
D(4)
2 (β,Q2, xIP , t) =

∑

i

∫ 1

β

dz

z
Ci

(β
z

)
fDi (z, xIP , t;Q

2), (6)

where the sum is over partons of type i. The coefficient functions Ci describe the scattering of the
virtual photon on the parton and are exactly the same as in inclusive DIS. In analogy to the usual parton
distribution functions (PDFs), the diffractive PDFs fDi (z, xIP , t;Q

2) can be defined as operator matrix
elements in a proton state, and their dependence on the scale Q2 is given by the DGLAP evolution
equations. In parton model language, they can be interpreted as conditional probabilities to find a parton
i with fractional momentum zxIP in a proton, probed with resolution Q2 in a process with a fast proton
in the final state (whose momentum is specified by xIP and t).

During the workshop, several fits of the available FD
2 data were discussed which are based on the

factorization formula (6) at next-to-leading order (NLO) in αs [13,14]. Figure 10 compares the diffractive
PDFs from an earlier H1 fit [7] to those from the fit of the ZEUS data [15] by Schilling and Newman [13].
As expected the density of gluons is larger than that of quarks, by about a factor 5–10. Discrepancies
between the two sets are evident, and it remains to be clarified to which extent they reflect differences in
the fitted data. Martin, Ryskin and Watt [16] have argued that the leading-twist formula (6) is inadequate
in large parts of the measured kinematics, and performed a fit to a modified expression which includes
an estimate of power-suppressed effects. The discrepancies between the various diffractive PDFs, while
not fully understood, may be taken as an estimate of the uncertainties on these functions at this point in
time. A precise and consistent determination of the diffractive PDFs and their uncertainties is one of the
main tasks the HERA community has to face in the near future. They are a crucial input for predicting
cross sections of inclusive diffractive processes at the LHC.

2.3 Diffractive hard-scattering factorization
Like usual parton densities, diffractive PDFs are process-independent functions. They appear not only
in inclusive diffraction but also in other processes where diffractive hard-scattering factorization holds.
In analogy with Eq. (6), the cross section of such a process can be evaluated as the convolution of the
relevant parton-level cross section with the diffractive PDFs. For instance, the cross section for charm
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NLO QCD fits to H1 and ZEUS data

0

0.2

10
-2

10
-1

z 
Σ(

z,
Q

2 )

0

1

2

10
-2

10
-1

z 
g(

z,
Q

2 ) Q2

[GeV2]

6.5

0

0.2

10
-2

10
-1

0

1

2

10
-2

10
-1

15

0

0.2

10
-2

10
-1

z

0

1

2

10
-2

10
-1

z

90

Singlet Gluon

NLO fit to ZEUS Mx (exp. error)
H1 2002 NLO fit (prel.)
(exp. error)
(exp.+theor. error)

Fig. 10: Diffractive quark singlet and gluon distributions obtained from fits to H1 [7] and ZEUS [15] data
(from [13]).
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Fig. 11: Cross section for dijet production in diffractive DIS, compared with the expectations based on the diffrac-
tive PDFs [7] (from [17]). The variable zjets

IP estimates the fractional momentum of the parton entering the hard
subprocess.
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production in diffractive DIS can be calculated at leading order in αs from the γ∗g → cc̄ cross section
and the diffractive gluon distribution. An analogous statement holds for jet production in diffractive DIS.
Both processes have been analyzed at next-to-leading order in αs.

As an example, Fig. 11 shows a comparison between the measured cross sections for diffractive
dijet production and the expectations based on diffractive PDFs extracted from a fit to F D

2 . These data
lend support to the validity of hard-scattering factorization in diffractive γ ∗p interactions. For further
discussion we refer the reader to [18].

2.4 Limits of diffractive hard-scattering factorization: hadron-hadron collisions
A natural question to ask is whether one can use the diffractive PDFs extracted at HERA to describe hard
diffractive processes such as the production of jets, heavy quarks or weak gauge bosons in pp̄ collisions
at the Tevatron. Figure 12 shows results on diffractive dijet production from the CDF collaboration [19]
compared to the expectations based on the diffractive PDFs [6, 7] from HERA. The discrepancy is spec-
tacular: the fraction of diffractive dijet events at CDF is a factor 3 to 10 smaller than would be expected on
the basis of the HERA data. The same type of discrepancy is consistently observed in all hard diffractive
processes in pp̄ events, see e.g. [20]. In general, while at HERA hard diffraction contributes a fraction of
order 10% to the total cross section, it contributes only about 1% at the Tevatron.

H1 2002 σr
D QCD Fit (prel.)

QCD fit to ZEUS 97 data
CDF

β

F JJD

10
-1

1

10

10 2

10
-1

Fig. 12: CDF results for the cross section of diffractive dijet production with a leading antiproton in pp̄ collisions
(expressed in terms of a structure function FDJJ ), compared with the predictions obtained from the diffractive
PDFs [6] and [7] extracted at HERA (from [21]). See also the analogous plot in the original CDF publication [19].

In fact, diffractive hard-scattering factorization does not apply to hadron-hadron collisions [11,12].
Attempts to establish corresponding factorization theorems fail because of interactions between spectator
partons of the colliding hadrons. The contribution of these interactions to the cross section does not
decrease with the hard scale. Since they are not associated with the hard-scattering subprocess (see
Fig. 13), we no longer have factorization into a parton-level cross section and the parton densities of
one of the colliding hadrons. These interactions are generally soft, and we have at present to rely on
phenomenological models to quantify their effects [22].
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p
p

p

Fig. 13: Example graph for diffractive dijet production with a leading antiproton in a pp̄ collision. The interaction
indicated by the large vertical blob breaks hard diffractive factorization. It reduces the diffractive cross section, as
explained in the text.

The yield of diffractive events in hadron-hadron collisions is lowered precisely because of these
soft interactions between spectator partons (often referred to as “reinteractions” or “multiple scatter-
ings”). They can produce additional final-state particles which fill the would-be rapidity gap (hence the
often-used term “rapidity gap survival”). When such additional particles are produced, a very fast proton
can no longer appear in the final state because of energy conservation. Diffractive factorization breaking
is thus intimately related to multiple scattering in hadron-hadron collisions; understanding and describing
this phenomenon is a challenge in the high-energy regime that will be reached at the LHC [23].

In pp or pp̄ reactions, the collision partners are both composite systems of large transverse size, and
it is not too surprising that multiple interactions between their constituents can be substantial. In contrast,
the virtual photon in γ∗p collisions has small transverse size, which disfavors multiple interactions and
enables diffractive factorization to hold. According to our discussion in Sect. 1.2, we may expect that for
decreasing virtuality Q2 the photon behaves more and more like a hadron, and diffractive factorization
may again be broken. This aspect of diffractive processes in photoproduction at HERA was intensively
discussed during the workshop, and findings are reported in [18].

2.5 Space-time structure: the Pomeron is not a particle
It is tempting to interpret diffractive γ∗p processes as the scattering of a virtual photon on a Pomeron
which has been radiated off the initial proton. Diffractive DIS would then probe the distribution of par-
tons in a “Pomeron target”. This is indeed the picture proposed by Ingelman and Schlein long ago [24].

This picture is however not supported by an analysis in QCD (see e.g. [25]). There, high-energy
scattering is dominated by the exchange of two gluons, whose interaction is (in an appropriate gauge)
described by ladder diagrams, as shown in Fig. 14. By analyzing these diagrams in time-ordered per-
turbation theory, one can obtain the dominant space-time ordering in the high-energy limit. The result
depends on the reference frame, as illustrated in the figure. In the Breit frame, which is natural for a
parton-model interpretation, the photon does not scatter off a parton in a pre-existing two-gluon system;
in fact some of the interactions in the gluon ladder building up the Pomeron exchange take place long
after the virtual photon has been absorbed. The picture in the Breit frame is however compatible with
the interpretation of diffractive parton densities given in Sect. 2.2, namely the probability to find a parton
under the condition that subsequent interactions will produce a fast proton in the final state.

We note that the Ingelman-Schlein picture suggests that the diffractive structure function takes a
factorized form F

D(4)
2 = fIP (xIP , t)F

IP
2 (β,Q2), where fIP is the “Pomeron flux” describing the emis-

sion of the Pomeron from the proton and its subsequent propagation, and where F IP
2 is the “structure

function of the Pomeron”. Phenomenologically, such a factorizing ansatz works not too badly and is
often used, but recent high-precision data have shown its breakdown at small xIP [15].
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Fig. 14: Dominant time ordering for diffractive dissociation of a virtual photon in (a) the Breit frame, (b) the
photon-proton center-of-mass, (c) the proton rest frame. The physical picture in (a) corresponds to the parton-
model description of diffraction, and the one in (b) and (c) to the picture of the photon splitting into a quark-
antiquark dipole which subsequently interacts with the proton.

3 Exclusive diffractive processes
Let us now discuss diffractive processes where a real or virtual photon dissociates into a single particle.
Since diffraction involves the exchange of vacuum quantum numbers, this particle can in particular be
a vector meson (which has the same JPC quantum numbers as the photon) – in this case the process
is sometimes referred to as “elastic” vector meson production. Another important case is deeply virtual
Compton scattering (DVCS), γ∗p→ γp.3 A striking feature of the data taken at HERA (Figs. 15 and 16)
is that the energy dependence of these processes becomes steep in the presence of a hard scale, which can
be either the photon virtuality Q2 or the mass of the meson in the case of J/Ψ or Υ production. This is
similar to the energy dependence of the γ∗p total cross section (related by the optical theorem to forward
Compton scattering, γ∗p→ γ∗p), which changes from flat to steep when going from real photons to Q2

of a few GeV2.

To understand this similarity, let us recall that in perturbative QCD diffraction proceeds by two-
gluon exchange. The transition from a virtual photon to a real photon or to a quark-antiquark pair
subsequently hadronizing into a meson is a short-distance process involving these gluons, provided that
either Q2 or the quark mass is large. In fact, in an approximation discussed below, the cross sections for
DVCS and vector meson production are proportional to the square of the gluon distribution in the proton,
evaluated at a scale of order Q2 + M2

V and at a momentum fraction xIP = (Q2 + M2
V )/(W 2 + Q2),

where the vector meson mass MV now takes the role of MX in inclusive diffraction [28]. In analogy
to the case of the total γ∗p cross section, the energy dependence of the cross sections shown in Figs. 15
and 16 thus reflects the x and scale dependence of the gluon density in the proton, which grows with
decreasing x with a slope becoming steeper as the scale increases.

There is however an important difference in how the gluon distribution enters the descriptions of
inclusive DIS and of exclusive diffractive processes. The inclusive DIS cross section is related via the
optical theorem to the imaginary part of the forward virtual Compton amplitude, so that the graphs in
Fig. 17 represent the cross section of the inclusive process. Hence, the gluon distribution in Fig. 17a gives
the probability to find one gluon in the proton (with any number of unobserved spectator partons going
into the final state). In contrast, the corresponding graphs for DVCS and exclusive meson production
in Fig. 18 represent the amplitudes of exclusive processes, which are proportional to the probability
amplitude for first extracting a gluon from the initial proton and then returning it to form the proton in
the final state. In the approximation discussed below, this probability amplitude is given by the gluon
distribution. The cross sections of DVCS and exclusive meson production are then proportional to the
square of the gluon distribution.

A detailed theoretical analysis of DVCS and exclusive meson production at large Q2 shows that
short-distance factorization holds, in analogy to the case of inclusive DIS. QCD factorization theo-
rems [29] state that in the limit of large Q2 (at fixed Bjorken variable xB and fixed t) the Compton

3We do not discuss processes with diffractive dissociation of the proton in this paper, but wish to mention interesting studies
of vector meson or real photon production at large |t|, where the proton predominantly dissociates, see e.g. [26].
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Fig. 15: Compilation of results on the cross section for vector meson photoproduction, γp→ V p, with V = ρ, ω,
φ, J/Ψ, ψ′, Υ, as a function W . The total γp cross section σtot is also shown.

amplitude factorizes into a hard-scattering subprocess and a hadronic matrix element describing the emis-
sion and reabsorption of a parton by the proton target (see Fig. 18a). As shown in Fig. 18b, the analogous
result for exclusive meson production involves in addition the quark-antiquark distribution amplitude of
the meson (often termed the meson wave function) and thus a further piece of non-perturbative input.

The hadronic matrix elements appearing in the factorization formulae for exclusive processes
would be the usual PDFs if the proton had the same momentum in the initial and final state. Since
this is not the case, they are more general functions taking into account the momentum difference be-
tween the initial and final state proton (or, equivalently, between the emitted and reabsorbed parton).
These “generalized parton distributions” (GPDs) depend on two independent longitudinal momentum
fractions instead of a single one (compare Figs. 17a and 18a), on the transverse momentum transferred
to the proton (whose square is −t to a good approximation at high energy), and on the scale at which the
partons are probed. The scale dependence of the GPDs is governed by a generalization of the DGLAP
equations. The dependence on the difference of the longitudinal momenta (often called “skewness”)
contains information on correlations between parton momenta in the proton wave function. It can be
neglected in the approximation of leading log x (then the GPDs at t = 0 reduce to the usual PDFs as
anticipated above), but it is numerically important in typical HERA kinematics. The dependence on
t allows for a very intuitive interpretation if a Fourier transformation is performed with respect to the
transverse momentum transfer. We then obtain distributions depending on the impact parameter of the
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Fig. 16: Cross section for exclusive ρ production as a function of W (from [27]). The lines represent the result of
fits to the data with the form σ(γ∗p→ ρp) ∝W δ, yielding the exponents given in the figure.

partons, which describe the two-dimensional distribution of the struck parton in the transverse plane, and
on its longitudinal momentum fraction in the proton. The t dependence of exclusive diffractive processes
thus provides unique information beyond the longitudinal momentum spectra encoded in the usual par-
ton densities. The study of the generalized parton distributions is a prime reason to measure DVCS and
exclusive meson production in ep scattering. Detailed discussions and references can be found in the
recent reviews [30, 31].

An observable illustrating the short-distance factorization in meson production at high Q2 is the
ratio of the φ and ρ production cross sections, shown in Fig. 19. At large Q2 the process is described in
terms of a light quark coupling to the photon and of the generalized gluon distribution. Using approxi-
mate flavor SU(3) symmetry between the ρ and φ wave functions, the only difference between the two
channels is then due to different quark charge and isospin factors, which result in a cross section ratio of
2/9.

3.1 High-energy factorization and the dipole picture
So far we have discussed the description of hard exclusive diffraction within short-distance, or collinear
factorization. A different type of factorization is high-energy, or kt factorization, which is based on the
BFKL formalism. Here the usual or generalized gluon distribution appearing in the factorization formu-
lae depends explicitly on the transverse momentum kt of the emitted gluon. In collinear factorization,
this kt is integrated over in the parton distributions and set to zero when calculating the hard-scattering
process (the partons are thus approximated as “collinear” with their parent hadron). Likewise, the me-
son wave functions appearing in kt factorization explicitly depend on the relative transverse momentum
between the quark and antiquark in the meson, whereas this is integrated over in the quark-antiquark
distribution amplitudes (cf. Sect. 3) of the collinear factorization formalism. Only gluon distributions
appear in kt factorization, whereas collinear factorization formulae involve both quark and gluon dis-
tributions (see e.g. Sects. 8.1 and 8.2 in [30] for a discussion of this difference). We note that other
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Fig. 17: Factorization of forward Compton scattering, which is related to the total inclusive structure function
via the optical theorem, ImA(γ∗p → γ∗p) = 1

2

∑
X |A(γ∗p → X)|2 ∝ σ(γ∗p → X). The final state of the

inclusive process is obtained by cutting the diagrams along the vertical line. The blobs represent the gluon or quark
distribution in the proton. Graph (b) is absent in the kt factorization formalism (see Sect. 3.1): its role is taken by
graph (a) in the “aligned jet configuration”, where the quark line joining the two photons carries almost the entire
photon momentum.
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Fig. 18: (a) Factorization of deeply virtual Compton scattering, γ∗p→ γp, which can be measured in the exclusive
process ep→ epγ. The blob represents the generalized gluon distribution, with x and x′ denoting the momentum
fractions of the gluons. (b) Factorization of exclusive meson production. The small blob represents the vector
meson wave function. In the collinear factorization formalism, there are further graphs (not shown) involving
quark instead of gluon exchange.
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Fig. 19: The ratio of cross sections for γ∗p→ φp and γ∗p→ ρp as a function of the photon virtuality (from [32]).
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Fig. 20: The dipole representation of the amplitudes for Compton scattering (a) and for meson production (b),
corresponding to the graphs in Figs. 17a and 18.

factorization schemes have been developed, which combine features of the collinear and kt factorization
formalisms.

The two different types of factorization implement different ways of separating different parts of
the dynamics in a scattering process. The building blocks in a short-distance factorization formula corre-
spond to either small or large particle virtuality (or equivalently to small or large transverse momentum),
whereas the separation criterion in high-energy factorization is the particle rapidity. Collinear and k t
factorization are based on taking different limits: in the former case the limit of large Q2 at fixed xB and
in the latter case the limit of small xB at fixed Q2 (which must however be large enough to justify the
use of QCD perturbation theory). In the common limit of large Q2 and small xB the two schemes give
coinciding results. Instead of large Q2 one can also take a large quark mass in the limits just discussed.

A far-reaching representation of high-energy dynamics can be obtained by casting the results of k t
factorization into a particular form. The different building blocks in the graphs for Compton scattering
and meson production in Figs. 17a and 18 can be rearranged as shown in Fig. 20. The result admits a
very intuitive interpretation in a reference frame where the photon carries large momentum (this may be
the proton rest frame but also a frame where the proton moves fast, see Fig. 14): the initial photon splits
into a quark-antiquark pair, which scatters on the proton and finally forms a photon or meson again. This
is the picture we have already appealed to in Sect. 1.2.

In addition, one can perform a Fourier transformation and trade the relative transverse momentum
between quark and antiquark for their transverse distance r, which is conserved in the scattering on the
target. The quark-antiquark pair acts as a color dipole, and its scattering on the proton is described by
a “dipole cross section” σqq̄ depending on r and on xIP (or on xB in the case of inclusive DIS). The
wave functions of the photon and the meson depend on r after Fourier transformation, and at small r
the photon wave function is perturbatively calculable. Typical values of r in a scattering process are
determined by the inverse of the hard momentum scale, i.e. r ∼ (Q2 +M2

V )−1/2. An important result of
high-energy factorization is the relation

σqq̄(r, x) ∝ r2xg(x) (7)

at small r, where we have replaced the generalized gluon distribution by the usual one in the spirit of the
leading log x approximation. A more precise version of the relation (7) involves the kt dependent gluon
distribution. The dipole cross section vanishes at r = 0 in accordance with the phenomenon of “color
transparency”: a hadron becomes more and more transparent for a color dipole of decreasing size.

The scope of the dipole picture is wider than we have presented so far. It is tempting to apply it
outside the region where it can be derived in perturbation theory, by modeling the dipole cross section
and the photon wave function at large distance r. This has been very been fruitful in phenomenology, as
we will see in the next section.

The dipole picture is well suited to understand the t dependence of exclusive processes, parameter-
ized as dσ/dt ∝ exp(−b|t|) at small t. Figure 21 shows that b decreases with increasing scale Q2 +M2

V
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Fig. 21: The logarithmic slope of the t dependence at t = 0 for different meson production channels, as well as
for non-resonant dipion production.

and at high scales becomes independent of the produced meson. A Fourier transform from momentum
to impact parameter space readily shows that b is related to the typical transverse distance between the
colliding objects, as anticipated by the analogy with optical diffraction in Sect. 1.1. At high scale, the qq̄
dipole is almost pointlike, and the t dependence of the cross section is controlled by the t dependence
of the generalized gluon distribution, or in physical terms, by the transverse extension of the proton. As
the scale decreases, the dipole acquires a size of its own, and in the case of ρ or φ photoproduction,
the values of b reflect the fact that the two colliding objects are of typical hadronic dimensions; similar
values would be obtained in elastic meson-proton scattering.

3.2 Exclusive diffraction in hadron-hadron collisions
The concepts we have introduced to describe exclusive diffraction can be taken over to pp or pp̄ scat-
tering, although further complications appear in these processes. A most notable reaction is exclusive
production of a Higgs boson, pp → pHp, sketched in Fig. 22. The generalized gluon distribution is
a central input in this description. The physics interest, theory description, and prospects to measure
this process at the LHC have been discussed in detail at this workshop [33, 34]. A major challenge in
the description of this process is to account for secondary interactions between spectator partons of the
two projectiles, which can produce extra particles in the final state and hence destroy the rapidity gaps
between the Higgs and final-state protons – the very same mechanism we discussed in Sect. 2.4.

4 Parton saturation
We have seen that diffraction involves scattering on small-x gluons in the proton. Consider the density in
the transverse plane of gluons with longitudinal momentum fraction x that are resolved in a process with
hard scale Q2. One can think of 1/Q as the “transverse size” of these gluons as seen by the probe. The
number density of gluons at given x increases with increasing Q2, as described by DGLAP evolution
(see Fig. 23). According to the BFKL evolution equation it also increases at given Q2 when x becomes
smaller, so that the gluons become more and more densely packed. At some point, they will start to
overlap and thus reinteract and screen each other. One then enters a regime where the density of partons
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Fig. 22: Graph for the exclusive production of a Higgs boson in pp scattering. The horizontal blobs indicate
generalized gluon distributions, and the vertical blob represents secondary interactions between the projectiles (cf.
Fig. 13).

saturates and where the linear DGLAP and BFKL evolution equations cease to be valid. If Q2 is large
enough to have a small coupling αs, we have a theory of this non-linear regime called “color glass
condensate”, see e.g. [35]. To quantify the onset of non-linear effects, one introduces a saturation scale
Q2
s depending on x, such that for Q2 < Q2

s(x) these effects become important. For smaller values of x,
the parton density in the target proton is higher, and saturation sets in at larger values of Q2 as illustrated
in Fig. 23.

Fig. 23: Schematic view of the density of gluons in the transverse plane, as a function of the momentum fraction
x and the resolution scale Q2. Above the line given by Q2

s(x), saturation effects set in.

The dipole picture we introduced in Sect. 3.1 is well suited for the theoretical description of satu-
ration effects. When such effects are important, the relation (7) between dipole cross section and gluon
distribution ceases to be valid; in fact the gluon distribution itself is then no longer an adequate quantity
to describe the dynamics of a scattering process. In a certain approximation, the evolution of the dipole
cross section with x is described by the Balitsky-Kovchegov equation [36], which supplements the BFKL
equation with a non-linear term taming the growth of the dipole cross section with decreasing x.

Essential features of the saturation phenomenon are captured in a phenomenological model for
the dipole cross section, originally proposed by Golec-Biernat and Wüsthoff, see [37, 38]. Figure 24
shows σqq̄ as a function of r at given x in this model. The dipole size r now plays the role of 1/Q in
our discussion above. At small r the cross section rises following the relation σqq̄(r, x) ∝ r2xg(x). At
some value Rs(x) of r, the dipole cross section is so large that this relation ceases to be valid, and σqq̄
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starts to deviate from the quadratic behavior in r. As r continues to increase, σqq̄ eventually saturates
at a value typical of a meson-proton cross section. In terms of the saturation scale introduced above,
Rs(x) = 1/Qs(x). For smaller values of x, the initial growth of σqq̄ with r is stronger because the gluon
distribution is larger. The target is thus more opaque and as a consequence saturation sets in at lower r.

A striking feature found both in this phenomenological model [39] and in the solutions of the
Balitsky-Kovchegov equation (see e.g. [40]) is that the total γ∗p cross section only depends on Q2 and
xB through a single variable τ = Q2/Q2

s(xB). This property, referred to as geometric scaling, is well
satisfied by the data at small xB (see Fig. 25) and is an important piece of evidence that saturation effects
are visible in these data. Phenomenological estimates find Q2

s of the order 1 GeV2 for xB around 10−3

to 10−4.

The dipole formulation is suitable to describe not only exclusive processes and inclusive DIS, but
also inclusive diffraction γ∗p → Xp. For a diffractive final state X = qq̄ at parton level, the theory
description is very similar to the one for deeply virtual Compton scattering, with the wave function
for the final state photon replaced by plane waves for the produced qq̄ pair. The inclusion of the case
X = qq̄g requires further approximations [37] but is phenomenologically indispensable for moderate to
small β. Experimentally, one observes a very similar energy dependence of the inclusive diffractive and
the total cross section in γ∗p collisions at givenQ2 (see Fig. 26). The saturation mechanism implemented
in the Golec-Biernat Wüsthoff model provides a simple explanation of this finding. To explain this
aspect of the data is non-trivial. For instance, in the description based on collinear factorization, the
energy dependence of the inclusive and diffractive cross sections is controlled by the x dependence of
the ordinary and the diffractive parton densities. This x dependence is not predicted by the theory.

The description of saturation effects in pp, pA and AA collisions requires the full theory of the
color glass condensate, which contains concepts going beyond the dipole formulation discussed here and
is e.g. presented in [35]. We remark however that estimates of the saturation scale Q2

s(x) from HERA
data can be used to describe features of the recent data from RHIC [41].

5 A short summary
Many aspects of diffraction in ep collisions can be successfully described in QCD if a hard scale is
present. A key to this success are factorization theorems, which render parts of the dynamics accessi-
ble to calculation in perturbation theory. The remaining non-perturbative quantities, namely diffractive
PDFs and generalized parton distributions, can be extracted from measurements and contain specific
information about small-x partons in the proton that can only be obtained in diffractive processes. To
describe hard diffractive hadron-hadron collisions is more challenging since factorization is broken by
rescattering between spectator partons. These rescattering effects are of interest in their own right be-
cause of their intimate relation with multiple scattering effects, which at LHC energies are expected to be
crucial for understanding the structure of events in hard collisions. A combination of data on inclusive
and diffractive ep scattering hints at the onset of parton saturation at HERA, and the phenomenology
developed there is a helpful step towards understanding high-density effects in hadron-hadron collisions.
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The Q2 of these data ranges from 0.045 to 450 GeV2.
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TOTEM forward measurements: exclusive central diffraction
J. Kalliopuska, J.W. Lämsä, T. Mäki, N. Marola, R. Orava, K. Österberg, M. Ottela and S. Tapprogge

Abstract
In this contribution, we present a first systematic study of the precision of the momentum mea-
surement of protons produced in the central exclusive diffractive processes, p p → p + X + p,
as well as the accuracy of the reconstructed mass for particle state X based on these proton
measurements. The scattered protons are traced along the LHC beam line using the nominal
LHC optics, accounting for uncertainties related to beam transport and proton detection.
To search for and precisely measure new particle states X with masses below 200 GeV, ad-
ditional leading proton detectors are required at about 420 m from the interaction point in
addition to the already approved detectors. Using these additional detectors, a mass resolution
of the order of 1 GeV can be achieved for masses beyond ∼120 GeV.

TOTEM forward measurements: leading proton acceptance
V. Avati and K. Österberg

Abstract
We report about the acceptance of forward leading protons in Roman Pot stations placed along
the LHC beam line. The TOTEM stations plus additional detectors at 420 m from the interac-
tion point have been considered using the low–β∗ optics V6.5 for LHC physics runs.

Diffractive Higgs: CMS/TOTEM Level-1 Trigger Studies
M. Arneodo, V. Avati, R. Croft, F. Ferro, M. Grothe, C. Hogg, F. Oljemark, K. Österberg and M. Ruspa

Abstract
Retaining events containing a Higgs Boson with mass around 120 GeV poses a special chal-
lenge to triggering at the LHC due to the relatively low transverse momenta of the decay
products. We discuss the potential of including into the CMS trigger the TOTEM forward
detectors and possible additional detectors at a distance of 420 m from the CMS interaction
point. We find that the output rate of a 2-jet Level-1 trigger condition with thresholds suf-
ficiently low for the decay products of a 120 GeV Higgs Boson can be limited to O(1) kHz
for luminosities of up to 2× 1033cm−2s−1 by including the TOTEM forward detectors in the
Level-1 trigger.

Proposal to upgrade the very forward region at CMS
V. Andreev, A.Bunyatyan, H. Jung, M. Kapishin and L. Lytkin

Abstract
The possibilities of extending the acceptance of LHC experiments beyond 7 units of pseudora-
pidity are investigated. With additional detectors it would be possible to measure the particles
with energies above 2 TeV in the pseudorapidity range between 7 and 11.
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Abstract
In this contribution, we present a first systematic study of the precision of the
momentum measurement of protons produced in the central exclusive diffrac-
tive processes, p p → p + X + p, as well as the accuracy of the reconstructed
mass for particle state X based on these proton measurements. The scattered
protons are traced along the LHC beam line using the nominal LHC optics,
accounting for uncertainties related to beam transport and proton detection.

To search for and precisely measure new particle states X with masses below
200 GeV, additional leading proton detectors are required at about 420 m from
the interaction point in addition to the already approved detectors. Using these
additional detectors, a mass resolution of the order of 1 GeV can be achieved
for masses beyond ∼120 GeV.

1 Introduction
It has been recently suggested that the Higgs boson mass could be measured to an accuracy ofO(1 GeV)
in the central exclusive diffractive process (CED) [1, 2]:

p p→ p + H + p (1)

In contrast to this, the direct measurement of the Higgs boson mass, based on the two final state b-jets
in H → bb̄, is estimated to yield a precision of O(10 GeV). The precise reconstruction of the centrally
produced system X , i.e. the Higgs mass in Eq. 1, is based on the four-momenta of the incoming (p1,2)
and scattered (p′1,2) protons and since the two scattered protons are expected to have small transverse
momenta, the following approximation for the mass of the centrally produced system can be made:

M2 = (p1 + p2 − p′1 − p′2)2 ≈ ξ1ξ2s , (2)

where ξ1,2 = 1− |~p ′1,2|/|~p1,2| denote the momentum loss fractions of the two scattered protons.

The acceptance for forward leading protons for nominal LHC runs (β∗ ∼ 0.5 m) is described in
detail elsewhere (see [3]). This contribution focuses on the CED process and the precision with which
the proton momenta and the mass of the centrally produced system can be reconstructed.

2 Leading proton uncertainties and transport
The study is done in multiple steps, which include the event generation (ExHuME [4] or PHOJET [5]),
simulation of the interaction point (IP) region, tracking of the protons through the LHC beam line, a
detector simulation and a proton momentum reconstruction algorithm using the detector information [6].
The following beam related uncertainties are inputs to the study1:

– pp interaction region width: σx,y = 16 µm, σz = 5 cm,
– beam angular divergence: Θx,y = 30 µrad

∗ also Physics Department, Iowa State University, Ames, USA
† corresponding author: kenneth.osterberg@helsinki.fi
‡ currently at Institute of Physics, Johannes-Gutenberg Universität Mainz, Germany
1The reference system (x, y, z) used in the study corresponds to the reference orbit in the accelerator; the z-axis is tangent

to the orbit and positive in the beam direction; the x-axis (horizontal) is negative toward the center of the ring.
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– beam energy spread: 1.1 · 10−4.

Concerning the detector response, only the horizontal plane is considered with the following inputs:

– The detector is assumed to be fully efficient at a distance 10σx(z) + 0.5 mm from the beam center2 ,
where σx(z) is the horizontal beam width at distance z. The second term takes into account the
distance from the bottom of the vacuum window to the edge of the fully sensitive detector area.

– For the protons within the fully sensitive detector area, a position reconstruction uncertainty is
introduced by smearing the hit coordinates according to a Gaussian distribution with a σ of 10 µm.

– The uncertainty due to the beam position knowledge at each detector location is accounted for by
smearing the hit coordinates by a correlated Gaussian distribution with a σ of 5 µm.

The transverse displacement (x(z), y(z)) of a scattered proton at a distance z from the IP is determined
by tracing the proton along the LHC beam line using the MAD program [7]. The optics layout version
6.2 for nominal LHC runs (β∗ = 0.5 m) with a 150 µrad horizontal crossing angle is used [8]. Although
the study was carried out for CMS/TOTEM (IP5), the results should be equally valid for ATLAS (IP1).

3 Proton momentum reconstruction
The x-coordinate of the proton observed at any given location along the beam line, depends on three
initial parameters of the scattered proton: its fractional momentum loss, ξ, its initial horizontal scattering
angle, Θ∗x, and its horizontal position of origin, x∗, at the IP. Consequently, more than one x-measurement
of a particular proton is needed to constrain its parameters. In the procedure chosen, two x-measurements
from a detector doublet are used to determine ξ and Θ∗x, neglecting the x∗ dependence. The effect of the
x∗ on the reconstructed proton momentum will be treated as an independent source of uncertainty.

To obtain a large acceptance in ξ, the following two detector locations, each consisting of a doublet
of proton detectors, are chosen based on the LHC optics layout:

– 215 and 225 meters from IP5 (”215 m location”), and
– 420 and 430 meters from IP5 (”420 m location”).

The 215 m location corresponds to a TOTEM approved Roman Pot location [9], while the 420 m location
in the cryogenic section of the accelerator will require special design and further investigation.

Each detector doublet yields two observables, which are related to the horizontal offset and angle
with respect to the beam axis. The ξ dependence of these observables has been derived by fitting a
functional form to the simulated average values of ξ, as a function of the values of the two observables [6].

4 Acceptance and resolution on ξ and mass
The ξ and t acceptance of protons moving in the clockwise and counter-clockwise directions are slightly
different due to differences in the optical functions, for details see [3]. As a summary: a proton from the
CED process is seen when its ξ is between 0.025 (0.002) and 0.20 (0.015) for the 215 (420) location.

The relative resolution on ξ, ∆ξ/ξ = (ξ − ξrec)/ξ as a function of ξ for protons produced in the
CED process and seen in either the 215 m or the 420 m location is shown in Fig. 1 for protons circulating
in the LHC both in the clockwise and counter-clockwise direction. Included are the separate effects
from the uncertainty of the transverse IP position, the resolution of the proton detector, the beam energy
uncertainty, the beam angular divergence at the IP, and the beam position resolution at the proton detector.

At both detector locations, major contributors to the over-all ξ resolution are the uncertainty of the
transverse IP position and the resolution of the proton detector. In addition to these two uncertainties,
the beam energy uncertainty contributes significantly to the resolution at the 420 m location.

2The LHC collimators extend to 6σx(z). The closest safe position can be assumed to lay anywhere between 10 and 15.
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The acceptance as function of the mass of the centrally produced system is shown in Fig. 2a. Each
leading proton is required to be within the acceptance of either the 215 or 420 m locations. Independently
shown is the case (sub-set of above) where both protons are within the acceptance of the 420 m locations.
In the mass range shown, there is no acceptance for detecting both protons at the 215 m location. The
ξ1-ξ2 combinations result from the gluon density function in the proton and the mass of the centrally
produced system (see Eq. 2). The ExHuME generator favours a harder gluon distribution than that of
PHOJET. Thus, the Higgses are produced more centrally. This yields a higher acceptance for ExHuME.

The resolution effects of the two scattered protons are, in general, uncorrelated from each other.
The only correlation comes from the production point, whose transverse component is determined by
the rms spread of the beam at the IP and by an independent measurement using the Higgs decay prod-
ucts [10]. It can be determined to 10 µm or better, and therefore for the mass resolution of the centrally
produced system, a 10 µm uncertainty on the transverse IP position is used. For the mass resolution, all
other uncertainties are assumed to be uncorrelated between the two protons.

The mass resolutions for events with protons within the acceptance of the 420 m location on both
sides, and for events with one proton within the acceptance of the 215 m location on one side and the
other proton within the acceptance of the 420 m location on the other side (labelled ”asym.” in the figure)
are shown as a function of the mass of the centrally produced system in Fig. 2b. The values quoted in
the figure are based on Gaussian fits to the reconstructed mass distributions. The two-proton acceptance
requirement imposes a restriction on the allowed ξ1-ξ2 combinations; as a result the mass resolutions
obtained with ExHuME and PHOJET are very similar.

5 Conclusions
The first comprehensive study of the CED process at the LHC is reported. The study is based on detailed
simulations along the LHC beam line of the diffractively scattered protons, accounting for the known
sources of uncertainties related to beam transport and proton detection. The feasibility of measuring such
events during nominal LHC runs for masses of the central system, X , below ∼200 GeV is addressed.

On the basis of this study, it is concluded that with an additional pair of leading proton detectors
at ±420 m from the interaction point, a Higgs boson with a mass of 120–180 GeV could be measured
with a mass resolution of the order of 1 GeV. Such additional proton detectors would also enable large
statistics of pure gluon jets to be collected, thereby turning the LHC into a gluon factory.
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[3] V. Avati and K. Österberg, ”TOTEM forward measurements: leading proton acceptance”, these

proceedings.
[4] J. Monk and A. Pilkington, hep-ph/0502077 (2005).
[5] R. Engel, Phys. Rev. D51, 3220 (1995).
[6] T. Mäki, Master thesis: ”Exclusive production of Higgs boson at LHC collider: Higgs mass

measurement via leading proton detection”, Helsinki University of Technology (2003).
[7] The MAD program, Methodical Accelerator Design, http://www.cern.ch/mad.
[8] Lattice & Optics, http://lhc-new-homepage.web.cern.ch/lhc-new-homepage/.
[9] The TOTEM collaboration, TOTEM Technical Design Report, CERN-LHCC-2004-002 (2004).

[10] P. Vanlaer, Hadron Collider Physics Conference, Les Diablerets, Switzerland (2005).
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Fig. 1: Summary of all effects studied contributing to the over-all ξ resolution for the 215 m (left) and 420 m
location (right). The upper and lower plots are for protons circulating clockwise and counter-clockwise along
the LHC beam line, respectively. The t values of the protons used for each ξ bin is similar to the t distribution
originating from central exclusive diffraction.
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Abstract
We report about the acceptance of forward leading protons in Roman Pot sta-
tions placed along the LHC beam line. The TOTEM stations plus additional
detectors at 420 m from the interaction point have been considered using the
low–β∗ optics V6.5 for LHC physics runs.

1 Introduction
The TOTEM very forward detectors consist of telescopes of ”Roman Pots” (RP) placed symmetrically
on both sides of the interaction region IP5. The RP stations will be placed at 147 m and 220 m from IP5:
each station is composed of two units separated by 2.5–4 m and each unit is equipped with two vertical
and one horizontal silicon detector package. For more details on the TOTEM RPs, please refer to [1].
The possibility to add a detector in the cryogenic sections of the LHC is under investigation, therefore,
we have included one more RP station at 420 m in these acceptance studies. This work is an update, due
to the release of a new LHC optics, of previous studies done by the TOTEM Collaboration [2].

1.1 Low β∗ optics acceptance study
The transverse displacement (x(s), y(s))1 of a scattered leading proton (with momentum loss ξ =
∆P/P < 0) at distance s from the interaction point (IP) is determined by tracking the proton through
the accelerator lattice using the MAD-X program [3].

The new optics version 6.5 for the standard LHC physics runs is used. Notable changes (at IP5)
from the previous versions are :

– β∗ = 0.55 m (previously 0.5 m)
– Beam offset in the horizontal plane = 0.5 mm (previously zero)
– Horizontal crossing angle = 142 µrad (previously 150 µrad)

The protons at the IP are generated with flat distributions in the azimuthal angle φ, in Log(−ξ) and
in Log(−t) in the kinematically allowed region of the ξ–t plane, i.e. for physical values of the scattering
angle of the proton. The Mandelstam variable t is defined as t = (porig − pscatt)2, where porig(scatt)
is the four-momentum of the incoming (scattered) proton. The scattering angle of the proton is physical
when t ≥ t0(ξ), where t0(ξ) is given by

t0 (ξ) = 2
(
P 2

orig +m2
p

) [√
1 +

(
P 2

orig [ξ2 + 2ξ]
)
/
(
P 2

orig +m2
p

)
− 1

]
− 2ξP 2

orig . (1)

In Eq. 1, Porig is the momentum of the incoming proton and mp is the proton mass.

The transverse vertex position and the scattering angle at the IP are smeared assuming Gaussian
distributions with widths given by the transverse beam size (16 µm) and the beam divergence (30 µrad).

1The reference system (x,y,s) defines the reference orbit in the accelerator; the s-axis is tangent to the orbit and positive
in the beam direction; the two other axes are perpendicular to the reference orbit. The x-axis (horizontal, bending plane) is
negative toward the center of the ring.
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To determine the acceptance of a RP station, the minimum distance of a detector to the beam and
constraints imposed by the beam pipe or beam screen size are considered.

The minimum distance of detector approach to the beam is proportional to the beam size:

x(y)min = 10σx(y)
beam + c , (2)

where c is a constant that takes into account the distance from the edge of the sensitive detector area to
the bottom of the RP window (∼ 0.5 mm). For the nominal transverse beam emittance ε = 3.75 µm · rad
typical values of the horizontal detector distance are ∼1 mm (at 220 m) and ∼4 mm (at 420 m). In the
results shown later, the detector shape has not been included. The beam pipe apertures can be found in
the LHC–LAYOUT Database [4].

1.2 Results
Figures 1–3 show the acceptance in Log(−ξ), Log(−t) for the RP stations at 220 and 420 m for the
clockwise (”beam1”) and counter–clockwise (”beam2”) circulating beam.

One should note that these results refer to non-physical distributions in the variables ξ and t in
order to have good statistics in each interval and describe all possible processes. To use these results in
a general simulation program, the φ dependence has to be taken into account, since it is not negligible in
many kinematical configurations. More detailed analysis such as detector alignment samples, collimator
effects, etc. can be found in [5].

These results have been included in FAMOS (FAst MOntecarlo Simulation of the CMS detector)
by M. Tasevsky (”Diffractive Higgs production”, these proceedings) and they have been used in the
CMS/TOTEM studies on triggering a diffractively produced light Higgs boson with the CMS Level-1
trigger (”Diffractive Higgs: CMS/TOTEM Level-1 Trigger Studies”, these proceedings).
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Fig. 1: Log(−ξ) acceptance for: beam1 station at 220 m (solid-red) and 420 m (dashed-red) and beam2 station at
220 m (dashed-dotted-blue) and 420 m (dotted-blue).

Fig. 2: Log(−ξ) vs Log(−t) acceptance for beam1 (left) and beam2 (right) stations at 220 m.

Fig. 3: Log(−ξ) vs Log(−t) acceptance for beam1 (left) and beam2 (right) stations at 420 m.
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Abstract
Retaining events containing a Higgs Boson with mass around 120 GeV poses
a special challenge to triggering at the LHC due to the relatively low transverse
momenta of the decay products. We discuss the potential of including into the
CMS trigger the TOTEM forward detectors and possible additional detectors
at a distance of 420 m from the CMS interaction point. We find that the output
rate of a 2-jet Level-1 trigger condition with thresholds sufficiently low for
the decay products of a 120 GeV Higgs Boson can be limited to O(1) kHz
for luminosities of up to 2 × 1033cm−2s−1 by including the TOTEM forward
detectors in the Level-1 trigger.

1 Introduction
A Higgs Boson with mass close to the current exclusion limit poses a special challenge to triggering at
the LHC. The dominant decay of a Standard Model Higgs Boson of mass∼120 GeV is into two b-quarks
and generates 2 jets with at most 60 GeV transverse momentum, pT , each. The so far considered Level-1
(L1) trigger tables of CMS [1] are optimized for events with high pT ; the necessity of keeping the overall
L1 rate at acceptable levels requires thresholds in two-jet events above pT =100 GeV per jet. Conversely,
triggering is not a problem should the mass of the Higgs Boson be sufficiently high so that its final states
are rich in high pT leptons, as is the case for H →WW ?.

In order to retain a potential Higgs signal with mass close to the current exclusion limit, informa-
tion beyond that from the central CMS detector needs to be included in the L1 trigger. A proton that
scatters diffractively at the CMS interaction point (IP) may be detected by Roman Pot (RP) detectors
further downstream. Roman Pot detectors up to 220 m downstream of CMS will be part of the TOTEM
experiment [2]. Information from TOTEM will be available to the CMS L1 trigger. Furthermore, detec-
tors at up to 420 m distance from the IP are currently discussed as part of the FP420 project [3]. Including
information from them into the CMS L1 trigger is however not possible without an increase in the trigger
latency.

This article discusses the effect of including the TOTEM forward detectors and/or those planned
at 420 m distance on rate and selection efficiency of the CMS L1 trigger. All results reported in the
following are preliminary; further studies are still on-going at the time of writing.
∗ Work supported by the Italian Ministry for Education, University and Scientific Research under the program “Incenti-

vazione alla mobilità di studiosi stranieri e italiani residenti all’estero”.
† Corresponding author: Monika.Grothe@cern.ch
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2 Experimental apparatus
The CMS trigger system is designed to reduce the input rate of 109 interactions per second at the nom-
inal LHC luminosity of 1034cm−2s−1 to an output rate of not more than 100 Hz. This reduction of
107 is achieved in two steps, by the CMS L1 trigger (output rate 100 kHz) and the CMS Higher-Level
Trigger (HLT). The L1 trigger carries out its data selection algorithms with the help of three principal
components: the Calorimeter Trigger, the Muon Trigger and the Global Trigger. The decision of the
Calorimeter Trigger is based on the transverse energy, ET , information of the CMS calorimeters (pseu-
dorapidity coverage |η| < 5). A L1 jet consists of 3 × 3 regions, each with 4 × 4 trigger towers, where
the ET in the central region is above the ET in any of the outer regions. A typical L1 jet has dimensions
∆η ×∆φ = 1× 1, where φ is the azimuthal angle. The ET reconstructed by the L1 trigger for a given
jet corresponds on the average only to 60% of its true ET . All studies in this article use calibrated jet ET
values, obtained from the reconstructed value by means of an η and ET dependent correction.

The TOTEM experiment [2] will have two identical arms, one at each side of the CMS IP. Each
arm will comprise two forward tracker telescopes, T1 (Cathode Strip Chambers) and T2 (Gas Electron
Multipliers), as well as Silicon detectors housed in RP stations along the LHC beam-line. The TOTEM
detectors will provide input data to the Global Trigger of the CMS L1 trigger. Track finding in T1 and T2
(combined coverage 3.2 < |η| < 6.6) for triggering purposes is optimized with respect to differentiating
between beam-beam events that point back to the IP and beam-gas and beam-halo events that do not. The
TOTEM RP stations will be placed at a distance of ±147 m and ±220 m from the CMS IP. Each station
will consist of two units, 2.5 m and 4 m apart, each with one horizontally and two vertically movable
pots equipped with Silicon strip detectors. The possibility of implementing a cut on ξ in the L1 trigger
is currently under investigation.

The fractional momentum loss, ξ, of diffractively scattered protons peaks at ξ = 0 (“diffractive
peak”). The combination of CMS and TOTEM will permit to measure protons that have undergone a
fractional momentum loss 0.2 > ξ > 0.02. Detectors at a distance of 420 m, in the cryogenic region of
the LHC ring, are currently being considered by the FP420 project [3]. They would provide a coverage
of 0.02 > ξ > 0.002, complementary to that of the TOTEM detectors, but cannot be included in the L1
trigger without an increase in the L1 latency of 3.2 µs. A special, long latency running mode might be
feasible at lower luminosities. This option is currently under investigation. Using detectors at 420 m in
the L1 trigger is included as an option in the studies discussed in this article.

The studies discussed in the following assume that the RP detectors are 100% efficient in detecting
all particles that emerge at a distance of at least 10σbeam +0.5 mm from the beam axis. Their acceptance
was calculated by way of a simulation program that tracks particles through the accelerator lattice [4].
This has been done for the nominal LHC optics, the so-called low-β∗ optics, version V6.5. Further
details can be found in [5]. All Monte Carlo samples used in the following assume LHC bunches with
25 ns spacing.

3 Level-1 trigger rates and signal efficiencies
We consider here perhaps the most challenging case, that of a low-mass (120 GeV) Standard Model
Higgs Boson, decaying into two b-jets. There, the jets have transverse energies of at most 60 GeV. In
order to retain as large a signal fraction as possible, as low an ET threshold as possible is desirable. In
practice, the threshold value cannot be chosen much lower than 40 GeV per jet. The L1 trigger applies
cuts on the calibrated ET value of the jet. Thus, a threshold of 40 GeV corresponds to 20 to 25 GeV in
reconstructed ET , i.e. to values where noise effects start becoming sizable.

In the trigger tables forseen for the first LHC running period, a L1 2-jet rate ofO(1) kHz is planned.
For luminosities of 1032cm−2s−1 and above, the rate from standard QCD processes for events with at
least 2 central jets (|η| < 2.5) with ET > 40 GeV is above this. Thus additional conditions need to be
employed in the L1 trigger to reduce the rate from QCD processes. The efficiency of several conditions
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was investigated and, in the following, the corresponding rate reduction factors are always quoted with
respect to the rate of QCD events that contain at least 2 central jets with ET > 40 GeV per jet. These
conditions are:

1) Condition based on additional central detector quantities available to the Calorimeter Trigger.
2) Condition based on T1 and T2 as vetoes.
3) Condition based on the RP detectors at ±220 m and ±420 m distance from the CMS IP.
4) Condition based on the Muon Trigger.

The QCD background events were generated with the Pythia Monte Carlo generator.

At higher luminosities more than one interaction takes place per bunch crossing; the central exclu-
sive production of a Higgs boson is overlaid with additional, typically soft events, the so-called pile-up.
In order to assess the effect when the signal is overlaid with pile-up, a sample of 500,000 pile-up events
was generated with Pythia. This sample includes inelastic as well as elastic and diffractive events. Pythia
underestimates the number of final state protons in this sample. The correction to the Pythia leading
proton spectrum described in [6] was used to obtain the results discussed in the following.

The effect from beam-halo and beam-gas events on the L1 rate is not yet included in the studies
discussed here. Preliminary estimates suggest that the size of their contribution is such that the conclu-
sions of this article are not invalidated.

Table 1 summarizes the situation for luminosities between 1032cm−2s−1 and 1034cm−2s−1. Given
a target rate for events with 2 central L1 jets of O(1) kHz, a total rate reduction between a factor 20 at
1× 1033cm−2s−1 and 200 at 1× 1034cm−2s−1 is necessary.

Table 1: Reduction of the rate from standard QCD processes for events with at least 2 central L1 jets with ET >
40 GeV, achievable with requirements on the tracks seen in the RP detectors. Additional rate reductions can be
achieved with theHT condition and with a topological condition (see text). Each of them yields, for all luminosities
listed, an additional reduction by about a factor 2.

Lumi # Pile-up L1 2-jet rate Total Reduction when requiring track in RP detectors
nosity events [kHz] for reduc at 220 m & 420 m

[cm−2s−1] per bunch ET > 40GeV tion at 220 m at 420 m (asymmetric)
crossing per jet needed ξ < 0.1 ξ < 0.1

1× 1032 0 2.6 2 370
1× 1033 3.5 26 20 7 15 27 160 380
2× 1033 7 52 40 4 10 14 80 190
5× 1033 17.5 130 100 3 5 6 32 75
1× 1034 35 260 200 2 3 4 17 39

3.1 Condition based on central CMS detector quantities
In addition to the ET values of individual L1 jets, the CMS Calorimeter Trigger has at its disposal the
scalar sum, HT , of the ET values of all jets. Requiring that essentially all the ET be concentrated in the
two central L1 jets with highest ET , i.e. [E1

T +E2
T ]/HT > 0.9 (HT condition), corresponds to imposing

a rapidity gap of at least 2.5 units with respect to the beam direction. This condition reduces the rate of
QCD events by approximately a factor 2, independent of the presence of pile-up and with only a small
effect on the signal efficiency.
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3.2 Condition based on TOTEM detectors T1 and T2
Using T1 and T2 as vetoes in events with 2 central L1 jets imposes the presence of a rapidity gap of
at least 4 units. This condition suppresses QCD background events by several orders of magnitude. At
luminosities low enough so that not more than one interaction takes place per bunch crossing, the signal
efficiency is very high (> 90%). In the presence of pile-up, the signal efficiency falls rapidly. The non-
diffractive component in pile-up events tends quickly to fill in the rapidity gap in the Higgs production
process. Only about 20 (5) % of signal events survive in the presence of 1 (2) pile-up event(s).

3.3 Condition based on Roman Pot detectors
Demanding that a proton be seen in the RP detectors at 220 m results in excellent suppression of QCD
background events in the absence of pile-up. This is demonstrated in Figure 1 for a luminosity of
1032cm−2s−1. There, the rate of QCD background events with at least 2 central L1 jets with ET above
a threshold is shown as function of the threshold value. The two histograms reflect the rate without and
with the requirement that a proton be seen in the RP detectors at 220 m. The rate of QCD background
events containing at least 2 central L1 jets with ET > 40 GeV each is reduced by a factor ∼ 370. At
2 × 1033cm−2s−1, where on the average 7 pile-up events overlay the signal event, the diffractive com-
ponent in the pile-up causes the reduction to decrease to a factor ∼ 4, and at 1034cm−2s−1, to a factor
∼ 2, as can be seen from table 1.

Minimum L1 jet ET [GeV]
50 100 150 200 250 300 350 400

Minimum L1 jet ET [GeV]
50 100 150 200 250 300 350 400
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at
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-1 s-2 cm32L1 output rate at lumi. 10

No RP cond.

single-arm 220m RP cond.

Fig. 1: L1 rate for the QCD background at a luminosity of 1032cm−2s−1 as function of the L1 threshold value
when requiring at least 2 central L1 jets with ET above threshold.

Table 1 summarizes the reduction factors achieved with different conditions for tracks in the RP
detectors: a track in the RP detectors at 220 m distance on one side of the IP (single-arm 220 m), without
and with a cut on ξ, a track in the RP detectors at 420 m distance on one side of the IP (single-arm
420 m), a track in the RP detectors at 220 m and 420 m distance (asymmetric). Because the detectors at
220 m and 420 m have complementary coverage in ξ, the last condition in effect selects events with two
tracks of very different ξ value, in which one track is seen at 220 m distance on one side of the IP and a
second track is seen on the other side at 420 m. If not by the L1 trigger, these asymmetric events can be
selected by the HLT and are thus of highest interest. The effect on the acceptance of the RP detectors of
a collimator located in front of the LHC magnet Q5, which will be operative at higher luminosities, has
not been taken into account in table 1.

A further reduction of the QCD rate could be achieved with the help of a topological condition.
The 2-jet system has to balance the total momentum component of the two protons along the beam axis.
In signal events with asymmetric ξ values, the proton seen on one side in the RP detectors at 220 m
distance is the one with the larger ξ and thus has lost more of its initial momentum component along the
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Fig. 2: L1 selection efficiency as function of the ET threshold value when requiring at least 2 central L1 jets
with ET above threshold. All plots are for the non-pile-up case and the HT condition (see text) has been applied.
Left: Comparison between the EDDE and Exhume Monte Carlo generators, without applying any additional RP
conditions. Right: Comparison of the effect of different RP conditions on the efficiency in the Exhume Monte
Carlo sample.

beam axis. Hence the jets tend to be located in the same η-hemisphere as the RP detectors that detect
this proton. A trigger condition requiring that [ηjet1 + ηjet2] × sign(η220m RP ) > 0 would reduce the
QCD background by a factor 2, independent of pile-up, and with no loss in signal efficiency.

A reduction of the QCD rate to levels compatible with the trigger bandwidth requirements by
including RP detectors at a distance of 220 m from the CMS IP thus appears feasible for luminosities up
to 2×1033cm−2s−1, as long as a ξ cut can be administered in the L1 trigger such that the accepted events
can be restricted to the diffractive peak region around ξ = 0. Higher luminosities would necessitate
inclusion of the RP detectors at 420 m distance in the L1 trigger.

In order to study the effect of the L1 trigger selection on the Higgs signal, signal samples of
20,000 events with central exclusive production of a Higgs Boson were generated with the Monte-Carlo
programs EDDE [7] (version 1.1) and Exhume [8] (version 0.9). Figure 2 shows the L1 selection effi-
ciency as a function of the ET threshold values when requiring at least 2 central L1 jets with ET above
threshold. The histograms show the case when no pile-up is present. The presence of pile-up has only
a small effect on the efficiency curves. The plot on the left-hand side compares the efficiency curves
obtained for EDDE and Exhume. For a threshold of 40 GeV per jet, Exhume yields an efficiency of
about 40%. As a consequence of its less central jet η distribution (see [9]), the efficiency for EDDE is
about 20% lower than the one of Exhume. The plot on the right-hand side overlays the efficiency curves
obtained with Exhume when including three different RP detector conditions in the L1 2-jet trigger:
single-arm 220 m, single-arm 420 m and the asymmetric 220 & 420 m condition. At an ET threshold of
40 GeV per jet, the single-arm 220 m (420 m) condition results in an efficiency of the order 20% (30%),
the asymmetric condition in one of 15%. This also means that even without the possibility of including
the RP detectors at 420 m distance from the CMS IP in the L1 trigger, 15% of the signal events can be
triggered with the single-arm 220 m condition, but will have a track also in the 420 m detectors which
can be used in the HLT.

3.4 Condition based on the Muon Trigger
An alternative trigger strategy may be to exploit the relatively muon-rich final state from B-decays. We
estimate that up to 10% of the signal events could be retained using this technique. Further investigations
are underway at the time of writing.
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4 Conclusions
Retaining a Higgs Boson with mass around 120 GeV poses a special challenge to triggering at the LHC.
The relatively low transverse momenta of its decay products necessitate L1 jet ET thresholds as low as
40 GeV. Thresholds that low would result in a L1 trigger rate of more than 50 kHz, essentially saturating
the available output bandwidth.

The results we presented in this article are preliminary and should be taken as a snapshot of
our present understanding. They can be summarized as follows: The output rate of a 2-jet L1 trigger
condition with thresholds of 40 GeV per jet can be kept at an acceptable O(1) kHz by including the
TOTEM forward detectors in the CMS L1 trigger. In the absence of pile-up, either using the TOTEM T1
and T2 detectors as vetoes or requiring that a proton be seen in the TOTEM RP detectors at 220 m on one
side of the CMS IP (single-sided 220 m condition) results in a sufficient reduction of the QCD event rate
that dominates the L1 trigger output rate. At higher luminosities, up to 2× 1033cm−2s−1, where pile-up
is present, it is necessary to combine the single-sided 220 m condition with conditions based on event
topology and on HT , the scalar sum of all L1 jet ET values. Going to even higher luminosities, up to
1× 1034cm−2s−1, would necessitate additional L1 trigger conditions, such as inclusion of RP detectors
at 420 m distance from the CMS IP, which, however, would require an increase in the L1 trigger latency.
These L1 trigger conditions result in signal efficiencies between 15% and 20%.

We expect no trigger problems for final states rich in high pT leptons, such as the WW decay
modes of the Standard Model Higgs Boson.
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Abstract
The possibilities of extending the acceptance of LHC experiments beyond 7
units of pseudorapidity are investigated. With additional detectors it would be
possible to measure the particles with energies above 2 TeV in the pseudora-
pidity range between 7 and 11.

1 Introduction
At the LHC experiments, CMS and ATLAS, the acceptance for forward energy measurements is limited
to about 5 units of pseudorapidity. The acceptance of CMS detector will be extended by proposed
CASTOR calorimeter, which will cover the angular range 5.4 < η < 6.7. Already with this device
small-x parton dynamics can be studied down to very small x-values of 10−6 − 10−7 with Drell-Yan,
prompt photon and jet events at small invariant masses of the order of M ∼ 10 GeV.

In the present work we investigate the technical possibilities of extending the angular acceptance
for forward energy measurement beyond 7 units of pseudorapidity. Extending the acceptance down to
η ∼ 11, x-values down to 10−8 can be reached, which is a completely unexplored region of phase space.
In this region, effects coming from new parton dynamics are expected to show up, as well as effects
coming from very high density gluonic systems, where saturation and recombination effects will occur.
In this region of phase space, a breakdown of the usual factorization formalism is expected, and multiple

x

x

2

1

large η

Fig. 1: Schematic picture of multiple interactions at small x

interactions will be dominant (see Fig 1) [1]. The full angular coverage from the central to the most
forward region allows a systematic study of the transition from single particle exchange processes to
complex systems and a systematic understanding of non-linear and collective phenomena.

The interest in the very forward region of phase space is not only motivated by the fundamental
understanding of QCD in a new phase of matter, but is also important for the further understanding of
high energetic cosmic rays [2].
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Fig. 2: Schematic view of forward beamline at CMS detector up to 220m. The positions of proposed tracking
devices at 19m, 85m and 95m and calorimeter at 135m are indicated.

2 Tracking and energy measurement in the very forward region
For this study the geometry of the beam-line around the CMS detector up to 150m from interaction point
has been implemented in the GEANT-3 [3] simulation program. The PYTHIA Monte-Carlo genera-
tor program [4] was used to generate charged particles produced in the interaction point, which were
subsequently fed into the beam-line simulation.

The main restriction for additional installations is the very limited space available between mag-
netic elements. Up to about 80m there is no space for a calorimeter, and there one can only consider the
installation of tracking devices, such as Roman Pots or micro-stations [5]. On the other hand, to be able
to measure the particle momenta, the tracking devices should be placed after bending magnets.

Therefore the idea is to have tracking devices before and after dipoles, to be able to measure both
the integrated particle flow and the particle momenta. The free space after 135 m can be used for a
calorimeter.

Taking into account the limited space available for new detectors, the background conditions and
magnetic field, the following strategy is proposed (Fig.2):

– the 25 cm space in front of TAS absorber at 19 m from interaction point can be used to install two
micro-stations with two half-ring radiation hard silicon or diamond detectors approaching the beam
horizontally up to 5-10mm. At this position the particles can not be separated by their momenta,
thus the micro-stations will measure the charged particle flow integrated up to energies of ∼ 7
TeV in the pseudorapidity range between 7.3 and 9 or 10.5, depending on how close the counter
can go to the beam (see Fig. 3). The detector will also provide accurate position measurement
which is necessary for linking with roman-pots/micro-stations installed further down the beam
line. Combining the position and time-of-flight measurement of these micro-stations with the
event vertex measured in central detector will allow to suppress beam-wall background and pile-
up events;

– a combination of two horizontal roman-pots/micro-stations can be installed behind the dipole mag-
nets D1 at 85m and 95m. The detectors are the half-rings and approach the beam horizontally
from one side up to 10mm. These detectors will cover the pseudorapidity range above 8 units (see
Fig. 5). The particles with energies below 2 TeV will escape the detector acceptance, as shown in
Fig. 4 and 5.

– a hadronic calorimeter at 135m (in front of TAN iron absorber) with a minimal distance to the beam
of 10cm (radius of beam-pipe) will measure the energy in the range 2-5.5 TeV and pseudorapidity
between 7 and 11 (see Fig.6). This can be a sandwich type calorimeter with radiation hard sensitive
layers, with a transverse size up to 1×1 m2 and depth about 7-9 hadronic interaction length.
Optionally one can consider to instrument the TAN absorber with sensitive layers.
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Fig. 3: Acceptance of micro-station detector at 19m as a function of pseudorapidity.

Fig. 4: The trajectory of particles in momentum range 500-7000 GeV, scattered from interaction point at 0 deg.
The positions of proposed tracking devices at 19m, 85m and 95m are indicated.
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Fig. 5: Acceptance of roman pots/micro-station detector at 85 m and 95m as a function of energy and pseudora-
pidity.
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Fig. 6: Acceptance of calorimeter at 135 m as a function of energy and pseudorapidity.
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The calorimeter covers basically the same kinematic range as the micro-stations at 85 and 95m,
but it is needed for energy measurement. In addition it can be used for redundancy, background
subtraction and cross calibration.

The acceptances of the proposed detectors as function of energy and pseudorapidity are summa-
rized in Table 1. The result shows that with the proposed installations it will be possible to measure the
energy flow in the energy range between 2 and 7 GeV and the pseudorapidity range between 7 and 11.

Table 1: Acceptance as a function of Ep and η

0.5–7 TeV 2–5.5 TeV
two roman-pots/micro-stations at 85 and 95m
η = 7− 10 11% 21%
η = 7− 8 10% 10–20%
η = 8− 9 15-25% 30–55%
η = 9− 11 20-25% 55–60%
Calorimeter at 135m
η = 7− 8 15% 25%
η = 8− 9 20-25% 35–55%
η = 9− 11 25-40% 45–60%

To be able to measure the particles with momenta below 2 TeV one would need to install detec-
tors in the cold area between the quadrupoles at 40–50 m. This will require essential modifications of
cryogenic lines, and can be considered for a future upgrade program.

3 Conclusions
We have studied the possibilities of extending the angular acceptance for forward energy measurement
at LHC. With additional roman-pots/micro-stations and a calorimeter it will be possible to measure the
forward energy in the rapidity range between 7 and 11 units. Such installation will be a valuable addition
to the LHC physics program.
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Diffractive Higgs production: theory
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Abstract
We review the calculation for Higgs production via the exclusive reaction
pp → p+H + p. In the first part we review in some detail the calculation of
the Durham group and emphasise the main areas of uncertainty. Afterwards,
we comment upon other calculations.

1 Introduction
Our aim is to compute the cross-section for the process pp → p + H + p. We shall only be interested
in the kinematic situation where all three final state particles are very far apart in rapidity with the Higgs
boson the most central. In this “diffractive” situation the scattering protons lose only a very small fraction
of their energy, but nevertheless enough to produce the Higgs boson. Consequently, we are in the limit
where the incoming protons have energy E much greater than the Higgs mass mH and so we will always
neglect terms suppressed by powers of mH/E. In the diffractive limit cross-sections do not fall as the
beam energy increases as a result of gluonic (spin-1) exchanges in the t-channel.

Given the possibility of instrumenting the LHC to detect protons scattered through tiny angles
with a high resolution [1–4], diffractive production of any central system X via pp → p + X + p is
immediately of interest if the production rate is large enough. Even if X is as routine as a pair of high pT
jets we can learn a great deal about QCD in a new regime [2, 3, 5, 6]. But no doubt the greatest interest
arises if X contains “new physics” [7–19]. The possibility arises to measure the new physics in a way
that is not possible using the LHC general purpose detectors alone. For example, its invariant mass may
be measured most accurately, and the spin and CP properties of the system may be explored in a manner
more akin to methods hitherto thought possible only at a future linear collider. Our focus here is on the
production of a Standard Model Higgs boson [7,8,13,18,19]. Since the production of the central system
X effectively factorizes, our calculation will be seen to be of more general utility.

Most of the time will be spent presenting what we shall call the “Durham Model” of central
exclusive production [7, 8]. It is based in perturbative QCD and is ultimately to be justified a posteriori
by checking that there is not a large contribution arising from physics below 1 GeV. A little time will also
be spent explaining the non-perturbative model presented by the Saclay group [13] and inspired by the
original paper of Bialas and Landshoff [20]. Even less time will be devoted to other approaches which
can be viewed, more-or-less, as hybrids of the other two [18, 19].

Apart from the exclusive process we study here, there is also the possibility to produce the new
physics in conjunction with other centrally produced particles, e.g. pp → p + H + X + p. This more
inclusive channel typically has a much higher rate but does not benefit from the various advantages
of exclusive production. Nevertheless, it must be taken into account in any serious phenomenological
investigation into the physics potential of central exclusive production [21, 22]

2 The Durham Model
The calculation starts from the easier to compute parton level process qq → q +H + q shown in Figure
1. The Higgs is produced via a top quark loop and a minimum of two gluons need to be exchanged in
order that no colour be transferred between the incoming and outgoing quarks. Quark exchange in the
t-channel leads to contributions which are suppressed by an inverse power of the beam energy and so
the diagram in Figure 1 is the lowest order one. Our strategy will be to compute only the imaginary part
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of the amplitude and we shall make use of the Cutkosky rules to do that – the relevant cut is indicated
by the vertical dotted line in Figure 1. There is of course a second relevant diagram corresponding to
the Higgs being emitted from the left-hand gluon. We shall assume that the real part of the amplitude
is negligible, as it will be in the limit of asymptotically high centre-of-mass energy when the quarks are
scattered through small angles and the Higgs is produced centrally.

Fig. 1: The relevant Feynman graph for qq → q +H + q.

The calculation can be further simplified by making use of the eikonal approximation for those
vertices which couple the gluons to the external quarks. The gluons are very soft and so, modulo correc-
tions which are suppressed by the inverse of the beam energy, we can approximate the qqg vertices by
2gτaijq1,2δλ,λ′ , where τa is a Gell-Mann matrix, g is the QCD coupling and the Kronecker delta tells us
that the quark does not change its helicity. The calculation of the amplitude is now pretty straightforward:

ImAikjl =
1

2
× 2

∫
d(PS)2 δ((q1 −Q)2)δ((q2 +Q)2)

2gqα1 2gq2α

Q2

2gqµ1
k2

1

2gqν2
k2

2

V ab
µν τ

c
imτ

c
jnτ

a
mkτ

b
nl . (1)

The factor of 1/2 is from the cutting rules and the factor of 2 takes into account that there are two
diagrams. The phase-space factor is

d(PS)2 =
s

2

∫
d2QT

(2π)2
dαdβ (2)

where we have introduced the Sudakov variables via Q = αq1 + βq2 +QT . The delta functions fix the
cut quark lines to be on-shell, which means that α ≈ −β ≈ QT

2/s � 1 and Q2 ≈ Q2
T ≡ −QT

2.
As always, we are neglecting terms which are energy suppressed such as the product αβ. For the Higgs
production vertex we take the Standard Model result:

V ab
µν = δab

(
gµν −

k2µk1ν

k1 · k2

)
V (3)

where V = m2
Hαs/(4πv)F (m2

H/m
2
t ) and F ≈ 2/3 provided the Higgs is not too heavy. The Durham

group also include a NLO K-factor correction to this vertex. After averaging over colours we have

τ cimτ
c
jnτ

a
mkτ

b
nl →

δab

4N2
c

.

DIFFRACTIVE HIGGS PRODUCTION: THEORY

467



We can compute the contraction qµ1V
ab
µν q

ν
2 either directly or by utilising gauge invariance which

requires that kµ1V
ab
µν = kν2V

ab
µν = 0. Writing1 ki = xiqi + kiT yields

qµ1V
ab
µν q

ν
2 ≈

kµ1T
x1

kν2T
x2

V ab
µν ≈

s

m2
H

kµ1T k
ν
2TV

ab
µν (4)

since 2k1 · k2 ≈ x1x2s ≈ m2
H . Note that it is as if the gluons which fuse to produce the Higgs are

transversely polarized, εi ∼ kiT . Moreover, in the limiting case that the outgoing quarks carry no
transverse momentum QT = −k1T = k2T and so ε1 = −ε2. This is an important result; it clearly
generalizes to the statement that the centrally produced system should have a vanishing z-component of
angular momentum in the limit that the protons scatter through zero angle (i.e. q ′2iT � Q2

T ). Since we are
experimentally interested in very small angle scattering this selection rule is effective. One immediate
consequence is that the Higgs decay to b-quarks may now be viable. This is because, for massless quarks,
the lowest order qq̄ background vanishes identically (it does not vanish at NLO). The leading order bb̄
background is therefore suppressed by a factor ∼ m2

b/m
2
H . Beyond leading order, one also needs to

worry about the bb̄g final state.

Returning to the task in hand, we can write the colour averaged amplitude as

ImA

s
≈ N2

c − 1

N2
c

× 4α2
s

∫
d2QT

QT
2k1T

2k2T
2

−k1T · k2T

m2
H

V. (5)

Using d3q1
′d3q2

′d3qHδ
(4)(q1 + q2 − q′1 − q′2 − qH) = d2q1T

′d2q2T
′dy EH (y is the rapidity of the

Higgs) the cross-section is therefore

dσ

d2q1T
′d2q2T

′dy
≈
(
N2
c − 1

N2
c

)2
α6
s

(2π)5

GF√
2

[∫
d2QT

2π

k1T · k2T

QT
2k1T

2k2T
2

2

3

]2

(6)

and for simplicity here we have taken the large top mass limit of V (i.e. mt � mH ). We are mainly
interested in the forward scattering limit whence

k1T · k2T

QT
2k1T

2k2T
2 ≈ −

1

QT
4 .

As it stands, the integral over QT diverges. Let us not worry about that for now and instead turn our
attention to how to convert this parton level cross-section into the hadron level cross-section we need.2

What we really want is the hadronic matrix element which represents the coupling of two gluons
into a proton, and this is really an off-diagonal parton distribution function [23]. At present we don’t have
much knowledge of these distributions, however we do know the diagonal gluon distribution function.
Figure 2 illustrates the Durham prescription for coupling the two gluons into a proton rather than a quark.
The factor K would equal unity if x′ = x and kT = 0 which is the diagonal limit. That we should, in the
amplitude, replace a factor of αsCF /π by ∂G(x,QT )/∂ lnQ2

T can be easily derived starting from the
DGLAP equation for evolution off an initial quark distribution given by q(x) = δ(1 − x). The Durham
approach makes use of a result derived in [24] which states that in the case x ′ � x and k2

T � Q2
T the

off-diagonality can be approximated by a multiplicative factor, K . Assuming a Gaussian form factor
suppression for the kT -dependence they estimate that

K ≈ e−bk2
T /2

22λ+3

√
π

Γ(λ+ 5/2)

Γ(λ+ 4)
(7)

1We can do this because xi ∼ mH/
√
s whilst the other Sudakov components are ∼ Q2

T /s.
2We note that (6) was first derived by Bialas and Landshoff, except that they made a factor of 2 error in the Higgs width to

gluons.
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Fig. 2: The recipe for replacing the quark line (left) by a proton line (right).

and this result is obtained assuming a simple power-law behaviour of the gluon density, i.e. G(x,Q) ∼
x−λ. For the production of a 120 GeV Higgs boson at the LHC, K ∼ 1.2 × e−bk

2
T /2. In the cross-

section, the off-diagonality therefore provides an enhancement of (1.2)4 ≈ 2. Clearly the current lack
of knowledge of the off-diagonal gluon is one source of uncertainty in the calculation. We also do not
really know what to take for the slope parameter b. It should perhaps have some dependence upon QT

and for QT ∼ 1.5 GeV, which it will turn out is typical for a 120 GeV scalar Higgs, one might anticipate
the same kT -dependence as for diffractive J/ψ production which is well measured, i.e. b ≈ 4 GeV−2.

Thus, after integrating over the transverse momenta of the scattered protons we have

dσ

dy
≈ 1

256πb2

αsGF
√

2

9

[∫
d2QT

QT
4 f(x1, QT )f(x2, QT )

]2

(8)

where f(x,Q) ≡ ∂G(x,Q)/∂ lnQ2 and we have neglected the exchanged transverse momentum in the
integrand. Notice that in determining the total rate we have introduced uncertainty in the normalisation
arising from our lack of knowledge of b. This uncertainty, as we shall soon see, is somewhat diminished
as the result of a similar b-dependence in the gap survival factor.

We should about the fact that our integral diverges in the infra-red. Fortunately we have missed
some crucial physics. The lowest order diagram is not enough, virtual graphs possess logarithms in the
ratio QT/mH which are very important as QT → 0; these logarithms need to be summed to all orders.
This is Sudakov physics: thinking in terms of real emissions we must be sure to forbid real emissions
into the final state. Let’s worry about real gluon emission off the two gluons which fuse to make the
Higgs. The emission probability for a single gluon is (assuming for the moment a fixed coupling αs)

CAαs
π

∫ m2
H/4

Q2
T

dp2
T

p2
T

∫ mH/2

pT

dE

E
∼ CAαs

4π
ln2

(
m2
H

Q2
T

)
.

The integration limits are kinematic except for the lower limit on the pT integral. The fact that emissions
belowQT are forbidden arises because the gluon not involved in producing the Higgs completely screens
the colour charge of the fusing gluons if the wavelength of the emitted radiation is long enough, i.e. if
pT < QT . Now we see how this helps us solve our infra-red problem: as QT → 0 so the screening
gluon fails to screen and real emission off the fusing gluons cannot be suppressed. To see this argument
through to its conclusion we realise that multiple real emissions exponentiate and so we can write the
non-emission probability as

e−S = exp

(
−CAαs

π

∫ m2
H/4

Q2
T

dp2
T

p2
T

∫ mH/2

pT

dE

E

)
. (9)

As QT → 0 the exponent diverges and the non-emission probability vanishes faster than any power of
QT . In this way our integral over QT becomes (its value is finite):

∫
dQ2

T

Q4
T

f(x1, QT )f(x2, QT ) e−S . (10)
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Fig. 3: The Higgs cross-section at zero rapidity, and the result obtained if one were to assume that ∂G(x,Q)/∂Q =

0 or that ∂S/∂Q = 0.

There are two loose ends to sort out before moving on. Firstly, note that emission off the screening
gluon is less important since there are no associated logarithms in mH/QT . Secondly, (9) is correct only
so far as the leading double logarithms. It is of considerable practical importance to correctly include
also the single logarithms. To do this we must re-instate the running of αs and allow for the possibility
that quarks can be emitted. Including this physics means we ought to use

e−S = exp

(
−
∫ m2

H/4

Q2
T

dp2
T

p2
T

αs(p
2
T )

2π

∫ 1−∆

0
dz [zPgg(z) +

∑

q

Pqg(z)]

)
(11)

where ∆ = 2pT /mH , and Pgg(z) and Pqg(z) are the leading order DGLAP splitting functions. To
correctly sum all single logarithms requires some care in that what we want is the distribution of gluons
in QT with no emission up to mH , and this is in fact [25]

f̃(x,QT ) =
∂

∂ lnQ2
T

(
e−S/2 G(x,QT )

)
.

The integral over QT is therefore
∫
dQ2

T

Q4
T

f̃(x1, QT )f̃(x2, QT ) (12)

which reduces to (10) in the double logarithmic approximation where the differentiation of the Sudakov
factor is subleading.

The numerical effect of correctly including the single logarithms is large. For production of a
120 GeV Higgs at the LHC, there is a factor ∼ 30 enhancement compared to the double logarithmic
approximation, with a large part of this coming from terms involving the derivative of the Sudakov.
Figure 3 shows just how important it is to keep those single logarithmic terms coming from differentiation
of the Sudakov factor. For the numerical results we used the MRST2001 leading order gluon [26], as
included in LHAPDF [27]. Here and elsewhere (unless otherwise stated), we use a NLO QCD K-factor
of 1.5 and the one-loop running coupling with nf = 4 and ΛQCD = 160 MeV. As discussed in the next
paragraph, we also formally need an infra-red cut-off Q0 for the QT -integral; we take Q0 = 0.3 GeV
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Fig. 4: The integrand of the QT integral for three different treatments of αs and mH = 120 GeV.

Fig. 5: The Higgs cross-section dependence upon the infra-red cutoff Q0.

although as we shall see results are insensitive to Q0 provided it is small enough. Finally, all our results
include an overall multiplicative “gap survival factor” of 3% (gap survival is discussed shortly).

Formally there is the problem of the pole in the QCD coupling at pT = ΛQCD. However, this
problem can be side-stepped if the screening gluon has “done its job” sufficiently well and rendered an
integrand which is peaked at QT � ΛQCD since an infra-red cutoff on pT can then safely be introduced.
We must be careful to check whether or not this is the case in processes of interest. Indeed, a saddle point
estimate of (10) reveals that

exp(〈lnQT 〉) ∼
mH

2
exp

(
− c

αs

)
(13)
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Fig. 6: The gluon density function in four different parameterisations.

where c is a constant if the gluon density goes like a power of Q2
T . Clearly there is a tension between

the Higgs mass, which encourages a large value of the loop momentum, and the singular behaviour of
the 1/Q4

T factor which encourages a low value. Also, as αs reduces so real emission is less likely and
the Sudakov suppression is less effective in steering QT away from the infra-red. Putting in the numbers
one estimates that exp(〈lnQ2

T 〉) ≈ 4 GeV2 for the production of a 120 GeV scalar at the LHC which is
just about large enough to permit an analysis using perturbative QCD. Figure 4 provides the quantitative
support for these statements in the case of a Higgs of mass 120 GeV. The integrand of the QT integral
in equation (12) is shown for both running and fixed αs. We see that the integrand peaks just above 1
GeV and that the Sudakov factor becomes increasingly effective in suppressing the cross-section as αs
increases. Although it isn’t too easy to see on this plot, the peak does move to higher values of QT as αs
increases in accord with (13). This plot also illustrates quite nicely that the cross-section is pretty much
insensitive to the infra-red cutoff for Q0 < 1 GeV and this is made explicit in Figure 5.

Discussion of the infra-red sensitivity would not be complete without returning to the issue of
the unintegrated gluon density. In all our calculations we model the off-diagonality as discussed below
equation (7) and we shan’t discuss this source of uncertainty any further here.3 Figure 6 shows the gluon
density G(x,Q) as determined in four recent global fits (rather arbitrarily chosen to illustrate the typical
variety) [26, 28–30]. Apart from the Fermi2002 fit, they are all leading order fits. Now, none of these
parameterisations go down below Q = 1 GeV, so what is shown in the figure are the gluons extrapolated
down to Q = 0. We have extrapolated down assuming that the gluon and its derivative are continuous
at Q = 1 GeV and that G(x,Q) ∼ Q2 at Q → 0.4 The gluons plotted in Figure 6 are all determined at
x = 0.01 which would be the value probed in the production of a 120 GeV Higgs at y = 0 at the LHC.
The key point is to note that it is hard to think of any reasonable parameterisation of the gluon below 1
GeV which could give a substantial contribution to the cross-section. The Sudakov factor suppresses the
low Q2 region and also the size of the gluon and its derivative are crucial, and one cannot keep both of
these large for Q < 1 GeV. Figure 7 shows the integrand of the QT integral for different fits to the gluon.
In all cases the contribution below 1 GeV is small, although there are clearly important uncertainties

3We actually assume a constant enhancement factor of 1.2 per gluon density.
4To be precise we extrapolate assuming G(x,Q) ∼ Q2+(γ−2)Q.
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Fig. 7: The integrand of the QT integral for four recent global fits to the gluon.

Fig. 8: The Higgs cross-section for four recent global fits to the gluon.

in the cross-section. These uncertainties are better seen in Figure 8 which illustrates that one might
anticipate a factor of a few uncertainty from this source.

We note that although a variety of parameterizations are presented in Figure 8 the way that the
actual QT dependence of the integrand is obtained is the same in each case. In [31, 32] the uncertain-
ties arising from the way the unintegrated parton densities are obtained from the integrated ones are
examined. Here we have followed the prescription presented in [33] which amounts to performing one
backward step in a DGLAP parton shower. However, it is known that such showers tend to underestimate
the hardness of, for example, the W/Z p⊥ spectra in hadron colliders unless a large intrinsic transverse
momentum is added to the perturbative k⊥ distribution of the colliding partons [34, 35]. In [32] it was
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shown that adding such an intrinsic transverse momentum would harden the QT distribution of the inte-
grand in (12) for small QT which in turn lowers the cross-section for central exclusive Higgs production
by a factor 2 (for a Gaussian intrinsic transverse momentum with 〈k2

⊥〉 = 2 GeV2). Investigations into
how one could use unintegrated gluon densities obtained by CCFM [36] and LDC [37] evolution for
central exclusive Higgs production have also been performed [32]. However, as discussed in more detail
elsewhere in these proceedings [23], the available parameterizations, which are all fitted to HERA data
only, are not constrained enough to allow for reliable predictions for Higgs production at the LHC.

This is perhaps a good place to mention pseudo-scalar production, as might occur in an extension
to the Standard Model. The scalar product, k1T · k2T, in (6) now becomes (k1T × k2T) · n, where n
is a unit vector along the beam axis. After performing the angular integral the only surviving terms are
proportional to the vector product of the outgoing proton transverse momenta, i.e. q1

′×q2
′. Notice that

this term vanishes, in accord with the spin-0 selection rule, as qi
′ → 0. Notice also that the integrand

now goes like ∼ 1/Q6
T (in contrast to the 1/Q4

T in the scalar case). As a result c in (13) is larger (in fact
it is linearly proportional to the power of QT ) and the mean value of QT smaller. This typically means
that pseudo-scalar production is not really accessible to a perturbative analysis.

The Sudakov factor has allowed us to ensure that the exclusive nature of the final state is not
spoilt by perturbative emission off the hard process. What about non-perturbative particle production?
The protons can in principle interact quite apart from the perturbative process discussed hitherto and
this interaction could well lead to the production of additional particles. We need to account for the
probability that such emission does not occur. Provided the hard process leading to the production of
the Higgs occurs on a short enough timescale, we might suppose that the physics which generates extra
particle production factorizes and that its effect can be accounted for via an overall factor multiplying
the cross-section we have just calculated. This is the “gap survival factor”. Gap survival is discussed in
detail elsewhere in these proceedings and so we’ll not dwell on it here [38].

The gap survival, S2, is given by

dσ(p+H + p|no soft emission) = dσ(p+H + p)× S2

where dσ(p+H+p) is the differential cross-section computed above. The task is to estimate S 2. Clearly
this is not straightforward since we cannot utilize QCD perturbation theory. Let us at this stage remark
that data on a variety of processes observed at HERA, the Tevatron and the LHC can help us improve
our understanding of “gap survival”.

The model presented here provides a good starting point for understanding the more sophisticated
treatments [39–41]. Dynamically, one expects that the likelihood of extra particle production will be
greater if the incoming protons collide at small transverse separation compared to collisions at larger
separations. The simplest model which is capable of capturing this feature is one which additionally
assumes that there is a single soft particle production mechanism, let us call it a “re-scattering event”, and
that re-scattering events are independent of each other for a collision between two protons at transverse
separation r. In such a model we can use Poisson statistics to model the distribution in the number of
re-scattering events per proton-proton interaction:

Pn(r) =
χ(r)n

n!
exp(−χ(r)) . (14)

This is the probability of having n re-scattering events where χ(r) is the mean number of such events for
proton-proton collisions at transverse separation r. Clearly the important dynamics resides in χ(r); we
expect it to fall monatonically as r increases and that it should be much smaller than unity for r much
greater than the QCD radius of the proton. Let us for the moment assume we know χ(r), then we can
determine S2 via

S2 =

∫
dr dσ(r) exp(−χ(r))∫

dr dσ(r)
(15)
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where dσ(r) is the cross-section for the hard process that produces the Higgs expressed in terms of the
transverse separation of the protons. Everything except the r dependence of dσ cancels when computing
S2 and so we need focus only on the dependence of the hard process on the transverse momenta of the
scattered protons (qi

′), these being Fourier conjugate to the transverse position of the protons, i.e.

dσ(r) ∝ [(

∫
d2q1

′ eiq1
′·r/2 exp(−bq1

′2/2)) × (

∫
d2q2

′ e−iq2
′·r/2 exp(−bq2

′2/2))]2

∝ exp

(
−r

2

2b

)
. (16)

Notice that since the b here is the same as that which enters into the denominator of the expression for
the total rate there is the aforementioned reduced sensitivity to b since as b decreases so does S 2 (since
the collisions are necessarily more central) and what matters is the ratio S 2/b2.

It remains for us to determine the mean multiplicity χ(r). If there really is only one type of re-
scattering event5 independent of the hard scattering, then the inelastic scattering cross-section can be
written

σinelastic =

∫
d2r(1− exp(−χ(r))), (17)

from which it follows that the elastic and total cross-sections are

σelastic =

∫
d2r(1− exp(−χ(r)/2))2, (18)

σtotal = 2

∫
d2r(1− exp(−χ(r)/2)). (19)

There is an abundance of data which we can use to test this model and we can proceed to perform a
parametric fit to χ(r). This is essentially what is done in the literature, sometimes going beyond a single-
channel approach. Suffice to say that this simple approach works rather well. Moreover, it also underpins
the models of the underlying event currently implemented in the PYTHIA [42] and HERWIG [43, 44]
Monte Carlo event generators which have so far been quite successful in describing many of the features
of the underlying event [45–47]. Typically, models of gap survival predict S 2 of a few percent at the LHC.
Although data support the existing models of gap survival there is considerable room for improvement
in testing them further and in so doing gaining greater control of what is perhaps the major theoretical
uncertainty in the computation of exclusive Higgs production. In all our plots we took S 2 = 3% which
is typical of the estimates in the literature for Higgs production ath the LHC.

3 Other Models
We’ll focus in this section mainly on the model presented by what we shall call the Saclay group [13].
The model is a direct implementation of the original Bialas-Landshoff (BL) calculation [20] supple-
mented with a gap survival factor. It must be emphasised that BL did not claim to have computed for
an exclusive process, indeed they were careful to state that “additional...interactions...will generate extra
particles...Thus our calculation really is an inclusive one”.

Equation (6) is the last equation that is common to both models. BL account for the coupling
to the proton in a very simple manner: they multiply the quark level amplitude by a factor of 9 (which
corresponds to assuming that there are three quarks in each proton that are able to scatter off each other).
Exactly like the Durham group they also include a form factor suppression factor exp(−bq ′2iT ) for each
proton at the cross-section level with b = 4 GeV−2. Since BL are not interested in suppressing radia-
tion, they do have a problem with the infra-red since there is no Sudakov factor. They dealt with this

5Clearly this is not actually the case, but such a “single channel eikonal” model has the benefit of being simple.
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by following the earlier efforts of Landshoff and Nachtmann (LN) in replacing the perturbative gluon
propagators with non-perturbative ones [48, 49]:

g2

k2
→ A exp(−k2/µ2).

Rather arbitrarily, g2 = 4π was assumed, except for the coupling of the gluons to the top quark loop,
where αs = 0.1 was used.

Following LN, µ and A are determined by assuming that the pp̄ elastic scattering cross-section
at high energy can be approximated by the exchange of two of these non-perturbative gluons between
the 3 × 3 constituent quarks: the imaginary part of this amplitude determines the total cross-section for
which there are data which can be fitted to. In order to carry out this procedure successfully, one needs
to recognize that a two-gluon exchange model is never going to yield the gentle rise with increasing
centre-of-mass energy characteristic of the total cross-section. BL therefore also include an additional
“reggeization” factor of sα(t)−1 in the elastic scattering amplitude where

α(t) = 1 + ε+ α′ t

is the pomeron trajectory which ensures that a good fit to total cross-section data is possible for ε = 0.08
and α′ = 0.25 GeV−2. In this way the two-gluon system is modelling pomeron exchange. They found
that µ ≈ 1 GeV and A ≈ 30 GeV−2 gave a good fit to the data. Similarly, the amplitude for central
Higgs production picks up two reggeization factors.

The inclusive production of a Higgs boson in association with two final state protons is clearly
much more infra-red sensitive than the exclusive case where the Sudakov factor saves the day. Having
said that, the Saclay model does not include the Sudakov suppression factor. Instead it relies upon the
behaviour of the non-perturative gluon propagators to render the QT integral finite. As a result, the
typical QT is much smaller than in the Durham case. Indeed it may be sufficiently small to make the
approximation Q2

T � q′2iT invalid which means that the spin-0 selection rule is no longer applicable.

Pulling everything together, the Saclay model of the cross-section for pp→ p+H + p gives

dσ

d2q1T
′d2q2T

′dy
≈ S2

(
N2
c − 1

N2
c

)2
α2
s

(2π)5

(
g2

4π

)4
GF√

2
e−bq

′2
1T e−bq

′2
2T

x
2−2α(q′21T )
1 x

2−2α(q′22T )
2

[
9

∫
d2QT

2π
QT

2

(
A

g2

)3

exp(−3QT
2/µ2)

2

3

]2

.(20)

The reggeization factors depend upon the momentum fractions x1 and x2 which satisfy x1x2s = m2
H

and y = 1
2 ln(x1/x2). The only difference6 between this and the original BL result is the factor of S2.

Integrating over the final state transverse momenta and simplifying a little gives

dσ

dy
≈S2 π

b+ 2α′ ln(1/x1)

π

b+ 2α′ ln(1/x2)

(
N2
c − 1

N2
c

)2
GF√

2

α2
s

(2π)5

1

(4π)4

(
s

m2
H

)2ε 1

g4

[
A3µ4

3

]2

. (21)

Figure 9 shows how the Saclay model typically predicts a rather larger cross-section with a weaker
dependence upon mH than the Durham model. The weaker dependence upon mH arises because the
Saclay model does not contain the Sudakov suppression, which is more pronounced at larger mH , and
also because of the choice ε = 0.08. A larger value would induce a correspondingly more rapid fall. The
Durham use of the gluon density function does indeed translate into an effective value of ε subtantially
larger than 0.08. This effect is also to be seen in the dependence of the model predictions upon the
centre-of-mass energy as shown in Figure 10. We have once again assumed a constant S 2 = 3% in this
figure despite the fact that one does expect a dependence of the gap survival factor upon the energy.

6Apart from the factor 2 error previously mentioned.
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Fig. 9: Comparing dependence upon mH of the Saclay and Durham predictions. S2 = 3% in both cases.

Fig. 10: Comparing dependence upon
√
s of the Saclay and Durham predictions for mH = 120 GeV.
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Fig. 11: Comparing the y dependence of the Saclay and Durham predictions for mH = 120 GeV. Note that the
Saclay prediction has been reduced by a factor 5 to make the plot easier to read. The numbers in parenthesis are
the total cross-sections, i.e. integrated over rapidity.

Figure 11 compares the rapidity dependence of the Higgs production cross-section in the two
models. The Saclay prediction is almost y-independent. Indeed the only y-dependence is a consequence
of α′ 6= 0. In both models the calculations are really only meant to be used for centrally produced Higgs
bosons, i.e. |y| not too large since otherwise one ought to revisit the approximations implicit in taking
the high-energy limit. Nevertheless, the Durham prediction does anticipate a fall as |y| increases, and
this is coming because one is probing larger values of x in the gluon density. In contrast, the Saclay
prediction does not anticipate this fall and so a cutoff in rapidity needs to be introduced in quoting any
cross-section integrated over rapidity. In Figure 11 a cut on x1,2 < 0.1 is made (which is equivalent to a
cut on |y| < 2.5) for the Saclay model. After integrating over rapidity, the Durham model predicts a total
cross-section of 2 fb for the production of a 120 GeV Higgs boson at the LHC whilst the Saclay model
anticipates a cross-section a factor ∼ 5 larger.

The essentially non-perturbative Saclay prediction clearly has some very substantial uncertainties
associated with it. The choice of an exponentially falling gluon propagator means that there is no place
for a perturbative component. However, as the Durham calculation shows, there does not seem to be any
good reason for neglecting contributions from perturbatively large values of QT . It also seems entirely
reasonable to object on the grounds that one should not neglect the Sudakov suppression factor and that
including it would substantially reduce the cross-section.

In [18], the Sudakov factor of equation (11) is included, with the rest of the amplitude computed
following Bialas-Landshoff. The perturbative Sudakov factor is also included in the approach of [19],
albeit only at the level of the double logarithms. This latter approach uses perturbative gluons throughout
the calculation but Regge factors are included to determine the coupling of the gluons into the protons,
i.e. rather than the unintegrated partons of the Durham model. In both cases the perturbative Sudakov
factor, not suprisingly, is important.
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4 Concluding remarks
We hope to have provided a detailed introduction to the Durham model for central exclusive Higgs
production. The underlying theory has been explained and the various sources of uncertainty highlighted
with particular emphasis on the sensitivity of the predictions to gluon dynamics in the infra-red region.
We also made some attempt to mention other approaches which can be found in the literature.

The focus has been on the production of a Standard Model Higgs boson but it should be clear that
the formalism can readily be applied to the central production of any system X which has a coupling to
gluons and invariant mass much smaller than the beam energy. There are many very interesting possi-
bilities for system X which have been explored in the literature and we have not made any attempt to
explore them here [2, 3, 8, 11, 15–17]. Nor have we paid any attention to the crucial challenge of sepa-
rating signal events from background [5, 9]. The inclusion of theoretical models into Monte Carlo event
generators and a discussion of the experimental issues relating to central exclusive particle production
have not been considered here but can be found in other contributions to these proceedings [50, 51].

It seems that perturbative QCD can be used to compute cross-sections for processes of the type
pp → p + X + p. The calculations are uncertain but indicate that rates ought to be high enough to be
interesting at the LHC. In the case that the system X is a pair of jets there ought to be the possibility
to explore this physics at the Tevatron [52]. Information gained from such an analysis would help pin
down theoretical uncertainties, as would information on the rarer but cleaner channel where X is a pair
of photons [53]. Of greatest interest is when X contains “new physics” whence this central exclusive
production mechanism offers new possibilities for its exploration.
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[46] T. Sjöstrand and P.Z. Skands, JHEP 0403, 053 (2004). E-Print Archive: hep-ph/0402078.
[47] K. Odagiri, JHEP 0408, 019 (2004). E-Print Archive: hep-ph/0407008.
[48] P.V. Landshoff and O. Nachtmann, Z. Phys. C35, 405 (1987).
[49] A. Donnachie and P.V. Landshoff, Nucl. Phys. B311, 509 (1989).
[50] M. Boonekamp et al, Monte Carlo generators for central exclusive diffraction. These proceedings.
[51] B.E. Cox et al, Experimental aspects of central exclusive diffraction. These proceedings.
[52] B.E. Cox and A. Pilkington, Central exclusive dijet production at the Tevatron. E-Print Archive:

hep-ph/0508249.
[53] V.A. Khoze, A.D. Martin, M.G. Ryskin and W.J. Stirling, Eur. Phys. J. C38, 475 (2005). E-Print

Archive: hep-ph/0409037.

DIFFRACTIVE HIGGS PRODUCTION: THEORY

481



Monte Carlo generators for central exclusive diffraction

Maarten Boonekamp, Creighton Hogg, James Monk, Andrew Pilkington & Marek Tasevsky

Abstract
We review the three Monte Carlo generators that are available for simulating
the central exclusive reaction, pp→ p+X + p.

1 Introduction
The central exclusive mechanism is defined as pp → p +X + p with no radiation emitted between the
intact outgoing beam hadrons and the central system X . The study of central exclusive Higgs boson
production has been aided with the recent development of Monte Carlo simulations to enable parton,
hadron and detector level simulation. The three generators that we shall examine here are DPEMC
[1], EDDE [2] and ExHuME [3]. From an experimental perspective, it is important to examine both
the similarities and differences between the models in order to assess the physics potential in terms of
forward proton tagging at the LHC [4].

Each of the Monte Carlos implements a different model of central exclusive production that is
either perturbative or non-perturbative. ExHuME is an implementation of the perturbative calculation of
Khoze, Martin and Ryskin [5], the so-called “Durham Model”. In this calculation (depicted in fig 1(a)),
the two gluons couple perturbatively to the off-diagonal unintegrated gluon distribution in the proton.
The Durham approach includes a Sudakov factor to suppress radiation into the rapidity gap between the
central system and the outgoing protons and which renders the loop diagram infra-red safe. The bare
cross section is suppressed by a soft-survival probability, S 2, that accounts for additional momentum
transfer between the proton lines that lead to particle production that could fill in the gap. The current
ExHuME default takes S2 to be 0.03 at the LHC.

In contrast, DPEMC and EDDE treat the proton vertices non-perturbatively. This is acheived in the
context of Regge theory, by pomeron exchange from each of the proton lines. DPEMC follows the Bialas-
Landshoff approach [6] of parameterising the pomeron flux within the proton. DPEMC also sets the
default value of S2 to 0.03 at the LHC. EDDE uses an improved Regge-eikonal approach [7] to calculate
the soft proton vertices and includes a Sudakov suppression factor to prohibit real gluon emission. There
is no explicit soft-survival factor present in EDDE: it is assumed that the Regge parameterisation includes
the effect of additional interactions between the proton lines. For further details of the calculations
underlying both DPEMC and ExHuME please refer to [8].

The connection between the parton level process and the hadronic final state is not the same in
the three Monte Carlos. Both ExHuME and EDDE are linked to Pythia [9, 10] for final state parton
showering and hadronisation. DPEMC however, overrides the HERWIG [11] internal γγ interactions in
e+e− collisions to simulate double pomeron exchange.

The processes available are similar in each Monte Carlo. Perhaps the most interesting is Higgs
boson production with all subsequent decays. In addition, di-jet production is included in all three
generators. None of the Monte Carlos yet includes the next-to-leading order 3 jet process, which could
be an important, or even the dominant, background to the central exclusive H → bb̄ search channel.

Finally, inclusive double pomeron exchange (shown in figure 1(b)) will also act as a backgound to
the exclusive process as there are 2 protons in the final state. These processes are always accompanied by
pomeron remnants in the central system and it may be a challenge experimentally to separate these from
the system of interest. Two models for these processes are the Cox-Forshaw model (CF), implemented in
POMWIG [12], and the Boonekamp-Peschanski-Royon model (BPR) [13] that is included in DPEMC.
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Fig. 1: The exclusive production process (a) and the inclusive (double pomeron) production process (b).

2 Results
Unless otherwise stated, all plots shown here were produced by using each of the Monte Carlos as they
are distributed. constant soft survival factor, S 2, of 0.03 was used in all three generators. In the case
of ExHuME, where a parton distribution set must be chosen, the default is the 2002 MRST set, usually
supplied via the LHAPDF library.

Using the default settings at the LHC energy of 14 TeV the total cross sections for production of a
120 GeV Higgs boson are 3.0 fb, 1.94 fb and 2.8 fb for DPEMC, EDDE and ExHuME respectively. How-
ever, despite these similar cross section predictions, the physics reach of the central exclusive process is
predicted to differ significantly between the Monte Carlos. Figure 2(a) shows that ExHuME and EDDE
predict that the cross section for exclusive Higgs boson production will fall much faster than DPEMC
with an increase in Higgs boson mass. This is a direct effect of the Sudakov suppression factors grow-
ing as the available phase space for gluon emission increases with the mass of the central system. The
different gluon momentum fraction, ξ, dependences lead to the differences in figure 2(b). With a fixed
central mass an increase in collision energy is identical to a decrease in ξ, and the flatter ξ distributions
of DPEMC and EDDE are reflected in the flatter

√
s dependence compared to ExHuME.
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Fig. 2: (a) The left hand plot shows the higgs cross section as a function of higgs mass. (b) The right hand plot
shows the increase in cross section with the collision energy (fixed gap survival factor).

The physics potential is dependent not only on the total cross section, but also on the rapidity
distribution of the central system, which is shown in figure 3(b) together with the ξ distribution for the
gluons. The more central rapidity distribution of ExHuME is due to the gluon distributions falling more
sharply than the pomeron parameterisation present in DPEMC.
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models. Note that a cut is applied in DPEMC at ξ = 0.1, as required by the Bialas-Landshoff approach.

The acceptances of any forward proton taggers that might be installed at the LHC are sensitive
to the rapidity distributions of the central system. The differences seen in figure 3(b) are reflected in
different acceptance curves shown in figure 4. The predicted acceptances using taggers at 420 and 220
metres as a function of the mass of the central system were obtained using a fast simulation of the
CMS detector. The fast simulation includes a parameterisation of the responses of the forward taggers
based on a detailed simulation of the detectors [14]. As seen in figure 4, as the mass of the central system
increases the combined acceptance using detectors at both 220 and 420 metres increases, with the relative
difference between the predictions from the three generators decreasing (from about 40% down to 15%
for the most extreme relative differences). For a Higgs boson of mass 120 GeV the acceptances are
predicted to be 46, 50 and 57% for EDDE, DPEMC and ExHuME respectively.

Changes from the default generator settings can have an effect on all of these distributions. As an
example Fig. 5(a) shows the rapidity distribution from ExHuME using the CTEQ6M set compared to the
MRST 2002 set of parton distribution functions. The CTEQ pdf has a flatter ξ dependence in the sensitive
region of Q⊥ ' 3 GeV, which leads to a broader peak and sharper fall in the rapidity distribution and a
larger cross section of 3.75 fb. This in turn should improve the efficiency of the forward proton taggers
because not only are there more events, but there are more events at low rapidity. It is also possible
to change the DPEMC code to add a harder ξ dependence of the form (1− ξ)α to the pomeron flux
parameterisation. This would favour a more central rapidity distribution, thus increasing the acceptance
in the forward pots.

In di-jet production the di-jet mass fraction, Rjj is defined as Rjj = Mjj/
√
ŝ, where Mjj is the

mass of the di-jet system and
√
ŝ is the total invariant mass of the central system. Rjj should be large in a

central exclusive event. In current searches for central exclusive di-jet production at the Tevatron [15], the
CDF collaboration have experimentally defined exclusive events to be those where Rjj > 0.8. It should
be noted that Mjj depends on the particular jet reconstruction algorithm used and the

√
ŝ measurement

is dependent either on tagging the outgoing protons or on reconstructing the missing mass using the
calorimeter. In figure 6(a) we show the prediction for the Rjj fraction in exclusive events at the LHC,
whilst in figure 6(b) we show two examples of the inclusive background with pomeron remnants from
Pomwig and DPEMC. It is clear that the Rjj > 0.8 definition for central exclusive production leads to
an overlap between the exclusive and inclusive regions for all of the Monte Carlo predictions.
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3 Summary
At a Higgs boson mass of 120GeV, all three Monte Carlo simulations give similar predictions for the
cross section. However, the physics potential decreases for models that include Sudakov suppression,
which will limit Higgs boson searches. The differing rapidity distributions of the central system result
in different efficiencies for a forward proton tagging programme. In order to fully study the background
to the H → bb̄ channel, future additions to the Monte Carlo programs should include the next to leading
order three jet process.
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Abstract
This section of the Proceedings contains papers summarising the current status of the FD

2 measurements
at HERA, the extraction of the diffractive parton distribution functions and the relevance of a direct
measurement of FD

L .

The selection of a pure sample of inclusive diffractive events, ep → eXp, is a challenging task.
Three alternative approaches have been used so far by the H1 and ZEUS collaborations at HERA:

1. a fast proton in the final state is required;
2. a rapidity gap in the forward direction is required;
3. the different shape of the MX distribution for diffractive and non-diffractive events is exploited.

The results obtained with these approaches exhibit a level of agreement which varies from tolera-
ble to poor. This is not surprising since different final states are selected, in which the reaction ep → eXp
appears with different degrees of purity. The paper by Newman and Schilling presents a systematic com-
parison of the results available, quantifies the differences and discusses their origins, when understood.

NLO QCD fits to the diffractive structure function FD
2 are used to extract the diffractive parton

distribution functions (dPDFs) in the proton. They can be interpreted as conditional probabilities to find
a parton in the proton when the final state of the process contains a fast proton of given four-momentum.
They are essential to determine the cross sections of less inclusive processes in ep diffractive scattering,
such as dijet or charm production. They are also a non-negotiable ingredient for the prediction of the
cross sections for inclusive diffractive processes at the LHC.

Several groups have so far performed such fits to the available data. The results of these fits are
presented in the papers by Newman and Schilling, Groys et al. and Watt et al. All fits give diffractive
PDFs largely dominated by gluons. However, significant differences are apparent, reflecting the differ-
ences in the data, but also in the fitting procedure. Newman and Schilling and Groys et al. assume the
so-called Regge factorisation hypothesis, i.e. take FD

2 = fIP (xIP , t) · F IP
2 (β, Q2). This assumption has

no basis in QCD and is critically discussed by Groys et al. and by Watt et al. The latter also argue that the
leading-twist formula used by Newman and Schilling and by Groys et al. is inadequate in large parts of
the measured kinematics, and use a modified expression which includes an estimate of power-suppressed
effects.

The parametrisations of the dPDFs discussed in these three papers are available in a code library
discussed in the paper by Schilling.

Finally, the paper by Newman addreses the importance of measuring the longitudinal diffractive
structure function FD

L . A measurement of FD
L to even modest precision would provide a very power-

ful independent tool to verify our understanding of diffraction and to test the gluon density extracted
indirectly in QCD fits from the scaling violations of FD

2 .
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Abstract
Recent diffractive structure function measurements by the H1 and ZEUS ex-
periments at HERA are reviewed. Various data sets, obtained using system-
atically different selection and reconstruction methods, are compared. NLO
DGLAP QCD fits are performed to the most precise H1 and ZEUS data and
diffractive parton densities are obtained in each case. Differences between the
Q2 dependences of the H1 and ZEUS data are reflected as differences between
the diffractive gluon densities.

1 Introduction
In recent years, several new measurements of the semi-inclusive ‘diffractive’ deep inelastic scattering
(DIS) cross section for the process ep → eXY at HERA have been released by the H1 and ZEUS
experiments [1–6]. The data are often presented in the form of a t-integrated reduced diffractive neutral
current cross section σD(3)

r , defined through1

d3σep→eXY

dxIP dx dQ2
=

4πα2

xQ4

(
1− y +

y2

2

)
σD(3)
r (xIP , x,Q

2) , (1)

or in terms of a diffractive structure function FD(3)
2 (xIP , β,Q

2). Neglecting any contributions from Z0

exchange,

σD(3)
r = F

D(3)
2 − y2

1 + (1− y)2
F
D(3)
L , (2)

such that σD(3)
r = F

D(3)
2 is a good approximation except at very large y. The new data span a wide

kinematic range, covering several orders of magnitude in Q2, β and xIP .

Within the framework of QCD hard scattering collinear factorisation in diffractive DIS [7], these
data provide important constraints on the diffractive parton distribution functions (dpdf’s) of the proton.
These dpdf’s are a crucial input for calculations of the cross sections for less inclusive diffractive pro-
cesses in DIS, such as dijet or charm production [8, 9]. In contrast to the case of inclusive scattering, the
dpdf’s extracted in DIS are not expected to be directly applicable to hadron-hadron scattering [7,10–12].
Indeed, diffractive factorisation breaks down spectacularly when HERA dpdf’s are applied to diffrac-
tive proton-proton interactions at the TEVATRON [13]. It may, however, be possible to recover good
agreement by applying an additional ‘rapidity gap survival probability’ factor to account for secondary
scattering between the beam remnants [14–17]. The HERA dpdf’s thus remain an essential ingredient in
the prediction of diffractive cross sections at the LHC, notably the diffractive Higgs cross section [18].
Although the poorly known rapidity gap survival probability leads to the largest uncertainty in such cal-
culations, the uncertainty due to the input dpdf’s also plays a significant role. In [3], the H1 collaboration
made a first attempt to assess the uncertainty from this source, propagating the experimental errors from
the data points to the ‘H1 2002 NLO fit’ parton densities and assessing the theoretical uncertainties from
various sources.

In this contribution, we investigate the compatibility between various different measurements of
FD2 by H1 and ZEUS. We also apply the techniques developed in [3] to ZEUS data in order to explore
the consequences of differences between the H1 and ZEUS measurements in terms of dpdf’s.

1For a full definition of all terms and variables used, see for example [3].
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2 Diffractive Selection Methods and Data Sets Considered
One of the biggest challenges in measuring diffractive cross sections, and often the source of large
systematic uncertainties, is the separation of diffractive events in which the proton remains intact from
non-diffractive events and from proton-dissociation processes in which the proton is excited to form a
system with a large mass, M

Y
. Three distinct methods have been employed by the HERA experiments,

which select diffractive events of the type ep→ eXY , where Y is a proton or at worst a low mass proton
excitation. These methods are complimentary in that their systematics due to the rejection of proton
dissociative and non diffractive contributions are almost independent of one another. They are explained
in detail below.

– Roman Pot Spectrometer Method. Protons scattered through very small angles are detected
directly in detectors housed in ‘Roman Pot’ insertions to the beampipe well downstream the inter-
action point. The proton 4-momentum at the interaction point is reconstructed from the position
and slope of the tracks in these detectors, given a knowledge of the beam optics in the intervening
region. The Roman Pot devices are known as the Leading Proton Spectrometer (LPS) in the case
of ZEUS and the Forward Proton Spectrometer (FPS) in H1. The Roman pot method provides
the cleanest separation between elastic, proton dissociative and non-diffractive events. However,
acceptances are rather poor, such that statistical uncertainties are large in the data sets obtained so
far.

– Rapidity Gap Method. This method is used by H1 for diffractive structure function measurements
and by both H1 and ZEUS for the investigation of final state observables. The outgoing proton is
not observed, but the diffractive nature of the event is inferred from the presence of a large gap in
the rapidity distribution of the final state hadrons, separating the X system from the unobserved Y
system. The diffractive kinematics are reconstructed from the mass of the X system, which is well
measured in the main detector components. The rapidity gap must span the acceptance regions of
various forward2 detector components. For the H1 data presented here, these detectors efficiently
identify activity in the pseudorapidity range 3.3 < η . 7.5. The presence of a gap extending
to such large pseudorapidities is sufficient to ensure that M

Y
. 1.6 GeV. In light of the poor

knowledge of the M
Y

spectrum at low masses, no attempt is made to correct the data for the small
remaining proton dissociation contribution, but rather the cross sections are quoted integrated over
M

Y
< 1.6 GeV.

– MX Method. Again the outgoing proton is not observed, but rather than requiring a large rapidity
gap, diffractive events are selected on the basis of the inclusive lnM 2

X
distribution. Diffractive

events are responsible for a plateau in this distribution at low lnM 2
X

, such that they can be se-
lected cleanly for the lowest M

X
values. At intermediate M

X
, non-diffractive contributions are

subtracted on the basis of a two component fit in which the non-diffractive component rises expo-
nentially. This method is used for diffractive structure function measurements by ZEUS. It does
not discriminate between elastic and lowM

Y
proton-dissociative contributions. Results are quoted

for M
Y
< 2.3 GeV.

Four recent data sets are considered, for which full details of luminosities and kinematic ranges can be
found in Table 1.

– Published data from ZEUS taken in 1998 and 1999, using the M
X

method and taking advantage
of the increased forward acceptance offered by a new plug calorimeter (‘ZEUS-M

X
’) [1].

– Published ZEUS data obtained with the LPS using data taken in 1997 (‘ZEUS-LPS’) [2].
– Preliminary H1 data obtained using the rapidity gap method, combining three measurements using

different data sets from the period 1997-2000 for different regions in Q2 (‘H1-LRG’) [3–5].
– Preliminary H1 data obtained using the FPS, based on data taken in 1999 and 2000 (‘H1-FPS’) [6].

2The forward hemisphere is that of the outgoing proton beam, where the pseudorapidity η = − ln tan θ/2 is positive.
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Table 1: Overview of the data sets discussed here. The quoted kinematic ranges in Q2, β and xIP correspond to
the bin centres.

Label Ref. Reconstruction Lumi Kinematic range

Method L[pb−1] M
Y

[GeV] Q2[GeV2] β xIP

ZEUS-M
X

[1] M
X

method 4.2 < 2.3 2.7..55 0.003..0.975 0.0001..0.03

ZEUS-LPS [2] Roman Pot 12.8 Mp 2.4..39 0.007..0.48 0.0005..0.06

H1-LRG [3–5] Rapidity Gap 3.4..63 < 1.6 1.5..1600 0.01..0.9 0.0001..0.05

H1-FPS [6] Roman Pot 25 Mp 2.6..20 0.01..0.7 0.002..0.05

3 Comparisons between Data Sets
In this section, the xIP dependences of the data from the different measurements are compared at fixed
values of Q2 and β. Since the various measurements are generally presented at different Q2 and β
values, it is necessary to transport the data to the same values. The β and Q2 values of the H1-LRG
data are chosen as the reference points. The factors applied to data points from the other measurements
are evaluated using two different parameterisations, corresponding to the results of QCD fits to 1994 H1
data [19] and to a subset of the present H1-LRG data at intermediate Q2 [3] (see also section 4). In order
to avoid any significant bias arising from this procedure, data points are only considered further here if
the correction applied is smaller than 50% in total and if the correction factors obtained from the two
parameterisations are in agreement to better than 25%. In practice, these criteria only lead to the rejection
of data points in the ZEUS-M

X
data set atQ2 = 55 GeV2 and β = 0.975, where the poorly known high β

dependence of the diffractive cross section implies a large uncertainty on the factors required to transport
them to β = 0.9. Elsewhere, there is reasonable agreement between the factors obtained from the two
parameterisations and no additional uncertainties are assigned as a consequence of this procedure.

Since the various data sets correspond to different ranges in the outgoing proton system mass,
M

Y
, additional factors are required before comparisons can be made. For all data and fit comparisons,

all data are transported to the H1 measurement range of M
Y
< 1.6 GeV and |t| < 1 GeV2. The leading

proton data are scaled by a factor 1.1 [20] to correspond to the range M
Y
< 1.6 GeV and the ZEUS-

M
X

data are scaled to the same range by a further factor of 0.7 [1], such that the overall factor is 0.77.
The uncertainties on these factors are large, giving rise to normalisation uncertainties of perhaps 15%
between the different data sets.

The ZEUS-LPS and H1-FPS data are compared in figure 1. Within the experimental uncertainties,
the two data sets are in good agreement. Both data sets are also consistent with a parameterisation of
the H1-LRG data [3] based on the H1 2002 NLO QCD fit, which is also shown. This good agreement
between the H1-LRG and the Roman Pot data is also shown explicitly in figure 3.

In figure 2, a comparison is made between the H1-LRG and the ZEUS-M
X

data after all factors
have been applied. For much of the kinematic range, there is tolerable agreement between the two data
sets. However, there are clear regions of disagreement. One is at the largest β (smallest M

X
), where the

H1 data lie significantly above the ZEUS data for Q2 . 20 GeV2. Another is at intermediate and low β,
where the two data sets show significantly different dependences on Q2. With the factor of 0.77 applied
to the ZEUS data, there is good agreement at low Q2, but the ZEUS data lie below the H1 data at large
Q2. If the factor of 0.77 is replaced with a value closer to unity, the agreement improves at large Q2, but
the H1 data lie above the ZEUS data at low Q2. These inconsistencies between the different data sets are
discussed further in section 4.

For completeness, figure 3 shows a comparison between all four data sets considered.
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HERA Leading Proton Structure Function
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Fig. 1: Comparison of the Roman Pot data from H1 and ZEUS, scaled by a factor 1.1 such that they correspond to
MY < 1.6 GeV. TheQ2 and β values have been shifted to the H1-LRG bin centres using small translation factors.
The upper and lower curves form an error band on the predictions from the H1 2002 NLO QCD fit to the H1-LRG
data (experimental errors only). Dotted lines are used for kinematic regions which were not included in the fit.
Normalisation uncertainties of +12%

−10% on the ZEUS LPS data and 15% on the factor applied to shift the datasets to
M

Y
< 1.6 GeV are not shown.

4 Diffractive Parton Distributions
4.1 Theoretical Framework and Fit to H1-LRG Data
In this contribution, we adopt the fitting procedure used by H1 in [3], where next-to-leading order (NLO)
QCD fits are performed to diffractive reduced cross section, σD(3)

r , data [3, 21] with 6.5 ≤ Q2 ≤
800 GeV2 and the β and xIP ranges given in table 1.

The proof that QCD hard scattering collinear factorisation can be applied to diffractive DIS [7]
implies that in the leading log(Q2) approximation, the cross section for the diffractive process ep →
eXY can be written in terms of convolutions of universal partonic cross sections σ̂ei with diffractive
parton distribution functions (dpdf’s) fDi [11, 22, 23], representing probability distributions for a parton
i in the proton under the constraint that the proton is scattered with a particular 4 momentum. Thus, at
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HERA Diffractive Structure Function
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Fig. 2: Comparison of the ZEUS-MX data with a subset of the H1-LRG data. The Q2 and β values of the
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leading twist,3

d2σ(x,Q2, xIP , t)
ep→eXp′

dxIP dt
=
∑

i

∫ xIP

x
dξ σ̂ei(x,Q2, ξ) fDi (ξ,Q2, xIP , t) . (3)

This factorisation formula is valid for sufficiently large Q2 and fixed xIP and t. It also applies to the case
of proton dissociation into a system of fixed mass M

Y
and thus to any cross section which is integrated

over a fixed range in M
Y

. The partonic cross sections σ̂ei are the same as those for inclusive DIS and the
dpdf’s fDi , which are not known from first principles, should obey the DGLAP evolution equations [25].

In addition to the rigorous theoretical prescription represented by equation (3), an additional as-
sumption is necessary for the H1 fits in [3], that the shape of the dpdf’s is independent of xIP and t
and that their normalisation is controlled by Regge asymptotics [26]. Although this assumption has no

3A framework also exists to include higher order operators [24].
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HERA Diffractive Structure Function
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Fig. 3: Summary plot of all diffractive DIS data sets considered here. Additional H1-LRG data with Q2 <

2.5 GeV2, Q2 = 45 GeV2 and Q2 > 60 GeV2 are not shown. The Q2 and β values for all data sets have been
shifted to the H1 bin centres using small translation factors. The ZEUS data have been multiplied by a universal
factor of 0.77 and the LPS and FPS data by factors of 1.1, such that all data sets correspond to MY < 1.6 GeV.
Relative normalisation uncertainties of 15% due to these factors and further normalisation uncertainties of ±6.7%

(H1-LRG) and +12%
−10% (ZEUS-LPS) data are not shown.
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solid basis in QCD, it is compatible with the data fitted. The diffractive parton distributions can then be
factorised into a term depending only on xIP and t and a term depending only on x (or β) and Q2:

fDi (xIP , t, x,Q
2) = fIP/p(xIP , t) · f IPi (β = x/xIP , Q

2) . (4)

Under this ‘Regge’ factorisation assumption, the diffractive exchange can be treated as an object (a
‘pomeron’, IP ) with a partonic structure given by parton distributions f IPi (β,Q2). The variable β then
corresponds to the fraction of the pomeron longitudinal momentum carried by the struck parton. The
‘pomeron flux factor’ fIP/p(xIP , t) represents the probability that a pomeron with particular values of
xIP and t couples to the proton.

In the fit, the xIP dependence is parameterised using a Regge flux factor

fIP/p(xIP , t) = A ·
∫ tmin

tcut

eBIP t

x
2αIP (t)−1
IP

dt , (5)

where tcut = −1.0 GeV2, |tmin| is the minimum kinematically allowed value of |t| and the pomeron
trajectory is assumed to be linear, αIP (t) = αIP (0) + α′IP t. The parameters BIP and α′ and their uncer-
tainties are fixed as described in [3]. The value of A is chosen such that the flux factor is normalised to
unity at xIP = 0.003. The pomeron intercept is then obtained from the xIP dependence of the data and
takes the value α

IP
(0) = 1.173 ± 0.018 (stat.) ± 0.017 (syst.) +0.063

−0.035 (model).

The description of the data is improved with the inclusion of an additional separately factorisable
sub-leading exchange with a trajectory intercept of αIR(0) = 0.50 and parton densities taken from a
parameterisation of the pion [27]. This exchange contributes significantly only at low β and large xIP .

The dpdf’s are modelled in terms of a light flavour singlet

Σ(z) = u(z) + d(z) + s(z) + ū(z) + d̄(z) + s̄(z) , (6)

with u = d = s = ū = d̄ = s̄ and a gluon distribution g(z) at a starting scale Q2
0 = 3 GeV2. Here,

z is the momentum fraction of the parton entering the hard sub-process with respect to the diffractive
exchange, such that z = β for the lowest-order quark parton model process, whereas 0 < β < z for
higher order processes. The singlet quark and gluon distributions are parameterised using the form

zpi(z,Q
2
0) =




n∑

j=1

CijPj(2z − 1)




2

e
0.01
z−1 , (7)

where Pj(ξ) is the jth member of a set of Chebychev polynomials4 . The series is squared to ensure
positivity. The exponential term is added to guarantee that the dpdf’s tend to zero in the limit of z → 1.
It has negligible influence on the extracted partons at low to moderate z. The numbers of terms in the
polynomial parameterisations are optimised to the precision of the data, with the first three terms in the
series used for both the quark singlet and the gluon distributions, yielding 3 free parameters (CΣ

j and
Cgj ) for each. The normalisation of the sub-leading exchange contribution at high xIP is also determined
by the fit such that the total number of free parameters is 7. The data used in the fit are restricted to
M

X
> 2 GeV to suppress non-leading twist contributions. The effects of F D

L are considered through its
relation to the NLO gluon density, such that no explicit cut on y is required.

The NLO DGLAP equations are used to evolve the dpdfs to Q2 > Q2
0 using the method of [28],

extended for diffraction. No momentum sum rule is imposed. Charm quarks are treated in the massive
scheme (appearing via boson gluon fusion processes) with mc = 1.5± 0.1 GeV. The strong coupling is
set via5 ΛMS

QCD = 200 ± 30 MeV. The statistical and experimental systematic errors on the data points

4P1 = 1, P2 = ξ and Pj+1(ξ) = 2ξPj(ξ)− Pj−1(ξ).
5Although this value is rather different from the world average, we retain it here for consistency with previous H1 prelimi-

nary results, where it has been used consistently for QCD fits [3] and final state comparisons [8, 9].
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and their correlations are propagated to obtain error bands for the resulting dpdfs, which correspond to
increases in the χ2 by one unit [29]. A theoretical error on the dpdfs is estimated by variations of ΛQCD,
mc and the parameterisation of the xIP dependences as described in [3]. No theoretical uncertainty is
assigned for the choice of parton parameterisation, though the results are consistent within the quoted
uncertainties if alternative approaches [30] are used. No inhomogeneous term of the type included in [31]
is considered here. The presence of such a term would lead to a reduction in the gluon density extracted.

The central fit gives a good description of the data, with a χ2 of 308.7 for 306 degrees of freedom.
The resulting diffractive quark singlet and gluon distributions are shown in figure 4. Both extend to large
fractional momenta z. Whereas the singlet distribution is well constrained by the fit, there is a substantial
uncertainty in the gluon distribution, particularly for z & 0.5. The fraction of the exchanged momentum
carried by gluons integrated over the range 0.01 < z < 1 is 75 ± 15% (total error), confirming the
conclusion from earlier work [19] that diffraction is a gluon-induced phenomenon. These dpdf’s have
been astonishingly successful in describing diffractive final state data in DIS such as charm [9] and jet [8]
production, which, being induced by boson-gluon fusion-type processes, are roughly proportional to the
diffractive gluon density.

4.2 Fit to ZEUS Data
A very similar fit to that described in section 4.1 is performed to the ZEUS-M

X
data and the implications

of the differences between the data sets to the dpdf’s are investigated. The data are fitted in their original
binning scheme, but are scaled to M

Y
< 1.6 GeV using the factor of 0.77. As for the fit to the H1

data, the first 3 terms are included in the polynomial expansions for the quark and gluon densities at the
starting scale for QCD evolution. The same fit program, prescription and parameters are used as was the
case for the H1 2002 NLO fit, with the following exceptions.

– ZEUS-M
X

data with Q2 > 4 GeV2 are included in the fit, whereas only H1 data with Q2 >
6.5 GeV2 are included. It has been checked that the result for ZEUS is not altered significantly if
the minimum Q2 value is increased to 6 GeV2.

– The quadratic sum of the statistical and systematic error is considered, i.e. there is no treatment of
correlations between the data points through the systematics.

– No sub-leading Reggeon exchange component is included in the parameterisation. Including one
does not improve or alter the fit significantly.

– The Pomeron intercept is fitted together with the dpdf’s, in contrast to the two stage process of [3].
This does not influence the results significantly, though it does decrease the uncertainty on α

IP
(0).

The fit describes the ZEUS-M
X

data well (χ2 = 90 for 131 degrees of freedom) and yields a value for
the Pomeron intercept of αIP (0) = 1.132 ± 0.006 (experimental error only). This value is in agreement
with the H1 result if the full experimental and theoretical errors are taken into account. A good fit is thus
obtained without any variation of αIP (0) with Q2 or other deviation from Regge factorisation.

The diffractive parton densities from the fit to the ZEUS-M
X

data are compared with the results
from H1 in figure 4. The differences observed between the H1 and the ZEUS data are directly reflected
in the parton densities. The quark singlet densities are closely related to the measurements of F D

2 them-
selves. They are similar at low Q2 where the H1 and ZEUS data are in good agreement, but become
different at larger Q2, where discrepancies between the two data sets are observed. This difference be-
tween the Q2 dependences of the H1 and ZEUS data is further reflected in a difference of around a
factor of 2 between the gluon densities, which are roughly proportional to the logarithmic Q2 derivative
∂FD2 /∂ lnQ2 [32].

The H1-LRG and ZEUS-M
X

data are shown together with the results from both QCD fits in figure
5. Both fits give good descriptions of the data from which they are obtained. The differences between
the two data sets are clearly reflected in the fit predictions, most notably in the Q2 dependence.
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NLO QCD fits to H1 and ZEUS data
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Fig. 4: Diffractive quark singlet and gluon pdf’s for various Q2 values, as obtained from the NLO DGLAP fits
to the H1-LRG and ZEUS-M

X
data. The bands around the H1 result indicate the experimental and theoretical

uncertainties. The dotted lines around the result for ZEUS indicate the experimental uncertainty. The ZEUS data
used in the fit are scaled by a normalisation factor of 0.77 to match the H1-LRG range of MY < 1.6 GeV. This
factor is reflected in the normalisations of the quark and gluon densities. An uncertainty of 15% on this factor is
not included in the error bands shown.

5 Summary
Recent diffractive structure function data from H1 and ZEUS have been compared directly. The leading
proton data from both experiments (H1-FPS and ZEUS-LPS) are in good agreement with one other and
with the H1 large rapidity gap data (H1-LRG). There is reasonable agreement between the H1-LRG and
the ZEUS-M

X
data over much of the kinematic range. However, differences are observed at the highest

β (smallest M
X

) and the Q2 dependence at intermediate to low β is weaker for the ZEUS-M
X

data than
is the case for the H1-LRG data.

An NLO DGLAP QCD fit has been performed to the ZEUS-M
X

data, using the same theoreti-
cal framework, assumptions and parameterisations as have been employed previously for the H1-2002-
prelim NLO QCD fit to a subset of the H1-LRG data. As a consequence of the differences between the
Q2 dependences of the H1-LRG and ZEUS-MX data, the gluon density obtained from the ZEUS data is
significantly smaller than that for H1.
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HERA Diffractive Structure Function
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Fig. 5: As figure 2, but also showing the predictions using the NLO QCD fits to the H1-LRG and ZEUS-MX data
(uncertainties not shown).
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Abstract

Measurements of the diffractive structure function, FD
2 , of the proton at HERA

are used to extract the partonic structure of the Pomeron. Regge Factorization
is tested and is found to describe well the existing data within the selected kine-
matic range. The analysis is based on the next to leading order QCD evolution
equations. The results obtained from various data sets are compared.

1 Introduction
In the last 10 years a large amount of diffractive data was accumulated at the HERA collider [1–3]. There
are three methods used at HERA to select diffractive events. One uses the Leading Proton Spectrometer
(LPS) [3] to detect the scattered proton and by choosing the kinematic region where the scattered proton
looses very little of its initial longitudinal energy, it ensures that the event was diffractive. A second
method [2] simply requests a large rapidity gap (LRG) in the event and fits the data to contributions
coming from Pomeron and Reggeon exchange. The third method [1] relies on the distribution of the
mass of the hadronic system seen in the detector, MX , to isolate diffractive events and makes use of the
Forward Plug Calorimeter (FPC) to maximize the phase space coverage. We will refer to these three as
ZEUS LPS, H1 and ZEUS FPC methods.

The experiments [4–6] provide sets of results for inclusive diffractive structure function, xIPF
D(3)
2 ,

in different regions of phase space. In extracting the initial Pomeron parton distribution functions (pdfs),
the data are fitted assuming the validity of Regge factorization.

In the present study, Regge factorization is tested. New fits, based on a NLO QCD analysis, are
provided and include the contribution of the longitudinal structure function. The obtained PDFs are
systematically analyzed. A comparison of the different experimental data sets is provided. Additional
quantities derived from the fit results are also presented.

In order to make sure that diffractive processes are selected, a cut of xIP < 0.01 was performed,
where xIP is the fraction of the proton momentum carried by the Pomeron. It was shown [7] that this cuts
ensures the dominance of Pomeron exchange. In addition, a cut of Q2 > 3 GeV2 was performed on the
exchanged photon virtuality for applying the NLO analysis. Finally, a cut on MX > 2 GeV was used so
as to exclude the light vector meson production.

2 Regge factorization
The Regge Factorization assumption can be reduced to the following,

F
D(4)
2 (xIP , t , β, Q

2) = f(xIP , t) · F (β,Q2), (1)

where f(xIP , t) represents the Pomeron flux which is assumed to be independent of β and Q2 and
F (β,Q2) represents the Pomeron structure and is β and Q2 dependent. In order to test this assump-
tion, we check whether the flux f(xIP , t) is indeed independent of β and Q2 on the basis of the available
experimental data.
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The flux is assumed to have a form ∼ x−AIP (after integrating over t which is not measured in the
data) . A fit of this form to the data was performed in different Q2 intervals, for the whole β range, and
for different β intervals for the whole Q2 range.

Figure 1 shows the Q2 dependence of the exponent A for all three data sets, with the xIP and MX

cuts as described in the introduction. The H1 and the LPS data show no Q2 dependence. The ZEUS FPC
data show a small increase in A at the higher Q2 region. It should be noted that while for the H1 and
LPS data, releasing the xIP cut to 0.03 seems to have no effect, the deviation of the ZEUS FPC data from
a flat dependence increases from a 2.4 standard deviation (s.d.) to a 4.2 s.d. effect (not shown).

The β dependence of A is shown in figure 2. All three data sets seem to show no β dependence,
within the errors of the data. Note however, that by releasing the xIP cut to higher values, a strong
dependence of the flux on β is observed (not shown).
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Fig. 1: A as a function of Q2 for xIP < 0.01 and MX >

2 GeV, for the three data sets, as indicated in the figure.
The line corresponds to a fit over the whole Q2 region

β-110 β-110

A

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

>2 GeVx<0.01 and MIPx

A
IPx
1Fitting H1 data with 

β-110 β-110

A

0.1

0.15

0.2

0.25

0.3

0.35

>2 GeVx<0.01 and MIPx

A
IPx
1Fitting ZEUS FPC data with 

β-110 β-110

A

-0.1

0

0.1

0.2

0.3

0.4

>2 GeVx<0.01 and MIPx

A
IPx
1Fitting ZEUS LPS data with 

Fig. 2: A as a function of β for xIP < 0.01 and MX >

2 GeV, for the three data sets, as indicated in the figure.
The line corresponds to a fit over the whole β region

We thus conclude that for xIP < 0.01, the Pomeron flux seems to be independent of Q2 and of β
and thus the Regge factorization hypothesis holds.
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3 NLO QCD fits
We parameterized the parton distribution functions of the Pomeron at Q2

0 = 3 GeV2 in a simple form
of Axb(1 − x)c for u and d quarks (and anti-quarks) and set all other quarks to zero at the initial
scale. The gluon distribution was also assumed to have the same mathematical form. We thus had 3
parameters for quarks, 3 for gluons and an additional parameter for the flux, expressed in terms of the
Pomeron intercept αIP (0). Each data set was fitted to 7 parameters and a good fit was achieved for
each. The H1 and ZEUS FPC had χ2/df ≈ 1, while for the LPS data, the obtained value was 0.5. The
data together with the results of the fits are shown in figure 3. The following values were obtained
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Fig. 3: The diffractive reduced
cross section of the proton mul-
tiplies by xIP , as a function of
xIP for the different data sets (the
most right plot is for the LPS
data) in different bins of Q2 and
β, as indicated in the figure. The
bands are the results of the fits in-
cluding uncertainties.

for αIP (0), for each of the three data sets: αIP (0) = 1.138 ± 0.011, for the ZEUS FPC data, αIP (0) =
1.189 ± 0.020, for the ZEUS LPS data, αIP (0) = 1.178 ± 0.007, for the H1 data.

The parton distribution functions are shown in figure 4 for the H1 and the ZEUS FPC data points.
Because of the limited β range covered by the LPS data, the resulting pdfs uncertainties are large and are
not shown here. In fact one gets two solutions; one where the gluon contribution is dominant and another
one where the gluons and the quarks contribute about equally. Note however that once the diffractive
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Fig. 4: Quark and gluon pdfs of the Pomeron as obtained from the H1 data fit (left two figures) and from the ZEUS
FPC data fit (two rightmost figures) as a function of β, at different values of Q2.

charm structure function data [8] are included in the fit, the gluon dominant solution is chosen (see
below). For the H1 fit one sees the dominance of the gluons in all the β range. For the ZEUS FPC
data, the quark constituent of the Pomeron dominates at high β while gluons dominate at low β. We can
quantify this by calculating the Pomeron momentum carried by the gluons. Using the fit results one gets
for the H1 data 80-90%. while for the ZEUS FPC data, 55-65%.

4 Comparison of the data sets
One way of checking the compatibility of all three data sets is to make an overall fit for the whole data
sample. Since the coverage of the β range in the LPS data is limited, we compare only the H1 and the
ZEUS FPC data. A fit with a relative overall scaling factor of the two data sets failed. Using the fit results
of one data sets superimposed on the other shows that the fit can describe some kinematic regions, while
failing in other bins. This leads to the conclusion that there seems to be some incompatibility between
the two data sets.

5 Comparison to FD(3)
2 (charm)

The ZEUS collaboration measured the diffractive charm structure function, F D(3),cc̄
2 [8] and these data

were used together with the LPS data for a combined fit [6]. The charm data are shown in figure 5 as
function of β. The full line shown the resulting best fit, where the contribution from charm was calculated
as photon-gluon fusion. In the same figure one sees the prediction from the NLO QCD fit to the ZEUS
FPC data (dashed line). Clearly, the gluons from the ZEUS FPC fit can not describe the diffractive charm
data.
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the prediction using the gluons from the ZEUS FPC fit.
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Abstract
We discuss the perturbative QCD description of diffractive deep-inelastic scat-
tering, and extract diffractive parton distributions from recent HERA data. The
asymptotic collinear factorisation theorem has important modifications in the
sub-asymptotic HERA regime. In addition to the usual resolved Pomeron con-
tribution, the direct interaction of the Pomeron must also be accounted for. The
diffractive parton distributions are shown to satisfy an inhomogeneous evolu-
tion equation, analogous to the parton distributions of the photon.

1 Diffractive parton distributions from Regge factorisation
It is conventional to extract diffractive parton distribution functions (DPDFs) from diffractive deep-
inelastic scattering (DDIS) data using two levels of factorisation. Firstly, collinear factorisation means
that the diffractive structure function can be written as [1]

F
D(3)
2 (xIP , β,Q

2) =
∑

a=q,g

C2,a ⊗ aD, (1)

where the DPDFs aD = zqD or zgD satisfy DGLAP evolution:

∂aD

∂ lnQ2
=
∑

a′=q,g

Paa′ ⊗ a′D, (2)

and where C2,a and Paa′ are the same hard-scattering coefficients and splitting functions as in inclusive
DIS. The factorisation theorem (1) applies when Q is made large, therefore it is correct up to power-
suppressed corrections. It says nothing about the mechanism for diffraction. What is the exchanged
object with vacuum quantum numbers (‘Pomeron’) which causes the large rapidity gap (LRG) charac-
terising diffractive interactions?

In a second stage [2] Regge factorisation is usually assumed, such that

aD(xIP , z,Q
2) = fIP (xIP ) aIP (z,Q2), (3)

where the Pomeron PDFs aIP = zqIP or zgIP . The Pomeron flux factor fIP is taken from Regge phe-
nomenology,

fIP (xIP ) =

∫ tmin

tcut

dt eBIP t x
1−2αIP (t)
IP . (4)

Here, αIP (t) = αIP (0) + α′IP t, and the parameters BIP , αIP (0), and α′IP should be taken from fits to soft
hadron data. Although the first fits to use this approach assumed a ‘soft’ Pomeron, αIP (0) ' 1.08 [3],
all recent fits require a substantially higher value to describe the data. In addition, a secondary Reggeon
contribution is needed to describe the data for xIP & 0.01. This approach is illustrated in Fig. 1(a),
where the virtualities of the t-channel partons are strongly ordered as required by DGLAP evolution. The
Pomeron PDFs aIP are parameterised at some arbitrary low scale Q2

0, then evolved up to the factorisation
scale, usually taken to be the photon virtuality Q2.
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Fig. 1: (a) Resolved Pomeron contribution in the ‘Regge factorisation’ approach. (b) Resolved Pomeron contribu-
tion in the ‘perturbative QCD’ approach. (c) Direct Pomeron contribution in the ‘perturbative QCD’ approach.

Although this approach has been found to give a good description1 of the DDIS data [4–7], it has
little theoretical justification. The ‘Regge factorisation’ of (3) is merely a simple way of parameterising
the xIP dependence of the DPDFs. Note, however, that the effective Pomeron intercept αIP (0) has been
observed to depend on Q2 [8]. The fact that the required αIP (0) is greater than the ‘soft’ value indicates
that there is a significant perturbative QCD (pQCD) contribution to DDIS.

2 Diffractive parton distributions from perturbative QCD
In pQCD, Pomeron exchange can be described by two-gluon exchange, two gluons being the minimum
number needed to reproduce the quantum numbers of the vacuum. Two-gluon exchange calculations are
the basis for the colour dipole model description of DDIS, in which the photon dissociates into qq̄ or qq̄g
final states. Such calculations have successfully been used to describe HERA data. The crucial question,
therefore, is how to reconcile two-gluon exchange with collinear factorisation as given by (1) and (2).
Are these two approaches compatible?

Generalising the qq̄ or qq̄g final states to an arbitrary number of parton emissions from the photon
dissociation, and replacing two-gluon exchange by exchange of a parton ladder, we have diagrams like
that shown in Fig. 1(b) [9–12]. Again, the virtualities of the t-channel partons are strongly ordered:
µ2

0 � . . . � µ2 � . . . � Q2. The scale µ2 at which the Pomeron-to-parton splitting occurs can vary
between µ2

0 ∼ 1 GeV2 and the factorisation scale Q2. Therefore, to calculate the inclusive diffractive
structure function, FD(3)

2 , we need to integrate over µ2:

F
D(3)
2 (xIP , β,Q

2) =

∫ Q2

µ2
0

dµ2

µ2
fIP (xIP ;µ2) FIP2 (β,Q2;µ2). (5)

Here, the perturbative Pomeron flux factor can be shown to be [12]

fIP (xIP ;µ2) =
1

xIPBD

[
Rg

αS(µ2)

µ
xIP g(xIP , µ

2)

]2

. (6)

The diffractive slope parameter BD comes from the t-integration, while the factor Rg accounts for the
skewedness of the proton gluon distribution [13]. There are similar contributions from sea quarks, where
g(xIP , µ

2) in (6) is replaced by S(xIP , µ
2), together with an interference term. In the fits presented here,

1Note that the H1 2002 NLO fit [4] uses the 2-loop αS with ΛQCD = 200 MeV for 4 flavours. This gives αS values much
smaller than the world average, meaning that the H1 2002 diffractive gluon density is artificially enhanced.
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Fig. 2: Contributions to FD(3)
2 as a function of µ2.

we use the MRST2001 NLO gluon and sea-quark distributions of the proton [14]. The Pomeron structure
function in (5), FIP2 (β,Q2;µ2), is calculated from Pomeron PDFs, aIP (z,Q2;µ2), evolved using NLO
DGLAP from a starting scale µ2 up to Q2, taking the input distributions to be LO Pomeron-to-parton
splitting functions, aIP (z, µ2;µ2) = PaIP (z) [11,12]. At first glance, it would appear that the perturbative
Pomeron flux factor (6) behaves as fIP (xIP ;µ2) ∼ 1/µ2, so that contributions from large µ2 are strongly
suppressed. However, at large µ2, the gluon distribution of the proton behaves as xIP g(xIP , µ2) ∼ (µ2)γ ,
where γ is the anomalous dimension. In the BFKL limit of xIP → 0, γ ' 0.5, so fIP (xIP ;µ2) would be
approximately independent of µ2. The HERA domain is in an intermediate region: γ is not small, but is
less than 0.5. It is interesting to plot the integrand of (5) as a function of µ2, as shown in Fig. 2. Notice
that there is a large contribution from µ2 > 3 GeV2, which is the value of the input scale Q2

0 typically
used in the ‘Regge factorisation’ fits of Sect. 1. Recall that fits using ‘Regge factorisation’ include
contributions from µ2 ≤ Q2

0 in the input distributions, but neglect all contributions from µ2 > Q2
0; from

Fig. 2 this is clearly an unreasonable assumption.

As well as the resolved Pomeron contribution of Fig. 1(b), we must also account for the direct
interaction of the Pomeron in the hard subprocess, Fig. 1(c), where there is no DGLAP evolution in the
upper part of the diagram. Therefore, the diffractive structure function can be written as

F
D(3)
2 =

∑

a=q,g

C2,a ⊗ aD

︸ ︷︷ ︸
Resolved Pomeron

+ C2,IP︸︷︷︸
Direct Pomeron

; (7)

cf. (1) where there is no direct Pomeron contribution. The direct Pomeron coefficient function, C2,IP ,
calculated from Fig. 1(c), will again depend on fIP (xIP ;µ2) given by (6). Therefore, it is formally
suppressed by a factor 1/µ2, but in practice does not behave as such; see Fig. 2.

The contribution to the DPDFs from scales µ > µ0 is

aD(xIP , z,Q
2) =

∫ Q2

µ2
0

dµ2

µ2
fIP (xIP ;µ2) aIP (z,Q2;µ2). (8)

Differentiating (8), we see that the evolution equations for the DPDFs are [12]

∂aD

∂ lnQ2
=
∑

a′=q,g

Paa′ ⊗ a′D + PaIP (z) fIP (xIP ;Q2); (9)
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Fig. 3: The four classes of contributions to diffractive dijet photoproduction at LO. Both the photon and the
Pomeron can be either ‘resolved’ or ‘direct’.

cf. (2) where the second term of (9) is absent. That is, the DPDFs satisfy an inhomogeneous evolution
equation [10, 12], with the extra inhomogeneous term in (9) leading to more rapid evolution than in the
‘Regge factorisation’ fits described in Sect. 1. Note that the inhomogeneous term will change the xIP
dependence evolving upwards in Q2, in accordance with the data, and unlike the ‘Regge factorisation’
assumption (3). Again, the inhomogeneous term in (9) is formally suppressed by a factor 1/Q2, but in
practice does not behave as such; see Fig. 2.

Therefore, the diffractive structure function is analogous to the photon structure function, where
there are both resolved and direct components and the photon PDFs satisfy an inhomogeneous evolu-
tion equation, where at LO the inhomogeneous term accounts for the splitting of the point-like photon
into a qq̄ pair. If we consider, for example, diffractive dijet photoproduction, there are four classes of
contributions; see Fig. 3. The relative importance of each contribution will depend on the values of xγ ,
the fraction of the photon’s momentum carried by the parton entering the hard subprocess, and zIP , the
fraction of the Pomeron’s momentum carried by the parton entering the hard subprocess.

3 Description of DDIS data
A NLO analysis of DDIS data is not yet possible. The direct Pomeron coefficient functions, C2,IP , and
Pomeron-to-parton splitting functions, PaIP , need to be calculated at NLO within a given factorisation
scheme (for example, MS). Here, we perform a simplified analysis where the usual coefficient functions
C2,a and splitting functions Paa′ (a, a′ = q, g) are taken at NLO, but C2,IP and PaIP are taken at LO [12].
We work in the fixed flavour number scheme, where there is no charm DPDF. Charm quarks are produced
via γ∗gIP → cc̄ at NLO [15] and γ∗IP → cc̄ at LO [16]. For light quarks, we include the direct Pomeron
process γ∗LIP → qq̄ at LO [12], which is higher-twist and known to be important at large β.
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Fig. 4: “pQCD” fits to (a) H1 LRG and (b) ZEUS MX data.

To see the effect of the direct Pomeron contribution and the inhomogeneous evolution, we make
two types of fits:
“Regge” : The ‘Regge factorisation’ approach discussed in Sect. 1, where there is no direct Pomeron

contribution and no inhomogeneous term in the evolution equation.

“pQCD” : The ‘perturbative QCD’ approach discussed in Sect. 2, where these effects are included.

We make separate fits to the recent H1 LRG (prel.) [4] and ZEUS MX [8] σD(3)
r data, applying

cuts Q2 ≥ 3 GeV2 and MX ≥ 2 GeV, and allowing for overall normalisation factors of 1.10 and
1.43 to account for proton dissociation up to masses of 1.6 GeV and 2.3 GeV respectively. Statistical
and systematic experimental errors are added in quadrature. The strong coupling is set via αS(MZ) =
0.1190. We take the input forms of the DPDFs at a scale Q2

0 = 3 GeV2 to be

zΣD(xIP , z,Q
2
0) = fIP (xIP ) Cq z

Aq (1− z)Bq , (10)

zgD(xIP , z,Q
2
0) = fIP (xIP ) Cg z

Ag (1− z)Bg , (11)

where fIP (xIP ) is given by (4), and where αIP (0), Ca, Aa, and Ba (a = q, g) are free parameters. The
secondary Reggeon contribution to the H1 data is treated in a similar way as in the H1 2002 fit [4], using
the GRV pionic parton distributions [17]. Good fits are obtained in all cases, with χ2/d.o.f. = 0.75,
0.71, 0.76, and 0.84 for the “Regge” fit to H1 data, “pQCD” fit to H1 data, “Regge” fit to ZEUS MX

data, and “pQCD” fit to ZEUS MX data respectively. The “pQCD” fits are shown in Fig. 4, including
a breakdown of the different contributions. The DPDFs are shown in Fig. 5. Note that the “pQCD”
DPDFs are smaller than the corresponding “Regge” DPDFs at large z due to the inclusion of the higher-
twist γ∗LIP → qq̄ contribution. Also note that the “pQCD” DPDFs have slightly more rapid evolution
than the “Regge” DPDFs due to the extra inhomogeneous term in the evolution equation (9). There is a
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Fig. 6: Predictions for ZEUS LRG diffractive charm production data using DPDFs from the “pQCD” fits to (a) H1
LRG and (b) ZEUS MX data. Note the large direct Pomeron (γ∗IP → cc̄) contribution at moderate β.

large difference between the DPDFs obtained from the H1 LRG and ZEUSMX data due to the different
Q2 dependence of these data sets; see also [6, 7].

The predictions from the two “pQCD” fits for the charm contribution to the diffractive structure
function as measured by ZEUS using the LRG method [18] are shown in Fig. 6. Our H1 LRG fit gives a
good description, while our ZEUSMX fit is too small at low β. Note that the direct Pomeron contribution
is significant at moderate β. These charm data points were included in the determination of DPDFs from
ZEUS LPS data [5], but only the resolved Pomeron (γ∗gIP → cc̄) contribution was included and not the
direct Pomeron (γ∗IP → cc̄) contribution. Therefore, the diffractive gluon distribution from the ZEUS
LPS fit [5] needed to be artificially large to fit the charm data at moderate β.
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4 Conclusions and outlook
To summarise, diffractive DIS is more complicated than inclusive DIS. Collinear factorisation holds, but
we need to account for the direct Pomeron coupling, leading to an inhomogeneous evolution equation
(9). Therefore, the treatment of DPDFs has more in common with photon PDFs than with proton PDFs.
The H1 LRG and ZEUS MX data seem to have a different Q2 dependence, leading to different DPDFs.
This issue needs further attention.2 For a NLO analysis of DDIS data, the direct Pomeron coefficient
functions, C2,IP , and Pomeron-to-parton splitting functions, PaIP , need to be calculated at NLO. There
are indications [16] that there are large π2-enhanced virtual loop corrections (‘K-factors’) similar to those
found in the Drell–Yan process. As with all PDF determinations, the sensitivity to the form of the input
parameterisation, (10) and (11), and input scale Q2

0 needs to be studied.3 The inclusion of jet and heavy
quark DDIS data, and possibly FD(3)

L if it is measured [19], would help to constrain the DPDFs further.
The extraction of DPDFs from HERA data will provide an important input for calculations of diffraction
at the LHC.
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DPDF: A Library for Diffractive Parton Distributions

Frank-Peter Schilling
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Abstract
A code library is presented which provides a common interface to available
parameterizations of diffractive parton distribution functions determined from
QCD fits to HERA diffractive structure function data.

1 Introduction
In recent years, various precise measurements of the diffractive reduced cross section1 σ

D(3)
r (xIP , β,Q2)

have been made by the HERA experiments H1 and ZEUS. Within the framework of QCD factorization
in diffractive DIS [1], several sets of diffractive parton distributions (dpdf’s) have been obtained from
leading or next-to-leading order DGLAP QCD fits to these data2. The extracted dpdf’s are a crucial
input for the calculations of the cross sections of less inclusive diffractive processes such as diffractive
jet, heavy quark or even Higgs production.

Since these diffractive pdf’s are used in many different Monte-Carlo generators as well as in
fixed order QCD calculations, it is desirable to provide them through a common software interface,
similar in spirit to the common PDFLIB [2] and LHAPDF [3] packages for non-diffractive pdf’s. To
achieve this, the DPDF library has been developed. When a new dpdf set becomes available, it then
needs to be implemented only in one place. Furthermore, additional features such as custom QCD
evolution, structure function calculation and error information are available. Thus, the DPDF library
provides a useful way to make the knowledge from HERA available to the TEVATRON, LHC and theory
communities.

2 Theoretical Framework
The concept of QCD factorization in diffractive DIS implies that the diffractive γ∗p cross section can
be expressed as a convolution of universal diffractive parton distributions fD

i with process-dependent
coefficient functions:

d2σ(x,Q2, xIP , t)γ∗p→p′X

dxIP dt
=

∑
i

∫ xIP

x
dξ σ̂γ∗i(x,Q2, ξ) fD

i (xIP , t, ξ,Q2) . (1)

The diffractive pdf’s fD
i (xIP , t, β, Q2) can be extracted from a DGLAP QCD analysis of the diffractive

reduced cross section σD
r .

For many (but not all) of the included parameterizations the (xIP , t) dependence factorizes (“Regge
factorization”) so that a flux factor fIP/p(xIP , t) and dpdf’s f IP

i (β, Q2) are defined separately:

fD
i (xIP , t, β, Q2) = fIP/p(xIP , t) · f IP

i (β, Q2) . (2)

For those parameterizations which include a secondary Reggeon exchange contribution (often using a
pion structure function) in order to describe the data at high xIP , such a possibility is also included. The
dpdf’s are typically parameterized in terms of a light quark flavor singlet and a gluon distribution, which
are evolved using the (N)LO DGLAP equations3.

1The reduced cross section σD
r corresponds to the structure function F D

2 if contributions from F D
L and xF D

3 are neglected.
2In some cases, final state data were used in addition in order to better constrain the diffractive gluon density.
3For details of the parameterizations, see the original publications.
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Table 1: Overview of the diffractive pdf sets implemented in the DPDF package. The Q2, β and xIP ranges
correspond to the approximate kinematic range of the data used in the fit.

Set Fit Var Name Ref. Order Q2 (GeV2) β xIP

1 4 – H1-1997-LO-Fit-1 H1 Coll. [5] LO 4.5..75 0.04..0.9 < 0.05
1 5 – H1-1997-LO-Fit-2 LO
1 6 – H1-1997-LO-Fit-3 LO
2 1 – H1-2002-NLO H1 Coll. (prel.) [6] NLO 6.5..800 0.01..0.9 < 0.05
2 2 – H1-2002-LO LO
3 1 1..3 ACTW-NLO-A Alvero et al. [7] NLO 6.0..75 0.20..0.7 < 0.01
3 2 1..3 ACTW-NLO-B NLO
3 3 1..3 ACTW-NLO-C NLO
3 4 1..3 ACTW-NLO-D NLO
3 5 1..3 ACTW-NLO-SG NLO
4 – – BGH-LO Buchmueller et al. [8] LO 4.5..75 0.04..0.9 < 0.01
5 – – HS-NLO Hautmann and Soper [9] NLO
6 – – ZEUS-LPS ZEUS Coll. [11, 12] NLO 2.4..39 0.01..0.5 < 0.01
7 1 – MRW-NLO-Lambda Martin et al. [10] NLO 2.4..90 0.01..0.9 < 0.05
7 2 – MRW-NLO-MRST NLO
8 – – ZEUS-MX Groys et al. [13] NLO 4.0..55 0.01..0.9 < 0.01

3 Implementation
DPDF is a FORTRAN 77 package. A C++ wrapper will be provided. There is an external dependency
on the QCDNUM [4] package, which can be disabled.

3.1 Available Parameterizations
Currently the following dpdf sets are implemented: the fits performed by the H1 collaboration in [5], the
preliminary H1 fits presented in [6], the fits by Alvero et al. [7], a parameterization of the semi-classical
model by Buchmueller et al. [8], the fits by Hautmann and Soper [9] and by Martin et al. [10], the ZEUS
fit from [11, 12] and a fit to recent ZEUS data presented at this workshop [12, 13].

Details of the available dpdf sets are presented in table 1, including the kinematic ranges of the
data which were included in the fits. This information can be used as a guideline for the range of validity
of the fits. Note in particular that typically only data for xIP < 0.05 or < 0.01 are included in the fits,
which introduces an additional uncertainty when these fits are used for comparisons with experimental
data at higher xIP .

3.2 Interface to QCDNUM
DPDF provides an interface to the NLO DGLAP QCD evolution package QCDNUM [4]. It is possible to
perform a QCD evolution of the given pdf set from its starting scale Q2

0 using either the original evolution
scheme and parameters, or by providing modified parameters. The benefits are:

– QCDNUM calculates the full (N)LO structure functions F2 and FL for light and heavy quarks,
which can be used for consistent comparisons with experimental data;

– The QCD evolution parameters such as αs can be varied for systematic studies;
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– The dpdf’s can be evolved to Q2 or β values beyond the grid on which the original parameterization
is provided, which is particularly interesting for LHC applications.

3.3 Usage
The DPDF package can be obtained from [14]. In the following the principal user subroutines of the
library are listed.

– The package is initialized for a given dpdf by calling dpdf init(iset,ifit,ivar) where iset,
ifit and ivar are the parameters as given in table 1.

– The diffractive proton pdf’s for either Pomeron or sub-leading Reggeon exchange or their sum (if
provided) are returned at given values of (xIP , t, β, Q2) in an array xpq(-6:6) using dpdf ppdf.
The result may also be integrated over t.

– If provided, the flux factors fIP (xIP , t) and the parton densities fi(β, Q2) can be obtained sepa-
rately from dpdf flux and dpdf pdf.

– The diffractive structure function can be obtained from dpdf f2d.
– QCD evolution using QCDNUM can be performed using default parameters for the given set with
dpdf evolve std and using modified evolution parameters with dpdf evolve.

Note that the details of the user interface may change in the future. For details refer to the user
manual available from [14].

4 Outlook
It is planned to update DPDF if new dpdf sets become available. Additional features such as the possi-
bility of error dpdf’s (as for LHAPDF) are foreseen. The code and manual are available from [14].
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Prospects for FD
L Measurements at HERA-II

Paul Newman
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Abstract
The theoretical interest in the longitudinal diffractive structure function F D

L is
briefly motivated and possible measurement methods are surveyed. A simula-
tion based on realistic scenarios with a reduced proton beam energy at HERA-
II using the H1 apparatus shows that measurements are possible with up to 4σ
significance, limited by systematic errors.

1 Introduction
In order to understand inclusive diffraction fully, it is necessary to separate out the contributions from
transversely and longitudinally polarised exchange photons. Here, the formalism of [1] is adopted, where
by analogy with inclusive scattering and neglecting weak interactions, a reduced cross section σDr is
defined,1 related to the experimentally measured cross section by

d3σep→eXY

dxIP dβ dQ2
=

2πα2

β Q4
· Y+ · σDr (xIP , β,Q

2) , where σDr = FD2 −
y2

Y+
FDL (1)

and Y+ = 1 + (1 − y)2. The structure function FD
L , is closely related to the longitudinal photon con-

tribution, whereas the more familiar FD
2 contains information on the sum of transverse and longitudinal

photon contributions.

It is generally understood [2] that at high β and low-to-moderate Q2, σDr receives a significant, per-
haps dominant, higher twist contribution due to longitudinally polarised photons. Definite predictions [3]
exist for this contribution, obtained by assuming 2-gluon exchange, with a similar phenomenology to that
successfully applied to vector meson cross sections at HERA. The dominant role played by gluons in the
diffractive parton densities [1] implies that the leading twist F D

L must also be relatively large. Assuming
the validity of QCD hard scattering collinear factorisation [4], this gluon dominance results in a leading
twist FDL which is approximately proportional to the diffractive gluon density. A measurement of F D

L

to even modest precision would provide a very powerful independent tool to verify our understanding
of the underlying dynamics and to test the gluon density extracted indirectly in QCD fits from the scal-
ing violations of FD2 . This is particularly important at the lowest x values, where direct information on
the gluon density cannot be obtained from jet or D∗ data due to kinematic limitations and where novel
effects such as parton saturation or non-DGLAP dynamics are most likely to become important.

Several different methods have been proposed to extract information on F D
L . It is possible in

principle to follow the procedure adopted by H1 in the inclusive case [5, 6], exploiting the decrease in
σDr at large y relative to expectations for FD

2 alone (see equation 1). This method may yield significant
results if sufficient precision and y range can be achieved [7], though assumptions are required on the xIP
dependence of FD2 , which is currently not well constrained by theory. An alternative method, exploiting
the azimuthal decorrelation between the proton and electron scattering planes caused by interference
between the transverse and longitudinal photon contributions [8], has already been used with the scattered
proton measured in the ZEUS LPS [9]. However, due to the relatively poor statistical precision achievable
with Roman pots at HERA-I, the current results are consistent with zero. If the potential of the H1 VFPS
is fully realised, this method may yet yield significant results in the HERA-II data [10]. However, if

1It is assumed here that all results are integrated over t. The superscript (3) usually included for FD(3)
2 and other quantities

is dropped for convenience.
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the necessary data are taken, the most promising possibility is to extract F D
L by comparing data at the

same Q2, β and xIP , but from different centre of mass energies
√
s and hence from different y values.

The longitudinal structure function can then be extracted directly and model-independently from the
measured data using equation 1. In this contribution, one possible scenario is investigated, based on
modified beam energies and luminosities which are currently under discussion as a possible part of the
HERA-II programme.

2 Simulated FDL Measurement
Given the need to obtain a large integrated luminosity at the highest possible beam energy for the re-
mainder of the HERA programme and the fixed end-point in mid 2007, it is likely that only a relatively
small amount of data can be taken with reduced beam energies. A possible scenario is investigated here
in which 10 pb−1 are taken at just one reduced proton beam energy of Ep = 400 GeV, the electron
beam energy being unchanged at 27.5 GeV. Since the maximum achievable instantaneous luminosity at
HERA scales like the proton beam energy squared [11], this data sample could be obtained in around 2-3
months at the current level of HERA performance. It is assumed that a larger data volume of 100 pb−1 is
available at Ep = 920 GeV, which allows for downscaling of high rate low Q2 inclusive triggers.2 The
results presented here can be used to infer those from other scenarios given that the statistical uncertainty
scales like σD 400

r /
√L400 + σD 920

r /
√L920, where σDEp

r and LEp are the reduced cross section and the
luminosity at a proton beam energy of Ep, respectively.

The longitudinal structure function can be extracted from the data at the two beam energies using

FDL =
Y 400

+ Y 920
+

y2
400Y

920
+ − y2

920Y
400

+

(
σD 920
r − σD 400

r

)
, (2)

where yEp and Y Ep
+ denote y and Y+ at a beam energy Ep. It is clear from equation 2 that the best

sensitivity to FDL requires the maximum difference between the reduced cross sections at the two beam
energies, which (equation 1) implies the maximum possible y atEp = 400 GeV. By measuring scattered
electrons with energies E ′e as low as 3 GeV [5], the H1 collaboration has obtained data at y = 0.9. This is
possible with the use of the SPACAL calorimeter in combination with a measurement of the electron track
in either the backward silicon tracker (BST) or the central jet chamber (CJC). For HERA-II running, the
corresponding available range of scattered electron polar angle is 155◦ < θ′e < 173◦, which is used in the
current study.3 Three intervals in y are considered, corresponding atEp = 400 GeV to 0.5 < y400 < 0.7,
0.7 < y400 < 0.8 and 0.8 < y400 < 0.9. It is ensured that identical ranges in β, xIP and Q2 are studied
at Ep = 920 GeV by choosing the bin edges such that y920 = y400 · 400/920. Since the highest
possible precision is required in this measurement, the restriction xIP < 0.02 is imposed, which leads
to negligible acceptance losses with a typical cut on the forwardmost extent of the diffractive system
ηmax < 3.3. The kinematic restrictions on E ′e, θ

′
e and xIP lead to almost no change in the mean Q2, M2

X

or β ' Q2/(Q2 +M2
X

) as either y or Ep are varied. In contrast, xIP = Q2/(s y β) varies approximately
as 1/y. As is shown in Fig. 1, at the average β = 0.23, there is at least partial acceptance for all y bins
in the range 7 < Q2 < 30 GeV2, which is chosen for this study, leading to an average value of Q2 close
to 12 GeV2.

The simulation is performed using the RAPGAP [13] Monte Carlo generator to extract the number
of events per unit luminosity in each bin at each centre of mass energy. The values of F D

2 and FDL , and
hence σD 920

r and σD 400
r are obtained using an updated version of the preliminary H1 2002 NLO QCD

fit [1].
2Alternative scenarios in which a smaller data volume at large Ep is taken in a short, dedicated run, could potentially lead

to better controlled systematics at the expense of increased statistical errors.
3One interesting alternative running scenario [12] is to obtain data at Ep = 920 GeV with the vertex shifted by 20 cm in

the outgoing proton direction, which would allow measurements up to θ′e = 175◦ , giving a low Q2 acceptance range which
closely matches that for the Ep = 400 GeV data at the normal vertex position.
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Fig. 1: Illustration of the kinematic plane in Q2 and xIP at proton energies of 920 GeV and 400 GeV, with fixed
β = x/xIP = 0.23. The solid lines illustrate the experimental limits of 155◦ < θ′e < 173◦. The horizontal
dashed lines illustrate the Q2 range used for the simulation. The diagonal dashed lines illustrate the binning in y,
corresponding at Ep = 400 GeV to y = 0.9 (leftmost line), y = 0.8, y = 0.7 and y = 0.5 (rightmost line).

The expected precision on FD
L is obtained by error propagation through equation 2. The system-

atic uncertainties are estimated on the basis of previous experience with the H1 detector [1, 5]. At the
large y values involved, the kinematic variables are most accurately reconstructed using the electron en-
ergy and angle alone. The systematic uncertainties on the measurements of these quantities are assumed
to be correlated between the two beam energies. With the use of the BST and CJC, the possible bias in
the measurement of θ′e is at the level of 0.2 mrad. The energy scale of the SPACAL calorimeter is known
with a precision varying linearly from 2% at E ′e = 3 GeV to 0.2% at E ′e = 27.5 GeV. Other uncer-
tainties which are correlated between the two beam energies arise from the photoproduction background
subtraction (important at large y and assumed to be known with a precision of 25%) and the energy scale
for the hadronic final state used in the reconstruction of M

X
and hence xIP (taken to be known to 4%, as

currently). Sources of uncertainty which are assumed to be uncorrelated between the low and high Ep

measurements are the luminosity measurement (taken to be±1%), the trigger and electron track efficien-
cies (±1% combined) and the acceptance corrections, obtained using RAPGAP (±2%). The combined
uncorrelated error is thus 2.4%. Finally, a normalisation uncertainty of ±6% due to corrections for pro-
ton dissociation contributions is taken to act simultaneously in the two measurements. Other sources
of uncertainty currently considered in H1 measurements of diffraction are negligible in the kinematic
region studied here.

Full details of the simulated uncertainties on the FD
L measurements are given in Table 1. An illus-

tration of the corresponding expected measurement, based on the F D
L from the H1 2002 fit is shown in

Fig. 2. The most precise measurement is obtained at the highest y, where F D
L would be determined to be

unambiguously different from its maximum value of FD
2 and to be non-zero at the 4σ level. Two further

measurements are obtained at lower y values. The dominant errors arise from statistical uncertainties
and from uncertainties which are uncorrelated between the two beam energies. Minimising the latter is
a major experimental challenge to be addressed in the coming years.
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Table 1: Summary of the simulation at Q2 = 12 GeV and β = 0.23. The first three columns contain the y ranges
used at Ep = 400 GeV and Ep = 920 GeV and the xIP values. The next two columns contain the values of
the diffractive structure functions. These are followed by the uncorrelated (δunc) and proton dissociation (δnorm)
uncertainties and the correlated systematics due to the electron energy (δE ′e) and angle (δθ′e) measurements, the
hadronic energy scale (δM

X
) and the photoproduction background (δγp), all in percent. The last three columns

summarise the systematic, statistical and total uncertainties.

y400 y920 xIP FD2 FDL δunc δnorm δE′e δθ′e δM
X

δγp δsyst δstat δtot

0.5 – 0.7 0.217 – 0.304 0.0020 15.72 3.94 34 6 8 2 7 0 36 20 41

0.7 – 0.8 0.304 – 0.348 0.0016 20.87 5.25 19 6 3 2 5 6 22 17 28

0.8 – 0.9 0.348 – 0.391 0.0014 24.47 6.16 14 6 6 1 2 13 21 13 25

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2 0.21 0.22
x 10

-2

xIP

x IP
 F
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100 pb-1 with Ep = 920 GeV

10 pb-1 with Ep = 400 GeV

Q2 = 12 GeV2, β=0.23

Fig. 2: Illustration of the simulated result for FDL , showing the three data points with statistical (inner bars) and
total (outer bars) errors.

Only one possible scenario has been investigated here, leading to a highly encouraging result at
relatively low β, which would provide a very good test of the leading twist F D

L and thus of the gluon
density extracted in QCD fits to FD

2 . It may also be possible to obtain results at high β, giving information
on the higher twist contributions in that region, for example by restricting the analysis to lower xIP .
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Abstract
We present recent experimental data from the H1 and ZEUS Collaborations
at HERA for diffractive dijet production in deep-inelastic scattering (DIS) and
photoproduction and compare them with next-to-leading order (NLO) QCD
predictions using diffractive parton densities. While good agreement is found
for DIS, the dijet photoproduction data are overestimated by the NLO theory,
showing that factorization breaking occurs at this order. While this is expected
theoretically for resolved photoproduction, the fact that the data are better de-
scribed by a global suppression of direct and resolved contribution by about
a factor of two comes as a surprise. We therefore discuss in some detail the
factorization scheme and scale dependence between direct and resolved con-
tributions and propose a new factorization scheme for diffractive dijet photo-
production.

1 Introduction
It is well known that in high-energy deep-inelastic ep-collisions a large fraction of the observed events are
diffractive. These events are defined experimentally by the presence of a forward-going system Y with
four-momentum pY , low mass MY (in most cases a single proton and/or low-lying nucleon resonances),
small momentum transfer squared t = (p − pY )2, and small longitudinal momentum transfer fraction
xIP = q(p− pY )/qp from the incoming proton with four-momentum p to the system X (see Fig. 1).

X

Y{

{

t

γ
( pX)

( pY)

Fig. 1: Diffractive scattering process ep → eXY , where the hadronic systems X and Y are separated by the
largest rapidity gap in the final state.

The presence of a hard scale, as for example the photon virtuality Q2 = −q2 in deep-inelastic scattering
(DIS) or the large transverse jet momentum p∗T in the photon-proton centre-of-momentum frame, should
then allow for calculations of the production cross section for the central system X with the known
methods of perturbative QCD. Under this assumption, the cross section for the inclusive production of
two jets, e+ p→ e+ 2 jets +X ′+Y , can be predicted from the well-known formulæ for jet production
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in non-diffractive ep collisions, where in the convolution of the partonic cross section with the parton
distribution functions (PDFs) of the proton the latter ones are replaced by the diffractive PDFs. In the
simplest approximation, they are described by the exchange of a single, factorizable pomeron/Regge-
pole.

The diffractive PDFs have been determined by the H1 Collaboration at HERA from high-precision
inclusive measurements of the DIS process ep → eXY using the usual DGLAP evolution equations in
leading order (LO) and next-to-leading order (NLO) and the well-known formula for the inclusive cross
section as a convolution of the inclusive parton-level cross section with the diffractive PDFs [1]. For a
similar analysis of the inclusive measurements of the ZEUS Collaboration see [2,3]. A longer discussion
of the extraction of diffractive PDFs can also be found in these proceedings [4] and in [5]. For inclusive
diffractive DIS it has been proven by Collins that the formula referred to above is applicable without
additional corrections and that the inclusive jet production cross section for large Q2 can be calculated
in terms of the same diffractive PDFs [6]. The proof of this factorization formula, usually referred to as
the validity of QCD factorization in hard diffraction, may be expected to hold for the direct part of pho-
toproduction (Q2 ' 0) or low-Q2 electroproduction of jets [6]. However, factorization does not hold for
hard processes in diffractive hadron-hadron scattering. The problem is that soft interactions between the
ingoing two hadrons and their remnants occur in both the initial and final state. This agrees with experi-
mental measurements at the Tevatron [7]. Predictions of diffractive dijet cross sections for pp̄ collisions
as measured by CDF using the same PDFs as determined by H1 [1] overestimate the measured cross
section by up to an order of magnitude [7]. This suppression of the CDF cross section can be explained
by considering the rescattering of the two incoming hadron beams which, by creating additional hadrons,
destroy the rapidity gap [8].

Processes with real photons (Q2 ' 0) or virtual photons with fixed, but low Q2 involve direct
interactions of the photon with quarks from the proton as well as resolved photon contributions, leading
to parton-parton interactions and an additional remnant jet coming from the photon (for a review see [9]).
As already said, factorization should be valid for direct interactions as in the case of DIS, whereas it
is expected to fail for the resolved process similar as in the hadron-hadron scattering process. In a
two-channel eikonal model similar to the one used to calculate the suppression factor in hadron-hadron
processes [8], introducing vector-meson dominated photon fluctuations, a suppression by about a factor
of three for resolved photoproduction at HERA is predicted [10]. Such a suppression factor has recently
been applied to diffractive dijet photoproduction [11,12] and compared to preliminary data from H1 [13]
and ZEUS [14]. While at LO no suppression of the resolved contribution seemed to be necessary, the
NLO corrections increase the cross section significantly, showing that factorization breaking occurs at
this order at least for resolved photoproduction and that a suppression factor R must be applied to give a
reasonable description of the experimental data.

As already mentioned elsewhere [11, 12], describing the factorization breaking in hard photopro-
duction as well as in electroproduction at very low Q2 [15] by suppressing the resolved contribution
only may be problematic. An indication for this is the fact that the separation between the direct and the
resolved process is uniquely defined only in LO. In NLO these two processes are related. The separation
depends on the factorization scheme and the factorization scale Mγ . The sum of both cross sections
is the only physically relevant cross section, which is approximately independent of the factorization
scheme and scale [16]. As demonstrated in Refs. [11, 12] multiplying the resolved cross section with
the suppression factor R = 0.34 destroys the correlation of the Mγ -dependence between the direct and
resolved part, and the sum of both parts has a stronger Mγ-dependence than for the unsuppressed case
(R = 1), where the Mγ -dependence of the NLO direct cross section is compensated to a high degree
against the Mγ-dependence of the LO resolved part.

In the second Section of this contribution, we present the current experimental data from the H1
and ZEUS Collaborations on diffractive dijet production in DIS and photoproduction and compare these
data to theoretical predictions at NLO for two different scenarios: suppression of only the resolved
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part by a factor R = 0.34 as expected from LO theory and proposed in [8], and equal suppression of
all direct and resolved contributions by a factor R = 0.5, which appears to describe the data better
phenomenologically. This motivates us to investigate in the third Section the question whether certain
parts of the direct contribution might break factorization as well and therefore need a suppression factor.

The introduction of the resolved cross section is dictated by perturbation theory. At NLO, collinear
singularities arise from the photon initial state, which are absorbed at the factorization scale into the
photon PDFs. This way the photon PDFs become Mγ -dependent. The equivalent Mγ -dependence, just
with the opposite sign, is left in the NLO corrections to the direct contribution. With this knowledge,
it is obvious that we can obtain a physical cross section at NLO, i.e. the superposition of the NLO
direct and LO resolved cross section, with a suppression factor R < 1 and no Mγ -dependence left,
if we also multiply the lnMγ -dependent term of the NLO correction to the direct contribution with
the same suppression factor as the resolved cross section. We are thus led to the theoretical conclusion
that, contrary to what one may expect, not all parts of the direct contribution factorize. Instead, the initial
state singular part appearing beyond LO breaks factorization even in direct photoproduction, presumably
through soft gluon attachments between the proton and the collinear quark-antiquark pair emerging from
the photon splitting. This would be in agreement with the general remarks about initial state singularities
in Ref. [6].

In the third Section of this contribution, we present the special form of the lnMγ-term in the NLO
direct contribution and demonstrate that the Mγ -dependence of the physical cross section cancels to a
large extent in the same way as in the unsuppressed case (R = 1). These studies can be done for pho-
toproduction (Q2 ' 0) as well as for electroproduction with fixed, small Q2. Since in electroproduction
the initial-state singularity in the limit Q2 → 0 is more directly apparent than for the photoproduction
case, we shall consider in this contribution the low-Q2 electroproduction case just for demonstration.
This diffractive dijet cross section has been calculated recently [15]. A consistent factorization scheme
for low-Q2 virtual photoproduction has been defined and the full (direct and resolved) NLO corrections
for inclusive dijet production have been calculated in [17]. In this work we adapt this inclusive NLO
calculational framework to diffractive dijet production at low-Q2 in the same way as in [15], except that
we multiply the lnMγ -dependent terms as well as the resolved contributions with the same suppression
factor R = 0.34, as an example, as in our earlier work [11, 12, 15]. The exact value of this suppression
factor may change in the future, when better data for photoproduction and low-Q2 electroproduction
have been analyzed. We present the lnMγ-dependence of the partly suppressed NLO direct and the fully
suppressed NLO resolved cross section dσ/dQ2 and their sum for the lowest Q2 bin, before we give a
short summary in section 4.

2 Comparison of H1 and ZEUS Data with NLO Theory Predictions
In this Section, diffractive PDFs [1–3] extracted from diffractive structure function data are used in NLO
calculations to test factorisation in diffractive dijet production. Dijet production is directly sensitive to
the diffractive gluon (Fig. 2) whereas in inclusive measurements the gluon is determined from scaling
violations.

2.1 Diffractive Dijet Production in DIS
H1 has measured the cross sections for dijet production [13] in the kinematic range Q2 > 4 GeV2,
165 < W < 242 GeV (photon-proton centre-of-mass energy) and xIP < 0.03. Jets are identified using
the inclusive kT cluster algorithm and selected by requiring E∗,jet

T (1, 2) > 5, 4 GeV and−3 < η∗jet < 0.1

NLO predictions have been obtained by interfacing the H1 diffractive PDFs with the DISENT pro-
gram [18]. The renormalisation and factorisation scales were set to the transverse energy of the leading
parton jet. The NLO parton jet cross sections have been corrected for hadronisation effects using the

1The ’∗’ denotes variables in the photon-proton centre-of-mass system.

DIFFRACTIVE DIJET PRODUCTION ATHERA

521



a)

PP

e
e

Q

z

x

IP

IP

2

Remnant

b)

γx

IPx

e
e

Q2

zIP

P P

Remnant

Remnant

Fig. 2: Example processes for a) direct photon and b) resolved photon interactions.
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Fig. 3: Diffractive DIS dijet cross sections compared with a NLO prediction based on diffractive PDFs and with
RAPGAP.

leading order (LO) generator RAPGAP [19] with parton showers and the Lund string fragmentation
model. Comparisons of the DISENT and RAPGAP predictions with the measured cross section differ-
ential in zjets

IP , an estimator for the fraction of the momentum of the diffractive exchange entering the
hard scatter, are shown in Fig. 3a. The inner band around the NLO calculation indicates the ≈ 20%
uncertainty resulting from a variation of the renormalisation scale by factors 0.5 and 2. The uncertainty
in the diffractive PDFs is not shown. Within this additional uncertainty, which is large at high z jets

IP , the
cross section is well described. The cross section differential in log10(xIP ), pjet1

T , and Q2 is shown in
Figs. 3b and 4. All distributions are well described and QCD factorisation is therefore in good agreement
with dijet production in diffractive DIS.

Similar results are presented by ZEUS [20]; the dijet cross sections have been measured in the
kinematic range 5 < Q2 < 100 GeV2, 100 < W < 200 GeV, xIP < 0.03. The jets were identified
using the inclusive kT algorithm in the γp frame and required to satisfy E∗,jet

T (1, 2) > 5, 4 GeV and
−3.5 < η∗jet < 0.0. NLO predictions have been obtained with the DISENT program interfaced to three
different sets of diffractive PDFs: from fit to H1 data [1], from fit to the ZEUS MX data (GLP) [3]
and from fit to ZEUS LPS and FD,charm

2 data [2]. Comparisons of the DISENT predictions with the
measured cross section differential in E∗,jet

T , η∗jet, z
jets
IP and xobsγ are shown in Fig. 5. The 20 − 30%

uncertainty in the NLO calculations resulting from a variation of the renormalisation and factorisation
scales is not shown. Within the experimental and QCD scale uncertainties, the predictions based on
the H1 and ZEUS-LPS PDFs give a good description of the dijet cross section. The normalisation of
the prediction using the GLP fit is substantially lower than those from the other two sets of PDFs. For
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Fig. 4: Diffractive DIS dijet cross sections compared with a NLO prediction based on diffractive PDFs.
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Fig. 5: Diffractive DIS dijet cross sections compared with NLO predictions based on three sets of diffractive PDFs.

ZEUS, the difference observed between the three sets may be interpreted as an estimate of the uncertainty
associated with the diffractive PDFs and with the definition of the diffractive region. The dijet data could
be included in future fits in order to better constrain the diffractive gluon distribution.

Within the experimental and theoretical uncertainties and assuming the H1 diffractive PDFs, fac-
torisation is in good agreement with diffractive D∗ production [21, 22] in the DIS kinematic region.
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Fig. 6: a) Diffractive dijet photoproduction cross section differential in z jets
IP compared with a NLO prediction

based on diffractive PDFs and RAPGAP. b)-d): Cross section differential in pjet1
T and xjets

γ , compared with the
NLO prediction modified as follows: in b) and c) the calculation is scaled by a global factor 0.5 whereas in d) only
the “resolved” part is scaled by 0.34.

2.2 Diffractive Photoproduction of Dijets
In photoproduction, a sizeable contribution to the cross section is given by resolved photon processes
(Fig. 2b) in which only a fraction xγ < 1 of the photon momentum enters the hard scatter. The photo-
production dijet cross section measured by H1 (Q2 < 0.01 GeV2, 165 < W < 242 GeV, xIP < 0.03,
Ejet
T (1, 2) > 5, 4 GeV, −1 < ηjet < 2, inclusive kT algorithm) is shown in Fig. 6 [13]. NLO predictions

have been obtained with the Frixione et al. program [23] interfaced to the H1 diffractive PDFs. The
parton jet calculation is corrected for hadronisation effects using RAPGAP. The cross section differential
in zjets

IP is shown in Fig. 6a. The calculation lies a factor ≈ 2 above the data. Fig. 6b and 6c show the
cross section as a function of pjet1

T and xjets
γ and the NLO predictions have been scaled down by a factor

0.5. Good agreement is obtained for this global suppression. In Fig. 6d, only the “resolved” part for
which xjets

γ < 0.9 at the parton level is scaled by a factor 0.34. This factor was proposed by Kaidalov
et al. [10] for the suppression of the resolved part in LO calculations. The calculation for x jets

γ > 0.9 is
left unscaled. This approach is clearly disfavoured.

The ZEUS measurement [24] (Q2 < 0.01 GeV2, xIP < 0.025, 0.2 < y < 0.85, E jet
T (1, 2) >

7.5, 6.5 GeV, −1.5 < η < 1.5, inclusive kT algorithm) is shown in Figs. 7 and 8 separately for samples
enriched in “direct” (xjets

γ > 0.75) and “resolved” (xjets
γ < 0.75) processes, respectively. The NLO [12]

prediction using the H1 diffractive PDFs is also presented corrected for hadronization effects and with
the “resolved” part scaled by the factor 0.34. No evidence is observed for a suppression of resolved
photon processes relative to direct photon processes in any particular kinematic region.
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Fig. 7: Direct enriched photoproduction. Diffractive dijet photoproduction cross section differential in y, xIP ,
zjets
IP , Ejet

T

1
and ηjet1 compared with a NLO prediction based on diffractive PDFs. The NLO prediction is also

presented corrected for hadronization effects and with the “resolved” part scaled by 0.34.

Diffractive dijet photoproduction is overestimated by calculations based on PDFs which give a
good description of the diffractive DIS data. Factorisation is broken in photoproduction relative to DIS
by a factor ≈ 0.5 with no observed dependence on xγ or other kinematic variables.

3 Factorization and its Breaking in Diffractive Dijet Production
The fact that equal suppression of direct and resolved photoproduction by a factor R = 0.5 appears to
describe the H1 and ZEUS data better phenomenologically motivates us to investigate in some detail the
question whether certain parts of the direct contribution might break factorization as well and therefore
need a suppression factor. These studies can be done for photoproduction (Q2 ' 0) as well as for
electroproduction with fixed, small Q2. Since in electroproduction the initial-state singularity in the
limit Q2 → 0 is more directly apparent than for the photoproduction case, we shall consider in this
contribution the low-Q2 electroproduction case just for demonstration.

A factorization scheme for virtual photoproduction has been defined and the full NLO corrections
for inclusive dijet production have been calculated in [17]. They have been implemented in the NLO
Monte Carlo program JETVIP [25] and adapted to diffractive dijet production in [15]. The subtraction
term, which is absorbed into the PDFs of the virtual photon fa/γ(xγ ,Mγ), can be found in [26]. The
main term is proportional to ln(M 2

γ /Q
2) times the splitting function

Pqi←γ(z) = 2NcQ
2
i

z2 + (1− z)2

2
, (1)

where z = p1p2/p0q ∈ [x; 1] and Qi is the fractional charge of the quark qi. p1 and p2 are the momenta
of the two outgoing jets, and p0 and q are the momenta of the ingoing parton and virtual photon, respec-
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Fig. 8: Resolved enriched photoproduction. Diffractive dijet photoproduction cross section differential in y, xIP ,
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1
and ηjet1 compared with a NLO prediction based on diffractive PDFs. The NLO prediction is also

presented corrected for hadronization effects and with the “resolved” part scaled by 0.34.

tively. Since Q2 = −q2 �M2
γ , the subtraction term is large and is therefore resummed by the DGLAP

evolution equations for the virtual photon PDFs. After this subtraction, the finite term M(Q2)MS, which
remains in the matrix element for the NLO correction to the direct process [17], has the same Mγ-
dependence as the subtraction term, i.e. lnMγ is multiplied with the same factor. As already mentioned,
this yields the Mγ-dependence before the evolution is turned on. In the usual non-diffractive dijet photo-
production these two Mγ-dependences cancel, when the NLO correction to the direct part is added to the
LO resolved cross section [16]. Then it is obvious that the approximate Mγ-independence is destroyed, if
the resolved cross section is multiplied by a suppression factor R to account for the factorization break-
ing in the experimental data. To remedy this deficiency, we propose to multiply the lnMγ -dependent
term in M(Q2)MS with the same suppression factor as the resolved cross section. This is done in the
following way: we split M(Q2)MS into two terms using the scale p∗T in such a way that the term contain-
ing the slicing parameter ys, which was used to separate the initial-state singular contribution, remains
unsuppressed. In particular, we replace the finite term after the subtraction by

M(Q2, R)MS =

[
− 1

2Nc
Pqi←γ(z) ln

(
M2
γ z

p∗2T (1− z)

)
+
Q2
i

2

]
R

− 1

2Nc
Pqi←γ(z) ln

(
p∗2T

zQ2 + yss

)
, (2)

where R is the suppression factor. This expression coincides with the finite term after subtraction (see
Ref. [26]) for R = 1, as it should, and leaves the second term in Eq. (2) unsuppressed. In Eq. (2) we have
suppressed in addition to ln(M 2

γ/p
∗2
T ) also the z-dependent term ln(z/(1 − z)), which is specific to the

MS subtraction scheme as defined in [17]. The second term in Eq. (2) must be left in its original form,
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weighted sums for (i) suppression of the resolved cross section and for (ii) additional suppression of DIRIS, using
SaS1D virtual photon PDFs [30].

i.e. being unsuppressed, in order to achieve the cancellation of the slicing parameter (ys) dependence
of the complete NLO correction in the limit of very small Q2 or equivalently very large s. It is clear
that the suppression of this part of the NLO correction to the direct cross section will change the full
cross section only very little as long as we choose Mγ ' p∗T . The first term in Eq. (2), which has the
suppression factor R, will be denoted by DIRIS in the following.

To study the left-over Mγ -dependence of the physical cross section, we have calculated the diffrac-
tive dijet cross section with the same kinematic constraints as in the H1 experiment [27]. Jets are defined
by the CDF cone algorithm with jet radius equal to one and asymmetric cuts for the transverse momenta
of the two jets required for infrared stable comparisons with the NLO calculations [28]. The original H1
analysis actually used a symmetric cut of 4 GeV on the transverse momenta of both jets [29]. The data
have, however, been reanalyzed for asymmetric cuts [27].

For the NLO resolved virtual photon predictions, we have used the PDFs SaS1D [30] and trans-
formed them from the DISγ to the MS scheme as in Ref. [17]. If not stated otherwise, the renormalization
and factorization scales at the pomeron and the photon vertex are equal and fixed to p∗T = p∗T,jet1. We
include four flavors, i.e. nf = 4 in the formula for αs and in the PDFs of the pomeron and the photon.
With these assumptions we have calculated the same cross section as in our previous work [15]. First we
investigated how the cross section dσ/dQ2 depends on the factorization scheme of the PDFs for the vir-
tual photon, i.e. dσ/dQ2 is calculated for the choice SaS1D and SaS1M. Here dσ/dQ2 is the full cross
section (sum of direct and resolved) integrated over the momentum and rapidity ranges as in the H1 anal-
ysis. The results, shown in Fig. 2 of Ref. [26], demonstrate that the choice of the factorization scheme
of the virtual photon PDFs has negligible influence on dσ/dQ2 for all considered Q2. The predictions
agree reasonably well with the preliminary H1 data [27].

We now turn to the Mγ-dependence of the cross section with a suppression factor for DIRIS. To
show this dependence for the two suppression mechanisms, (i) suppression of the resolved cross section
only and (ii) additional suppression of the DIRIS term as defined in Eq. (2) in the NLO correction of
the direct cross section, we consider dσ/dQ2 for the lowest Q2-bin, Q2 ∈ [4, 6] GeV2. In Fig. 9,
this cross section is plotted as a function of ξ = Mγ/p

∗
T in the range ξ ∈ [0.25; 4] for the cases (i)

(light full curve) and (ii) (full curve). We see that the cross section for case (i) has an appreciable
ξ-dependence in the considered ξ range of the order of 40%, which is caused by the suppression of
the resolved contribution only. With the additional suppression of the DIRIS term in the direct NLO
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correction, the ξ-dependence of dσ/dQ2 is reduced to approximately less than 20%, if we compare the
maximal and the minimal value of dσ/dQ2 in the considered ξ range. The remaining ξ-dependence
is caused by the NLO corrections to the suppressed resolved cross section and the evolution of the
virtual photon PDFs. How the compensation of the Mγ -dependence between the suppressed resolved
contribution and the suppressed direct NLO term works in detail is exhibited by the dotted and dashed-
dotted curves in Fig. 9. The suppressed resolved term increases and the suppressed direct NLO term
decreases by approximately the same amount with increasing ξ. In addition we show also dσ/dQ2 in the
DIS theory, i.e. without subtraction of any lnQ2 terms (dashed line). Of course, this cross section must
be independent of ξ. This prediction agrees very well with the experimental point, whereas the result for
the subtracted and suppressed theory (full curve) lies slightly below. We notice, that for Mγ = p∗T the
additional suppression of DIRIS has only a small effect. It increases dσ/dQ2 by 5% only.

4 Summary
Experimental data from the H1 and ZEUS Collaborations at HERA for diffractive dijet production in DIS
and photoproduction have been compared with NLO QCD predictions using diffractive parton densities
from H1 and ZEUS. While good agreement was found for DIS assuming the H1 diffractive PDFs, the
dijet photoproduction data are overestimated by the NLO theory, showing that factorization breaking
occurs at this order. While this is expected theoretically for resolved photoproduction, the fact that the
data are better described by a global suppression of direct and resolved contribution by about a factor
of two has come as a surprise. We have therefore discussed in some detail the factorization scheme and
scale dependence between direct and resolved contributions and proposed a new factorization scheme
for diffractive dijet photoproduction.
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Abstract
We study the effect of absorptive corrections due to parton recombination on
the parton distributions of the proton. A more precise version of the GLRMQ
equations, which account for non-linear corrections to DGLAP evolution, is
derived. An analysis of HERA F2 data shows that the small-x gluon distribu-
tion is enhanced at low scales when the absorptive effects are included, such
that there is much less need for a negative gluon distribution at 1 GeV.

1 Parton recombination at small x
At very small values of x it is expected that the number density of partons within the proton becomes
so large that they begin to recombine with each other. This phenomenon of parton recombination is also
referred to as absorptive corrections, non-linear effects, screening, shadowing, or unitarity corrections,
all leading to saturation. The first perturbative QCD (pQCD) calculations describing the fusion of two
Pomeron ladders into one were made by Gribov-Levin-Ryskin (GLR) [1] and by Mueller-Qiu (MQ) [2].
The GLRMQ equations add an extra non-linear term, quadratic in the gluon density, to the usual DGLAP
equations for the gluon and sea-quark evolution. The evolution of the gluon distribution is then given by

∂xg(x,Q2)

∂ lnQ2
=
αS
2π

∑

a′=q,g

Pga′ ⊗ a′ −
9

2

α2
S(Q2)

R2Q2

∫ 1

x

dx′

x′
[
x′g(x′, Q2)

]2
, (1)

where R ∼ 1 fm is of the order of the proton radius. The GLRMQ equations account for all ‘fan’ dia-
grams, that is, all possible 2→ 1 ladder recombinations, in the double leading logarithmic approximation
(DLLA) which resums all powers of the parameter αS ln(1/x) ln(Q2/Q2

0).

There has been much recent theoretical activity in deriving (and studying) more precise non-
linear evolution equations, such as the Balitsky-Kovchegov (BK) and Jalilian-Marian–Iancu–McLerran–
Weigert–Leonidov–Kovner (JIMWLK) equations (see [3] for a review). Note that the BK and JIMWLK
equations are both based on BFKL evolution. However, for the most relevant studies in the HERA and
LHC domain (x & 10−4), the predominant theoretical framework is collinear factorisation with DGLAP-
evolved parton distribution functions (PDFs). At very small values of x it might be expected that the
DGLAP approximation would break down, since large αS ln(1/x) (BFKL) terms would appear in the
perturbation series in addition to the αS ln(Q2/Q2

0) terms resummed by DGLAP evolution. However,
it turns out that the resummed NLL BFKL calculations of the gluon splitting function Pgg [4] and the
gluon transverse momentum distribution [5] are rather close to the DGLAP calculations. Moreover, the
convolution Pgg ⊗ g(x,Q2) coincides with the NNLO DGLAP result and is close to the NLO DGLAP
result for x & 10−4 [6]. Hence, in the analysis of current data, it is reasonable to ignore BFKL effects.

If recombination effects are significant, it is therefore important that they be incorporated into
the global DGLAP parton analyses which determine the PDFs from deep-inelastic scattering (DIS) and
related hard-scattering data. Such a programme, based on GLRMQ evolution (which accounts for gluon-
induced screening only), was implemented some years ago [7], before the advent of HERA. The input
gluon and sea-quark distributions were assumed to have a small-x behaviour of the form xg, xS ∼ x−0.5

at an input scale of Q2
0 = 4 GeV2. The inclusion of shadowing effects, both in the form of the input

PDFs and in the GLRMQ evolution, was found to significantly decrease the size of the small-x gluon
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Fig. 1: The behaviour of the gluon and sea-quark distributions at Q2 = 2 GeV2 found in the MRST2004 NLO and
CTEQ6.1M global analyses. The valence-like behaviour of the gluon is evident.

distribution in comparison with the result with no absorptive corrections. A crucial observation is that, at
that time (1990), F2 data were only available for xB ≥ 0.07, and so these results were largely dependent
on the theoretical assumptions made for the starting distributions. However, with HERA, we now have
F2 data down to xB ∼ 10−4 or less, and so the PDFs at small x can be determined directly from the
HERA data.

In fact, the advent of HERA data has led to a puzzling behaviour of the small-x gluon and sea-
quark PDFs at low scales Q2. If we write xg ∼ x−λg and xS ∼ x−λS , then the expectation of Regge
theory is that λg = λS = λsoft for low scales Q . Q0 ∼ 1 GeV, where λsoft ' 0.08 [8] is the power
of s obtained from fitting soft hadron data. At higher Q & 1 GeV, QCD evolution should take over,
increasing the powers λg and λS . However, the current MRST2004 NLO [9] and CTEQ6.1M [10] PDF
sets exhibit a very different behaviour at low scales from that theoretically expected; see Fig. 1. In fact,
the MRST group has found that a negative input gluon distribution at Q0 = 1 GeV is required in all their
NLO DGLAP fits since MRST2001 [11]. The CTEQ group, who take a slightly higher input scale of
Q0 = 1.3 GeV, also find a negative gluon distribution when evolving backwards to 1 GeV.

Since data at small xB now exist, the introduction of the absorptive corrections is expected to
increase the size of the input gluon distribution at small x to maintain a satisfactory fit to the data.
To understand this, note that the negative non-linear term in the GLRMQ equation (1) slows down the
evolution. Therefore, it is necessary to start with a larger small-x gluon distribution at low scalesQ ∼ Q0

to achieve the same PDFs at larger scales required to describe the data. If the non-linear term is neglected,
the input small-x gluon distribution is forced to be artificially small in order to mimic the neglected
screening corrections.

We have anticipated that the introduction of absorptive corrections will enhance1 the small-x gluon
at low scales, and hence could possibly avoid what appears to be anomalous behaviour at small x. Thus,
here, we perform such a study using an abridged version of the MRST2001 NLO analysis [11], improving
on our previous analysis [13]. First, we derive a more precise form of the GLRMQ equations.

1Eskola et al. [12] have found that taking input gluon and sea-quark distributions atQ2 = 1.4 GeV2, then evolving upwards
with the GLRMQ equations based on LO DGLAP evolution, improves the agreement with F2 data at small xB and low Q2

compared to the standard CTEQ sets, and leads to an enhanced small-x gluon distribution for Q2 . 10 GeV2. Note, however,
that there is a large NLO correction to the splitting function Pqg which changes completely the relationship between the quark
and gluon distributions, and so weakens the conclusion of Ref. [12].
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Fig. 2: (a) Absorptive corrections to F2 due to the 2 → 1 Pomeron contribution. (b) Application of the AGK
cutting rules. For simplicity, the upper parton ladder, shown in the right-hand diagram of (a), is hidden inside the
upper blob in each diagram of (b).

2 Non-linear evolution from diffractive DIS
The inclusive proton structure function, F2(xB, Q

2), as measured by experiment, can be approximately
written as a sum of the single Pomeron exchange (DGLAP) contribution and absorptive corrections due
to a 2→ 1 Pomeron merging; see Fig. 2(a). That is,

F2(xB, Q
2) = FDGLAP

2 (xB, Q
2) + ∆F abs

2 (xB, Q
2). (2)

In computing ∆F abs
2 we need to sum over all possible cuts. The Abramovsky-Gribov-Kancheli (AGK)

cutting rules [14] were originally formulated in Reggeon field theory but have been shown to also hold
in pQCD [15]. Application of the AGK rules gives the result that relative contributions of +1, −4,
and +2 are obtained according to whether neither Pomeron, one Pomeron, or both Pomerons are cut;
see Fig. 2(b). Therefore, the sum over cuts is equal to minus the diffractive cut and so the absorp-
tive corrections can be computed from a calculation of the t-integrated diffractive structure function
F

D(3)
2 (xIP , β,Q

2), where β ≡ xB/xIP and xIP is the fraction of the proton’s momentum transferred
through the rapidity gap.

The pQCD description of FD(3)
2 is described in [16, 17], and in a separate contribution to these

proceedings. Working in the fixed flavour number scheme (FFNS), it can be written as

F
D(3)
2 = F

D(3)
2,non−pert.︸ ︷︷ ︸

soft Pomeron

+F
D(3)
2,pert. + F

D(3),cc̄
2,direct + F

D(3)
L,tw.4︸ ︷︷ ︸

QCD Pomeron

, (3)

apart from the secondary Reggeon contribution. The separation between the soft Pomeron and QCD
Pomeron is provided by a scale µ0 ∼ 1 GeV. For simplicity, we take µ0 to be the same as the scale Q0

at which the input PDFs are taken in the analysis of F2 data, so µ0 = Q0 = 1 GeV, the value used in
the MRST2001 NLO analysis [11]. The contribution to the absorptive corrections arising from the soft
Pomeron contribution of (3) is already included in the input PDFs, therefore

∆F abs
2 = − 1

1− fp.diss.

∫ 1

xB

dxIP

[
F

D(3)
2,pert. + F

D(3),cc̄
2,direct + F

D(3)
L,tw.4

]
, (4)
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where fp.diss. is the fraction of diffractive events in which the proton dissociates. In practice, we take
fp.diss. = 0.5 and take an upper limit of 0.1 instead of 1 for xIP in (4).2

First consider the contribution to (4) from the F D(3)
2,pert. term.3 It corresponds to a 2 → 1 Pomeron

merging with a cut between the two Pomeron ladders and can be written as

F
D(3)
2,pert.(xIP , β,Q

2) =
∑

a=q,g

C2,a ⊗ aD
pert., (5)

where C2,a are the same coefficient functions as in inclusive DIS. The diffractive PDFs, aD = zqD or
zgD, where z ≡ x/xIP , satisfy an inhomogeneous evolution equation [17]:

aD
pert.(xIP , z,Q

2) =

∫ Q2

µ2
0

dµ2

µ2
fIP (xIP ;µ2) aIP (z,Q2;µ2) (6)

=⇒
∂aD

pert.

∂ lnQ2
=
αS
2π

∑

a′=q,g

Paa′ ⊗ a′Dpert. + PaIP (z) fIP (xIP ;Q2). (7)

Here, fIP (xIP ;Q2) is the perturbative Pomeron flux factor,

fIP (xIP ;µ2) =
1

xIPBD

[
Rg

αS(µ2)

µ
xIP g(xIP , µ

2)

]2

. (8)

The diffractive slope parameter BD comes from the t-integration, while the factor Rg accounts for the
skewedness of the proton gluon distribution [19]. There are similar contributions from (light) sea quarks,
where g in (8) is replaced by S ≡ 2(ū+ d̄+ s̄), together with an interference term. A sum over all three
contributions is implied in (6) and in the second term of (7). The Pomeron PDFs in (6), aIP (z,Q2;µ2),
are evolved using NLO DGLAP from a starting scale µ2 up to Q2, taking the input distributions to be
LO Pomeron-to-parton splitting functions, aIP (z, µ2;µ2) = PaIP (z) [17].

From (2),
a(x,Q2) = aDGLAP(x,Q2) + ∆aabs(x,Q2), (9)

where a(x,Q2) = xg(x,Q2) or xS(x,Q2), and

∆aabs(x,Q2) = − 1

1− fp.diss.

∫ 1

x
dxIP a

D
pert.(xIP , x/xIP , Q

2). (10)

Differentiating (9) with respect to Q2 gives the evolution equations for the (inclusive) gluon and sea-
quark PDFs:

∂a(x,Q2)

∂ lnQ2
=
αS
2π

∑

a′=q,g

Paa′ ⊗ a′ −
1

1− fp.diss.

∫ 1

x
dxIP PaIP (x/xIP ) fIP (xIP ;Q2). (11)

Thus (11) is a more precise version of the GLRMQ equations (1), which goes beyond the DLLA and
accounts for sea-quark recombination as well as gluon recombination. Consider the recombination of
gluons into gluons, for example, in the DLLA where x � xIP , then PgIP = 9/16 [17]. Taking Rg = 1
and fp.diss. = 0, then (11) becomes

∂xg(x,Q2)

∂ lnQ2
=
αS
2π

∑

a′=q,g

Pga′ ⊗ a′ −
9

16

α2
S(Q2)

BDQ2

∫ 1

x

dxIP
xIP

[
xIP g(xIP , Q

2)
]2
. (12)

2The value of fp.diss. = 0.5 is justified by a ZEUS comparison [18] of proton-tagged diffractive DIS data with data which
allowed proton dissociation up to masses of 6 GeV, where fp.diss. = 0.46 ± 0.11 was obtained.

3The other two contributions to (4) are described after (13).
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Comparing to (1) this is simply the GLRMQ equation with R2 = 8BD. For numerical results we take
BD = 6 (4) GeV−2 for light (charm) quarks, which would correspond to R =

√
8BD = 1.4 (1.1) fm.

The procedure for incorporating absorptive corrections into a (NLO) global parton analysis (in the
FFNS) is as follows:

1. Parameterise the x dependence of the input PDFs at a scale Q0 ∼ 1 GeV.
2. Evolve the PDFs xg(x,Q2) and xS(x,Q2) using the non-linear evolution equation (11). (The

non-singlet distributions are evolved using the usual linear DGLAP equations.)
3. Compute

F2(xB, Q
2) =

∑

a=q,g

C2,a ⊗ a −
1

1− fp.diss.

∫ 1

xB

dxIP

[
F

D(3),cc̄
2,direct + F

D(3)
L,tw.4

]
, (13)

and compare to data. Here, the two terms inside the square brackets are beyond collinear fac-
torisation, that is, they cannot be written as a convolution of coefficient functions with the PDFs.
The first term inside the square brackets corresponds to the process γ∗IP → cc̄. The second term
corresponds to the process γ∗IP → qq̄, for light quarks with a longitudinally polarised photon.
These contributions are calculated as described in Ref. [17].

As usual, these three steps should be repeated with the parameters of the input PDFs adjusted until an
optimal fit is obtained. This procedure is our recommended way of accounting for absorptive corrections
in a global parton analysis. However, in practice, available NLO DGLAP evolution codes, such as the
QCDNUM [20] program, are often regarded as a ‘black box’, and it is not trivial to modify the usual
linear DGLAP evolution to the non-linear evolution of (11). Therefore, we adopt an alternative iterative
procedure which avoids the explicit implementation of non-linear evolution, but which is equivalent to
the above procedure.

3 Effect of absorptive corrections on inclusive PDFs
We model our analysis of HERA F2 data [21] on the MRST2001 NLO analysis [11], which was the first
in which a negative gluon distribution was required at the input scale of Q0 = 1 GeV. (The more recent
MRST sets have not changed substantially at small x.) We apply cuts xB ≤ 0.01, Q2 ≥ 2 GeV2, and
W 2 ≥ 12.5 GeV2, leaving 280 data points. The input gluon and sea-quark distributions are taken to be

xg(x,Q2
0) = Ag x

−λg(1− x)3.70(1 + εg
√
x+ γgx) − A− x

−δ−(1− x)10, (14)

xS(x,Q2
0) = AS x

−λS (1− x)7.10(1 + εS
√
x+ γSx), (15)

where the powers of the (1−x) factors are taken from [11], together with the valence-quark distributions,
uV and dV , and ∆ ≡ d̄− ū. The Ag parameter is fixed by the momentum sum rule, while the other nine
parameters are allowed to go free. Since we do not fit to DIS data with xB > 0.01, we constrain the input
gluon and sea-quark distributions, and their derivatives with respect to x, to agree with the MRST2001
NLO parton set [11] at x = 0.2. This is done by including the value of these MRST PDFs at x = 0.2,
and their derivatives, as data points in the fit, with an error of 10% on both the value of the MRST PDFs
and their derivatives. Therefore, the PDFs we obtain are not precisely constrained at large x, but this
paper is primarily concerned with the small-x behaviour of the PDFs.

The procedure we adopt is as follows:

(i) Start by performing a standard NLO DGLAP fit to F2 data with no absorptive corrections.
(ii) Tabulate ∆F abs

2 , given by (4), and ∆aabs, given by (10), using PDFs g(xIP , µ2) and S(xIP , µ
2)

obtained from the previous fit.
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Fig. 3: (a) The gluon distribution obtained from fits to F2 data, before and after absorptive corrections have been
included. (b) The effect of successive iterations on the gluon distribution obtained from fits to F2, taking a positive
definite input gluon at 1 GeV. Each iteration introduces another level of 2→ 1 Pomeron mergings.

(iii) Perform a standard NLO DGLAP fit to ‘corrected’ data, F DGLAP
2 = F2 −∆F abs

2 , to obtain PDFs
aDGLAP. Then correct these PDFs to obtain a = aDGLAP + ∆aabs. These latter PDFs a then
satisfy the non-linear evolution equations (11).

(iv) Go to (ii).

Each successive iteration of steps (ii) and (iii) introduces another level of 2 → 1 Pomeron mergings, so
that eventually all the ‘fan’ diagrams are included, achieving the same effect as the procedure described
at the end of Section 2.

Note that the correction to the PDFs, a = aDGLAP + ∆aabs, in each step (iii), was omitted in
our previous analysis [13]. Consequently, the effect of the absorptive corrections on the PDFs at large
scales was overestimated. Also in [13], the known LO PaIP (z) were multiplied by free parameters (‘K-
factors’), determined from separate fits to diffractive DIS data, in an attempt to account for higher-order
pQCD corrections to the LO Pomeron-to-parton splitting functions. However, since these K-factors took
unreasonable values, with some going to zero, here we have chosen to fix them to 1. Therefore, the
updated analysis, presented here, does not require a simultaneous fit to the diffractive DIS data.

In Fig. 3(a) we show the gluon distribution at scales Q2 = 1, 4, 10, and 40 GeV2 obtained from
fits before and after absorptive corrections have been included. Both fits are almost equally good with
χ2/d.o.f. values of 0.86 and 0.87 for the fits without and with absorptive corrections respectively. At low
Q2 the absorptive corrections give an increased gluon distribution at small x, apart from at x . 10−4

where there are only a few data points and where additional absorptive effects (Pomeron loops) may
become important. The non-linear term of (11) slows down the evolution, so that by 40 GeV2 the two
gluon distributions are roughly equal; see Fig. 3(a).

We repeated the fits without the negative term in the input gluon distribution, that is, without
the second term in (14). When absorptive corrections were included, almost the same quality of fit was
obtained (χ2/d.o.f. = 0.90), while without absorptive corrections the fit was slightly worse (χ2/d.o.f. =
0.95). We conclude that absorptive corrections lessen the need for a negative gluon distribution atQ2 = 1
GeV2. The gluon distributions obtained from six successive iterations of steps (ii) and (iii) above are
shown in Fig. 3(b). The convergence is fairly rapid, with only the first three iterations having a significant
effect, that is, the ‘fan’ diagrams which include 8→ 4→ 2→ 1 Pomeron mergings.

Although we have seen that the inclusion of absorptive corrections has reduced the need for a
negative gluon, it has not solved the problem of the valence-like gluon. That is, the gluon distribution
at low scales still decreases with decreasing x, whereas from Regge theory it is expected to behave as
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xg ∼ x−λsoft with λsoft ' 0.08. We have studied several possibilities of obtaining a satisfactory fit with
this behaviour [13]. The only modification which appears consistent with the data (and with the desired
λg = λS equality) is the inclusion of power-like corrections, specifically, a global shift in all scales by
about 1 GeV2. (Note that a similar shift in the scale is required in the dipole saturation model [22].)
However, we do not have a solid theoretical justification for this shift. Therefore, a more detailed, and
more theoretically-motivated, investigation of the effect of power corrections in DIS is called for.
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Multiple Scattering at HERA and at LHC - Remarks on the AGK Rules

J. Bartels
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Abstract
We summarize the present status of the AGK cutting rules in perturbative
QCD. Particular attention is given to the application of the AGK analysis to
multiple scattering in DIS at HERA and in pp collisions at the LHC

1 Introduction
Multiple parton interactions play an important role both in electron proton scattering at HERA and in
high energy proton proton collisions at the LHC. At HERA, the linear QCD evolution equations pro-
vides, for not too small Q2, a good description of the F2 data (and of the total γ∗p cross section, σγ

∗p
tot ).

This description corresponds to the emission of partons from a single chain (Fig.1a). However, at low
Q2 where the transition to nonperturbative strong interaction physics starts, this simple picture has to
supplemented with corrections. First, there exists a class of models [1] which successfully describe this
transition region; these models are based upon the idea of parton saturation: they assume the existence of
multiple parton chains (Fig.1b) which interact with each other, and they naturally explain the observed
scaling behavior, F2(Q2, x) ≈ F2(Q2/Q2

s(x)) with Q2
s(x) = Q2

0(1/x)λ. Next, in the photoproduction
region, Q2 ≈ 0, direct evidence for the presence of multiple interactions also comes from the analysis of
final states [2]. A further strong hint at the presence of multi-chain configurations comes from the obser-
vation of a large fraction of diffractive final states in deep inelastic scattering at HERA. In the final states
analysis of the linear QCD evolution equations, it is expected that the produced partons are not likely to
come with large rapidity intervals between them. In the momentum-ordered single chain picture (Fig.1a),
therefore, diffractive final states should be part of the initial conditions (inside the lower blob in Fig.1a),
i.e. they should lie below the scale Q2

0 which seperates the parton description from the nonperturbative
strong interactions. This assignment of diffractive final states, however, cannot be complete. First, data
have shown that the Pomeron which generates the rapidity gap in DIS diffraction is harder than in hadron
- hadron scattering; furthermore, there are specific diffractive final states with momentum scales larger
than Q2

0, e.g. vector mesons built from heavy quarks and diffractive dijets (illustrated in Fig.2): the
presence of such final states naturally requires corrections to the single chain picture (Fig.2b). From a
t-channel point of view, both Fig.1b and Fig.2b belong to the same class of corrections, characterized by
four gluon states in the t-channel.

Fig. 1: Contributions to the total cross section σγ
∗p
tot : (a) the single chain representing the linear QCD evolution

equations; (b) gluon production from two different gluon chains.
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Fig. 2: Hard diffractive final states.(a) dijet production; (b) the diffractive cross section as s-channel discontinuity
of a two-ladder diagram.

Fig. 3: Jet production in pp collisions from two different parton chains

In proton-proton collisions corrections due to multiple interactions should be important in those
kinematic regions where parton densities for small momentum fractions values and for not too large
momentum scales are being probed, e.g. jet production near the forward direction. Another place could
be the production of multijet final states (Fig.3): multiple jets may come from different parton chains,
and these contributions may very well affect the background to new physics beyond the standard model.
Moreover, the modelling of multijet configurations will be necessary for understanding the underlying
event structure in pp collidions [3].

From the point of view of collinear factorization, multiple interactions with momentum ordered
parton chains are higher-twist effects, i.e they are suppressed by powers of the hard momentum scale. At
small x, however, this suppression is compensated by powers of the large logarithms, ln 1/x: multiple
interactions, therefore, are mainly part of small-x physics. In this kinematic region the Abramovsky-
Gribov-Kanchelli (AGK) [4] rules can be applied to the analysis of multi-gluon chains, and it is the aim
of this article to present a brief overview about the current status of the AGK rules in pQCD.

As we will discuss below, in the analysis of multiple parton chains the couplings of n gluons to the
proton play an essential role. Regge factorization suggests that these coupling should be universal, i.e.
the couplings in γ∗p collisions at HERA are the same as those in pp scattering at the LHC. Therefore,
a thorough analysis of the role of multiple interactions in deep inelastic electron-proton scattering at
HERA should be useful for a solid understanding of the structure of events at the LHC.

2 Basics of the AGK cutting rules
The original AGK paper [4], which was written before the advent QCD, addresses the question how, in
the optical theorem,

σpptot =
1

s
ImT2→2 =

∑

f

∫
dΩf |Ti→f |2 (1)

the presence of multi-Pomeron exchanges (Fig.4) in the total hadron-hadron cross section leads to ob-
servable effects in the final states (rhs of eq.(1)). Based upon a few model-independent assumptions

2
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Fig. 4: s-cut through a multi-Pomeron exchange: the zig-zag lines stand for nonperturbative Pomerons.

on the couplings of multi-Pomeron exchanges to the proton, the authors derived simple ‘cutting rules’:
different contributions to the imaginary part belong to different cuts across the multi-Pomeron diagrams,
and each cut has its own, quite distinct, final state characteristics. As a result, the authors found counting
rules for final states with different particle multiplicities, and they proved cancellations among rescatter-
ing corrections to single-particle and double-particle inclusive cross sections.

In the QCD description of hard (or semihard) final states a close analogy appears between (color
singlet) gluon ladders and the nonperturbative Pomeron: multiple parton chains (for example, the two
chains in Fig.1b) can be viewed as cuts through two perturbative BFKL Pomerons. In the same way as
in the original AGK paper, the question arises how different cuts through a QCD multi-ladder diagram
can be related to each other. In the following we briefly describe how AGK cutting rules can be derived
in pQCD [5,6]. In the subsequent section we will present a few new results which come out from pQCD
calculations, going beyond the original AGK rules.

One of the few assumptions made in the original AGK paper states that the coupling of the
Pomerons to the external particle are (i) symmetric under the exchange of the Pomerons (Bose sym-
metry), and (ii) that they remain unchanged if some of the Pomerons are beeing cut. These properties
also hold in pQCD, but they have to be reformulated: (i’) the coupling of (reggeized) gluons to exter-
nal particles is symmetric under the exchange of reggeized gluons, and (ii’) it remains unchanged if we
introduce cutting lines between the gluons. In QCD, however, the color degree of freedom also allows
for another possibility: inside the n-gluon state (with total color zero), a subsystem of two gluons can
form an antisymmetric color octet state: in this case the two gluons form a bound state of a reggeized
gluon (bootstrap property). For the case of γ∗γ∗ scattering, explicit calculations [7] have shown that
the coupling of n gluons to virtual photons can be written as a sum of several pieces: the fully sym-
metric (’irreducible’) one which satisfies (i’) and (ii’), and other pieces which, by using the bootstrap
property, can be reduced to symmetric couplings of a smaller number of gluons (’cut reggeons’). This
decomposition is illustrated in Fig.5.

Fig.5 Decomposition of the coupling of four gluons to a virtual photon. In the last two terms on the rhs it is understood that we

have to sum over different pairings of gluons at the lower end.

Since the bootstrap property is related to the regeization of the gluon and, therefore, is expected to be
valid to all orders perturbation theory, also these properties of the couplings of multi-gluon states to

3
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external particles should be of general validity. In this short review we will mainly concentrate on the
symmetric couplings.

As an illustrative example, we consider the coupling of four gluons to a proton. The simplest
model of a symmetric coupling is a sum of three pieces, each of which contains only the simplest color
structure:

Fig.6 The symmetric coupling of four gluons to an external particle. The lines inside the blob denote the color connection,

e.g. the first term has the color structure δa1a2δa3a4 .

The best-known cutting rule for the four gluon exchange which follows [5,6] from this symmetry
requirement is the ratio between the three different pairings of lines:

Fig 7: different cutting lines in the four-gluon exchange.

Each term, on the partonic level, corresponds to a certain multiplicity structure of the final state: a
rapidity gap (’zero multiplicity’), double multiplicity, and single multiplicity. Simple combinatorics then
leads to the ratio

1 : 2 : −4. (2)

In order to be able to generalize and to sum over an arbitrary number of gluon chains, it is convenient to
use an eikonal ansatz:

NA
2n(k1, a1; . . . ;k2n, a2n;ω) =

1√
(N2

c − 1)n

( ∑

Pairings

φA(k1,k2;ω12)δa1a2 · ... · φA(k2n−1,k2n;ω2n−1,2n)δa2n−1a2n

)
. (3)

Inserting this ansatz into the hadron - hadron scattering amplitude, using the large-Nc approximation,
and switching to the impact parameter representation, one obtains, for the contribution of k cut gluon
ladders, the well-known formula:

ImAk = 4s

∫
d2beiqbP (s, b) (4)

4
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where

P (s, b) =
[Ω(s, b)]k

k!
e−Ω(s,b), (5)

and Ω stands for the (cut) two-gluon ladder.

Another result [6] which follows from the symmetry properties of the n gluon-particle coupling
is the cancellation of rescattering effects in single and double inclusive cross sections. In analogy with
the AGK results on the rescattering of soft Pomerons, it can be shown that the sum over multi-chain
contributions and rescattering corrections cancels (Fig.8),

Fig 8: AGK cancellations in the one-jet inclusive cross section.

leaving only the single-chain contribution (in agreement with the factorization obtained in the collinear
analysis). This statement, however, holds only for rescattering between the two projectile: it does not
affect the multiple exchanges between the tagged jet and the projectile (Fig.9) which require a seperate
discussion (see below).

Fig 9: (a) Nonvanishing rescattering corrections in the one-jet inclusive cross section; (b) a new vertex: g + 2g → jet.

All these results can be generalized to include also the soft Pomeron: all one needs to assume is that the
couplings of soft Pomerons and reggeized gluons are symmetric under interchanges, and they are not
altered if cutting lines are introduced.

3 New results
Explicit calculations in QCD lead to futher results on multiple interactions. First, in the four gluon
exchange there are other configurations than those shown in Fig.7; one example is depicted in Fig.10.
Here the pairing of gluon chains switches from (14)(23) in the upper part (= left rapidity interval) to
(12)(34) in the lower part (= right rapidity interval).

Fig 10: Decomposition into two rapidity intervals: the upper (left) interval has double multiplicity, the lower (right) one

corresponds to a rapidity gap.

5
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One can show that the ratio 1 : 2 : −4 holds for each rapidity interval. In [6] this has been generalized
to an arbitrary number of exchanged gluon lines.

Another remark applies to the applicability of the cutting rules to rescattering corrections in the
single jet inclusive cross section (Fig.9). Below the jet vertex we, again, have an exchange of four gluon
lines, similar to the diagram in the middle of Fig.7. As to the cutting rules, however, there is an important
difference between the two situations. In Fig.7, the blob above the four gluons is totally inclusive, i.e.
it contains an unrestricted sum over s-channel intermediate states, whereas in Fig.9 the part above the
four gluon state is semi-inclusive , i.e. it contains the tagged jet. This ’semi-inclusive’ nature destroys
the symmetry above the four gluon states, and the cutting rules have to be modified [8, 9]. In particular,
eqs.(3) - (4) are not applicable to the rescattering corrections between the jet and projectile. A further
investigation of these questions is in progress [10].

Finally a few comments on reggeization and cut reggeons. Clearly there are more complicated
configurations than those which we have discussed so far; an example appears in γ ∗p scattering (deep
inelastic electron proton scattering). In contrast to pp scattering, the coupling of multi-gluon chains to
the virtual photon can be computed in pQCD, and the LO results, for the case of n = 4 gluons, are
illustrated in Fig.11.

Fig.11: Four-gluon contributions to γ∗p proton scattering: two equivalent ways of summing over all contributions.

(a) the decomposition of Fig.5 with the pQCD triple Pomeron vertex. (b) an alternative way of summation which explicitly

shows the coupling of two Pomerons to the photon vertex and which leads to a new vertex Z.

It turns out that we have two alternative possibilities: in the completely inclusive case (total cross sec-
tion), it is convenient to chose Fig.11a, i.e. the sum of all contributions can be decomposed into two sets
of diagrams. In the first set, at the top of the diagram two gluons couple to the quark-antiquark pair, and
the subsequent transition to the four-gluon state goes via the pQCD triple Pomeron vertex. This vertex,
as a function of the 4 gluons below, has the symmetry properties described above. As a result, we can
apply the cutting rules to the four gluon state, as discussed before. However, there is also the second term
in Fig.11a, which consists of a two gluon state only: this is the reggeizing contribution we have men-
tioned before. As indicated in the figure, the splitting of the reggized gluons at the bottom amounts to a
change in the (nonperturbative) coupling. We want to stress that, because of the inclusive nature of this
set of diagrams, the triple Pomeron vertex V in Fig.11a, similar to the BFKL kernel, contains both real
and virtual contributions. For this reason, the decomposition in Fig.11a is applicable to inclusive cross
sections, and it is not convenient for investigating specific final states such as, for example, diffractive
final states with a fixed number of quarks and gluons in the final state.

There exists an alternative way of summing all contributions (Fig.11b) which is completely equiv-
alent to Fig.11a but allows to keep track of diffractive qq̄, qq̄g,... final states: this form is illustrated in
Fig.11b. One recognizes the ’elastic intermediate state’ which was not visible in Fig.11a, and the new
triple Pomeron vertex Z which contains only real gluon production. This vertex Z , as discussed in [11]
is no longer symmetric under permutations of the gluons at the lower end; consequently, we cannot apply
the AGK cutting rules to the four gluon states below.. These findings for multiple scattering effects in
DIS imply, strictly speaking, that cross sections for diffractive qq̄ or qq̄g states cannot directly be inserted
into the counting rules (2).

Also pp scattering will contain corrections due to multiple interactions which are more complex.
There are, for example, graphs which contain the 2 → 4 gluon vertex V , leading to a change of the

6

J. BARTELS

542



number of gluon lines ( Fig.12).

Fig 12: A correction in which the number of lines changes.
The black vertex denotes the 2→ 4 gluon vertex.

Since this 2 → 4 gluon vertex, as a function of the four gluons below the vertex, satisfies the symmetry
requirements listed above, we can apply our previous analysis to the cutting lines below the vertex.
In addition, however, one can ask how the lines continue above the 2 → 4 gluon vertex: we show
two examples, one of them containing a cut (reggeized) gluon. Concentrating on this two-gluon state
(i.e. we imagine that we have already summed over all possible cutting lines below the vertex V ), the
counting rules are quite different: in contrast to the even-signature Pomeron, the gluon is a odd-signature
reggeon. Consequently, the cut gluon is suppressed w.r.t. the uncut gluon by one power in αs, and
this suppression leads to the following hierarchy of cutting lines: the cut between the gluons belongs
to leading order, the cut through one of the two reggeized gluons is supressed by one power in αs, the
cut through both reggeized gluons is double suppressed (order α2

s). A closer analysis of this question is
under investigation [10].

4 Conclusions
Corrections due to multiple interactions seem to be important in DIS at small x and low Q2; they are
expected to play a significant role also in multijet production in pp scattering. The study of the AGK rules
to pQCD provides help in understanding the systematics of multiple gluon chains. Results described in
this review represent the beginning of a systematic analysis. We have listed a few questions which require
further work.

As an immediate application, we believe that a quantitative analysis of multiple scattering at
HERA will provide a useful input to the modelling of final states at the LHC.

A question of practical importance which we have not addressed at all is the hadronization of
partonic final states. All statements on ratios of ’particle densities in the final states’ made in this paper
refer to the parton (gluon) level. However, the hadronization of events which, for example, belong to a
double-cut ladder configuration may be quite different from the one obtained by applying just the normal
single-chain hadronization to each chain seperately. The answer to this question 1 goes beyond the AGK
analysis discussed in this paper.
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Multiple Interactions in DIS

Henri Kowalski
Deutsches Elektronen Synchrotron DESY, 22603 Hamburg

Abstract
The abundance of diffractive reactions observed at HERA indicates the pres-
ence of multiple interactions in DIS. These interactions are analysed, first in
a qualitative way, in terms of QCD Feynman diagrams. Then a quantitative
evaluation of diffractive and multiple interaction is performed with the help of
the AGK cutting rules applied within an Impact Parameter Dipole Saturation
Model. The cross-sections for multiple and diffractive interactions are found
to be of the same order of magnitude and to exhibit a similar Q2 dependence.

1 Introduction
One of the most important observations of HERA experiments is the rapid rise of the structure function
F2 with decreasing x indicating the presence of abundant gluon radiation processes [1]. The observation
of a substantial diffractive component in DIS processes, which is also quickly rising with decreasing x,
is equally important. The diffractive contribution at HERA is of a leading-twist type, i.e. the fraction
of diffractive events remains constant or decreases only logarithmically with increasing Q2. The pres-
ence of a substantial diffractive component suggests that, in addition to the usual partonic single ladder
contribution, also multi-ladder processes should be present.

In this talk I will first discuss the general role of multi-ladder contributions in DIS scattering,
called for historical reasons multi-Pomeron processes. The concept of a Pomeron is very useful in the
discussion of high energy scattering processes since it relates, by the AGK cutting rules [2], seemingly
different reactions like inclusive, diffractive and multiple scattering. I will present a numerical estimate
of the magnitude of diffractive and of multi-Pomeron contributions, using AGK cutting rules within a
dipole model which has been shown to provide a good description of HERA DIS data [3].

2 General Analysis

γ* γ*

p p

Fig. 1: The single gluon-ladder contribution to the total γ∗p cross section. The blob at the lower end of the
diagrams contains the physics below the scale Q2

0 which seperates hard from soft physics, whereas the blob at the
upper end contains hard physics that can be described by pQCD. The dashed line denotes the cut.

Let us first recall that the main properties of HERA interactions can be related to the properties
of the elastic amplitude, Aγ∗p→γ∗p, which, by the optical theorem, is directly related to the total γ∗p
cross-section:

σγ∗p =
1

W 2
ImAγ∗p→γ∗p(W

2, t = 0). (1)
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Here W denotes the γ∗p CMS energy and t the 4-momentum transfer of the elastically scattered proton.
At not too small Q2, the total cross section is dominated by the single ladder exchange shown in Fig. 1;
the ladder structure also illustrates the linear DGLAP evolution equations that are used to describe the
F2 data. In the region of small x, gluonic ladders are expected to dominate over quark ladders. The cut
lines in Fig. 1 mark the final states produced in a DIS event: a cut parton (gluon) hadronizes and leads to
jets or particles seen in the detector. It is generally expected that partons produced from a single chain
are unlikely to generate large rapidity gaps between them, since large gaps are exponentially suppressed
as a function of the gap size. Therefore, in the single ladder contribution of Fig. 1, diffractive final states
only reside inside the blob at the lower end, i.e. lie below the initial scale Q2

0.

γ* γ*

p p

Fig. 2: The double-gluon ladder contribution to the inclusive diffractive γ∗p cross section

The properties of diffractive reactions at HERA, however, give clear indications that significant
contributions from multi-ladder exchanges should be present: not all diffractive final states are soft, in
particular the diffractive production of jets and charm was observed [4, 5]. In addition, the inclusive
diffractive cross-section is rising as quickly as the total cross-section with increasing W [6] and the
exclusive diffractive production of J/Ψ and Υ vector meson exhibits a rise with energy which is about
twice as fast [7]. In short, the Pomeron exchanged in inclusive diffractive DIS is harder than the hadronic
soft Pomeron and therefore, one should expect that the majority of the observed diffractive final states
cannot be absorbed into the blob of soft physics of Fig. 1. Instead, double ladder exchange, Fig. 2,
provides a potential source for these harder diffractive states: the cut blob at the upper end may contain
qq̄ and qq̄g states which hadronize into harder jets or particles. Further evidence for the presence of
multi-ladder contribution comes from saturation models which have been shown to successfully describe
HERA F2 data in the transition region at low Q2 and small x: these models are explicitly built on the
idea of summing over multiple exchanges of single ladders (or gluon densities).

γ* γ*

p p

γ* γ*

p p

γ* γ*

p p

Fig. 3: The double-gluon ladder contribution to the elastic γ∗p amplitude

Let us analyse the content of a double ladder exchange contribution (for a more detailed analysis
see Ref. [8]). It is easiest to begin with the elastic γ∗p scattering amplitude, Fig. 3: from a t-channel
point of view, the two gluon ladders form a four gluon intermediate state which has to be symmetric
under permutations of the gluon lines (Bose symmetry). Therefore, on the amplitude level one cannot
distinguish between different diagrams of Fig. 3. Invoking now the optical theorem, (1), different con-
tributions to the total cross section correspond to different cuts through the two-ladder diagrams: they
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are shown in Fig. 4, ordered w.r.t. the density of cut gluons. In Fig. 4a, the cut runs between the two
ladders: on the both sides of the cut there is a color singlet ladder, and we expect a rapidity gap between
the upper blob (containing, for example, a diffractive qq̄ final state) and the proton remnants inside the
lower blob. Similarly, the diagram of Fig. 4b describes a single cut ladder with a final state similar to
the one ladder contribution in Fig. 1; this contribution simply represents a correction to the one ladder
contribution. Finally, the diagram of Fig. 4c belongs to final states with double density of cut partons.
As outlined in [9], the correct counting of statistic factors and combinatorics leads to the result that the
contributions shown in Fig. 4 a - c are identical, up to the overall counting factors 1 : −4 : 2.

2
γ* γ*

p p

a
p γ*

 Y

Detector

1
γ* γ*

p p

b
p γ*

 Y

Detector

2
γ* γ*

p p

c
p γ*

 Y

Detector

Fig. 4: Three examples of 2-ladder contributions (lhs), with the corresponding, schematical, detector signatures
(rhs). Top row: the diagram (a) with the cut positions (2) describes diffractive scattering. Middle row: the diagram
(b) with the cut position (1) describes inclusive final states with single densityof cut partons. Bottom row: the
diagram (c) with the cut position (2) describes inclusive final states with increased multiplicity.

Experimentally it is easy to differentiate between diffractive and single or multiple inclusive final
states since diffractive states exhibit large rapidity gaps. The multiple inclusive final states should also be
distinct from the single inclusive ones since, at least naively, we would expect that in the multiple case the
particle multiplicity should be considerably higher. At low x, however, the relation between the number
of virtual states excited in the interaction (as measured by F2) and the final particle multiplicity cannot
be straight-forward since the growth of F2 with decreasing x is faster than the multiplicity increase. This
may indicate that the hadronization mechanism may be different from the string picture commonly used
in the hadronization procedure of single chain parton showers. The influence of multiple scattering on
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the particle multiplicity of the final states should also be damped by the energy conservation. The cut
through several Pomerons leads clearly to more gluons produced in the final state, but the available energy
to produce particles in the hadronization phase remains the same. A detailed Monte Carlo program is
therefore necessary to evaluate this effect.

0-Pomeron

1-Pomeron

2-Pomeron

3-Pomeron

Fig. 5: 3-Pomeron contributions to the elastic γ∗p amplitude. All 15 possible diagrams are shown with some
examples of Pomeron cuts.

The number of diagrams contributing to the reaction amplitude increases very quickly with the
number of Pomerons. For the 3-Pomeron amplitude the gluons can be paired in 15 possible ways, shown
in Fig. 5 with the examples of 0-Pomeron, 1-Pomeron, 2-Pomeron and 3-Pomeron cuts. Form-Pomerons
the number of possible gluon pairs and also diagrams is:

(2m− 1)(2m− 3)(2m − 5).... = (2m− 1)!/(2m−1(m− 1)!).

Assuming that all the diagrams for a given multi-Pomeron exchange amplitude contribute in the
same way, the above analysis suggests that the probability for different cuts to contribute should be given
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by the combinatorial factors. This is the content of the AGK rules which were obtained from the analysis
of field theoretical diagrams well before QCD was established [2] and which relate the cross-section, σk,
for observing a final state with k-cut Pomerons with the amplitudes for exchange of m Pomerons, F (m):

σk =

∞∑

m=k

(−1)m−k 2m
m!

k!(m− k)!
F (m). (2)

The same result is also obtained from a detailed analysis of the Feynman diagram contributions in
QCD with the oversimplified assumption that only the symmetric part of the two-gluon couplings con-
tributes [9].

3 Multiple Interactions in the Dipole Model

Fig. 6: LHS: The γ∗p cross-section as a function of W 2. RHS: The differential cross section for exclusive diffrac-
tive J/Ψ production as a function of the four-momentum transfer t. The solid line shows a fit by the IP saturation
model.

The properties of the multi-Pomeron amplitude and of the cut Pomeron cross-sections can be
quantitatively studied in a dipole model. Let us first recall the main properties of the dipole picture,
see Ref. [10, 11] and [3]. In the model the γ∗p interaction proceeds in three stages: first the incoming
vitual photon fluctuates into a quark-antiquark pair, then the qq̄ pair elastically scatters on the proton,
and finally the qq̄ pair recombines to form a virtual photon. The total cross-section for γ ∗p scattering,
or equivalently F2, is obtained by averaging the dipole cross-sections with the photon wave functions,
ψ(r, z), and integrating over the impact parameter, b:

F2 =
Q2

4π2αem

∫
d2r

∫
dz

4π
ψ∗ψ

∫
d2b

dσqq
d2b

. (3)
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Here ψ∗ψ denotes the probability for a virtual photon to fluctuate into a qq̄ pair, summed over all flavors
and helicity states. The dipole cross-section is assumed to be a function of the opacity Ω:

dσqq
d2b

= 2

(
1− exp(−Ω

2
)

)
. (4)

At small-x the opacity Ω can be directly related to the gluon density, xg(x, µ2), and the transverse profile
of the proton, T (b):

Ω =
π2

NC
r2 αs(µ

2)xg(x, µ2)T (b) . (5)

The parameters of the gluon density are determined from the fit to the total inclusive DIS cross-section,
as shown in Fig. 6 [3]. The transverse profile was determined from the exclusive diffractive J/Ψ cross-
sections shown in the same figure. The opacity function Ω determined in this way has predictive prop-
erties; it allows to describe other measured reactions, e.g. charm structure function or elastic diffractive
J/Ψ production shown in Fig.7.
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Fig. 7: LHS: Charm structure function, F c2 . RHS: Total elastic J/Ψ cross-section. The solid line shows the reswult
of the IP saturation model.

For a small value of Ω the dipole cross-section, Eq (4), is equal to Ω and therefore proportional
to the gluon density. This allows to identify the opacity with the single Pomeron exchange amplitude of
Fig. 1. The multi-Pomeron amplitude is determined from the expansion:

dσqq
d2b

= 2

(
1− exp(−Ω

2
)

)
= 2

∞∑

m=1

(−1)m−1

(
Ω

2

)m 1

m!
(6)

as

F (m) =

(
Ω

2

)m 1

m!
, (7)
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since the dipole cross-section can be expressed as a sum of multi-Pomeron amplitudes [12] in the fol-
lowing way:

dσqq
d2b

= 2

∞∑

m=1

(−1)m−1 F (m) . (8)

The cross-section for k cut Pomerons is then obtained from the AGK rules, eq. 2, and from the multi-
Pomeron amplitude, Eq. (7), as:

dσk
d2b

=

∞∑

m=k

(−1)m−k 2m
m!

k!(m− k)!

(
Ω

2

)m 1

m!
=

Ωk

k!

∞∑

m=k

(−1)m−k
Ωm−k

(m− k)!
(9)

which leads to a simple expression:

dσk
d2b

=
Ωk

k!
exp(−Ω) . (10)

The diffractive cross-section is given by the difference between the total and the sum over all cut cross-
sections:

dσdiff
d2b

=
dσtot
d2b

−
∞∑

k=1

dσk
d2b

= 2

(
1− exp

(
−Ω

2

))
− (1− exp(−Ω)) =

(
1− exp

(
−Ω

2

))2

. (11)

Fig. 8: Examples of b dependence of various cut dipole and diffractive cross-sections.

The cut cross-sections determined in the dipole model analysis of HERA data have several inter-
esting properties shown in Fig. 8: for small dipoles (r = 0.1 fm) the opacity Ω is also small, so the
single cut cross-section, σ1, dominates. This leads to particle production emerging only from the one-cut
pomeron, which should correspond, in the context of e.g. the LUND model, to a fragmentation of only
one string. For larger dipoles (r = 0.6 fm) the dipole cross-section starts to be damped in the middle of
the proton (at b ≈ 0) by saturation effects. Therefore, the single cut cross-section is suppressed in the
middle while the multiple cut cross-sections, σ2, σ3, etc, become substantial and increasingly concen-
trated in the proton center. These, fairly straight-forward properties of dipoles indicate that in the central
scattering events the multiple scattering probability will be enhanced, which may lead at the LHC to
substantial effects in a surrounding event multiplicity.

The contribution to F2 from the k-cut Pomeron exchanges are computed in the analogous way to
F2:

F k2 =
Q2

4π2αem

∫
d2r

∫
dz

4π
ψ∗ψ

∫
d2b

dσk
d2b

. (12)

MULTIPLE INTERACTIONS IN DIS

551



x

F 2

10
-3

10
-2

10
-1

1

10
-5

10
-4

10
-3

10
-2

x

F 2

10
-3

10
-2

10
-1

1

10

10
-5

10
-4

10
-3

10
-2

Fig. 9: F2 and the contributions of k-cut Pomeron processes, F k2 .

These contributions are shown, together with F2, as a function of x for two representative Q2 values in
Fig. 9. One finds that multiple interaction contributions, i.e. k ≥ 2, in the perturbative region, at Q2 = 4
GeV2, are substantial. In the typical HERA range of x ≈ 10−3− 10−4, the k = 2 contribution is around
10% of F2 and the contributions of higher cuts are also non-negligible. For example, the contribution of
the 5-cut Pomeron exchanges is still around 0.5%, which means that at HERA, many thousand events
may come from this type of process. Figure 10 shows the fraction of the multpile interaction processes,
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Fig. 10: Fractions of single (k=1), multiple interaction (MI) and diffraction (D) in DIS

FMI
2 = F k=2

2 + F k=3
2 + F k=4

2 + F k=5
2 in F2, at the same Q2 values. At Q2 = 4 GeV2 the fraction of

multiple scattering events is around 14% and atQ2 = 40 GeV2 around 6%, in the HERA x region, which
indicates that the decrease of multiple scattering with increasing Q2 is only logarithmic. The fraction of
diffractive processes, shown for comparison, is of the same order, and drops also logarithmically with
Q2. The logarithmic drop of the diffractive contribution expected in the dipole model is confirmed by
the data [6].

The dipole model provides a straight-forward extrapolation to the region of low Q2, which is
partly perturbative and partly non-perturbative. Figure 11 shows the contribution to F2 of k-cut Pomeron
processes and the fractions of multiple interactions and diffractive processes at Q2 = 0.4 GeV2.
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Note also that, as a byproduct of this investigation, the ratio of diffractive and inclusive cross-
sections, FD2 /F2 is found to be almost independent of x, in agreement with the data and also other
dipole model predictions [6, 13, 14]. The absolute amount of diffractive effects is underestimated, since
the evaluation of diffraction through AGK rules is oversimplified. It is well known [14], that a proper
evaluation of diffraction should also take into account the qq̄g contribution which is missing in the simple
AGK schema.

In conclusion, we find that the impact parameter dependent dipole saturation model [3] repro-
duces well the main properties of the data and leads to the prediction that multiple interaction effects at
HERA should be of the order of diffractive effects, which are known to be substantial. The multiple in-
teraction effects should decrease slowly (logarithmically) with increasing Q2, similarly to the diffractive
contribution.
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Fig. 11: Left: F2 and the contributions of k-cut Pomeron processes. Right: Fractions of single (k=1), multiple
interaction (MI) and diffraction (D) in DIS at Q2 = 0.4 GeV2.
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Abstract
A classical effective field theory, the Color Glass Condensate (CGC), provides
a unified treatment of high parton density effects in both DIS and hadron-
hadron collisions at very high energies. The validity and limitations of k⊥
factorization can be studied in this effective theory. Multi-parton correlations
in the effective theory are described by universal dipole and multipole opera-
tors. The evolution of these operators with energy provides a sensitive test of
multi-parton dynamics in QCD at high energies.

1 Introduction
In the Bjorken limit of QCD, Q2 → ∞, s → ∞, xBj ≈ Q2/s = fixed, we have a powerful framework
to compute a large number of processes to high accuracy. Underlying this machinery is the Operator
Product Expansion (OPE), where cross-sections are identified as a convolution of short distance ”co-
efficient functions” which are process dependent and long distance parton distribution functions which
are universal. The evolution of the parton distribution functions with x and Q2 is described by splitting
functions, which determine the probability of “parent” partons to split into a pair of “daughter” partons.
Both coefficient functions and splitting functions for DIS inclusive cross-sections are now available to
Next-Next-Leading-Order (NNLO) accuracy [1].

While this is a tremendous achievement, the contribution of high Q2 processes to the total cross-
section is very small. The bulk of the cross-section can perhaps be better understood in the Regge
asymptotic limit: xBj → 0, s → ∞, Q2 = fixed. The BFKL renormalization group equation [3]
describes the leading αS ln(1/x) behavior of gluon distributions in this limit. The solutions of the BFKL
equation predict that gluon distributions grow very rapidly with decreasing x. In the Regge asymptotics,
since the transverse size of the partons is fixed, this growth of distributions will lead to the overlapping of
partons in the transverse plane of the hadron. In this regime, contributions that were power suppressed in
the BFKL scheme become important. These are recombination and screening effects which slow down
the growth of gluon distributions leading ultimately to a saturation of these distributions [4, 5]. Such
effects must appear at small x because the occupation number 1 of partons in QCD be at most of order
1/αS .

Thus qualitatively, the competition between Bremsstrahlung and recombination/screening effects
becomes of the same order when

1
2 (N2

c − 1)
xG(x,Q2)

πR2Q2
≈ 1

αS(Q2)
, (1)

where R is the radius of the target. This relation is solved self-consistently when Q ≡ Qs(x). The scale
Qs(x) is termed the saturation scale and it grows as one goes to smaller values of x. When Q2 ≤ Q2

s ,
higher twist effects are important; at sufficiently small x, Q2

s � Λ2
QCD, which makes feasible a weak

coupling analysis of these effects. At HERA, reasonable fits of small x inclusive and diffractive data
1This corresponds to the number of partons per unit transverse area, per unit transverse momentum, per unit rapidity, in

light cone gauge. This condition has its gauge invariant counterpart in the requirement that the field strength squared not exceed
1/αS .
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for x ≤ 10−2 are obtained in saturation models with Q2
s(x) ≈ Q2

0 (x0/x)λ, with Q2
0 = 1 GeV2 and

x0 = 3 · 10−4. Detailed estimates suggest that the saturation scale for gluons is Qs(x) ≈ 1.4 GeV at
x ≈ 10−4 [7]. The applicability of weak coupling techniques at these scales is dubious. Nevertheless,
they cannot be ruled out since the effective scale at which the coupling runs can be larger than the
estimate. Leading twist evolution of “shadowed” distributions at the saturation scale can extend out to
significantly large values of x. A hint of this possibility is suggested by the fact that geometrical scaling-
the dependence of cross-sections on the dimensionless ratio Q2/Q2

s alone-extends out to Q2 ≈ 450
GeV2 at HERA [8].

The possibility that weak coupling may apply at high energies is good news. Some of the remark-
able regularities in high energy scattering data may be understood in a systematic way. The OPE, for
instance, is no longer a good organizing principle since its usefulness is predicated on the twist expan-
sion. In the next section, we will discuss an effective field theory approach which may provide a more
efficient organizing principle at high parton densities.

2 The Color Glass Condensate
The physics of high parton densities can be formulated as a classical effective theory [6] because there
is a Born-Oppenheimer separation between large x and small x modes [9] which are respectively the
slow and fast modes in the effective theory. Large x partons are static sources of color charge for the
dynamical wee (small x) parton fields. The generating functional of wee partons has the form

Z[j] =
∫

[dρ]WΛ+ [ρ]

{∫ Λ+

[dA]δ(A+)eiS[A,ρ]−j·A∫ Λ+

[dA]δ(A+)eiS[A,ρ]

}
(2)

where the wee parton action has the form

S[A, ρ] =
−1
4

∫
d4xF 2

µν +
i

Nc

∫
d2x⊥dx−δ(x−) Tr

(
ρ(x⊥)U−∞,∞[A−]

)
. (3)

In Eq. (2), ρ is a two dimensional classical color charge density and W [ρ] is a weight functional of
sources (which sits at momenta k+ > Λ+: note, x = k+/P+

hadron). The sources are coupled to the
dynamical wee gluon fields (which in turn sit at k+ < Λ+) via the gauge invariant term which is the
second term on the RHS of Eq. (3). Here U−∞,∞ denotes a path ordered exponential of the gauge field
A− in the x+ direction. The first term in Eq. (3) is the QCD field strength tensor squared — thus the wee
gluons are treated in full generality in this effective theory, which is formulated in the light cone gauge
A+ = 0. The source j is an external source — derivatives taken with respect to this source (with the
source then put to zero) generate correlation functions in the usual fashion.

The argument for why the sources are classical is subtle and follows from a coarse graining of the
effective action. The weight functional for a large nucleus is a Gaussian in the source density [6, 11],
with a small correction for SU(Nc) coming from the Nc− 2 higher Casimir operators [10]. The variance
of the Gaussian, the color charge squared per unit area µ2

A, proportional to A1/3, is a large scale — and
is the only scale in the effective action 2. Thus for µ2

A � Λ2
QCD, αS(µ2

A) � 1, and one can compute the
properties of the theory in Eq. (2) in weak coupling.

The saddle point of the action in Eq. (3) gives the classical distribution of gluons in the nucleus.
The Yang-Mills equations can be solved analytically to obtain the classical field of the nucleus as a
function of ρ: Acl.(ρ) [6, 11, 12]. One can determine, for Gaussian sources, the occupation number
φ = dN/πR2/dk2

⊥dy (the number of partons per unit transverse momentum, per unit rapidity y, where
y = ln(1/x)) of wee partons in the classical field of the nucleus. One finds for k⊥ � Q2

s , the Weizsäcker-
Williams spectrum φ ∼ Q2

s/k2
⊥; for k⊥ ≤ Qs, one obtains a complete resummation to all orders in k⊥,

2µ2
A is simply related in the classical theory to the saturation scale Q2

s via the relation Q2
s = αSNcµ

2
A ln(Q2

s/Λ2
QCD)

2
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which gives φ ∼ 1
αS

ln(Qs/k⊥). (The behavior at low k⊥ can, more accurately, be represented as
1

αS
Γ(0, z) where Γ is the incomplete Gamma function and z = k2

⊥/Q2
s [13]).

A high energy hadron is a Color Glass Condensate for the following reasons [2]. The ‘color’ is
obvious since the parton degrees of freedom are colored. It is a glass because the sources, static on
time scales much larger than time scales characteristic of the system, induce a stochastic (space-time
dependent) coupling between the partons under quantum evolution — this is analogous to a spin glass.
Finally, the matter is a condensate because the wee partons have large occupation numbers (of order
1/αS) and have momenta peaked about Qs. These properties are enhanced by quantum evolution in x.
The classical field retains its structure — while the saturation scale grows: Qs(x′) > Qs(x) for x′ < x.

Small fluctuations about the effective action in Eq. (3) give large corrections of order αS ln(1/x)
(see Ref. [14]). The Gaussian weight functional is thus fragile under quantum evolution of the sources.
A Wilsonian renormalization group (RG) approach systematically treats these corrections [15]. In par-
ticular, the change of the weight functional W [ρ] with x is described by the JIMWLK- non-linear RG
equations [15]. These equations form an infinite hierarchy of ordinary differential equations for the gluon
correlators 〈A1A2 · · ·An〉Y , where Y = ln(1/x) is the rapidity. The JIMWLK equation for an arbitrary
operator 〈O〉 is

∂〈O[α]〉Y
∂Y

=
〈

1
2

∫
x⊥,y⊥

δ

δαa
Y (x⊥)

χab
x⊥,y⊥

[α]
δ

δαb
Y (y⊥)

O[α]
〉

Y

, (4)

where α = (∇2
⊥)−1ρ. Here χ is a non-local object expressed in terms of path ordered (in rapidity)

Wilson lines of α [2]. This equation is analogous to a (generalized) functional Fokker-Planck equation,
where Y is the ”time” and χ is a generalized diffusion coefficient. It illustrates the stochastic properties
of operators in the space of gauge fields at high energies. For the gluon density, which is proportional
to a two-point function 〈αa(x⊥)αb(y⊥)〉, one recovers the BFKL equation in the limit of low parton
densities.

3 Dipoles in the CGC
In the limit of large Nc and large A (α2

SA1/3 � 1), the JIMWLK hierarchy closes for the two point
correlator of Wilson lines because the expectation value of the product of traces of Wilson lines factorizes
into the product of the expectation values of the traces:

〈Tr(VxV †
z )Tr(VzV

†
y )〉 −→ 〈Tr(VxV †

z )〉 〈Tr(VzV
†
y )〉 , (5)

where Vx = P exp
(∫

dz−αa(z−, x⊥)T a
)
. Here P denotes path ordering in x− and T a is an adjoint

SU(3) generator. In Mueller’s dipole picture, the cross-section for a dipole scattering off a target can be
expressed in terms of these 2-point dipole operators as [16, 17]

σqq̄N (x, r⊥) = 2
∫

d2b NY (x, r⊥, b) , (6)

whereNY = 1− 1
Nc
〈Tr(VxV †

y )〉Y , the imaginary part of the forward scattering amplitude. Note that the
size of the dipole, ~r⊥ = ~x⊥ − ~y⊥, and the impact parameter,~b = (~x⊥ + ~y⊥)/2. The JIMWLK equation
for the two point Wilson correlator is identical in the large A, large Nc mean field limit to an equation
derived independently by Balitsky and Kovchegov — the Balitsky-Kovchegov equation [18], which has
the operator form

∂NY

∂Y
=

αSNc

π
KBFKL ⊗

{
NY −N 2

Y

}
. (7)

HereKBFKL is the well known BFKL kernel. WhenN � 1, the quadratic term is negligible and one has
BFKL growth of the number of dipoles; whenN is close to unity, the growth saturates. The approach to
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unity can be computed analytically [19]. The B-K equation is the simplest equation including both the
Bremsstrahlung responsible for the rapid growth of amplitudes at small x as well as the repulsive many
body effects that lead to a saturation of this growth.

A saturation condition which fixes the amplitude at which this change in behavior is significant,
sayN = 1/2, determines the saturation scale. One obtains Q2

s = Q2
0 exp(λY ), where λ = cαS with c ≈

4.8. The saturation condition affects the overall normalization of this scale but does not affect the power
λ. In fixed coupling, the power λ is large and there are large pre-asymptotic corrections to this relation-
which die off only slowly as a function of Y . BFKL running coupling effects change the behavior of the
saturation scale completely–one goes smoothly at large Y to Q2

s = Q2
0 exp(

√
2b0c(Y + Y0)) where b0

is the coefficient of the one-loop QCD β-function. The state of the art computation of Qs is the work of
Triantafyllopoulos, who obtained Qs by solving NLO-resummed BFKL in the presence of an absorptive
boundary (which corresponds to the CGC) [20]. The pre-asymptotic effects are much smaller in this case
and the coefficient λ ≈ 0.25 is very close to the value extracted from saturation model fits to the HERA
data [21]. Fits of CGC inspired models to the HERA data have been discussed elsewhere [22] and will
not be discussed here.

4 Hadronic scattering and k⊥ factorization in the CGC
Collinear factorization is the pQCD mechanism to compute hard scattering. At collider energies, a new
window opens up where Λ2

QCD � M2 � s, where M is the invariant mass of the final state. In prin-
ciple, cross-sections in this window can be computed in the collinear factorization language–however,
one needs to sum up large logarithmic corrections in s/M2. An alternative formalism is that of k⊥-
factorization [23, 24], where one has a convolution of k⊥ dependent “un-integrated” gluon distributions
from the two hadrons with the hard scattering matrix. In this case, the in-coming partons from the
wavefunctions have non-zero k⊥. Levin et al. [25] suggested that at high energies the typical k⊥ is the
saturation scale Qs. The rapidity dependence of the unintegrated distributions is given by the BFKL or
BK equations. However, unlike the structure functions, it has not been proven that these unintegrated
distributions are universal functions.

At small x, both the collinear factorization and k⊥ factorization limits can be understood in a
systematic way in the framework of the Color Glass Condensate. The expectation value of an operator
O can be computed as

〈O〉Y =
∫

[dρ1] [dρ2]Wx1 [ρ1]Wx2 [ρ2]O(ρ1, ρ2) , (8)

where Y = ln(1/xF ) and xF = x1− x2. Quantum information, to leading logarithms in x, is contained
in the source functionals Wx1(x2)[ρ1(ρ2)] of the two hadrons. The operator O corresponding to the final
state is expressed in terms of gauge fields Aµ[ρ1, ρ2](x). Inclusive gluon production in the CGC is
computed by solving the Yang-Mills equations [Dµ, Fµν ]a = Jν,a for Aµ[ρ1, ρ2], where the current is
given by Jν = ρ1 δ(x−)δν+ + ρ2 δ(x+)δν− with initial conditions determined by the Yang-Mills fields
of the two hadrons before the collision. These are obtained self-consistently by matching the solutions of
the Yang-Mills equations on the light cone [26]. Since we have argued in Section 2 that we can compute
the Yang-Mills fields in the nuclei before the collision, the classical problem is in principle completely
solvable. Quantum corrections not enhanced by powers of αS ln(1/x) can be computed systematically.
Those terms enhanced by powers of αS ln(1/x) are absorbed into the weight functionals W [ρ1,2].

Hadronic scattering in the CGC can therefore be studied through a systematic power counting in
the density of sources in powers of ρ1,2/k2

⊥;1,2. This power counting is more relevant at high energies
than whether the incoming projectile is a hadron or a nucleus. In addition, one can study the applicability
of collinear and k⊥ factorization at small x in this approach.

The power counting is applicable as well to a proton at small x. The relevant quantity here is Qs,
which, as one may recall, is enhanced both for large A and small x. As long as k⊥ � Qs � ΛQCD,
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one can consider the proton or nucleus as being dilute. To lowest order in ρp1/k2
⊥ and ρp2/k2

⊥, one
can compute inclusive gluon production analytically [26]. At large transverse momenta, Qs � k⊥,
the scattering can be expressed in a k⊥-factorized form. The inclusive cross-section is expressed as the
product of two unintegrated (k⊥ dependent) distributions times the matrix element for the scattering. The
comparison of this result to the collinear pQCD gg → gg process and the k⊥ factorized gg → g was
performed in Ref. [27]. At this order, the result is equivalent to the pQCD result first derived by Gunion
and Bertsch [28]. This result for gluon production is substantially modified, as we shall discuss shortly,
by high parton density effects either because the target is a large nucleus or because small values of x are
being probed in the hadron (as in forward pp scattering).

k⊥ factorization is a good assumption at large momenta for quark pair-production. This was
worked out in the CGC approach by François Gelis and myself [29]. The result for inclusive quark pair
production can be expressed in k⊥ factorized form as

dσ1

dypdyqd2p⊥d2q⊥
∝

∫
d2k1⊥
(2π)2

d2k2⊥
(2π)2

δ(k1⊥ + k2⊥ − p⊥ − q⊥)

×φ1(k1⊥)φ2(k2⊥)
Tr

(∣∣m−+
ab (k1, k2; q, p)

∣∣2)
k2

1⊥k2
2⊥

, (9)

where φ1 and φ2 are the unintegrated gluon distributions in the projectile and target respectively (with
the gluon distribution defined as xG(x,Q2) =

∫ Q2

0 d(k2
⊥) φ(x, k⊥)).

The matrix element Tr
(∣∣m−+

ab (k1, k2; q, p)
∣∣2) is identical to the result derived in the k⊥–factori-

zation approach [23, 24]. In the limit | ~k1⊥| , | ~k2⊥| → 0, Tr
(∣∣m−+

ab (k1, k2; q, p)
∣∣2)/

(k2
1⊥k2

2⊥) is well
defined–after integration over the azimuthal angles in Eq. (9), one obtains the usual matrix element
|M|2gg→qq̄, recovering the lowest order pQCD collinear factorization result.

4.1 Gluon and quark production in forward pp and pA collisions
Many analytical results are available when one of the hadrons is dilute and the other is dense. This
may correspond to either pA collisions or forward pp collisions. One solves the Yang–Mills equations
[Dµ, Fµν ] = Jν with the light cone sources Jν,a = δν+ δ(x−) ρa

p(x⊥)+δν− δ(x+) ρa
A(x⊥), to determine

the gluon field produced-to lowest order in the source density of one projectile (ρp/k2
⊥ � 1)and to all

orders (ρA/k2
⊥ ∼ 1) in the source density of the other. The inclusive gluon production cross-section,

in this framework, was first computed by Kovchegov and Mueller [30] and shown to be k⊥ factorizable
in Ref. [31, 34]. The “unintegrated” gluon distribution in the dense system however is here replaced by
the gluon “dipole” distribution NY we discussed previously. It is no longer a leading twist object but
includes all twists enhanced by high parton density effects. The well known “Cronin” effect observed in
Deuteron-Gold collisions at RHIC is obtained in this formalism and can be simply understood in terms
of the multiple scattering of a parton from the projectile with those in the target. The energy evolution
of the dipole distribution is given by the BK equation, leading to a suppression of the Cronin effect at
high densities due to the shadowing of nuclear distributions. This prediction appears to be confirmed
by the RHIC data. The “dipole” operators extracted from DIS can therefore be used to predict inclusive
hadron production in pp and pA collisions. One can similarly compute Drell-Yan and photon production
in forward pp and pA collisions [33, 35].

Unlike gluon production, neither quark pair-production nor single quark production is strictly k⊥
factorizable. The pair production cross-section can however still be written in k⊥ factorized form as a
product of the unintegrated gluon distribution in the proton times a sum of terms with three unintegrated
distributions, φg,g, φqq̄,g and φqq̄,qq̄. These are respectively proportional to 2-point (dipole), 3-point and
4-point correlators of the Wilson lines we discussed previously. Again, these operators include all twist
contributions. For instance, the distribution φqq̄,g is the product of fundamental Wilson lines coupled to

5
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a qq̄ pair in the amplitude and adjoint Wilson lines coupled to a gluon in the complex conjugate ampli-
tude. For large transverse momenta or large-mass pairs, the 3-point and 4-point distributions collapse
to the unintegrated gluon distribution, and we recover the previously discussed k⊥-factorized result for
pair production in the dilute/pp-limit. Single quark distributions are straightforwardly obtained and de-
pend only on the 2-point quark and gluon correlators and the 3-point correlators. For Gaussian sources,
as in the McLerran-Venugopalan-model, these 2-,3- and 4-point functions can be computed exactly as
discussed in Ref. [32].

The situation gets complicated when one enters a regime where both projectiles are dense–as de-
fined in our power counting. k⊥ factorization breaks down decisively and analytical approaches are likely
not possible. Nevertheless, numerical techniques have been developed, which allow the computation of
final states, at least to leading logs in x [38].

The results for gluon and quark production in forward pp and pA or dA collisions (for a review,
see Ref. [37]), coupled with the previous results for inclusive and diffractive [33–36] distributions in
DIS, suggest an important new paradigm. At small x in DIS and hadron colliders, previously interesting
observables such as quark and gluon densities are no longer the only observables to capture the relevant
physics. Instead, they should be complemented by dipole and multipole correlators of Wilson lines that
seem ubiquitous in all high energy processes and are similarly gauge invariant and process independent.
The renormalization group running of these operators may be a powerful and sensitive harbinger of new
physics.
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Abstract
The processes of boson-boson scattering and of Higgs production in boson-
boson fusion hold the key to electroweak symmetry breaking. A preliminary
study has been performed using a fast simulation of the CMS detector. The
results are encouraging and suggest that, after few years of data taking at LHC,
the region above 1 TeV can be explored, which is interesting if the Higgs is
not found.

1 Vector Boson Fusion at CMS
1.1 Introduction
The Standard Model predicts that, without the Higgs boson, the scattering amplitude of the longitudi-
nally polarized vector boson (VL) fusion process violates unitarity at about 1-1.5 TeV. The longitudinal
polarization of the V arises from the V getting massive, i.e. when the symmetry breaks spontaneously.
The cross section as a function of the VLVL invariant mass will show a resonance at M(VLVL)=M(H)
if the Higgs is there; otherwise, the cross section will deviate from the Standard Model prediction at
high values of M(VV). Therefore, VV scattering can probe the Electroweak Symmetry Breaking with or
without the assumption the Higgs mechanism.

1.2 The Signal Selection
Two channels have been studied using Pythia [1] and the CMS Fast Simulation [2]:

– pp→ µµjjjj [3] through the processes:

– pp→ VLVLjj → ZLZLjj → µµjjjj,
– pp→ ZLWLjj → ZLWLjj → µµjjjj.

– pp→ µνjjjj [4] through the process:

– pp→ VLVLjj →WLWLjj → µνjjjj.

The study has been done for high Higgs masses: mH = 500 GeV and mH = 1000 GeV, and for
the no-Higgs scenario. The latter has been simulated in Pythia by setting mH = 10000 GeV (the Higgs
exchange diagram is suppressed by a m2

H term in the denominator of the Higgs propagator). The cross
sections of the signal processes are shown in Table 1.

Table 1: Signal cross section (in fb) for different Higgs masses.

Processes mH = 500 GeV mH = 1000 GeV mH = 10 000 GeV

pp→ ZLZLjj → µµjjjj 9.1 3.0 1.7

pp→ ZLWLjj → µµjjjj 0.7 1.0 1.5

pp→WLWLjj → µνjjjj 64.4 26.9 19.7
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Fig. 1: The signal topology. l1 and l2 can be µ± or µ and ν.

The signal has a well defined topology (see Figure 1):

– one µ+ and one µ− (or one µ and one ν) in the final state, with high pT and low η coming from
the Z (W) boson;

– two jets with high pT and low η, coming from the vector boson decay;
– two energetic jets with high pT , in the forward-backward regions (large η and ∆η).

The aim of the work is to reconstruct the invariant mass of the VV-fusion system in both the
channels and estimate its resolution. We also attempted a first estimate of the signal to background ratio
assuming that the main background processes are:

– tt̄ background: a six fermion final state, like the signal, but the jets are mainly in the central
region; therefore, by requiring two jets at high η and with a large ∆η between them this kind of
background can be rejected.

– VV associated production: a four fermion final state; it needs however to be kept under control in
the case in which one boson decays leptonically since there are several jets from gluon radiation
in the final state. The most effective variables to distinguish this background from the signal are
the transverse momenta of the jets and of the leptons.

– V plus one and two hard jets: it is simple to reject this background because it has a topology not
very similar to that of the signal and the additional jets have a very low pT (since they are generated
by the parton shower). However it is fundamental to keep it under control since it has a very large
cross section.

The cross section of the background processes are shown in Table 2.

Table 2: Background cross section (in fb).

Background Cross Section [fb] Background Cross Section [fb]

tt̄, 1 µ 622 · 103 tt̄, 1 µ− and 1 µ+ 620 · 103

ZZ → µ−µ+jj 653 ZW → µ−µ+jj 663

WW → µν+jj 11 · 103 W + jj → µνjj 77 · 103

Z + jet→ µ−µ+j 13 · 106 W + j → µνj 184 · 106
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1.3 The Results
A set of cuts has been applied to enhance the signal with respect to the background. A good resolution
(estimated using MC info) on the most important observables has been achieved. In particular:

– Z → µµ invariant mass: Rz ∼ 1.5%;
– V → jj invariant mass, µµjjjj channel: Rv ∼ 13%;
– V → jj invariant mass, µνjjjj channel: Rv ∼ 10%.

The difference between the two latter resolutions reflects the fact that for the jjjjµµ channel the pile-up
has been considered whereas in the jjjjµν it was not. The resolution on the energy scale of the process
(Minv(V V )) is:

– 4% for the pp→ µµjjjj channel;
– 8% for the pp→ µνjjjj channel.

The difference is due to the worse resolution on the neutrino pT and pz reconstruction. The resulting
background efficiency is lower than one percent while the signal efficiency reaches 30% for the jjjjµµ
channel and 50% for the jjjjµν channel. A high significance (S/

√
B) has been achieved for an inte-

grated luminosity of 100fb−1: for the µµjjjj samples it is about 8 in the interval M V V
inv ∈ [0, 1] TeV for

the Higgs mass set to 500 GeV and about 10 forM V V
inv > 1 TeV for the no-Higgs scenario. Similar values

have been obtained for the µνjjjj channel: a significance of about 5, in the interval M V V
inv ∈ [0, 1] TeV,

for the Higgs mass set to 500 GeV and about 2.4 in the interval M V V
inv > 1 TeV for the no-Higgs sce-

nario. In Figs. 2 (no-Higgs scenario) and 3 (mH = 500 GeV) the number of reconstructed events and
the selection efficiency as a function of the VV invariant mass are shown.

1.4 Future Plans
Further studies are in progress, since for those presented here the Pythia generator was used, which only
simulates a subset of the relavant diagrams, and cannot simulate the full set of background processes
(notably not the scattering of transversely polarised vector bosons). To better describe the signal (and
the background as well) a Matrix Element Monte Carlo must be used. Phase [5] is the best candidate,
since it simulates all processes that lead to a six fermion final state, at order α6

QED. Up to now only the
channel pp → µνjjjj has been computed; therefore for the the µµjjjj final state the MadGraph [6]
event generator was used. This can simulate the 2l4j final state through the production (in Narrow Width
Approximation) of intermediate vector bosons and their subsequent semileptonic decay.

Moreover it is crucial to redo the analysis, processing the events through the Full Simulation [7]
of the CMS detector in order to properly take into account the detector resolution.

1.5 Summary
In conclusion, Electroweak Symmetry Breaking can be probed through the fusion of longitudinally po-
larized vector bosons with the CMS detector at LHC. The signal reconstruction and the background
rejection algorithms have been successfully tested with the Fast Simulation. In the near future the study
will be repeated with the Full Simulation of the detector and with dedicated generators.

VECTOR BOSON FUSION ATCMS
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Fig. 2: (Left) Number of reconstructed events as a function of the VV invariant mass and (Right) the selection
efficiency as a function of the invariant mass of the VV-fusion process; both for the µµjjjj final state in the
no-Higgs scenario and an integrated luminosity of 100 fb−1.
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Fig. 3: (Left) Number of reconstructed events as a function of the VV invariant mass and (Right) the selection
efficiency as a function of the invariant mass of the VV-fusion process; both for the µµjjjj final state for mH =

500 GeV and an integrated luminosity of 100 fb−1.
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Abstract
The activities of working group 5 ‘Monte Carlo Tools’ of the HERA–LHC
Workshop are summarized. The group concerned itself with the developments
and tunings of Monte Carlo models in light of the HERA–LHC connection,
interfaces and libraries for parton density functions, Monte Carlo running, val-
idation and tuning frameworks as well as some data analysis tools.

1 Introduction
The goals of working group 5 were

– to review existing and developing Monte Carlo (MC) models used for studies at HERA and the
LHC;

– to examine and possibly improve MC models for the LHC physics using HERA data;
– to prioritize possible measurements at HERA which would allow tuning of these MC models;
– to pursue the development of frameworks for running, validating and tuning of MC and analysis

programs;
– to improve and further develop common interfaces and libraries used with MC event generators;
– to review data analysis tools developed by the HERA collaborations which can be useful for studies

at the LHC.

Both theorists and experimentalists from the HERA and LHC communities came together, in order to
share their experience, identify crucial issues, and discuss the future developments of the programs,
libraries and frameworks.

The physics topics discussed in the group have overlapped with those of all the other working
groups in this workshop. Therefore many presentations were given in common sessions with other
groups, most notably with working group 2 ‘Multijet Final States and Energy Flows’. These presenta-
tions covered the models of multiparton interactions, new developments in parton shower models, matrix
element / parton shower (ME+PS) matching and simulations of multijet final states. The contributions to
the present proceedings reviewing these studies are published in the chapter of working group 2. Further
contributions are summarized below.

2 Libraries for Parton Density Functions
In the past, the PDFLIB library [1] was the standard package containing parametrizations of the proton,
photon and pion parton density functions (PDFs). The LHC studies have necessitated the development
of a new library which should include not only the central values of PDFs but also the error sets. The
PDFLIB interface appeared not well suited to meet the new requirements. Therefore a new library,
LHAPDF (Les Houches Accord PDF library [2]) was created following the Les Houches meeting in
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2001. During this workshop the library was extensively developed by M. Whalley and D. Bourilkov [3].
Several recent PDF sets were included, both those by the leading theory groups and by the H1 and
ZEUS collaborations. The fits are important for better estimations of PDF uncertainties. A particularly
interesting cross check would be, for example, the comparison of the fits provided by the TeVatron
collaborations with the independent predictions obtained by the DGLAP evolution of the HERA PDFs
to the TeVatron region.

The photon and pion PDFs were also included in the library, thus allowing its use for all HEP
analyses, in particular, for HERA studies. The library has thus developed to the level at which it can
fully replace PDFLIB. Several tests of the applicability and performance of the library were made within
the H1 collaboration (V. Lendermann).

Another topic discussed is the creation of a collection of diffractive PDF parametrizations. The
project was presented by F. P. Schilling in a meeting of working group 4 ‘Diffraction’.

3 Monte Carlo event generators
The status and plans for major leading order (LO) and next-to-leading order (NLO) QCD programs, as
well as generators with kT factorisation were discussed.

3.1 Leading order Monte Carlo programs
Currently, the major FORTRAN MC event generators, PYTHIA [4] and HERWIG [5], are undergoing the
transition to object-oriented software technologies. The C++ versions of both generators, PYTHIA7 [6]
and HERWIG++ [7], are built in the common framework THEPEG [8] which is based on the CLHEP
class library [9].

PYTHIA7/THEPEG includes some basic 2 → 2 matrix elements (ME), several built-in PDF
parametrizations, remnant handling, initial- and final-state parton showers, Lund string fragmentation
and particle decays. There have been plans to rework the fragmentation model, in order to include junc-
tion strings, and to implement multiple interactions (L. Lönnblad). However, T. Sjöstrand recently started
a completely new C++ implementation, PYTHIA8 [10].

In parallel to the work on the C++ PYTHIA versions, the development of the FORTRAN PYTHIA6
continues. It remains the main platform for new physical concepts. Version 6.3 [11, 12] includes a
completely new framework for simulation of parton showers and multiple interactions by T. Sjöstrand
and P. Skands. Currently this version works for pp interactions only.

The development of HERWIG continues mainly in C++ (S. Gieseke, A. Ribon, P. Richardson,
M. H. Seymour, P. Stephens and B.R. Webber). The current FORTRAN version 6.5 is foreseen as the
final FORTRAN version of HERWIG (apart from possible bug fixes). It is interfaced to the JIMMY
generator for multiple interactions (J. M. Butterworth, J. R. Forshaw, M. H. Seymour, and R. Walker).

HERWIG++ includes a new parton shower algorithm and an improved model of cluster fragmenta-
tion. The e+e− event generation is implemented in HERWIG++ 1.0. The next version including hadronic
interactions is in progress. The plans for the near future are to fully implement the matrix element–
parton shower matching according to the Catani–Krauss–Kuhn–Webber (CKKW) scheme [13], as well
as multiple interactions. A new framework for accessing particle data and simulations of particle decays
is currently being constructed by P. Richardson. The treatment of hadronic decays will include spin
correlations.

Further physics models can be incorporated into the same THEPEG framework. In particular,
it is planned to make a C++ version of ARIADNE [14] based on THEPEG (L. Lönnblad). ARIADNE

implements the Dipole Cascade Model (DCM) [15, 16] as an alternative to the DGLAP-based shower
models used in PYTHIA or HERWIG.

Despite the great success of ARIADNE in modelling hadronic final state observables, as measured
at LEP and HERA, additional work is necessary to make ARIADNE fully suitable for modelling inter-
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actions at the LHC. This was, in particular, shown in a study presented by Z. Czyczula on the impact of
parton shower models on the generation of bbH , H → ττ at the LHC [17]. The planned features include
a remodelling of initial-state g → qq̄ splittings as well as the introduction of the q → g?q process.

Another study was presented by N. Lavesson of ME+PS matching in ARIADNE on the example of
W+jet production at the TeVatron [18]. It is also planned to include the matching to fixed order tree-level
matrix elements à la CKKW [13, 18, 19] for the most common subprocesses at the LHC. When these
plans are realised (we hope during 2006), it should be safe to use ARIADNE for LHC predictions.

An alternative C++ implementation is performed in the SHERPA program (T. Gleisberg, S. Höche,
F. Krauss, A. Schälicke, S. Schumann, J. Winter) [20] which is capable of simulating lepton–lepton,
lepton–photon, photon–photon and fully hadronic collisions, such as proton–proton reactions. In its
current version SHERPA includes the ME generator AMEGIC++ providing the matrix elements for hard
processes and decays in the SM, MSSM and the ADD model, the parton shower module APACIC++
containing virtuality-ordered initial- and final-state parton showers, ME+PS matching using the CKKW
algorithm, the AMISIC++ module for a simple hard underlying event model taken from PYTHIA and
an interface to the PYTHIA string fragmentation and hadron decays. Studies were presented on ME+PS
matching considering W/Z+jet production at the TeVatron and at the LHC (S. Schumann) [18], and on
the underlying event simulations (S. Höche) [12].

None of the above C++ programs is available for ep interactions yet, and so no applications and
tests of these programs at HERA have been possible.

Further talks were given on the RAPGAP event generator [21] by H. Jung and on the ACERMC
event generator [22] by B. Kersevan and E. Richter-Was. RAPGAP is one of the major generators used
at HERA. It includes leading-order QCD matrix elements, LEPTO [23] and ARIADNE parton cascade
models, as well as simulations of hard diffraction. Both ep and pp versions are available. Recently, the
Les Houches Accord interface for fragmentation models was included; this allows the choice between
the PYTHIA and HERWIG fragmentation models. This feature may allow better estimations of mea-
surement uncertainties accounting for the transition from the parton to the hadron level of final states.
It is planned to include double-diffractive scattering for pp collisions to allow simulation of diffractive
Higgs production.

The ACERMC event generator simulates the Standard Model backgrounds to the Higgs produc-
tion in pp collisions. It includes LO QCD matrix elements produced by MADGRAPH/HELAS [24],
as well as both PYTHIA and HERWIG parton shower and fragmentation models via the Les Houches
Accord interface. During this workshop, the ARIADNE parton shower model and the LHAPDF library
were implemented. The program is also interfaced to TAUOLA [25] for precise treatment of τ decays
and to PHOTOS [25, 26] for simulations of QED radiative decays. The study on the impact of parton
shower models on generation of bbH , H → ττ at the LHC [17], mentioned above, was performed using
ACERMC.

The program can be linked with the ACERDET package [27] which provides a fast and simplified
simulation of the expected ATLAS detector effects (energy smearing, acceptance corrections) as well
as the usual analysis steps (jet reconstruction algorithms, isolation criteria, etc.). This allows a quick
estimation of the feasibility of measurements in an LHC experiment, not necessarily by the members of
the experimental collaboration.

3.2 NLO Monte Carlo programs
NLO QCD calculations are required to make theoretical predictions at the level of precision currently
reached in particle scattering experiments. However, writing a hadron level MC program implementing
an NLO model is a very complicated task, which has currently been solved only for a few pp reac-
tions [28]. An important step forward would be an ep version of MC@NLO. It would be a major benefit
for HERA studies of heavy quark and multijet production and would also allow an extensive validation
of the NLO QCD calculations with HERA data. The development of the program started recently [29].
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3.3 Monte Carlo programs with kT factorization
The CASCADE event generator presented by H. Jung [30] provides an implementation of the CCFM
model for parton cascades [31]. The program was very successful in describing hadronic final states at
low x at HERA. First applications of CASCADE for the studies at the LHC were presented by G. Da-
vatz [17]. The plans include an implementation of quark lines into CCFM cascades (currently, only gluon
lines are implemented), as well as a new model for multiparton interactions based on the AGK cutting
rules [32].

A reformulation of the CCFM model into the link dipole chain (LDC) model [33] provides a
simplified formalism, which has been incorporated into the LDCMC program by H. Kharraziha and
L. Lönnblad [14, 34]. An LDCMC version for deep inelastic ep scattering is available within the frame-
work of the ARIADNE event generator. A pp version is planned.

In conjunction with these models, special sessions of working group 2 were dedicated to possibil-
ities of determining the unintegrated parton distributions in the proton [35].

4 Comparisons of MC models with data
Models for particular subprocesses and their tuning using HERA data were reviewed in the corresponding
working groups. As mentioned above, many discussions were carried out in the common sessions of
working group 5 with the other groups.

One topic considered in WG5 is a comparison of leading proton data with several MC models
(G. Bruni, G. Iacobucci, L. Rinaldi, M. Ruspa) [36]. The ep data from ZEUS and pp data from ISR and
fixed-target experiments were confronted to the HERWIG (together with POMWIG [37] and SANG to
simulate diffraction), LEPTO, ARIADNE and PYTHIA simulations. This exercise revealed that the simu-
lation of the leading-proton momenta, both longitudinal and transverse to the beams, does not reproduce
the properties of the data.

This study can be especially important for the understanding of diffractive processes and back-
grounds for them at the LHC.

5 MC running, tuning and validation frameworks
During this workshop much progress was made in developing common frameworks that provide a con-
venient handling of MC and analytical programs and allow quick comparisons of MC simulations and
analytical calculations with the results of HERA and other HEP experiments. The developments of
HZTOOL/JETWEB, RUNMC and NLOLIB packages were presented and actively discussed.

The HZTOOL [38,39] library provides a comprehensive collection of FORTRAN routines to pro-
duce various distributions using Monte Carlo event generators. The routines allow easy reproduction of
the experimental distributions by modelling programs and give access to published data from the EMC,
SPS, LEP, HERA and TeVatron experiments. A number of studies for the LHC and the future linear
collider are also included. The library can be linked with all major FORTRAN MC event generators,
and with a number of NLO QCD programs from the NLOLIB package (see below). The development of
the library started within the workshop ‘Future Physics at HERA’ and steadily continued in the last few
years.

In the current workshop, the emphasis was put on the HERA results relevant for the LHC [38].
Several measurements by H1 and ZEUS were implemented which allow tuning of multiparton interaction
models in MC event generators (work by D. Beneckenstein, A. Bunyatyan, J. M. Butterworth, H. Jung,
S. Lausberg, K. Lohwasser, V. Lendermann, B. M. Waugh). Common tunings of multiple interaction
models based on the TeVatron and HERA results may constitute in the future an interesting outcome
of the current efforts. Recent H1 and ZEUS results on heavy quark production in ep collisions were
also added (A.W. Jung, A. Geiser, O. Gutsche, P. Thompson). In addition, calculations of benchmark
cross-sections for heavy flavour production were included [40].
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Based on HZTOOL, JETWEB [38, 41] is a facility for tuning and validating Monte Carlo models
through a World Wide Web interface. A relational database of reaction data and predictions from different
models is accessed through a Java servlet, enabling a user to find out how well a given model agrees with
a range of data and to request predictions using parameter sets that are not yet in the database.

The transition of experimental analysis frameworks and Monte Carlo generators to object-oriented
software technologies necessitates a proper development of the MC running, tuning and validation frame-
works. For this reason, HZTOOL/JETWEB is currently subject to a major redesign within the CEDAR
(‘Combined e-Science Data Analysis Resource for high energy physics’) project [42]. CEDAR should
comprise:

– an extensive archive of data from particle scattering experiments, based on the Durham HEP
database [43];

– validation and tuning of Monte Carlo programs, parton distribution functions and other high-
energy physics calculation programs, building on JETWEB;

– access to well-defined versions of these programs and code management support for developers;
– a standardized set of data formats for specifying HEP measurements as used in HepData and Monte

Carlo event generator configurations as used in JETWEB;
– Grid compatibility for distribution of JETWEB Monte Carlo submissions and to enable secure

addition of experimental data to the HepData catalogue by experimental collaborations.

A particularly important step in building CEDAR will be designing a C++ equivalent for HZTOOL, as
well as providing an interface to the new C++ MC event generators.

A complementary approach using the object-oriented software design was realised in the RUNMC
framework [44] by S. Chekanov. While JETWEB is a Web server system, RUNMC is a desktop appli-
cation written in C++ and Java. It provides a unified approach to generate MC events and to analyse
different MC models. All major FORTRAN MC event generators can be run via RUNMC. The output
of FORTRAN MC programs is converted to C++ classes for further analysis and for graphical represen-
tation (histograms). The graphical user interface of RUNMC allows an initialization of MC models and
histograms in a unified manner, and provides monitoring of the event generation. The program provides
an interface to HZTOOL. It also allows loading of ‘project files’ which can contain external calculations,
MC tunings, histogram definitions, etc. In particular, these files can include C++ data analysis code,
similar to the HZTOOL FORTRAN analysis routines.

A further project, discussed in working group 5, is a common framework for the NLO QCD
programs, NLOLIB [45], which was initiated within the workshop ‘Monte Carlo Generators for HERA
Physics’. Since hadron level Monte Carlo programs implementing QCD NLO calculations are not (yet)
available for many processes, parton level NLO calculations are extensively used. NLOLIB is aimed at
becoming a container for virtually all NLO QCD programs. It provides:

– a set-up for compiling and linking the programs on diverse UNIX platforms;
– a unified access to the NLO event records;
– a unified steering for parameters and settings;
– a unified access to PDF libraries;
– an interface to HZTOOL, thus allowing easy comparisons with experimental results;
– examples of the analysis code which can be linked with the library.

During the workshop the structure of the framework was further developed by K. Rabbertz. In addition
to already implemented programs for ep (DISENT [46], DISASTER++ [47], MEPJET [48]) and e+e−

(RACOONWW [49]) physics, an effort was made to integrate further ep programs: NLOJET++ [50]
(K. Rabbertz) and JETVIP [51, 52] (T. Schörner-Sadenius). The integration of the NLO programs for pp
physics is surely possible, but requires additional effort.
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6 Data analysis tools
Apart from MC related topics, general analysis tools, aimed at searches for specific final states, were
presented.

One such tool is SBUMPS [53], currently being developed by S. Chekanov, which performs auto-
matic searches for resonance peaks in invariant-mass distributions of two or more tracks. The program
can be useful for searches of new states as well as for the reconstruction of known resonances.

Recently, interest in hadron spectroscopy at HERA increased sharply with the observations of
narrow peaks in inclusive invariant-mass distributions which can be interpreted as pentaquarks [54].
These studies have inspired the development of the automated peak searching tool, which can be used in
data analyses at any particle scattering experiment.

A general strategy for searches for new physics was presented by S. Caron. The approach was
developed and used by the H1 Collaboration for searches of new phenomena at HERA [55]. It involves
a statistical algorithm to search for deviations from the Standard Model in the distributions of the scalar
sum of transverse momenta or invariant mass of final-state particles and to quantify their significance.

7 Conclusions
A number of interesting developments of MC models, programs, libraries and frameworks were pre-
sented in working group 5. The general status and prospects for major established and currently devel-
oped MC generators were reviewed. In common sessions with working group 2, the models of multipar-
ton interactions, new developments in parton shower models, matrix element/parton shower matching
and simulations of multijet final states were extensively discussed. Direct communication between the-
oreticians and experimentalists from the HERA and LHC communities allowed the pursuit of several
developments and studies. In particular the recent advances in the development of the LHAPDF library,
HZTOOL, RUNMC and NLOLIB frameworks were inspired by discussions within working group 5. It
is hoped that this will help further studies on validation and tuning of the MC models for multiparton
interactions, parton showers, and heavy flavour production.
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[14] L. Lönnblad, these proceedings, working group 5;
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The Les Houches Accord PDFs (LHAPDF) and LHAGLUE
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Abstract
We describe the development of the LHAPDF library from its initial imple-
mentation following the Les Houches meeting in 2001 to its present state as
a functional replacement for PDFLIB. Brief details are given of how to in-
stall and use the library together with the PDF sets available. We also describe
LHAGLUE, an add-on PDFLIB look-a-like interface to LHAPDF, which facil-
itates using LHAPDF with existing Monte Carlo generators such as PYTHIA
and HERWIG.

1 LHAPDF – Introduction
Parton Density Functions (PDFs), which describe the partonic content of hadrons, need to be well un-
derstood and of sufficiently high precision if theoretical predictions are to match the experimental ac-
curacies expected from future LHC data. These PDFs, which are produced by several different groups
(e.g. MRST, CTEQ, Alekhin and more recently ZEUS and H1), are derived from fitting deep inelastic
and related hard scattering data using parameterisations at low Q2

0 (≈ 1–7 (GeV/c)2) and evolving these
to higher Q2. These PDFs are typically presented as grids in x-Q2 with suitable interpolation codes pro-
vided by the PDF authors. The CERN PDFLIB library [1] has to date provided a widely used standard
FORTRAN interface to these PDFs with the interpolation grids built into the PDFLIB code itself. How-
ever, it is realised that PDFLIB would be increasingly unable to meet the needs of the new generation of
PDFs which often involve large numbers of sets (≈20–40) describing the uncertainties on the individual
partons from variations in the fitted parameters. As a consequence of this, at the Les Houches meeting in
2001 [2], the beginnings of a new interface were conceived — the so-call “Les Houches Accord PDF”—
LHAPDF. This has further been developed over the course of the HERA-LHC workshop incorporating
many new features to enable it to replace PDFLIB as the standard tool to use. The development is briefly
described in this writeup together with LHAGLUE, an interface to LHAPDF, which provides PDF access
using almost identical calling routines as PDFLIB.

2 LHAPDF – Development during the Workshop
In its initial incarnation (Version 1), LHAPDF had two important features which distinguished it from
the methods used by PDFLIB in handling PDFs.

Firstly the PDFs are defined by the analytical formulae used in the original fitting procedures, with
external files of parameters, which describe the momentum x distributions of the partons at the relevant
Q2

0. Evolution codes within LHAPDF then produce the PDF at any desired Q2 at the users request.
At present LHAPDF provides access to two evolution codes, EVLCTEQ for the CTEQ distributions
and QCDNUM 16.12 [3] for the other PDF sets. This represents a radical difference from the existing
methods used by the PDF authors to present their distributions where large grid files and interpolation
routines are the norm. In PDFLIB these interpolation codes and grids are essentially compiled into a
single FORTRAN library. The advantage of the LHAPDF method is that the compiled code is separate
from the parameter files, which are typically small. Thus to add new PDF sets does not necessarily need
the code to be recompiled and the library rebuilt.

Secondly, the concept is introduced of a “set” being a related collection of PDFs (e.g. an error
set) all of which are accessible to the program after initialisation of that set. This allows LHAPDF to
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handle the multi-set “error” PDFs produced in recent years which give predicted uncertainties to the PDF
values. All the PDFs in a set are initialised together and are therefore available to the user.

V1 was written by Walter Giele of Fermilab who in 2002 released a working version which could
be downloaded from a web-site together with the parameter files for a limited number of PDF sets. There
was also a manual and example files. One of the present authors MRW became involved and took over
maintenance and development of LHAPDF in March 2003. The limitations of the idealised situation in
V1 with respect to making LHAPDF a replacement tool for PDFLIB soon became apparent.

The primary problem was that V1 contained only a limited number of PDF sets and, since the
method was reliant on the x parameterisations at Q2

0 being available, it would be virtually impossible to
include many of the older sets which are still needed for comparisons. A second and serious problem is
the compute time taken in the initialisation phase of the individual members of a PDF set (i.e. calling the
routine InitPDF described later). This can take in the region of 2 seconds per call on a 1GHz machine
and is therefore unacceptable in the situation of a program which makes repeated use of the different
members. 1

A solution introduced in LHAPDF Version 2, which helps to solve the above problems, was to
include the option to make the original grid files and interpolation codes available in LHAPDF in addi-
tion to the V1 method of parameter files and “on-the-fly” evolution. For some PDF sets both methods
would be available and for others only the latter. The operation of the program was made identical for
both methods with the content of the input file (with extension “.LHpdf” for the former and “.LHgrid”
for the latter) dictating which is used. Not only does this allow all the older PDF sets to be included but
also there is no time penalty in changing between members of the same set since all are loaded in the
initialisation phase. LHAPDF V2 was released in March 2004 including many of the older PDF sets as
well as some new ones.

LHAPDF Version 3 was released in September 2004 and, as well incorporating more older and
some new PDF sets (e.g. ZEUS and H1), it also included the code for LHAGLUE, a newly developing
add-on interface to LHAPDF which provides PDFLIB look-alike access. In addition to having subroutine
calls identical to those in PDFLIB it also incorporates a PDF numbering scheme to simplify usage. It
should be noted however that, because of the greatly increased number of new PDF sets, it was not
possible to follow the original numbering scheme of PDFLIB and a new one was devised. This is
described in more detail in Section 5.

The major feature of Version 4, which was released in March 2005, was the incorporation of the
photon and pion PDFs. All the photon and pion PDFs that were implemented in PDFLIB were put into
LHAPDF using identical code and using the “.LHgrid” method. The LHAGLUE numbering scheme in
these cases more closely resembles that of PDFLIB than it does for the protons.

In addition in V4 there were new proton PDFs (MRST2004 and an updated Alekhin’s a02m), a
new simpler file structure with all the source files being in a single “src” directory, some code changes
to incorporate access to ΛQCD

4/5 and a more rigorous implementation of the αs evolution as being exactly
that used by the PDF author.

All the LHAPDF and LHAGLUE data and code, in addition to being made available on the new
web site (http://hepforge.cedar.ac.uk/lhapdf/), is also included in the GENSER subproject of the LHC
Computing Grid.

3 LHAPDF – Development after the Workshop
Since the last HERA-LHC meeting there has been one minor release of LHAPDF (Version 4.1 in August
2005). In this version the installation method has changed to be more standard with the “configure; make;

1A third problem reported at the workshop concerning small differences (up to ≈ 0.5%) between the PDFs produced by
LHAPDF for MRST and the authors’ code directly is now believed to be due to slight mismatches of grid boundaries at the
heavy quark thresholds and will be corrected in future MRST grids.
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make install” sequence familiar to many and also a small amount of code has been altered to be more
compliant with proprietary FORTRAN 95 compilers. As mentioned in the previous section the web site
for public access to LHAPDF from which the source code can be obtained has changed. Since this is
the current and most recent version we assume V4.1 in the following referring to earlier versions where
necessary.

4 Using LHAPDF
Once the code and PDF data sets have been downloaded from the relevant web site and installed follow-
ing the instructions given therein, using LHAPDF is simply a matter of linking the compiled FORTRAN
library libLHAPDF.a to the users program. Table 1 lists the LHAPDF routines available to the user,
which are of three types:

– Initialisation (selecting the required PDF set and its member)
– Evolution (producing the momentum density functions (f) for the partons at selected x and Q)
– Information (displaying for example αs, descriptions, etc.)

Table 1: LHAPDF commands

Command Description
call InitPDFset(name ) Initialises the PDF set to use.
call InitPDF(member ) Selects the member from the above PDF set.
call evolvePDF(x,Q,f ) Returns the momentum density function, f(x,Q), for protons or pions.
call evolvePDFp(x,Q,P2,ip2,f ) Returns the momentum density function for photons2.
call numberPDF(num ) Returns the number (num) of PDF members in the set.
call GetDesc( ) Prints a description of the PDF set.
alphasPDF(Q ) Function giving the value of αs at Q GeV.
call GetLam4(mem,qcdl4 ) Returns the value of ΛQCD

4 for the specific member.
call GetLam5(mem,qcdl5 ) Returns the value of ΛQCD

5 for the specific member.
call GetOrderPDF(order ) Returns the order of the PDF evolution.
call GetOrderAs(order ) Returns the order of the evolution of αs .
call GetRenFac(muf ) Returns the renormalisation factor.
call GetQmass(nf,mass ) Returns the mass of the parton of flavour nf.
call GetThreshold(nf,Q ) Returns the threshold value for parton of flavour nf.
call GetNf(nfmax ) Returns the number of flavours.

The evolution commands utilise a double precision array f(-6:6) where the arguments range from
-6 to +6 for the different (anti)partons as shown in Table 2 below.

Table 2: The flavour enumeration scheme used for f(n) in LHAPDF

parton t̄ b̄ c̄ d̄ ū d̄ g d u s c b t

n −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6

Specifying the location of the PDF sets in the code should be especially mentioned at this point.
The argument (name) in InitPDFset should specify the complete path (or at least to a symbolic link to this

2In evolvePDFp P2 is the vitruality of the photon in GeV 2, which should by 0 for an on-shell photon, and ip2 is the
parameter to evaluate the off-shell anomalous component. See the PDFLIB manual [1] for details.
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path). From version 4.1 onwards, however, a new routine InitPDFsetByName can be used in which only
the name of the PDF set need by specified. This works in conjunction with the script ‘lhapdf-config’
which is generated at the configure stage of the installation which provides the correct path to the PDF
sets. The location of this script must therefore be in the users execution path. Tables 3 and 4 list the
complete range of PDF set available. The equivalent numbers to use in LHAGLUE, as described in the
next section, are also listed in these tables.

Table 3: The Proton PDF sets available in LHAPDF.

Ref Prefix Suffix (number of sets) type LHAGLUE numbers
[4] alekhin 100 (100), 1000 (1000) p 40100-200, 41000-1999
[5] a02m lo (17), nlo (17), nnlo (17) ) ) g 40350-67, 40450-67, 40550-67
[6] botje 100 (100),1000 (1000) p 50100-200, 51000-1999
[7] cteq 61 (41) p,g 10100-40, 10150-90
[8] cteq 6 (41) p,g 10000-40, 10050-90

cteq 6m, 6l, 6ll p 10000, 10041, 10042
[9] cteq 5m, 5m1, 5d, 5l g 19050, 19051, 19060, 19070
[10] cteq 4m, 4d, 4l g 19150, 19160, 19170
[11] fermi2002 100 (100), 1000 (1000) p 30100-200, 31000-2000
[12] GRV98 lo, nlo(2) g 80060, 80050-1
[13] H12000 msE (21), disE (21), loE (21) g 70050-70, 70150-70, 70250-70
[14] MRST2004 nlo p,g 20400, 20450

MRST2004 nnlo g 20470
[15] MRST2003 cnlo p,g 20300, 20350

MRST2003 cnnlo g 20370
[16] MRST2002 nlo (2) p,g 20200, 20250

MRST2002 nnlo g 20270
MRST2001 E (31) p,g 20100-130, 20150-180

[17] MRST2001 nlo(4) p,g 20000-4, 20500-4
MRST2001 lo, nnlo g 20060, 20070

[18] MRST98 (3) p 29000-3
MRST98 lo (5), nlo (5) dis (5), ht g 29040-5, 29050-5,29060-5,29070-5

[19] ZEUS2002 TR (23), FF (23), ZM (23) p 60000-22, 60100-22, 60200-22
[20] ZEUS2005 ZJ (23) p 60300-22

Notes:
LHAPDF→ PrefixSuffix.LHpdf (type p), filename→ PrefixSuffix.LHgrid (type g).
Where both p and g are present (p,g) the user has the choice of either.
LHAGLUE numbers in bold are the type p (.LHpdf) sets.

5 LHAGLUE
The LHAGLUE interface [21] to LHAPDF is designed along the lines of the existing interface from
PYTHIA to PDFLIB. 3. For both HERWIG and PYTHIA the existing ’hooks’ for PDFLIB have been
utilised for the LHAGLUE interface. This makes it possible to link it exactly like PDFLIB with no
further changes to PYTHIA’s or HERWIG’s source code needing to be implemented.

3DB would like to thank T. Sjöstrand and S. Mrenna for discussions on this topic.
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Table 4: The Pion and Photon PDF sets available in LHAPDF.

Prefix Suffix LHAGLUE numbers Prefix Suffix LHAGLUE numbers

Pion PDFs Photon PDFs
OWPI (2) 211-12 DOG 0, 1 311, 312
SMRSPI (3) 231-3 DGG (4) 321-4
GRVPI 0, 1 251, 252 LACG (4) 331-4
ABFKWPI (3) 261-3 GSG 0 (2), 1 341-2, 343
All filenames are PrefixSuffix.LHgrid GSG96 0, 1 344, 345
The nomenclature used here is GRVG 0 (2), 1 (2) 351-2, 353-4
essentially the same as in PDFLIB and ACFGPG (3) 361-3
the relevant publication references WHITG (6) 381-6
can be found in the PDFLIB manual [1]. SASG (8) 391-8

The interface contains three subroutines (similar to PDFLIB) and can be used seamlessly by Monte
Carlo generators interfaced to PDFLIB or in standalone mode. These are described in Table 5. In
addition any of the LHAPDF routines, except the initialisation routines InitPDFset and InitPDF, de-
scribed in Table 1, can also be used, for example to return the value of the strong coupling constant αs

(alphasPDF(Q)), or to print the file description (call GetDesc()).
There are also several CONTROL switches specified through the 20 element character array LHA-

PARM and COMMON blocks which determine how the interface operates.

– Location of the LHAPDF library of PDFs (pathname):
From version LHAPDF v4.1 onwards, and the LHAGLUE routines distributed with it, the location
of the PDFsets data files is set automatically using the ”lhapdf-config” script as described in the
previous section, provided that the prescribed installation instructions have been used.
For previous versions (4.0 and earlier) the common block COMMON/LHAPDFC/LHAPATH is
used where LHAPATH is a character*132 variable containing the full path to the PDF sets. The
default path is subdir ’PDFsets’ of the current directory.

– Statistics on under/over-flow requests for PDFs outside their validity ranges in x and Q2.
a) LHAPARM(16) .EQ. ‘NOSTAT’→ No statistics (faster)
b) LHAPARM(16) .NE. ‘NOSTAT’→ Default: collect statistics
c) call PDFSTA at the end to print out statistics.

– Option to use the values for αs as computed by LHAPDF in the Monte Carlo generator as well in
order to ensure uniform αs values throughout a run
a) LHAPARM(17) .EQ. ‘LHAPDF’→ Use αs from LHAPDF
b) LHAPARM(17) .NE. ‘LHAPDF’→ Default (same as LHAPDF V1/V3)

– Extrapolation of PDFs outside the LHAPDF validity range given by xmin/max and Q2
min/max.

a) Default→ PDFs “frozen” at the boundaries.
b) LHAPARM(18) .EQ. ‘EXTRAPOLATE’→ Extrapolate PDFs at own risk

– Printout of initialisation information in PDFSET (by default)
a) LHAPARM(19) .EQ. ‘SILENT’→ No printout (silent mode).
b) LHAPARM(19) .EQ. ‘LOWKEY’→ Print 5 times (almost silent).

– Double Precision values of ΛQCD
4/5 applicable to the selected PDF are available (as read-only) in

the COMMON block: COMMON/W50512/QCDL4,QCDL5→ as in PDFLIB.
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Table 5: LHAGLUE commands

Command Description

call PDFSET(parm,value) For initialisation (called once) where PARM and VALUE
are LOCAL arrays in the calling program specified as

CHARACTER*20 PARM(20)
DOUBLE PRECISION VALUE(20)

call STRUCTM(X,Q,UPV,DNV,USEA,DSEA,STR,CHM,BOT,TOP,GLU)
For the proton (and pion) PDFs: where X and Q are the
input kinematic variables and the rest are the output
PDF of the valence and sea quarks and the gluon.

call STRUCTP(X,Q2,P2,IP2,UPV,DNV,USEA,DSEA,STR,CHM,BOT,TOP,GLU)
For the photon PDFs: as above with the additional input
variables P2 and IP2 2.

The LHAGLUE interface can be invoked in one of 3 ways, Standalone, PYTHIA or HERWIG,
depending on the value of parm(1) when calling PDFSET(parm,value).

– Standalone mode
PARM(1)= ‘DEFAULT’
VALUE(1) = “PDF number”

– PYTHIA mode
PARM(1) = ’NPTYPE’← set automatically in PYTHIA
In this case the user must supply MSTP(51) and MSTP(52) in the PYTHIA common block
COMMON/PYPARS/MSTP(200),PARP(200),MSTI(200).PARI(200)
MSTP(52) = 2← to use an external PDF library
MSTP(51)= “PDF number”

– HERWIG mode
PARM(1) = ’HWLHAPDF’← set by the user.
In this case one sets for the beam and target particles separately
AUTPDF(1) = ’HWLHAPDF’
AUTPDF(2) = ’HWLHAPDF’
MODPDF(1) = “PDF number”
MODPDF(2) = “PDF number”
Note that HERWIG specifies the“PDF number” for each of the colliding particles separately and
care should be taken that the same PDF members are used when appropriate.

The user then simply links their own standalone code, or the HERWIG/PYTHIA main program and
the HERWIG/PYTHIA code 4, with the LHAPDF library libLHAPDF.a making sure the ‘PDFsets’
directory is specified as described above.

The LHAGLUE interface has been tested extensively at TEVATRON and LHC energies for the
proton PDFs and with HERA examples for the photon PDFs. Results with new and legacy PDF sets, us-
ing LHAPDF, PDFLIB or internal implementations in the Monte Carlo generators, and comparing cross
sections produced with PYTHIA and HERWIG, give us confidence in the consistency of the LHAGLUE
interface and the underlying LHAPDF library [22].

4It is important when starting with a fresh PYTHIA or HERWIG download the user must first rename the ’dummy’ sub-
routines STRUCTM, STRUCTP and PDFSET in the PYTHIA/ HERWIG source codes exactly as if one were to link to
PDFLIB.
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6 Summary and Future Development
Both LHAPDF and the interface LHAGLUE have been developed over the period of the Workshop to
a point where they can now be used as a serious replacement for PDFLIB. Indeed, except for the PDF
authors’ own code, they are the only place to obtain the latest PDFs. There is however still considerable
development in progress and the latest PDF sets will be incorporated as and when they become available.
One major development area is to include the possibility of having more than one PDF set initialised
concurrently. This may be necessary in interactions between different beam and target particles types
and also including photon and pion PDFs. This will be the aim of the next LHAPDF release.
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THEPEG
Toolkit for High Energy Physics Event Generation

Leif Lönnblad
Department of Theoretical Physics, Lund University, Sweden

Abstract
I present the status of the THEPEG project for creating a common platform for
implementing C++ event generators. I also describe briefly the status of the
new versions of PYTHIA, HERWIG and ARIADNE which are implemented using
this framework.

1 Introduction
Monte Carlo Event Generators (EGs) have developed into essential tools in High Energy Physics. With-
out them it is questionable if it at all would be possible to embark on large scale experiments such as
the LHC. Although the current EGs work satisfactorily, the next generation of experiments will substan-
tially increase the demands both on the physics models implemented in the EGs and on the underlying
software technology.

The current EGs are typically written in Fortran and their basic structure was designed almost two
decades ago. Meanwhile there has been a change in programming paradigm, towards object oriented
methodology in general and C++ in particular. This applies to almost all areas of high-energy physics,
but in particular for the LHC program, where all detector simulation and analysis is based on C++. When
designing the next generation of EGs it is therefore natural to use C++. Below is a brief description of the
THEPEG [1] project for designing a general framework in C++ for implementing EG models, and also
the PYTHIA7 and ARIADNE programs which uses THEPEG to implement their respective physics models.
Also HERWIG++ is implemented in the THEPEG framework, but this program is described elsewhere in
these proceedings [2]

2 Basic structure
THEPEG is a general platform written in C++ for implementing models for event generation. It is made
up from the basic model-independent parts of PYTHIA7 [3, 4], the original project of rewriting the Lund
family of EGs in C++. When the corresponding rewrite of the HERWIG program [5] started it was decided
to use the same basic infrastructure as PYTHIA7 and therefore the THEPEG was factorized out of PYTHIA7
and is now the base of both PYTHIA7 and HERWIG++ [6]. Also the coming C++ version of ARIADNE [7] is
using THEPEG.

THEPEG uses CLHEP [8] and adds on a number of general utilities such as smart pointers, extended
type information, persistent I/O, dynamic loading and some extra utilities for kinematics, phase space
generation etc.

The actual event generation is then performed by calling different handler classes for hard partonic
sub-processes, parton densities, QCD cascades, hadronization etc. To implement a new model to be used
by THEPEG, the procedure is then to write a new C++ class inheriting from a corresponding handler
class and implement a number of pre-defined virtual functions. Eg. a class for implementing a new
hadronization model would inherit from the abstract HandronizationHandler class, and a new parton
density parameterization would inherit from the PDFBase class.
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To generate events with THEPEG one first runs a setup program where an EventGenerator object
is set up to use different models for different steps of the generation procedure. All objects to be chosen
from are stored in a repository, within which it is also possible to modify switches and parameters of
the implemented models in a standardized fashion, using so called interface objects. Typically the user
would choose from a number of pre-defined EventGenerator objects and only make minor changes for
the specific simulation to be made. When an EventGenerator is properly set up it is saved persistently
to a file which can then be read into a special run program to perform the generation, in which case
special AnalysisHandler objects may be specified to analyze the resulting events. Alternatively it can
be read into eg. a detector simulation program or a user supplied analysis program, where it can be used
to generate events.

3 Status
3.1 THEPEG
THEPEG version 1.0α is available [1] and is working. As explained above, it contains the basic infrastruc-
ture for implementing and running event generation models. It also contains some simple physics models,
such as some 2→ 2 matrix elements, a few parton density parameterizations and a near-complete set of
particle decays. However, these are mainly in place for testing purposes, and to generate realistic events,
the PYTHIA7 and/or HERWIG++ programs are needed.

Currently the program only works under Linux using the gcc compiler. This is mainly due to
the use of dynamic linking of shared object files, which is inherently platform-dependent. Recently, the
build procedure has been redesigned using the libtool facility [9], which should allow for easy porting
to other platforms in the future.

Although THEPEG includes a general structure for implementing basic fixed-order matrix ele-
ment generation to produce the initial hard subprocesses in the event generation, a general procedure for
reading such parton level events from external programs using the Les Houches accord [10] has been
developed and will be included in the next release1.

The documentation of THEPEG is currently quite poor. Recently the actual code documentation
was converted to Doxygen format [11], which will hopefully facilitate the documentation process. The
lack of documentation means that there is currently a fairly high threshold for a beginner to start using
and/or developing physics modules for THEPEG. The situation is further complicated since the user
interface is currently quite primitive. THEPEG has a well worked through low-level interface to be able
to set parameter and switches, etc. in classes introduced to the structure from the outside. However, the
current external user interface is a simple command-line facility which is not very user-friendly. A Java
interface is being worked on, but is not expected to be released until next year.

3.2 PYTHIA 7 (and PYTHIA8)
PYTHIA7 version 1.0α is available [4] and is working. It contains a reimplementation of the parton
shower and string fragmentation models currently available in the 6.1 version of PYTHIA [12]. In an
unfortunate turn of events, the principal PYTHIA author, Torbjörn Sjöstrand, has decided to leave the
THEPEG collaboration and is currently developing a new C++ version of PYTHIA (called PYTHIA8 [13])
on his own. This means that the development of PYTHIA7 is stopped, but hopefully it will be possible
to interface the different modules in PYTHIA8 so that they can be used within the general framework of
THEPEG.

1A snapshot of the current development version is available from [1]
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3.3 ARIADNE

The reimplementation of the ARIADNE [7, 14] program using the framework of THEPEG has just started
and is, hence, not publically available yet. Although this is mainly a pure rewrite of the fortran version
of ARIADNE, it will contain some improvements, such as the CKKW matching [15, 16] also planned for
HERWIG++. In addition, an improved version of the LDCMC [17] is planned.

4 Conclusions
THEPEG was intended to be the standard platform for event generation for the LHC era of collider
physics. Unfortunately, this does not seem to become a reality. Besides the recent split between PYTHIA

and THEPEG, there will also be other separate programs such as SHERPA [18, 19]. This is, of course,
not an optimal situation, especially not for the LHC experiments, which surely would have preferred a
uniform interface to different event generator models.
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The PYTHIA program is a standard tool for the generation of high-energy collisions, containing
a realistic description of the full story, from a hard interaction involving a few partons to an observable
hadronic final state of hundreds of particles. The current PYTHIA 6.3 version is described in detail in the
manual [1], with the most recent update notes to be found on the PYTHIA webpage
http://www.thep.lu.se/∼torbjorn/Pythia.html ,
together with the code itself, sample main programs and some further material. The latest published ver-
sion is [2] and a recent brief review is found in [3]. The 6.3 version includes new transverse-momentum-
ordered showers and a new multiple-interactions and beam-remnant scenario [4], described elsewhere in
these proceedings.

From the onset, all PYTHIA code has been written in Fortran 77. For the LHC era, the experimental
community has made the decision to move heavy computing completely to C++. Hence the main future
development line is PYTHIA 8, which is a re-implementation in C++. Many obsolete options will be
removed and various aspects modernized in the process.

With the rise of automatic matrix-element code generation and phase-space sampling, input of
process-level events via the Les Houches Accord (LHA) [5] reduces the need to have extensive process
libraries inside PYTHIA itself. Thus emphasis is on providing a good description of subsequent steps
of the story, involving elements such as initial- and final-state parton showers, multiple parton–parton
interactions, string fragmentation, and decays. All the latter components now exist as C++ code, even
if in a preliminary form, with finer details to be added, and still to be better integrated and tuned. At
the current stage, however, there is not even the beginning of a PYTHIA 8 process library; instead a
temporary interface is provided to PYTHIA 6, so that all hard processes available there can be generated
and sent on to PYTHIA 8, transparent to the user.

PYTHIA 8 is intended to be a standalone program, i.e. does not require any external libraries.
However, in addition to the LHA interface, hooks also exist for external parton distribution functions,
particle decays and random numbers, and more may be added.

This project was started in September 2004, and so is still at an early stage. A first public ver-
sion, PYTHIA 8.040, can be found on the PYTHIA webpage (look under the “Future” link). This should
be viewed as a development snapshot, to allow early feedback from the LHC experimental community,
and cannot be used for any serious physics studies. It is intended/hoped that a first realistic version,
PYTHIA 8.100, could be ready by early 2007, but even this version will be clearly limited in its capa-
bilities, and strongly focused on LHC applications. It is therefore to be expected that PYTHIA 6 and
PYTHIA 8 will co-exist for several years.
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Abstract
I review the status of the current fortran version of HERWIG. Progress towards
its replacement, Herwig++, is reviewed elsewhere in these proceedings.

1 Introduction
HERWIG [1] is a Monte Carlo event generator for simulation of hadronic final states in lepton–lepton,
lepton–hadron and hadron–hadron collisions. It incorporates important colour coherence effects in the
final state [2] and initial state [3] parton showers, as well as in heavy quark processes [4] and the hard
process generation [5]. It uses the cluster [6] hadronization model and a cluster-based simulation of the
underlying event [7]. While earlier versions [8] concentrated on QCD and a few other SM processes,
recent versions contain a vast library of MSSM [9] and other BSM processes. A review of current Monte
Carlo event generators including HERWIG can be found in [10].

We are currently in a period of intense activity, finalizing the HERWIG program and writing a
completely new event generator, HERWIG++. In this very short contribution, I can do little more than
mention the areas of progress and provide references to sources of more details.

2 HERWIG version 6.5
HERWIG version 6.5 was released [11] in October 2002. Its main new features were an interface to the
Les Houches Accord event format [12], the hooks needed by the MC@NLO package [13] and various
bug fixes and minor improvements. It was advertised as the final fortran version of HERWIG before
work switched to HERWIG++.

Despite this, the period since then has seen intense development with several new subversion
releases and new features, most notably version 6.505, which featured an improved interface to the
Jimmy generator for multiparton interactions, which I will discuss in more detail shortly. The most
recent version is 6.507, which can be obtained from the HERWIG web site [14].

Development of fortran HERWIG is now slowing, and the only new feature still foreseen is the
implementation of matrix element corrections to the production of Higgs bosons, both SM and MSSM,
preliminary versions of which have been discussed in [15]. Beyond this, the HERWIG collaboration has
made a commitment to all running (and ceased) experiments to support their use of HERWIG throughout
their lifetimes. Due to lack of manpower, making the same promise to the LHC experiments would divert
too much effort away from support of HERWIG++, and we will only support their use of HERWIG until
we believe that HERWIG++ is a stable alternative for production running.

3 Jimmy
Early versions of the Jimmy model [16] generated jet events in photoproduction using a multiparton
interaction picture. The recent update [17] enables it to work efficiently as a generator of underlying
events in high ET jet events and other hard processes in hadron–hadron collisions for the first time. For a
given pdf set, the main adjustable parameters are PTJIM, the minimum transverse momentum of partonic
scattering, and JMRAD(73), related to the effective proton radius. Varying these one is able to get a good
description of the CDF data [18] and other data held in the JetWeb database [19] that are sensitive to
underlying event effects in hard process events. However, a poor description of minimum bias data in
which there is no hard scale is still obtained. This is probably due to the fact that PTJIM is a hard cutoff
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and there is no soft component below it; preliminary attempts to rectify this are encouraging [20]. It is
interesting to note that with tunings that give equally good descriptions of current data, Jimmy predicts
twice as much underlying event activity as PYTHIA at the LHC.
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Abstract
I briefly review the status of the Herwig++ event generator. Current achieve-
ments are highlighted and a brief summary of future plans is given.

1 Introduction
Herwig++ [1] is a new Monte Carlo event generator for simulating collider physics, written in the object
oriented programming language C++. The idea is to rewrite the well-established multi–purpose event
generator HERWIG [2] and to improve it where necessary [3]. The Lund event generators PYTHIA [4]
and ARIADNE [5] are also being rewritten at the moment. Herwig++ and ARIADNE will both be
based on a common event generation framework, called ThePEG [6] which will make it possible to
exchange single modules of the event generation and allows us to have a common, or at least a very
similar user interface. PYTHIA8, the rewrite of PYTHIA (6.3) will be written independently of this
project but may become integrated into the structure later [7]. A further object oriented event generator,
SHERPA [8], is established as an independent project.

2 Event Generation
In its present version (1.0) Herwig++ is capable of simulating e+e− annihilation events. The physics
simulation consists of several steps, going from small (perturbative) to large (non–perturbative) distance
scales. First, the effective CM energy of the annihilating e+e− pair is selected according to some model
structure function of the electron, thereby radiating photons that carry some fraction of the original
energy. Next, we set up the qq̄ final state and a hard matrix element correction is applied [9]. In the next
step, parton showers are radiated from the coloured final state particles. These effectively resum large
soft and collinear logarithms. The parton shower is modelled in terms of new evolution variables with
respect to the FORTRAN program [10]. This, and the use of splitting functions for massive particles
allow us to simulate the suppression of soft and collinear radiation from heavy particles dynamically
(dead cone effect) which has previously only been modelled in a crude way. Parton showers from initial
state particles in a hard scattering and from decays of heavy particles (particularly t–quarks) have been
formulated for various situations in [10]. The next stage of the simulation is the hadronization of the
outgoing coloured particles. First, remaining gluons are split into non–perturbative qq̄–pairs. Colour
connected particles are paired into colourless clusters. The invariant mass spectrum of these clusters
contains a long high–mass tail that still contains a large scale. These heavy clusters are further split
into pairs of lighter clusters. Once all clusters are below a certain mass threshold they decay into pairs of
hadrons. The hadron species are selected only according to a handful of parameters. It is this stage where
it has been observed in previous versions of the FORTRAN program that the meson/baryon number ratio
in e+e− annihilation events was difficult to obtain when a large number of highly excited mesons is
available in the program [11]. In the current version the hadron selection is reorganised and we obtain
more stable results. Finally, the produced hadrons decay into stable hadrons according to some models.
In version 1.0 the hadronic decays were modelled similarly to the decays in the FORTRAN version.

We have tested the simulation of e+e− annihilation events in very great detail [1]. We considered
event shape variables, jet rates, hadron yields and many more observables. One observable of special
interest has been the b–quark fragmentation function that we found to be well–described on the basis of
the parton shower only. This is a result of the new shower algorithm for heavy quarks. The overall result
was that we are capable of simulating e+e− events at least as well good as with the FORTRAN version.
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3 Current and Future Developments
Many new features are currently being implemented for the event simulation at hadron colliders. The
list of hard matrix elements will be slightly extended in the next version in order to cover some basic
processes. In principle we can also rely on parton level event generators and read in event files that follow
the Les Houches Accord [12]. The parton shower will include initial state radiation and gluon radiation
in the perturbative decay of heavy particles. Some related aspects of estimating uncertainties from initial
state parton showers were addressed in [13]. A large effort went into remodelling and updating the
secondary hadronic decays. A future version should also be able to simulate hard jets in deep inelastic
scattering. Exhaustive tests of our generator output against current data from the experiments at HERA
and the Tevatron will be made in order to validate and understand our program. In the long–term we
plan to include a larger number of simple processes, mainly 2 → 2 and some 2 → 3, both Standard
Model processes and some BSM processes as well. The modelling of the underlying event will at first
only be on the basis of the simple so–called UA5 model that is also available in the FORTRAN version.
A refinement towards a more sophisticated multiple interaction model [14, 15] is planned.
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Abstract
In this contribution the multi-purpose event generation framework SHERPA is
presented and the development status of its physics modules is reviewed. In its
present version, SHERPA is capable of simulating lepton-lepton, lepton-photon,
photon-photon and fully hadronic collisions, such as proton-proton reactions.

SHERPA [1] is an independent approach for a framework for event generation at high energy collider
experiments. The program is entirely written in the object-oriented programming language C++. This
is reflected in particular in the structure of the program. In SHERPA, the various tasks related to the
generation of events are encapsulated in a number of specific modules. These physics modules are
initialized and steered by the SHERPA framework. This structure facilitates a high modularity of the
actual event generator and allows for the easy replacement/modification of entire physics models, e.g.
the parton shower or the fragmentation model. The current version SHERPA-1.0.6 incorporates the
following physics modules:

– ATOOLS-2.0.6: This is the toolbox for all other modules. ATOOLS contain classes with mathe-
matical tools like vectors and matrices, organization tools such as read-in or write-out devices, and
physics tools like particle data or classes for the event record.

– BEAM-1.0.6: This module manages the treatment of the initial beam spectra for different colliders.
At the moment two options are implemented for the beams: they can either be monochromatic, and
therefore require no extra treatment, or, for the case of an electron collider, laser backscattering off
the electrons is supported leading to photonic initial states.

– PDF-1.0.6: In this module the handling of initial state radiation (ISR) is located. It provides
interfaces to various proton and photon parton density functions, and to the LHAPDFv3 interface.
In addition, an analytical electron structure function is supplied.

– MODEL-1.0.6: This module comprises the basic physics parameters (like masses, mixing angles,
etc.) of the simulation run. Thus it specifies the corresponding physics model. Currently three
different physics models are supported: the Standard Model (SM), its Minimal Supersymmetric
extension (MSSM) and the ADD model of large extra dimensions. For the input of MSSM spectra
a run-time interface to the program Isasusy 7.67 [2] is provided. The next release of SHERPA
will in addition support the SLHA format of spectrum files [3].

– EXTRA XS-1.0.6: In this module a collection of analytic expressions for simple 2→ 2 processes
within the SM and the corresponding classes embedding them into the SHERPA framework are
provided. This includes methods used for the definition of the parton shower evolution, such as
color connections and the hard scale of the process. The classes for phase space integration, which
are common with AMEGIC, are located in a special module called PHASIC.

– AMEGIC++-2.0.6: AMEGIC [4] is SHERPA’s own matrix element generator. It works as a generator-
generator: during the initialization run the matrix elements for a set of given processes within the
SM, the MSSM or the ADD model, as well as their specific phase space mappings are created by
AMEGIC and stored in library files. In the initialization of the production run, these libraries are
linked to the program. They are used to calculate cross sections and to generate single events based
on them.
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– PHASIC++-1.0.6: Here all classes dealing with the Monte Carlo phase space integration are
located. As default the adaptive multi-channel method of [5] together with a Vegas optimization [6]
for the single channels is used for the evaluation of the initial state and final state integrals.

– APACIC++-2.0.6: APACIC [7] contains classes for the simulation of both the initial and the final
state parton shower. The sequence of parton emissions in the shower evolution is organized in
terms of the parton’s virtual mass as ordering parameter. Coherence effects are accounted for by
explicit ordering of the opening angles in subsequent branchings. This treatment is similar to the
Pythia [8] parton shower approach. All features for a consistent merging with matrix elements [9]
are included.

– AMISIC++-1.0.6: AMISIC contains classes for the simulation of multiple parton interactions
according to [10]. SHERPA extends this treatment of multiple interactions by allowing for the
simultaneous evolution of an independent parton shower in each of the subsequent (semi-)hard
collisions. This shower evolution is done by the APACIC module.

– SHERPA-1.0.6: Finally, SHERPA is the steering module that initializes, controls and evaluates the
different phases in the entire process of event generation. Furthermore, all necessary routines for
combining the parton showers and matrix elements, which are independent of the specific parton
shower are found in this module. In addition, this subpackage provides an interface to the Lund
String Fragmentation of Pythia 6.214 including its hadron decay routines.

SHERPA is publicly available from http://www.sherpa-mc.de. It has successfully been tested for
various processes of great relevance at future colliders [11]. Present activities of developing SHERPA
cover the modeling of the underlying event and an alternative fragmentation model [12].
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Abstract
I describe briefly the status of the ARIADNE program implementing the Dipole
Cascade Model and comment both on its performance at HERA, and the un-
certainties relating to the extrapolation to LHC energies.

1 Introduction
ARIADNE [1] is a Fortran subroutine library to be used with the PYTHIA event generator [2]. By simply
adding a few lines to a PYTHIA steering routine, the PYTHIA parton shower is replaced by the dipole
cascade in ARIADNE. For lepton–hadron DIS it can also be used together with the LEPTO [3] generator
in a similar fashion. However, even if it thus simple to use ARIADNE also for the LHC, there are a
few caveats of which the user should be aware. In this brief presentation of the program, I will first
go through the main points of the final-state dipole shower relevant for e+e−-annihilation, then I will
present the extention of the model to lepton–hadron DIS, and finally describe how the model works for
hadron–hadron collisions.

2 The Basic Dipole Model
In the Dipole Cascade Model (DCM) [4, 5], the bremsstrahlung of gluons is described in terms of radi-
ation from colour dipoles between gluons and quarks. Thus, in an e+e− → qq̄ event, a gluon, g1 may
be emitted from the colour-dipole between the q and q̄. In this emission the initial dipole is replaced
by two new ones, one between q and g1 and one between g1 and q̄. These may then continue radiating
independently in a cascade where each step is a 2 → 3 partonic splitting or, equivalently, a splitting
of a dipole into two. The splittings are ordered in a transverse momentum variable, p⊥, defined in a
Lorentz-invariant fashion, which also defines the scale in αS .

There are several advantages of this model. One is that the coherence effects approximated by
angular ordering [6] in eg. the HERWIG [7] parton cascade, are automatically included. Another is that
the first order e+e− → qgq̄ matrix element correction is in some sense built-in. A major disadvantage
is that the g → qq̄ splitting does not enter naturally in this formalism. Final-state g → qq̄ splittings are,
however, easy to add [8] and for final-state cascades in e+e−-annihilation the description is complete.
Ariadne is generally considered to be the program which best reproduces event shapes and other hadronic
final-state observables at LEP (see eg. [9]).

3 ARIADNE at HERA
While for e+e−-annihilation, the DCM is formally equivalent to conventional angular ordered parton
showers to modified leading logarithmic accuracy, the situation for collisions with incoming hadrons is
quite different. In a conventional shower the struck quark in eg. lepton–hadron DIS is evolved backwards
with an initial-state cascade according to DGLAP [10–13] evolution. In contrast, the DCM model for
DIS [14] describes all gluon emissions in terms of final-state radiation from colour-dipoles, in a similar
way as in e+e−-annihilation, with the initial dipole now being between the struck quark and the hadron
remnant. Contrary to e+e−-annihilation, the remnant must now be treated as an extended object and,
since radiation of small wavelengths from an extended antenna is suppressed, the emission of high-p⊥
gluons in the DCM is suppressed in the remnant direction.
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Despite this suppression, which is modeled semi-classically, the net result is that gluon emissions
are allowed in a much larger phase space region than in a conventional parton shower, especially for lim-
ited Q2 values. Although the emissions are ordered in p⊥, they are not ordered in rapidity (or x). Hence,
if tracing the emissions in rapidity, they will be unordered in p⊥, and there are therefore qualitative sim-
ilarities between the DCM and BFKL evolution [15–17]. This is in contrast to conventional showers
which are purely DGLAP-based and where the emissions are ordered both in scale and in x. One of
the striking phenomenological consequences of this is that ARIADNE is one of the few programs which
are able to describe the high rate of forward (in the proton direction) jets measured in small-x DIS at
HERA [18–20], an observable which conventional parton showers completely fail to reproduce. In fact,
ARIADNE is in general considered to be the program which best describe hadronic final-state observables
at HERA [21].

This does not mean that the DCM is perfect in any way. Most notably, the initial-state g → qq̄ and
q → g?q (where the q is emitted into the final-state) splittings are not easily included. While the former
process has been included as an explicit initial-state splitting step [22], the latter is currently absent in the
the ARIADNE program. In addition, the treatment of the initial-state g → qq̄ splitting has been found to
be somewhat incomplete, as it by construction imposes ordering in both p⊥ and rapidity, thus excluding
certain regions of the allowed phase space. At HERA, the incomplete treatment of the g → qq̄ and
q → g?q splittings can be shown to be a small effect. However, this is not always the case at the LHC.

4 ARIADNE at LHC
Given the great success of ARIADNE at LEP and HERA, it is natural to assume that it also would do
a good job at the Tevatron and the LHC. In principle, the extention of the DCM to hadron–hadron
collisions is trivial, and indeed it is simple to run ARIADNE together with PYTHIA for hadron–hadron
collisions. Whichever hard sub-process, PYTHIA generates, the relevant dipoles between hard partons
and hadron remnants are constructed and are allowed to radiate. In addition, the initial-state g → qq̄
splittings are included from both sides. However, for many processes there are modifications needed.

The most obvious processes are Drell-Yan and vector boson production, where a quark from one
hadron annihilates with an anti-quark from the other. The gluon radiation is then initiated by the dipole
between the two remnants, and we have a suppression in both directions. However, it is unphysical to
give the remnants a large transverse momentum from the recoil of the gluon emission. In DIS, this is
resolved by introducing so-called recoil gluons [14], but here it is clear that the recoil should be taken
by the vector boson or the Drell-Yan lepton pair. Such a procedure was introduced in [23], and together
with a correction where the first emission is matched to the qg → qZ and qq̄ → gZ matrix elements, it
describes well eg. the Z0 p⊥ spectrum measured at the Tevatron [24,25]. There are still some differences
wrt. conventional parton showers. Eg. the rapidity correlation between the vector boson and the hardest
jet is more flat in ARIADNE due to the increased phase space for emissions [26]. Although W and Z0

production at the Tevatron is not a small-x process, the effect is related to higher rate of forward jets
in ARIADNE for DIS. Such correlations have not yet been measured at the Tevatron, but another related
effect is the somewhat harder p⊥-spectrum of the Z0 for low p⊥ in ARIADNE, which is compatible with
Tevatron measurements [26]. For a conventional cascade to be able to describe the low-p⊥ spectrum,
a quite substantial “non-perturbative” intrinsic transverse momentum must be added to the incoming
quarks [27, 28].

Going from the Tevatron to the LHC, there is a substantial increase in phase space for QCD
radiation, and it can be argued that W and Z0 production at the LHC is a small-x process with x ∝
mZ/

√
S < 0.01. Indeed ARIADNE predicts a harder p⊥-spectrum for the W at the LHC as compared to

conventional showers [29].

Also Higgs production can be argued to be almost a small-x process at the LHC, if the Higgs
is found with a mass around the “most likely” value of ≈ 120 GeV. However, Higgs production is a
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gluon-initiated process, and the absence of the q → g?q splitting is a serious deficiency giving a much
softer p⊥-spectrum for the Higgs in ARIADNE as compared to conventional showers [30]. Hence the
predictions from ARIADNE for this and similar processes can currently not be trusted. Furthermore, the
increased phase-space at the LHC means that predictions also for quark-initiated processes may become
affected by the deficiencies in the treatment of initial-state g → qq̄ mentioned above.

5 Conclusion
The success of the DCM as implemented in ARIADNE in describing hadronic final-state observables as
measured at LEP and HERA makes it tempting to use it also to make predictions for the LHC. The
temptation is even more difficult to resist as it is so simple to run ARIADNE together with PYTHIA for any
LHC process. Currently, this must be done with great care. As explained above, it is possible to obtain
reasonable predictions for vector boson production. Also standard jet-production should be fairly safe.
However, for Higgs production, one of the most interesting processes at LHC, ARIADNE in its current
state turns out to be quite useless.

ARIADNE is currently being rewritten in C++ within the framework of THEPEG [31, 32]. The
planned features includes a remodeling of initial-state g → qq̄ splittings as well as the introduction of
the q → g?q process. In addition the matching to fixed-order tree-level matrix elements à la CKKW
[26, 33–35] will be implemented for the most common sub-processes. When this version is released,
hopefully during 2006, it should therefore be safe to use ARIADNE to produce LHC predictions.
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Abstract
The AcerMC Monte Carlo Event Generator is dedicated for the generation of
Standard Model background processes at pp LHC collisions. The program it-
self provides a library of the massive matrix elements and phase space modules
for generation of selected processes. The hard process event, generated with
one of these modules, can be completed by the initial and final state radiation,
hadronisation and decays, simulated with either PYTHIA, ARIADNE or HERWIG
Monte Carlo event generator and (optionally) with TAUOLA and PHOTOS. Inter-
faces to all these packages are provided in the distribution version. The matrix
element code has been derived with the help of the MADGRAPH package. The
phase-space generation is based on the multi-channel self-optimising approach
using the modified Kajantie-Byckling formalism for phase space construction
and further smoothing of the phase space was obtained by using a modified
ac-VEGAS algorithm.

1 Introduction
The physics programme of the general purpose LHC experiments, ATLAS [1] and CMS [2], focuses on
the searches for the New Physics with the distinctive signatures indicating production of the Higgs boson,
SUSY particles, exotic particles, etc. The expected environment will in most cases be very difficult, with
the signal to background ratio being quite low, on the level of a few percent after final selection in the
signal window.

Efficient and reliable Monte Carlo generators, which enable one to understand and predict back-
ground contributions, are becoming key elements in the discovery perspective. As the cross-section for
signal events is rather low, even rare Standard Model processes might become the overwhelming back-
grounds in such searches. In several cases, generation of such processes is not implemented in the general
purpose Monte Carlo generators, when the complicated phase space behaviour requires dedicated (and
often rather complex) pre-sampling, whilst the general purpose Monte Carlo generators due to a large
number of implemented processes tend to use simpler (albeit more generic) phase space sampling algo-
rithms. In addition, the matrix element expressions for these processes are often quite lengthy and thus
require complicated calculations. Only recently, with the appearance of modern techniques for automatic
computations, their availability on demand became feasible for the tree-type processes. With the com-
putation power becoming more and more easily available even very complicated formulas can now be
calculated within a reasonable time frame.

2 The Monte Carlo Event Generator AcerMC
The physics processes implemented in AcerMC library [3–5] represent such a set of cases. They are all
being key background processes for the discovery in the channels characterised by the presence of the
∗Supported in part by the Polish Government grant KBN 1 P03 091 27 (years 2004-2006) and by the EC FP5 Centre of

Excellence “COPIRA” under the contract No. IST-2001-37259.
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heavy flavour jets and/or multiple isolated leptons. For the Higgs boson searches, the tt̄H , ZH,WH
with H → bb̄, the gg → H with H → ZZ∗ → 4`, the bb̄h/H/A with h/H/A → ττ, µµ are the most
obvious examples of such channels.

Let us shortly discuss the motivation for these few Standard Model background processes which
are implemented in the AcerMC 2.x library.

The tt̄bb̄ production is a dominant irreducible background for the Standard Model (SM) and
Minimal Supersymmetric Standard Model (MSSM) Higgs boson search in the associated production,
tt̄H , followed by the decay H → bb̄. Proposed analysis [1] requires identifying four b-jets, reconstruc-
tion of both top-quarks in the hadronic and leptonic mode and visibility of the peak in the invariant mass
distribution of the remaining b-jets. The irreducible tt̄bb̄ background contributes about 60-70% of the
total background from the tt̄ events (tt̄bb̄, tt̄bj, tt̄jj).

The Wbb̄ production is recognised as a substantial irreducible background for the Standard
Model (SM) and Minimal Supersymmetric Standard Model (MSSM) Higgs boson search in the associ-
ated production, WH , followed by the decay H → bb̄.

The Wtt̄ production is of interest because it contributes an overwhelming background [7] for
the measurement of the Standard Model Higgs self-couplings at LHC in the most promising channel
pp→ HH →WWWW .

The Z/γ∗(→ ``)bb̄ production has since several years been recognised as one of the most
substantial irreducible (or reducible) backgrounds for the several Standard Model (SM) and Minimal
Supersymmetric Standard Model (MSSM) Higgs boson decay modes as well as for observability of the
SUSY particles. There is a rather wide spectrum of regions of interest for this background. In all cases
the leptonic Z/γ∗ decay is asked for, but events with di-lepton invariant mass around the mass of the
Z-boson mass or with the masses above or below the resonance peak could be of interest. The presented
process enters an analysis either by the accompanying b-quarks being tagged as b-jets, or by the presence
of leptons from the b-quark semi-leptonic decays in these events, in both cases thus contributing to the
respective backgrounds.

The Z/γ∗(→ ``, νν, bb̄)tt̄ production is an irreducible background to the Higgs search in the
invisible decay mode (case of Z → νν) in the production with association to the top-quark pair [8]. With
the Z/γ∗(→ bb̄) it is also an irreducible resonant background to the Higgs search in the tt̄H production
channel but with the Higgs boson decaying to the b-quark pair.

The complete EW production of the gg, qq̄ → (Z/W/γ∗ →)bb̄tt̄ final state is also provided.
It can be considered as a benchmark for the previous process, where only the diagrams with resonant
gg, qq̄ → (Z/γ∗ →)bb̄tt̄ are included. It thus allows the verification of the question, whether the EW
resonant contribution is sufficient in case of studying the tt̄bb̄ background away from the Z-boson peak,
like for the tt̄H with Higgs-boson mass of 120 GeV.

The gg, qq̄ → tt̄tt̄ production , interesting process per se, is a background to the possible Higgs
self-coupling measurement in the gg → HH →WWWW decay, [7].

The gg, qq̄ → (WWbb →)ff̄ff̄bb̄ and gg, qq̄ → (tt̄ →)ff̄bff̄ b̄ processes give
possibility to study spin correlations in the top-quark pair production and decays as well as the effect from
the off-shell production. Those are important for the selection optimisation eg. in the gg → H → WW
channel, see the discussion in [9]. As an example, Fig. 1 illustrates spin correlation effects in the top-pair
production and decays, namely asymmetry in the correlations between lepton and antilepton direction in
the rest frame of top-quark, for events generated with 2 → 6 matrix element. Such correlation is absent
if only 2→ 2 matrix element is used for events generation, followed by the independent decays of each
top-quark.

A set of control channels, i.e. the qq̄ → Z/γ∗ → ``, gg, qq̄ → tt̄ , qq̄ → W → `ν
and gg → (tt̄ →)WbWb̄ processes, have been added to AcerMC in order to provide a means of
consistency and cross-check studies.
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Fig. 1: The correlations between cos Θ (azimuthal angle) of lepton and antilepton from tt̄ → `ν̄b ¯̀νb̄ decays
measured in the rest frame of the top-quark with respect to the anti-top quark direction. Left plot is for gg →
(WWbb̄→)f f̄f f̄bb̄ process, right plot for qq̄ → (WWbb̄→)f f̄f f̄bb̄ process.
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Fig. 2: Left: A representative invariant mass distribution comparisons between the (normalised) sampling func-
tions and the normalised differential cross-section for the ` ¯̀pair in the process gg → Z0/γ∗bb̄ → `¯̀bb̄ process.
Right: The weight distribution of the sampled events for the gg → tt̄ → bb̄W+W− → bb̄`ν̄` ¯̀ν` (light gray his-
togram) and gg → bb̄W+W− → bb̄`ν̄` ¯̀ν` (black histogram) processes. One can observe the well defined weight
range for the two processes; as it turns out the weight distribution is even marginally better for the (more complex)
second process, possibly because the higher number of sampling channels manage to cover the event topologies in
phase space to a better extent.

This completes the list of the native AcerMC processes implemented so far. The hard process
event, generated with one of these modules, can be completed by the initial and final state radiation,
hadronisation and decays, simulated with either PYTHIA, ARIADNE or HERWIG Monte Carlo event gen-
erator and (optionally) with TAUOLA and PHOTOS. Interfaces to all these packages are provided in the
distribution releases. The matrix element code has been derived with the help of the MADGRAPH package.
The phase-space generation is based on the multi-channel self-optimising approach [3] using the modi-
fied Kajantie-Byckling formalism for phase space construction and further smoothing of the phase space
was obtained by using a modified ac-VEGAS algorithm.

The improved and automated phase space handling provided the means to include the 2 → 6
processes like e.g. gg → tt̄ → bb̄W+W− → bb̄`ν̄`q1q̄2 which would with the very complicated phase
space topologies prove to be too much work to be handled manually. The studies show that the overall
unweighting efficiency which can be reached in the 2 → 6 processes by using the recommended phase
space structuring is on the order of 10 percent. An example of the implemented sampling functions and
the actual differential distributions for the gg → Z 0/γ∗bb̄→ `¯̀bb̄ process and of the weight distribution
for the gg → tt̄→ bb̄W+W− → bb̄`ν̄`q1q̄2 process are shown in Fig.2

In its latest version, the AcerMC-2.4 package is interfaced also to ARIADNE 4.1 [12] parton
shower model and the LHAPDF structure functions [13].
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It is not always the case that the matrix element calculations in the lowest order for a given topol-
ogy represent the total expected background of a given type. This particularly concerns the heavy flavour
content of the event. The heavy flavour in a given event might occur in the hard process of a much sim-
pler topology, as the effect of including higher order QCD corrections (eg. in the shower mechanism).
This is the case for the b-quarks present in the inclusive Z-boson or W-boson production, which has a
total cross-section orders of magnitude higher than the discussed matrix-element-based Wbb̄ or Zbb̄ pro-
duction. Nevertheless, the matrix-element-based calculation is a very good reference point to compare
with parton shower approaches in different fragmentation/hadronisation models. It also helps to study
matching procedures between calculations in a fixed αQCD order and parton shower approaches. For
very exclusive hard topologies matrix-element-based calculations represent a much more conservative
approximation than the parton shower ones [6].

3 The AcerDET package
The package AcerDET [14] is designed to complete the AcerMC generator framework with the easy-to-
use simulation and reconstruction algorithms for phenomenological studies on high pT physics at LHC
The package provides, starting from list of particles in the event, the list of reconstructed jets, isolated
electrons, muons and photons and reconstructed missing transverse energy. The AcerDET represents a
simplified version of the package called ATLFAST [15], used since several years within ATLAS Collab-
oration. In the AcerDET version some functionalities of the former one have been removed, only the
most crucial detector effects are implemented and the parametrisations are largely simplified. Therefore
it is not representing in details neither ATLAS nor CMS detectors. Nevertheless, we believe that the
package can be well adequate for some feasibility studies of the high pT physics at LHC.
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Fig. 3: A few examples of theoretical systematic uncertainties from parton shower model on experimentally ob-
servable distributions from Drell-Yan W and Z boson production at LHC (see text).

Fig. 3 shows possible application of the AcerMC control processes and AcerDET package for
studying theoretical systematic uncertainties on the experimentally observed distributions from the par-
ton shower model. The control channels qq̄ → Z/γ∗ → ``, and qq̄ → W → `ν were processed
with parton shower model as implemented in PYTHIA (red), HERWIG (blue) and ARIADNE (green). The
comparison includes the distributions of the invariant mass of the di-lepton or lepton-neutrino system,
transverse momenta of the Z boson, transverse mass of the W, multiplicity of jets from ISR parton shower
and transverse momenta of the hardest jets reconstructed with AcerDET package. Perfect agreement on
the most left plots confirms consistent starting point for the evolution of the ISR QCD parton shower. The
differences observed on remaining plots should be attributed to the systematic theoretical uncertainties
of the parton shower models.
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RAPGAP

Hannes Jung
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Abstract
RAPGAP, originally developed to describe rapidity gap event in ep collisions,
has evolved into a multi-purpose Monte Carlo event generator for diffractive
and non-diffractive processes at ep colliders both for high Q2 and in the pho-
toproduction regime (Q2 ∼ 0) as well as hard (single diffractive and non-
diffractive) processes for pp and pp̄ colliders. A detailed description of the
program as well as the source code can be found under [1]. In the following
only new developments are described.

1 NLO and Order αs matrix elements
TheO(αs) matrix elements for light quarks are divergent for p2

T → 0, and usually a p2
T cutoff is applied.

TheMS factorization scheme provides a description which finite parts of the matrix elements are treated
explicitely and which parts are included in the parton distribution functions. A consistent implementation
of the NLO formalism for F2 in DIS including initial state parton showering is described in detail in [2].
The LO (α0

s) and the NLO (αs) part are treated according the MS subtraction scheme, reformulated
such that it properly can be used together with initial and final state parton showers, avoiding any double
counting [3]. When using this scheme, the NLO parton densities calculated in theMS scheme should be
selected. The program then transforms the parton densities from the MS to the BS scheme for parton
showers. However, at present only the BGF part is implemented.

2 Les Houches interface
A generic format for the transfer of parton level event configurations from matrix element event genera-
tors (MEG) to showering and hadronization event generators (SHG) [4] is provided by the Les Houches
interface. RAPGAP gives the possibility to write the full parton level events to the file rapgap.gen,
which can be read in directly by the PYTHIA and HERWIG programs to perform the hadronization. This
option is best suited to estimate the uncertainty coming from hadronization correction.

3 Proton dissociation ala DIFFVM
Dissociation of the proton according to the model in DIFFVM [5] can be included for diffractive events.
The proton dissociation part of the cross section is given by

dσ

dM2
Y dt dxIP

∼ 1

M
2(1+εY )
Y

exp (−Bdiss|t|)

with εY describing the dependence on the dissociation mass MY and Bdiss the t-dependence. The
dissociative system Y is split into a quark−gluon−diquark system for massesMY > 2 GeV whereas
for masses 0.939 < MY < 2 GeV the system is fragmented according to the nucleon resonances as
implemented in DIFFVM [5].

4 Future Plans
In the next future it is planned to include double diffractive scattering for pp collisions to allow simulation
of diffractive Higgs production.
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CASCADE

Hannes Jung
Deutsches Elektronen-Synchroton (DESY), Hamburg, FRG

Abstract
CASCADE is a full hadron-level Monte Carlo event generator for ep, γp, pp
and pp̄ processes.

CASCADE uses the unintegrated parton distribution functions convoluted with off-mass shell ma-
trix elements for the hard scattering. The CCFM [1] evolution equation is an appropriate description
valid for both small and moderate x which describes parton emission in the initial state in an angular or-
dered region of phase space. For inclusive quantities it is equivalent to the BFKL and DGLAP evolution
in the appropriate asymptotic limits. The angular ordering of the CCFM description makes it directly
applicable for Monte Carlo implementation. The following processes are available: γ∗g∗ → qq̄(QQ̄)
γg∗ → J/ψg, g∗g∗ → qq̄(QQ̄) and g∗g∗ → h0.

A detailed description of CASCADE, the source code and manual can be found under [2]. A
discussion of different unintegrated gluon densities can be found in [3–5].

The unintegrated gluon density xA0(x, k⊥, q̄) is a function of the longitudinal momentum fraction
x the transverse momentum of the gluon k⊥and the scale (related to the angle of the gluon) q̄. Given this
distribution, the generation of a full hadronic event is separated into three steps:

• The hard scattering process is generated,

σ =
∫
dk2

t 1dk
2
t 2dx1dx2A(x1, kt 1, q̄)A(x2, kt 2, q̄)σ(g∗1g

∗
2 → X) , (1)

with X being qq̄, QQ̄, J/ψg or h0 states. The hard cross section is calculated using the off-
shell matrix elements given in [6] for qq̄ and QQ̄, γg∗ → J/ψg in [7] and for Higgs production
g∗G∗ → h0 in [8]. The gluon momentum is given in Sudakov representation:

k = xgpp + x̄gpe + kt ' xgpp + kt . (2)

where the last expression comes from the high energy approximation (xg � 1), which then gives
−k2 ' k2

t .
• The initial state cascade is generated according to CCFM in a backward evolution approach.
• The hadronization is performed using the Lund string fragmentation implemented in PYTHIA [9].

The backward evolution there faces one difficulty: The gluon virtuality enters in the hard scattering
process and also influences the kinematics of the produced quarks and therefore the maximum angle
allowed for any further emission in the initial state cascade. This virtuality is only known after the whole
cascade has been generated, since it depends on the history of the gluon evolution (as x̄g in eq.( 2) may
not be neglected for exact kinematics). In the evolution equations itself it does not enter, since there
only the longitudinal energy fractions z and the transverse momenta are involved. This problem can only
approximately be overcome by using k2 = k2

t /(1− xg) for the virtuality which is correct in the case of
no further gluon emission in the initial state. This problem is further discussed in [5, 10]

The CCFM evolution equations have been solved numerically [11] using a Monte Carlo method.
Several sets of un-integrated gluon densities are available which have the input parameters were fitted to
describe the structure function F2(x,Q2) in the range x < 5 · 10−3 and Q2 > 4.5 GeV2 as measured at
H1 [12] and ZEUS [13].

Also the unintegrated gluon densities described in [5] including non-linear terms [14] are
available within CASCADE.
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Leading proton production in ep and pp experiments: how well do
high-energy physics Monte Carlo generators reproduce the data?

G. Bruni, G. Iacobucci, L. Rinaldi, M. Ruspa
INFN Bologna and University of Eastern Piedmont

Abstract
The simulation of leading-proton production at high-energy colliders as ob-
tained by the HERWIG, LEPTO and PYTHIA Monte Carlo generators is anal-
ysed and compared to the measurements of HERA and fixed-target experi-
ments. The discrepancies found between real data and Monte Carlo events
could be responsible for inaccurate simulation of particle multiplicities and
hadronic final states, which could eventually generate problems in computing
the Standard-Model backgrounds to new physics at the LHC collider.

1 Introduction
The production of final state baryons carrying a large fraction of the available energy but a small trans-
verse momentum (leading baryons) is crucial for a deep understanding of strong interactions beyond the
perturbative expansion of QCD. Indeed, in high-energy collisions, the QCD-hardness scale decreases
from the central, large pT region, to the soft, non-perturbative hadronic scale of the target-fragmentation
region. Therefore, the measurement of leading baryons in the final state of high-energy collisions allows
to gather information on the non-perturbative side of strong interactions.

Another reason of interest in leading-baryon production comes from the fact that the energy carried
away by the leading baryon(s) produced in a high-energy collision is not available for the production of
the central-hadronic system. Therefore, the leading-baryon spectra should be well simulated for a proper
accounting of the hadronic multiplicities and energies, e.g. at the LHC collider where an appropriate
simulation of these quantities will be the ground for a reliable calculation of the Standard-Model back-
grounds to new physics.

Here we will review the data on the production of leading protons and compare them to the most
popular Monte Carlo generators available.

2 The data and the Monte Carlo generators used for the comparison
2.1 The proton-proton data
Although the experimental data on leading-proton production are scarce, a few measurements in a large
xL range are available, where xL represents the fractional longitudinal momentum of the proton. In
proton-proton collisions, leading-proton production has been studied both at the ISR [2, 3] and in fixed-
target experiments [4–6]. The xL spectra measured in fixed-target experiments are shown in Fig. 1a-c,e.

2.2 The ep data
Cross sections for the production of leading protons were also measured at the HERA collider [7–9].
More recently, the ZEUS Collaboration made a new measurement [10] of the cross-section for the semi-
inclusive reaction ep→ eXp in deep-inelastic scattering using 12.8 pb−1 of data collected during 1997.
The single-differential cross sections, dσep→eXp/dxL and dσep→eXp/p2

T , and the double-differential
cross section, d2σep→eXp/dxLdp2

T , were measured in the kinematic range Q2 > 3 GeV2 and 45 <
W < 225 GeV, where W is the total mass of the hadronic system. The protons were measured using the
leading-proton spectrometer (LPS) [11] in the range xL > 0.56 and p2

T < 0.5 GeV2, where pT is the
scattered-proton transverse momentum.
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Fig. 1: Differential cross sections dσ/dxL measured in fixed-target experiments (a, b, c and e) and by the ZEUS
Collaboration [9, 10] (d, e).

2.3 The Monte Carlo generators
Large samples of Monte Carlo ep events were generated to be compared to the data. The LEPTO gen-
erator was used either with the MEPS or the ARIADNE packages; in the latter case the diffractive
component of the cross section was simulated using the Soft Color Interaction model. Events were also
generated with HERWIG. Since this Monte Carlo does not simulate diffractive events, the POMWIG
generator was used to account for the single diffractive events, and the SANG generator to account for
the diffractive events in which the scattered-proton dissociates in a higher-mass hadronic system.

Proton–proton events at the LHC center of mass energy (14 TeV) were generated with PYTHIA.

3 Discussion
3.1 The xL spectrum
Figure 1a, b and c show the dσ/dxL obtained by the fixed target experiments [4–6] which measured
leading protons in a wide range of xL. The cross section for such events shows a peak for values of the
final-state proton momentum close to the maximum kinematically allowed value, the so-called diffractive
peak. Below the diffractive peak the cross section is lower and consistent with a flat one. In this region,
under the assumption of Regge factorisation [12], the fraction of events with a leading proton is expected
to be approximately independent of the energy and type of the incoming hadron. The lines superimposed
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Fig. 2: (a) Differential cross section dσep→eXp/dxL generated with LEPTO, with MEPS or ARIADNE, and with
HERWIG+POMWIG+SANG Monte Carlos; (b) Comparison between the normalised differential cross section
1/σtot dσpp→Xp/dxL simulated with PYTHIA and 1/σtot dσep→eXp/dxL measured by the ZEUS Collabora-
tion [9].

to the data are the results of fits in the range 0.1 < xL < 0.9 to the function (1− xL)α that is commonly
used to characterise the longitudinal distributions of leading particles. The values of α obtained are 0.1,
0.06 and 0.22 respectively for Fig. 1a, b and c. Fig. 1d shows the preliminary dσ/dxL obtained by ZEUS.
Below the diffractive peak the cross section is again consistent with a flat one, i.e. α ∼ 0. A comparison
between the normalised cross section 1/σtot dσ/dxL obtained by the fixed-target data [6] and by the ep
data is shown in Fig. 1e. For xL < 0.9 the fraction of events with a leading proton is indeed consistent
for the pp and the ep data set.

The xL distributions of the simulation of the HERA events are shown in Fig. 2a. Already at
first glance, the difference w.r.t. the data is evident, since the spectra are much more populated at
low xL in the Monte Carlo than they are in the data. Indeed, the fits to the same functional form as
for the data give α = 1.0 for LEPTO-MEPS, α = 1.4 for LEPTO-ARIADNE and α = 1.0 for HER-
WIG+POMWIG+SANG.

In Fig. 2b the xL distribution obtained from the simulation with PYTHIA of pp events at the LHC
center of mass energy (14 TeV) is compared to the ZEUS data. As discussed previously, according to the
vertex factorisation hypothesis, the fraction of events with a leading proton is expected to be consistent in
the ep and in the pp case. The simulation appears to approximately agree with the data in the diffractive
peak region but is not able to describe the data neither in shape nor in normalisation in the region outside
the diffractive peak.

In general we conclude that the fraction of beam energy carried away by the leading proton in the
Monte Carlo is on average much smaller than in the data, with the consequence that the energy available
in the simulation for the production of the central-hadronic system is correspondingly larger than in
nature.

3.2 The p2
T spectrum

Although the p2
T distribution of the leading proton is less important for the hadronic final states than the

xL distribution, it is interesting to investigate how well the generators can reproduce it.
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Fig. 3: The slope-parameters b obtained from a single-exponential fit to the differential cross section
dσep→eXp/dp2

T (dσpp→Xp/dp2
T for PYTHIA pp sample) to the functionA · e−b·p2

T in each of the xL bins shown.
(a) The red dots are the ZEUS preliminary data [10], while the other symbols represent the results of the Monte
Carlos described in the picture; (b) The grey dots are the pp events simulated with PYTHIA, while the other
symbols are the data described in the picture.

In Fig. 3a the red dots show the values of the slope-parameter b obtained from a single-exponential
fit to the function e−b·p

2
T in each of the xL bins of the ZEUS dσ/dp2

T measurement. The b slopes obtained
by a similar fit performed on the simulated events in the ep case and in the pp case are also reported in
Fig. 3a and Fig. 3b, respectively. In the pp case the extracted b-slopes have been corrected for the
expected shrinkage of the diffractive peak.

The b-slopes values resulting from the fit to the p2
T distribution of the HERWIG+POMWIG+SANG

sample appear to be in the right ball park.

The LEPTO generator shows too small b-slope values, smaller than those of the data by approx-
imately 3 GeV−2. In the case the matrix-element parton showers are used to generate the events, since
the dependence of b on xL is similar to that of the data, it is conceivable to fix the difference by tuning
the primordial kT of the generation. If the ARIADNE package is used instead, it seems quite difficult to
improve the situation in a similar way, since the generated b values increase with xL, a feature that is not
seen in the data.

The b-slopes values resulting from the fit to the p2
T distribution of the PYTHIA pp sample are

approximately consistent with the ZEUS data in the diffractive peak region, but lower than the data again
by approximately 3 GeV−2 in the region outside the peak.

3.3 Reweighting of the PYTHIA leading proton spectrum
A sample of pp proton events generated with PYTHIA has been used to simulate the many interactions
per bunch crossing (pile-up events) occurring at the LHC luminosities in a recent study on the diffrac-
tive production of a Higgs boson at the LHC [13]. The simulated leading proton spectrum has been
reweighted both in xL and in p2

T with the following function, calculated for each xL bin of Fig. 2b:

f(xL) = [−37.22 + 135.1 · xL − 148.5 · x2
L + 54.3 · x3

L] · e
−bZEUSt

e−bPYTHIAt
· bZEUS

bPYTHIA
,

where bZEUS = 7 GeV−2 and bPY THIA = 4.4 GeV−2. The polynomial form in xL is the result of a
fit to the ratio ZEUS/PYTHIA of the differential cross sections 1/σtot dσ/dxL of Fig. 2b; thus f(xL)
provides the number of simulated leading protons to be consistent with the ZEUS data.
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3.4 The fraction of diffractive — large-rapidity gap – - events w.r.t. the total
One way to identify a diffractive event produced in ep or pp interactions is to search for a large-rapidity
gap (LRG) in the pseudorapidity distribution of the particles produced. In ZEUS, a diffractive-LRG event
was tagged by ηmax < 2, where ηmax corresponds to the pseudorapidity of the most forward (i.e. proton
direction) energy deposit in the calorimeter exceeding 400 MeV. The ηmax distribution for ZEUS DIS
events with Q2 > 3 GeV2 is shown by the dots in Fig. 4. The two regions of non-diffractive events (with
ηmax between 2 and 8) and of diffractive events (which distribute at ηmax values below 2) are clearly
distinguishable.

The LEPTO-MEPS events were passed through the standard simulation of the ZEUS trigger and
detector, and through the same reconstruction and analysis programs as the data. The ηmax distribution
of the MC events after such processing is shown by the dashed histogram in Fig. 4. We note that the
diffractive events with ηmax < 2 generated with the Soft Color Interaction algorithm in LEPTO-MEPS
are more than twice those found in the data. Therefore, the Soft Color Interaction algorithm, as imple-
mented in the LEPTO generator, fails to describe the data in the range of the ZEUS-LPS detector, i.e.
xL > 0.56.

4 Summary
The data on leading-proton production in ep and pp scattering have been compared to the most popular
Monte Carlo generators available to simulate high-energy physics events. This exercise has revealed that
the simulation of the leading-proton momenta, both longitudinal and transverse to the beams, does not
reproduce the properties of the data. In particular, the xL distribution of the leading protons would be
made more close to that of the data if a proper accounting of the energy available for the hard-scattering
process could be achieved.
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Although the HERWIG generator has been successful in simulating many features of high-energy
physics final states, it does not contain the diffractive component of the cross section, and the xL spectrum
it produces is far from being almost flat, as seen in the data.

The Soft Color Interaction model in its standard implementation in LEPTO is producing twice
the fraction of diffractive-LRG events seen in the ZEUS data at xL > 0.56, therefore distorting in a
significant way the multiplicities and hadronic energies present in real events.

The PYTHIA Monte Carlo has been used to simulate pp events at the LHC center of mass energy
(14 TeV), and then also compared to ep data. The generator has been shown to reproduce the longitudinal
and transverse momentum of the data in the diffractive peak region; however, it underestimates both the
cross section and the p2

T -slopes at lower values of the scattered proton momentum, contradicting the
hypothesis of vertex factorisation, which is supported by the data.

All the above arguments generate some concern that the hadronic multiplicities of the MC gener-
ators taken into account here have been tuned consistently and that they can produce an accurate simula-
tion of the final states of the Standard-Model processes at the LHC energies.

5 Acknowledgements
We would like to thank Torbjörn Sjöstrand for useful discussions.
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Abstract
We present the current status of the NLOLIB framework which provides an
interface to various higher order perturbative calculations, thus allowing for
simple comparisons of these calculations with each other and with measured
distributions. We show, as a newly included example of the NLOLIB abilities,
a comparison of calculations for jet production in deeply inelastic ep scattering.

1 Introduction
Progress in particle physics relies, to a large extent, on the comparison of data to theoretical predictions.
Most commonly, the theoretical calculations are available to the experiments in the form of Monte Carlo
event generators producing event records that contain all generated particles, their four-momenta, the de-
cay trees etc. in a commonly adopted format. The events that represent the outcome of such a prediction
can be used directly by experiment-specific detector simulation and analysis software in order to perform
detailed comparisons with experimental data.

Due to complications in the involved mathematical techniques most programs providing higher
order electroweak or QCD calculations, however, require large numbers of events to be generated with
positive and negative weights. These can not be easily used in simulations because the meaning of the
cancellation of positive and negative weights in combination with detector influences is not overly clear.
In addition, producing the necessary numbers of events is extremely time-consuming. Nevertheless the
results are very useful for comparisons to data and they are used in a variety of experiments to perform,
for example, precision measurements of standard model parameters like the strong coupling parameter,
αs.

Although many such programs have been developed for a variety of physical processes, and some-
times even more than one program exist for the same purpose, the usage and the presentation of the results
has not been unified so far. This leads to a number of unnecessary technical problems for the user who
wants to compare the predictions of more than one program to some measured distribution. To be more
specific, the user has to learn, for each single program he or she wants to use, how to install and compile
the program, how to implement the specific distributions or processes of interest, and how to extract the
results. It should be noted that the programs are also implemented in different programming languages,
mostly FORTRAN and C++.

NLOLIB seeks to simplify the physicists’ life by unifying the steering and providing a common
framework to implement new quantities and to extract the results. A first version of NLOLIB was de-
veloped in the workshop on ‘Monte Carlo Generators for HERA Physics’ 1998/99 and aimed to in-
tegrate and compare three different programs for next-to-leading order calculations in electron-proton
scattering [1]. Now this scope will be extended to include also proton-(anti)proton and electron-positron
collisions.

2 Implemented programs
RacoonWW provides tree-level cross-sections to all processes where an electron-positron collision
yields four fermions in the final state. In addition, it contains a number of higher order corrections,
see [2] for details.

611



DISENT [3] is a next-to-leading order calculation for the production of one or two jets (processes up to
O(α2

s)) for deep-inelastic ep scattering. It uses a subtraction scheme [4] for the cancellation of divergen-
cies. DISENT is the standard program for DIS jet production at HERA and has been used in a variety of
analyses.

DISASTER++ [5] offers more possibilities to separate different terms in the derivation of the cross
sections; otherwise it provides a functionality similar to DISENT. It also employs the subtraction method.

JetViP [6, 7] is a next-to-leading order calculation for jet production in deep-inelastic ep scattering and
e+e− collisions that contains processes up to O(α2

s) and implements both direct and resolved contribu-
tions to the cross-section. The cancellation of divergencies is performed using the phase-space slicing
method [8] which leads to dependencies of the resolved contribution on the unphysical slicing parameter,
ycut. The direct predictions of JetViP have been shown to be compatible [7,9] with those of DISENT and
DISASTER++. So far, only the implementation into NLOLIB of the direct photon ep scattering part of
JetViP has been thoroughly tested; the resolved photon part is implemented in principal but needs more
testing. The implementation of the e+e− part into NLOLIB has just started.

MEPJET [10] was the first complete next-to-leading order calculation available for deep-inelastic ep
scattering and is based on the phase-space slicing method in combination with the technique of crossing
functions [11]. The predictions of MEPJET show some discrepancies with respect to the results of
DISASTER++, DISENT and JetViP [9].

NLOJET++ [12] incorporates next-to-leading order predictions for ep, pp and e+e- scattering using
the subtraction method. Due to its very different way of allowing users to implement their favourite
quantities, an integration into NLOLIB on the same footing as for the other programs seems not to be
feasible. However, it will be tried to achieve an approach as similar as possible. Currently, only the
original version of NLOJET++ in its unchanged form is included.

FMNR [13]: FMNR is a program for the calculation of next-To-leading order photoproduction jet cross-
sections with heavy quarks in the final state. The implementation of FMNR into NLOLIB has only just
begun.

3 Getting started
Once, a new release is finished, a compressed tar archive will be made available like it is done already
now on http://www.desy.de/∼nlolib.

Since the way in which NLOLIB is installed has changed considerably in the course of this work-
shop from the original version [1], some short instructions on how to get started are given here.

Originally, the make tool together with a set of perl scripts containing hardware-specific set-
tings were used. However, this procedure was not easily maintainable, so it was decided to employ
the GNU autotools [14]. For this to work automake versions 1.7 or higher and autoconf versions
2.57 or higher are needed. In addition, the CERN libraries including a version of PDFLIB [15] and the
HzTool [16] libraries as available from our web page are required.

When these conditions are met, the following scheme should be followed for installing NLOLIB:

– Retrieve the NLOLIB source code from the web page at DESY (at a later stage it will also be
downloadable from the CVS server in Karlsruhe) and copy it to your working directory (assumed
to be ∼/nlolib in the following).

– In nlolib.sh (for c-type shells in nlolib.csh) set the correct paths to the PDFLIB and the
CERNLIB libraries (libpdflib.a or libpdflib804.a, libkernlib.a, libpacklib.a), the
HzTool libraries (libhztool.a, libmyhztool.a) and the directories where to put the NLOLIB
binaries and libraries, typically ∼/nlolib/bin and ∼/nlolib/lib.

– Go to the working directory and source nlolib.sh (or nlolib.csh):
∼ \nlolib > source nlolib.sh
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– Usually, the following three steps can be skipped. But in case the configure script below fails, it
has to be recreated by doing:

– ∼ \nlolib > aclocal

– ∼ \nlolib > automake

– ∼ \nlolib > autoconf

– ∼ \nlolib > ./configure

– This step can be skipped if a complete recompile is not necessary/wanted:
∼ \nlolib > make clean

– ∼ \nlolib > make

– ∼ \nlolib > make install

Since the running of NLOLIB depends on the simulation program required by the user no general
rules can be given here concerning the NLOLIB execution.

4 Jet cross-sections in ep NC DIS
As a new check of the NLOLIB framework we tested the predictions of the DISENT and JetViP programs
for deep-inelastic ep scattering single-inclusive jet production against the stand-alone versions of the
programs and against data published by the H1 collaboration [17]. The phase-space of the measurement
is determined by two requirements on the scattered electron: the energy of the scattered electron E ′ must
be larger than 10 GeV, and its polar angle must be larger than 156o. In addition, two kinematic cuts are
applied to select well-reconstructed low-Q2 DIS events: 5 < Q2 < 100 GeV2 and 0.2 < y < 0.6.

Jet reconstruction for the selected events is performed in the Breit reference frame with the lon-
gitudinally invariant k⊥ algorithm [18] in the inclusive mode [19]. Jets are selected by requiring their
transverse energy in the Breit frame to be larger than 5 GeV, E breit

T > 5 GeV, and their pseudorapidity in
the laboratory frame, ηlab, to be between −1 and 2.5.

4.1 Comparison of calculations and data
We first present a comparison of event and jet quantities between the stand-alone versions and the ver-
sions implemented in NLOLIB of DISENT and JetViP. For this purpose 1 million events have been
generated with each of the four programs using CTEQ4M as proton PDFs and Q2 as renormalization
and factorization scale. Figure 1 shows the differential cross-sections as functions of Q2, y, Ee and θe
for the four predictions. A very good agreement between the predictions is observed.

Also the comparison of the various predictions for the jet pseudorapidities in the Breit and labora-
tory reference frames, ηBreit and ηlab, and for the jet transverse energy in the Breit frame, EBreit

T , shows
satisfactory agreement. There are, however, small discrepancies between the two JetViP and the two
DISENT predictions in the ηBreit distribution and a rather large discrepancy between the stand-alone
JetViP prediction on the one hand side and the other three calculations on the other hand side for η lab,
see Fig. 2.

Figure 3 finally compares the four predictions to the published H1 data which are presented as
inclusive jet cross-sections as functions of EBreit

T in different ranges of ηlab. Also for these published
observables the agreement of the various predictions is reasonable.
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4.2 How to obtain the theoretical distributions
The NLOLIB calculations shown in this section have been obtained by running DISENT and JetViP via
the HzTool interface in NLOLIB and using the HzTool routine for the H1 data analysis, hz02079.f.
The steering files for the DISENT and JetViP job can be found in nlolib/steering and are called
dis02079.t for DISENT and jv02079.t for JetViP. The command to run the DISENT job is thus
(assuming the command is issued in the nlolib directory)

∼ \nlolib > bin/hzttol < steering/dis02079.t

for JetViP the command is

∼ \nlolib > bin/hzttol < steering/jv02079.t

In both cases a HBOOK file test.hbook is created that contains, in subdirectory 02079, the results of
the calculation and the published H1 data points. A PAW macro epjets.kumac that creates the plots
shown here will soon be available.
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5 Summary
Some results with recently implemented higher order calculations have been shown, but clearly many
items on our agenda unfortunately are still to be done.

For the implementation of JetViP into NLOLIB first, and most importantly, the e+e− mode has
to be implemented and tested — so far only the ep mode has been done. Secondly, the resolved photon
contribution has to be tested more thoroughly and the discrepancies between DISENT and JetViP in the
pseudorapidity distributions need to be sorted out.

Concerning NLOJET++ a similar approach like for the other programs has to be set up and thor-
oughly tested in an all-program comparison, for example of event shapes or jet cross-sections in deep-
inelastic scattering. Then, jet cross-sections in hadron-hadron collisions can be derived with NLOJET++.
In addition, the use of PDFLIB will be replaced by LHAPDF [20].

Finally, the work on the implementation of more programs, for example FMNR or further proton–
(anti)proton programs, needs to be followed up.
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Abstract
HZTOOL is a library of Fortran routines used for tuning and validating of
Monte Carlo and analytical models of high energy particle collisions. The
library includes an extensive collection of routines reproducing ep, γp, pp̄ and
γγ data published by the HEP experiments, as well as calculations as they
were performed in the experimental data analyses. During this workshop the
library was further developed to include HERA and TeVatron results relevant
for the studies at the LHC.

1 Introduction
Data from high-energy physics experiments have seen the triumph of the Standard Model both in pre-
cision electroweak measurements and in the verification of QCD to a reasonable degree of precision.
However, a number of aspects of high energy collisions remain poorly understood due to technical dif-
ficulties in the calculation. This is particularly the case for measurements of the hadronic final state in
high energy collisions, where the specific event shapes variables, jet algorithms and kinematic cuts may
be rather complex.

Accurate models of the final state are often needed to design new experiments and to interpret the
data from them. Simulation programs employing fits to existing data address these problems. However,
consistent tuning of the parameters of these programs, and examination of the physics assumptions they
contain, is non-trivial due to the wide variety of colliding beams, regions of phase space, and complex
observables. Comparing a new calculation to a sensible set of relevant data is in practice extremely time
consuming and prone to error.

HZTOOL [1] is created to improve this situation. It is a library of Fortran routines allowing
reproduction of the experimental distributions and easy access to the published data. Basically, each sub-
routine corresponds to a published paper. If supplied with the final states of a set of simulated collisions,
these routines will perform the analysis of the final state exactly as it was performed in the paper, pro-
viding simulated data points which may be compared to the measurement. HZTOOL currently contains
measurements from ep, γp, γγ and pp̄ collisions. Others may easily be added.

While it is designed to be used as simply as possible as a standalone library, HZTOOL is also a
key component of JETWEB [2]. JETWEB is a Web-based facility for tuning and validating Monte Carlo
models. A relational database of reaction data and predictions from different models is accessed via
the Web, enabling a user to find out how well a given model agrees with a range of data and to request
predictions using parameter sets that are not yet in the database.

HZTOOL can also be used together with RUNMC [3], which is an object-oriented frond-end for
Monte Carlo programs incorporating a sophisticated graphical user interface.

The library was initially developed within the workshop “Future Physics at HERA” [4] but has
since expanded to become a more general toolkit. The package was managed by T. Carli for quite
some time and many people have contributed routines and general development to HZTOOL since it first
appeared. Nowadays, HZTOOL and JETWEB are further developed within the CEDAR project [5]. The
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current maintainers are J. Butterworth, H. Jung, E. Nurse and B. Waugh1. It is planned to design a C++
equivalent, in order to provide a native interface to the new C++ Monte Carlo programs, to enable a
straightforward implementation of new HEP data analyses performed in C++.2

2 HZTOOL Usage
Each analysis subroutine books, fills and outputs two sets of histograms: one reproducing the published
data and another one filled by the chosen simulation program. The routine names relate to the publica-
tion. The preferred convention is:
HZHyymmnnn where yymmnnn is the arXiv:hep–ex preprint number.

Alternative naming schemes, used for older routines or when a hep–ex number is not available, are:
HZDyynnn where yynnn is the DESY preprint number.
HZCyynnn where yynnn is the CERN preprint number.
HZFyynnnE where yynnn is the FNAL preprint number.
HZyynnn where yynnn is the DESY preprint number3.

If none of the above number schemes exist, the routine name is generally derived from the journal pub-
lication (e.g. HZPRT154247). Occasionally a single publication contains results taken under more than
one set of beam conditions, in which case there will be a routine for each beam condition, distinguished
by appending a letter to the expected name (e.g. HZC88172A, HZC88172B).

HZTOOL is a library, and the main program, which is usually a Monte Carlo event generator,
must be provided by the user. The code of HZTOOL routines is basically independent of the program
used to simulate the collisions. The Monte Carlo generators currently supported are: ARIADNE [6],
CASCADE [7], HERWIG [8] (including JIMMY [9]), LEPTO [10], PYTHIA [11], PHOJET [12],
QCDINS [13], RAPGAP [14], RIDI [15], and DJANGOH [19]. The production versions of these
programs are all currently written in Fortran. The library can also be accessed within the NLOLIB
framework for running NLO QCD programs [16]. Besides the HZTOOL library it is also necessary to
link in the CERNLIB library routines and possibly PDFLIB [17] or LHAPDF [18]. Examples of the
main programs can be found in the HZSTEER package [20] which provides the executable programs for
JETWEB to submit from its backend.

To ease the implementation of the analysis code, HZTOOL provides the relevant jet finders (the
cluster and cone algorithms with various options), as well as a number of utilities to calculate event shape
variables, to perform Lorentz boosts etc.

3 Recent Developments
Within this workshop, an effort was made to include all results from HERA and other HEP experiments
which can be helpful for tuning of MC models used for event simulations at the LHC. In particular, the
models for multiple interactions and for heavy flavour production were considered.

The publications which may be relevant for the tuning of multiple interaction models and which
are available in HZTOOL are listed in [21]. The names for the corresponding HZTOOL subroutines
are also specified. From this list, the newly written routines are: HZH9505001 (J. M. Butterworth,
B. M. Waugh), HZH9810020 (S. Lausberg, V. Lendermann), HZH0006017 (D. Beneckenstein, V. Len-
dermann) and HZH0302034 (K. Lohwasser, V. Lendermann). The routine HZ95219 was extended by
A. Buniatian to include the results from the corresponding H1 paper which are especially sensitive to
underlying events in the photoproduction of jets. The models of multiple interactions and efforts of their
tuning are reviewed in [22].

1The maintainers can be contacted at hztool@cedar.ac.uk. To receive announcements of new releases, send an e-mail to
majordomo@cedar.ac.uk with subscribe hztool-announce in the body of the e-mail.

2More details may be found at http://hepforge.cedar.ac.uk/rivet.
3This naming should not be used for new routines; the HZD prefix is preferred.
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As for heavy flavour production, a number of HERA measurements of open charm and beauty
production are included in the library [23]. From those, the newly written routines are: HZH0108047
(P. D. Thompson), HZH0312057 (O. Gutsche), HZH0408149 (A. W. Jung). New publications [24] are
to be implemented. The following routines for the TeVatron results [25] were also recently provided:
HZH9905024 (O. Gutsche), HZH0307080 (H. Jung), HZH0412071 (H. Jung, K. Peters). Furthermore a set
of Benchmark cross sections have been defined for easy comparison of different calculations: HZDISCC,
HZDISBB for charm and beauty production in DIS, HZHERAC, HZHERAB for photoproduction of charm and
beauty and HZLHCC, HZLHCBB for charm and beauty production at the LHC [26].
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Abstract
The CEDAR collaboration is developing a set of tools for tuning and validating
theoretical models by comparing the predictions of event generators with data
from particle physics experiments. CEDAR is also constructing resources to
provide access to well defined versions of high-energy physics software and
support for software developers. Here we give an overview of the CEDAR
project and its status and plans.

1 Introduction
Despite the success of the Standard Model in accurately describing a wide range of phenomena in high-
energy particle physics, there are aspects of high-energy collisions where technical difficulties in the
relevant calculations make it hard to attain a good understanding This is particularly true where non-
perturbative QCD is involved, as in the description of hadronic collisions, where the final state is influ-
enced by the parton distribution functions (PDFs) of the colliding beams, by multiple soft interactions
leading to an “underlying event” and by hadronisation of the outoing partons.

These theoretical uncertainties can limit the precision of new measurements, as well as hindering
the planning of future experiments. Building accurate models of hadronic processes is important for
these reasons as well as for the insight they may offer into the fundamental physics involved. However,
the models that are constructed typically have a number of parameters that can be varied, constrained
only by how well the resulting predictions agree with experiment.

Tuning these free parameters and testing the models against experimental data is a difficult task
because the data are so varied, involving different beam particles, different regions of phase space and
complex observables. Changing a single parameter in a model can affect the predictions for different
measurements in very different ways, and tuning to a limited set of data may result in a contradiction
with other data not taken into account.

It is thus important to compare models simultaneously with as wide a range as possible of experi-
mental results, and the aim of CEDAR [1] is to simplify this task.

The rest of this contribution will describe in turn the projects making up CEDAR.

2 HZTool and Rivet
The first requirement is for a library of routines to enable, for each experimental measurement of interest,
a comparable prediction to be produced from any given Monte Carlo generator. This role is currently
filled by the Fortran library HZTool, described in more detail in another contribution to these proceed-
ings [2]. The HZTool library is being maintained by CEDAR, with subroutines for various measurements
contributed by a number of authors within and outside the CEDAR collaboration. A number of HERA
routines were written within this workshop.

Work is underway to build a replacement for HZTool, to be called Rivet (Robust Independent
Validation of Experiment and Theory). This will use an object-oriented design, implemented in C++,
together with standard interfaces (such as HepMC [3] and AIDA [4]) to make the new framework more
flexible and extensible than the Fortran HZTool. For example, it will be easier to incorporate new Monte
Carlo generators into Rivet than into HZTool.
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3 JetWeb
JetWeb [5] provides a web interface to HZTool, along with a relational database of both experimental
data and model predictions generated using HZTool. The core of JetWeb is a set of Java servlets that
manipulate an object model representing data and predictions. A user can use a web form to specify a
model and choice of parameters, and the data they wish to compare to this model. If this model and
parameter set are already in the database, a set of comparison plots and statistics is returned. Otherwise
the user may request a set of Monte Carlo jobs to be run using their specified model, and the results will
be added to the database.

The existing JetWeb database has been frozen, although it can still be searched, while the design
and functionality are improved. JetWeb is being adapted to use the data already stored in HEPDATA
rather than duplicating this in its own database, and to make the addition of further Monte Carlo models
(beyond the currently supported HERWIG [6] and PYTHIA [7]) easier.

4 HEPDATA
HEPDATA [8] is a well established and widely used source of scattering data from HEP experiments.
As part of CEDAR it has been converted from the existing hierarchical structure to a relational database
using MySQL. The next steps in this part of the CEDAR project will provide front ends so that the data
in the relational database can be accessed through a searchable web interface and also directly by JetWeb
and other users.

5 HepML
In order to simplify the transfer of data between different parts of the CEDAR project and other software
frameworks, an XML schema [9] is being developed to specify particle reactions and experimental results
(as provided by HEPDATA) as well as generator programs and parameters.

This schema is separate from the HepML developed within the MCDB project [10], which is
designed primarily as a format for event records. It may be that some parts of the schemas can be unified
later or become parts of a more general schema.

6 HepCode
HepCode [11] aims to provide access to well defined versions of Monte Carlo programs, parton dis-
tribution functions and other high-energy physics calculation programs. Currently it is simply a list of
codes with details for each of the processes calculated, the order of the calculation, the authors and the
programming language used, along with a link to further information where this is available.

HepCode will eventually feature a search facility so that users can find a set of available programs
simply by entering the details of a particular scattering process. It may also be possible to have links
from matching data records in HEPDATA or from papers in bibliographic databases such as SPIRES.

7 HepForge
CEDAR also provides a development environment, HepForge, for authors of HEP software, including
Monte Carlo generators. In addition to the core CEDAR projects (HZTool, HZSteer, JetWeb, HepML)
other projects using HepForge are fastNLO [12], Herwig++ [13], Jimmy [14], KtJet [15], LHAPDF [16],
RunMC [17] and ThePEG [18].

Facilities provided to developers include a code repository (using CVS or Subversion), a bug
tracker (using Trac), a wiki for documentation and communication between project contributors, and
mailing lists for project discussions, queries and announcements.
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RunMC: an object-oriented analysis framework to generate
Monte Carlo events for current and future HEP experiments
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Abstract
RunMC is a C++ object-oriented framework aimed to generate and to analyze
high-energy collisions using Monte Carlo simulations. The package provides
a common interface to different Monte Carlo models using modern physics
libraries developed for the LHC and NLC experiments. Physics calculations
can easily be loaded and saved as external project modules. This simplifies
the development of complicated physics calculations for high-energy physics
in large collaborations.

1 Introduction
Monte Carlo models (MC) written in FORTRAN 77 are widely used in many high-energy physics lab-
oratories worldwide. These models are known to be fast, robust and well tested. However, the main
choice for future high-energy experiments is an object-oriented programming language, either C++ (the
LHC experiments at CERN) or Java (the NLC project). Some steps towards converting the FORTRAN
MC models to the C++ programming language have already been undertaken [1]. However, such models
written in C++ will require a thoughtful verification to insure that their predictions are consistent with the
original FORTRAN-based MC programs, as well as with the physics results obtained in the past. Such
verifications will go over certain time, and a tool which allows to perform such comparisons is urgently
needed.

A program which allows running of both FORTRAN-coded and C++ MC models using a common
C++ programming environment should be valuable. This is important not only for comparisons and
verifications of these MC models. Such a C++ framework can also extend the lifetime of FORTRAN-
based models especially for the LHC, NLC and TEVATRON communities, and can provide compatibility
of most popular MC models with the new software to be used for current and future HEP experiments.

The RunMC package [2] is a common C++ frond-end of Monte Carlo models which provides a
unified approach to generate and analyze very different MC models independent of their native codes.
In this approach, the MC output (typically the HEPEVT record) is converted to C++ classes for further
analysis or graphical representation (histograms). The graphical user interface (GUI) of this program
helps to initialize MC models and histograms, as well as to monitor the event generation.

The RunMC program fully complies with the change in the programming paradigm of data analy-
sis, and meets the requirements of future high-energy experiments. Instead of FORTRAN-based analysis
tools, such as PAW [3] and HBOOK [4], it uses the modern CERN C++ analysis packages, CLHEP [5]
and ROOT [6].

In this respect, the RunMC program is similar to the JetWeb server [7], which also provides the
ability to compare the existing MC models and to confirm the physics assumptions they contain. How-
ever, in contrast to JetWeb, the RunMC program was designed as a stand-alone desktop application.
Therefore, the user has full access to his calculations and to the program itself.
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Fig. 1: The diagram shows the structure of the RunMC program.

The RunMC program also provides an interface to the popular HZTOOL package [8], thus many
physics calculations from HERA, LEP and TEVATRAN can easily be accessed. In addition, within
the RunMC approach, the concept of project modules was introduced (in fact, the HZTOOL package is
one of such modules). A project file, which can contain external calculations, MC tunings, histogram
definitions, etc., can be loaded to RunMC with the same ease as a document can be opened in the
Microsoft Word program. The project files are small and platform independent, therefore, it is fairly
simple to share complicated physics calculations between scientists in large collaborations.

2 Program structure
RunMC consists of a GUI and several RunMC MC programs. There are two implementations of the
RunMC GUI: one is written using the Wide Studio C++ classes [9] and an alternative GUI is based on
Java. Due to complete independence of RunMC GUI from RunMC MC programs, one can run jobs in
the background without any GUI or pop-up window.

The RunMC programs integrate the C++ ROOT and CLHEP packages with native implementa-
tions of MC models. A schematic structure of RunMC is illustrated in Fig. 1. The following MC models
are included to RunMC (version 3.3): PYTHIA 6.2 [10], HERWIG 6.5 [11], ARIADNE 4.12 [12],
LEPTO 6.5 [13], AROMA 2.2 [14], CASCADE 1.2 [15], PHOJET 1.05 [16], RAPGAP 3.1 [17]. There
are several executable RunMC MC programs corresponding to each MC model.

RunMC GUI communicates with the RunMC MC programs using pipe files located in the direc-
tory “$RUNMC/pipes”. Here, “$RUNMC” denotes the installation directory which has to be defined by
the user. All the directories to be discussed below are assumed to be located in this directory.

RUNMC: AN OBJECT-ORIENTED ANALYSIS FRAMEWORK TO GENERATE. . .
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2.1 RunMC GUI
RunMC GUI allows an interaction between the user and RunMC MC programs. At present, two types of
RunMC GUI are available: a user interface based on C++ (can be executed with the command “runmc”)
and that based on Java (the command “jrunmc”). Below we will describe only the C++ RunMC GUI.

The task of RunMC GUI is to generate the output file “project.mc”, where “project” is a user-
defined name of the current calculation. This file contains the most important information for MC run-
ning, such as the type of MC model, the number of output events, the type of colliding particles, their
energies, RunMC output (histograms or ntuples) etc.

RunMC GUI adopts the following strategy to define the histograms: The window “Variables”
contains the names of the variables (with some additional comments) defined for a certain physics project.
The user should select the appropriate variable and copy it to the window “Histograms” by clicking on
the corresponding variable name. If two one-dimensional histograms are defined, a two-dimensional
histogram can be build from these two histograms using RunMC GUI.

The variable names are divided into the three categories: event-based variables (characterizing the
event as whole), single-particle densities (filled for each particle/jet; the variable name starts with “@”)
and two-particle densities (filled for each particle/jet pair; the name starts with “@@”). The histograms
can also be filled in the user-defined subroutine “user-run.cpp”; in this case the naming convention for
the variables discussed above is unnecessary.

During the event generation, the ROOT canvas can display the output histograms (up to eight
in total) with filled events. The output log from RunMC MC is written to “.analmc.log” (a symbolic
link to the “project.log” file). Possible errors are redirected to the file “project.err”, which is constantly
monitored by RunMC GUI.

The ROOT histograms are automatically modified at the end of the fill if they are required to
be normalized to the total number of events or converted to differential cross sections. Note that there
is no need to wait until the end of the current run: once the histogram statistics is sufficient, one can
terminate the run by clicking “Stop” on the GUI window. Histograms should be saved in the ROOT file
“project.root” for further studies. The style of the histograms can further be modified using the ROOT
canvas editor.

2.2 The RunMC MC programs
The RunMC MC programs integrating Monte Carlo models with ROOT C++ classes have the generic
names “analmc.MCname”, where “MCname” denotes the MC name. The main C++ function of RunMC
MC is located in the file “analmc.cpp” (in the directory “main/src”). The C++ code accesses the HEPEVT
common block of a given MC program via a C-like structure. The RunMC MC program receives the
initial parameters via the symbolic link “.analmc.ln” pointing to the file “project.mc”.

Each MC model has its own FORTRAN subroutine “runmcarlo” which provides an interface to
the native MC code. This interface program (in the file “RUNMC-MCname.f”) is located in the directory
“main/mcarlo/MCname”. The task of the subroutine “runmcarlo” is to fill the HEPEVT common block.
In addition, some initial settings are done by accessing a C/C++ structure with the initial parameters
defined in the “project.mc” file. The main function in “analmc.cpp” calls this interface subroutine and
fills the C/C++ structure which represents the complete HEPEVT event record. The output is copied
to the class “HEPLIST” which can be accessed by external calculations. The HEPLIST class consists
of several vectors based on the LorentzVector vector class (from the CLHEP library) which represents
four-momentum of a particle (or a jet). The definition of the HEPLIST class, as well as other include
files, can be found in the “main/inc” directory. Note that the user still can access more elementary event
records (such as FORTRAN HEPEVT common block) which can be used to transform them to other
event classes and physics calculations.

S. CHEKANOV
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There are several physics packages available inside RunMC MC to transform the original four-
momentum vector of particles/jets to the required observable:

– the transformations provided by the physics vector class “LorentzVector” from CLHEP can be
used, since a particle or a jet is represented as a general four-vector based on this class;

– the event-shape calculations are available using the package developed by M. Iwasaki [18];
– the longitudinally-invariant kT algorithm as implemented in C++ [19] can be used for the jet

reconstruction. In addition to this package, the JADE and Durham jet algorithms are implemented
according to M. Iwasaki [18];

– the Breit frame calculations were implemented for ep deep inelastic scattering.

The physics packages and their documentation are located in the directory “main/physics”.

3 User calculations
For a new physics calculation, the directory “proj” should be modified. This user directory can contain
external calculations, steering cards for MC initializations, as well as the standard RunMC functions
which are necessary to initialize and fill the histograms.

The user directory should always contain the file “project.mc” created by RunMC GUI. This file
can be edited manually without the RunMC GUI program using any text editor. On Linux/Unix, one can
load this file to RunMC GUI by executing the command “runmc project.mc” from the shell prompt (or
using the option “Projects→read MC” of RunMC GUI).

The directory “proj” can contain steering files “MCname.cards” to redefine initial MC parameters.
Such files can be created via RunMC GUI (“MC settings” option). For more flexibility, the MC ini-
tialization parameters can also be overwritten by FORTRAN-coded subroutines located in the directory
“proj/ini”. If this is not done, the default MC parameters will be selected according to the RunMC option.

To define histograms, user-defined variables should be calculated in the file “proj/user afill.cpp”.
The output of this function is a pointer. The output variable name should always be associated with this
pointer. The variable names should be specified in the file “user-name.txt”. It includes the variable names
to the list “Variables” accessed by RunMC GUI. Finally, to compile the source codes and to rebuild all
RunMC MC programs to take into account changes made in the project source files, one should type
“make” in the “proj” directory. All MC programs will be recompiled and RunMC GUI will be updated
with new histograms. Then, the command “runmc” (or “jrunmc”) should be executed from the directory
“proj” to start RunMC GUI. The main advantage of this approach is that once a necessary variable is
defined, new histogram definitions do not require the MC recompilation.

RunMC histograms can also be filled using the conventional method, i.e. in the function lo-
cated in “user-run.cpp”. In this case, the initialization of histograms is not required, as long as the file
“project.mc” defines which histograms should be filled and what presentation style should be used to fill
the histograms. The histograms can be initialized in the file “user-init.cpp” using the standard ROOT
procedure.

4 Physics calculations as external RMC projects
In order to share complicated analysis calculations or to store them for future use, the directory “proj” can
be packed into an external RMC file with the extention “rmc”. For example, “project.rmc” is the RMC
file which has the user-defined name “project”. The “proj” directory inside of it has a file “project.mc”
with RunMC GUI settings, user-defined external functions, libraries, make files MC steering files, etc.

RUNMC: AN OBJECT-ORIENTED ANALYSIS FRAMEWORK TO GENERATE. . .
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RunMC GUI can automatically load and recompile such project RMC files (see details in [2]).
The user can also save his/her calculations into a RMC file for future analysis. As it was mentioned,
the project files are compact and platform independent, therefore, it is fairly simple to share physics
calculations between the users, as long as the RunMC package is installed.

At present, several RunMC project files are available on the Web [2] (they are also included in the
directory “archive” of RunMC):

– the default project. Only pre-installed variables can be included in the calculations.
– HERA kinematic variables (Q2, x, etc.);
– jets at HERA and LHC using the longitudinally-invariant kT algorithm in the Breit frame. In

addition, the ratio of jet cross sections at the parton and hadron levels are calculated (the so-called
hadronisation corrections);

– D∗ cross sections in ep collisions at HERA;
– cross sections for strange-particle production in ep collisions at HERA;
– the HZTOOL package [8];
– the event-shape variables in e+e− at NLC energies;
– several examples of how to visualize tracks and kT jets in 3D for a single MC event (e+e−, ep, pp

collisions).

The RMC project files discussed above only illustrate how to set up and to develop new physics
calculations in the RunMC framework. For practical applications, these examples should be modified.

5 RunMC ROOT tree analyzer
In addition to the standard functionality of the MC event simulation, RunMC GUI can also use ROOT
trees as the input for physics calculations.

The ROOT tree can be generated by selecting the option “HEPEVT” or “RUNMC”, in addition or
instead of the ROOT histogram option. Then, the MC events should be generated as usual, but this time a
ROOT tree with the extension “.rtup” or “.htup” will be created. Then, RunMC can run over this ROOT
tree if, instead of the MC model, the option “RUNMC” or “HEPEVT” is selected. Several ROOT trees
can automatically be included in the analysis, as long as they are in the same directory. The analysis of
the ROOT trees is very similar to the standard run over MC events. External RMC files can be used to
include new calculations, variables and histograms.

The main advantage of the RunMC ROOT tree analyzer is that physics calculations can be vali-
dated significantly faster than when RunMC is used to generate events and to fill histograms at the same
time. In case of the ROOT trees, RunMC can fill histograms by a factor of ∼10–15 faster, thus the RMC
project files can be validated and analyzed more efficiently.

With this additional functionality, the RunMC program can also be used to analyze experimental
data if the event record is converted to the appropriate ROOT tree. The data analysis can be performed
using exactly the same RMC project files as for the usual MC simulation runs.

S. CHEKANOV
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Abstract
This paper describes the first proof-of-concept version of a C++ program de-
signed for peak searches in invariant-mass distributions. The program can be
useful for searches of new states as well as for the reconstruction of known
resonances.

Presently, there is a considerable progress in understanding the rich spectrum of hadron reso-
nances. However, even in case of known baryonic resonances, there are still many open questions. The
Particle Data Group (PDG) quotes more than 100 baryonic states, but only half of them are reasonably
well established. Recently, the revitalized interest to baryon spectroscopy was triggered by observation of
narrow peaks in the K±n and K0

Sp invariant-mass distributions which can be interpreted as pentaquarks.
There is also longstanding interest to other exotic multiquark states, glueballs, hybrids, baryonia, etc.
The HERA experiments have active program for searching such states [1]. At the LHC this physics
program will continue.

In hadron spectroscopy, searches for new resonances and measurements of known states are based
on the reconstruction of invariant-mass distributions of two or more tracks in order to find the rest mass
of the originally decaying particle. The usual procedure for such studies is to assign certain masses
to tracks, and then to combine their four-momenta to form the invariant-mass distributions. From the
observed peaks, one can determine resonance masses, widths and cross sections.

Obviously, a particle identification is highly desirable for any experiment in order to reduce com-
binatorial background. Without the ability to identify tracks, the combinatorial background rises as
∼ 0.5n2, where n is the number of produced particles used in the searches. Thus high-energy ex-
periments have to deal with a significant background for searches in fully inclusive events. For the
reconstruction of three- and four-body decays, the combinatorial background is even higher than for the
two-body decays.

Particle identification can be achieved using various approaches, such as the energy loss per unit
length (dE/dx), silicon-strip detectors, Cherenkov counters etc.. In many cases, the particle identifi-
cation cannot be perfect. For example, when the dE/dx method is used for pentaquark searches, it is
difficult to obtain a high-purity sample of kaons or protons for tracks with large momenta (p > 1 GeV)
due to significant overlap of the dE/dx bands for different particle species in this momentum range. In
this case, several mass assumptions for invariant-mass distributions are needed to be checked in order to
exclude peaks due to possible misidentification.

Searches for new resonances using various mass assumptions remain to be a tedious task since
no much progress has been made so far to develop a tool which can automate this procedure. For ex-
ample, the reconstruction of two-, three-, four-body decays involving only three mass assumptions leads
to 36 possible non-identical invariant-mass distributions (6 distributions for two-body decays, 10 - for
three-particle decays and 20 - for four-particle decays). All these invariant-mass distributions should
be reconstructed, analyzed and possible reflections from known PDG states, when different mass as-
sumptions are used, should be disregarded. Obviously, this time consuming work can be simplified and
automated.

The program called ”SBumps”, which is still at the early stage of the development, attempts to
accomplish this task. It rather represents the first proof-of-concept version of a program which helps to
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perform automatic searches of peaks in invariant-mass distributions. To perform the reconstruction of
invariant-mass distributions, the user should specify:

– the event record, i.e. a list of tracks and (optionally) the probabilities that tracks belong to certain
particle species. Such probabilities can be obtained using various particle-identification technics;

– the names of particle species used during the mass assignments;
– the statistical significance of expected peaks;
– instrumental invariant-mass resolution;
– how many tracks should be combined to the invariant-mass distributions.

Once the initial conditions are specified, the program runs over the event list and reconstructs all
possible invariant-mass distributions with the mass assumptions as specified by the user. SBumps can
reconstruct at the same time 2−, 3− and 4− body decays in different combinations. At the end of the
run, the program saves all the created invariant-mass distributions to the ROOT histograms [2].

At the second stage, the program analyses the created distributions and attempts to find statistically
significant peaks. SBumps uses the build-in ROOT fast peak finder (from the TSpectrum class), which
uses a fast deconvolution method [3] based on a Markov approach for peak searching in presence of a
background and statistical noise. This algorithm was mainly developed for narrow, high-amplitude peaks
which are characteristic for γ-ray physics. Therefore, this algorithm is not completely appropriate for
peak searches in the invariant-mass spectra without tunings of the initial parameters of this algorithm. In
case of the SBumps package, the deconvolution techniques is only used to identify the so-called seeds,
i.e. bins with positions of possible peaks above a smooth background. The number of seeds can be rather
large, and not all of them correspond to statistically significant peaks. At this stage, several adjustable
parameters are available, such as the resolution of neighboring peaks, the peak sensitivity and the peak
thresholds. Such parameters can be set using the steering file before each run.

Next, the program evaluates each seed by calculating the statistical significance, N(S)/∆N ,
where ∆N =

√
N(B) +N(S), withN(S)(N(B)) being the number of the signal (background) events.

The calculation was done by comparing the values at the seed positions with the background level, which
is determined from the neighboring bins. Then the peaks, which have the statistical significance above
the level specified by the user, are considered for further analysis. This part of the program can be further
improved, introducing more complicated algorithms. For example, sufficiently broad resonances might
be overlooked by the present prescription.

The two-step procedure described above simplifies the peak search since the user normally does
not need to deal with tunings of the initial parameters for the fast deconvolution method. At the same
time, the method is sufficiently fast and can possibly be extended by introducing other algorithms to
identify the peaks. For example, algorithms based on a fitting procedure can also be used; in this case,
the seed positions can be used as the initial parameters of the fit functions.

At the third stage, the program attempts to identify the found peaks by comparing them with the
masses of known PDG states. For this, a look-up table containing the information on established PDG
resonances is used. Since the errors on the reconstructed peaks and the errors on the masses of known
resonances taken from the PDG look-up table are known, the program matches the peaks using a simple
criteria: | L | /∆L < S, where S is a free parameter given by the user, L is the distance between
the PDG mass and the peak position and ∆L is the error on the reconstructed peak position combined
with the error on the mass of known PDG resonances. For this matching procedure, the information on
charge of decaying resonance is properly taken into account. In future, the information on specific decay
channel can also be taken into account in order to reduce misidentification in the matching procedure.

Figure 1 shows the output of the SBumps program for events generated with PYTHIA Monte
Carlo model. This example shows one histogram for two-body decays with two automatically identified
peaks corresponding to known states. The required statistical significance for the final peaks was 4σ.

A C++ FRAMEWORK FOR AUTOMATIC SEARCH AND IDENTIFICATION OF RESONANCES
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Fig. 1: The two-particle invariant-mass distribution calculated using the events generated with the PYTHIA Monte
Carlo model (pp collisions at 1.4 TeV), when two mass hypothesis are used (K± and π mesons). The blue
triangle symbols show the seeds used for the calculations of statistical significance. The seeds were found by
using the fast deconvolution method. Most of the seed peaks were disregarded after the final calculation of the
statistical significance. The program correctly identifies the known PDG states, K∗ and D0, after comparing the
reconstructed peak positions with the PDG look-up table.

This example shows that the program can easily find and identify rather broad resonances (K ∗), as well
as narrow peaks which do not have high statistical significance.

The proof-of-concept version of the SBumps program is available as a loadable RMC file of the
RunMC analysis framework [4]. After loading the “sbumps.rmc” module, RunMC first creates a ROOT
tree with Monte Carlo events. The initial conditions are given in the file “sbumps.cards”. The executable
file “sbumps.exe” can be used to run over the events. At the end of the calculations, the ROOT browser
should display the reconstructed histograms with invariant-mass distributions. The peaks which have the
statistical significance above that specified by the user should be labeled.
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