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Abstract. A novel approach to study electroweak physics
at one-loop level in generic SU(2),, x U(1)y theories is in-
troduced. It separates the [-loop corrections into two pieces:
process specific ones from vertex and box contributions, and
universal ones from contributions to the gauge boson prop-
agators. The latter are parametrized in terms of four effec-
tive form factors €2(¢%), 3%(¢%), g%(¢*) and g% (¢*) corre-
sponding to the vy, vZ, ZZ and WW propagators. Under
the assumption that only the Standard Model contributes to
the process specific corrections, the magnitudes of the four
form factors are determined at ¢*> = 0 and at ¢> = m%
by fitting to all available precision experiments. These val-
ues are then compared systematically with predictions of
SU2)L x U(1)y theories. In all fits as(m ;) and &(m?) are
treated as external parameters in order to keep the interpreta-
tion as flexible as possible. The treatment of the electroweak
data is presented in detail together with the relevant theoreti-
cal formulae used to interpret the data. No deviation from the
Standard Model has been identified. Ranges of the top quark
and Higgs boson masses are derived as functions of as(m )
and o’z(m2Z). Also discussed are consequences of the recent
precision measurement of the left-right asymmetry at SLC
as well as the impact of a top quark mass and an improved
W mass measurement.

1 Introduction

The Standard Model (SM) of the electroweak interactions
has been with us for nearly two decades. Despite the gen-
eral belief that it should be an effective theory valid at ener-
gies below the Fermi scale, so far no unambiguous sign of
physics beyond the SM has been found nor any clue to the
origin of the underlying gauge symmetry breaking mecha-
nism. On the other hand, the accuracy of the experiments
testing the electroweak theory has improved significantly in
the past decade both in low energy neutral current exper-
iments and in high energy collider experiments on the W
and Z boson properties. The precision of these experiments
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has reached the level, where meaningful searches for new
physics through the investigation of quantum effects can be
carried out.

The effects may be significant, if there are new particles
with masses as light as weak bosons, or if many new par-
ticles contribute constructively, or if there exist new strong
interactions among them. Even in the absence of such a sig-
nal, constraints on certain new physics possibilities can be
derived and tightened in future precision experiments. With
this motivation to study electroweak radiative corrections
several groups have made efforts towards comprehensive
and systematic analyses [1-18].

In this report a novel approach to confront electroweak
data and theory is presented with the aim of a systematic
look for new physics effects. In the following, the conditions
imposed on the electroweak analysis scheme are outlined.

Since it is the aim to search for new physics effects in the
electroweak precision data, a model-independent framework
to analyse the data is required. As both the experimental ac-
curacy and the new physics effects looked for are of similar
size as the SM radiative effects, it is essential to take ac-
count of the SM radiative effects as accurately as possible.
For testing grand unification of the three gauge couplings
[19-23] the fits should be studied quantitatively as a func-
tion of ;. Furthermore, the level of precision accessible in
the near future is such that the present uncertainty in the
hadronic vacuum polarization contribution to the running of
the effective QED coupling constant a(q®) severely limits
the ability to study new physics through quantum eftects. In
order to assess the effects of possible future improvements in
the e*e~ hadroproduction experiments at low and interme-
diate energies, the consequences of varying a(m?%) should
be examined quantitatively. During the course of this study,
sometimes the published results of earlier theoretical analysis
could not be reproduced easily. This happened in most cases
because not all the details of the assumptions and approxi-
mations underlying the analysis have been clearly stated in
the literature. The quantum effects studied are so sensitive
to details of the exact treatment of higher order effects and
to uncertainties in the analysis that equally sensible looking
assumptions often lead to a significant numerical difference.
We therefore make every effort to render the report self-
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contained so that ali our results can be reproduced unam-
biguously.

In order to comply with all the above requirements,
our comprehensive analysis of electroweak precision exper-
iments is performed according to the following steps, by
systematically strengthening the underlying theoretical as-
sumptions.

1. All electroweak data are expressed in terms of model-
independent parameters.

For the choice of model-independent parameters, we basi-
cally follow the strategy of [24] for low energy neutral cur-
rent experiments, and that of the LEP electroweak working
group [3] for the Z parameters. In addition, the W boson
mass, the fine structure constant o and the Fermi coupling
constant G are used as inputs of the analysis. Some of
these parameters are directly related to experimental observ-
ables up to corrections due to known physics, such as the
external QED bremsstrahlung effects and the quark-parton
model, and uncertainties in these correction factors are in-
cluded as part of the errors of the experimentally measured
parameters.

2. The model-independent parameters are then expressed in
terms of the pole positions of the W and Z propaga-
tors, and the .S-matrix elements of four external fermions,
quarks or leptons, which are approximated as products of
two external standard V' :+ A currents and the scalar tran-
sition form factors.

Observables in all electroweak precision measurements per-
formed so far can be expressed in terms of S-matrix elements
for which the external quark and lepton masses are negli-
gible compared to the weak boson masses. To an excellent
approximation, chirality-flip terms in the loop amplitudes
can be neglected and the relevant S-matrix elements can
be expressed in terms of the scalar product of the standard
V £ A currents multiplied by transition form factors depend-
ing on the flavors and chiralities of the currents as well as
the momentum transfer of the process under consideration.
External QCD and QED corrections can hence be applied
exactly as in the SM, and electroweak models can be con-
fronted with experiment, once the transition form factors are
determined in a particular model. The dependence of the fit
on the QCD parameter o and quark masses is taken into ac-
count by introducing appropriate external parameters. Up to
this stage, our analysis is quite general, as the formulae are
valid for any electroweak model respecting the flavor and
chirality conservation laws of the SM, that is, for all new
physics contributions which can interfere with the leading
SM amplitudes.

Although one may attempt to constrain these model-
independent transition form factors directly by experiment,
we find it impractical, since the number of independent tran-
sition form factors exceeds by far the effective number of
degrees of freedom provided by precision measurements.
Hence, we perform the quantitative comparison of data with
theory in a more restricted class of models which are mini-
mal extensions from the SM, i.e. those models which respect
the SU(2). x U(1)y gauge symmetry broken spontaneously
down to U(1)gm.

3. The transition form factors are expanded perturbatively
in SU(2)L x U(1)y gauge couplings, and radiative effects
are classified either as the universal gauge boson prop-
agator corrections or as the process specific vertex and
box corrections. The universal propagator correction fac-
tors are then parameterized by four charge form factors,
eX(q?), §(¢%), §5(¢% and §Z,(¢*), corresponding to the
¥v, ¥Z, ZZ and WW propagator degrees of freedom.

The restriction to the electroweak gauge group SUQ) »U(Dy
implies at the tree level that all fermions, quarks and lep-
tons, couple to the electroweak gauge bosons universally
with the same coupling constant as long as they have com-
mon SU2). x U(1)y quantum numbers. This universality
of the gauge boson coupling to quarks and leptons can in
general be violated at the quantum level, because the gauge
symmetry breaks spontaneously down to U(1)gm. It has been
widely recognized, however, that this universality of the cou-
plings holds true even at one-loop level in a wider class of
models where new particles affect the precision experiments
only via their effects on the electroweak gauge boson prop-
agators [1-10]. This class of new physics effects is often
called oblique [1, 4] or propagator [7] corrections, or those
satisfying generalized universality [10]. This concept of uni-
versality can be generalized to certain vertex corrections with
non-standard weak boson interactions [11]. It is also often
useful in theories with non-standard vertex and box correc-
tions, such as the supersymmetric SM (SUSY-SM), since
the propagator corrections can be larger than the vertex/box
ones: propagator corrections can be significant either be-
cause of a large multiplicity of contributing particles or by
the presence of a relatively light new particle.

When confronting the electroweak theory with experi-
ment, we adopt this distinction between new physics con-
tributions to the gauge boson propagators and those to the
rest, where we allow the most general contributions in the
former, whereas we consider only the SM contributions to
the latter (vertex and box corrections).

4. By assuming that the well-known SM contributions domi-
nate the process specific vertex and box corrections, apart
from the Zbyby vertex for which new physics contribu-
tions are allowed, we determine from precision experi-
ments the four universal charge form factors at the typical
momentum transfer scales, ¢ = 0 and m%.

The new physics contributions may either prevent our ability
to fit the experimental data within our approach, or lead to
non-standard values of the fitted four charge form factors and
the Zb, b; vertex form factor, Sb(qz). At this stage, the whole
body of electroweak precision data can be expressed in terms
of the two weak boson masses my;, and m, and these five
form factors, that is, the four universal charge form factors
and 6p(q*). Although the form factors could be determined
at any point on the momentum scale ¢, they are actually
measured with adequate precision only at two specific ¢
ranges, namely all four charge form factors at ¢> = 0 or
¢ < m%, while 3%(¢?), §%(¢*) and &y(¢?) at ¢* = m%.
Hence, there are just 9 electroweak parameters measured
accurately enough to be used for testing theories: my;, and
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Table 1. Universal electroweak parameters of the spontaneously broken generic SU(2);, x U(1)y theory. Column 2 lists the 10 universal parameters, the
masses of the weak bosons and the 4 charge form factors at two ¢ scales, 0 and mZZ. Column 3 contains three precisely measured quantities (the fine
structure constant ¢, the Fermi coupling constant G = and the Z boson mass m z) together with their relation to the universal charge form factors. The
factor 56‘ is explained in the text: see (2.27). The last column lists those parameters which are used in fits. The ‘star’ marks parameters for which no direct

experimental information is available.

Electroweak Universal Precisely known Fit
propagators parameters parameters parameters
7 W ¥ £(0) &(m}) o = eX(0)/4r -
Y W@ Z §%(0) $*(m3) §$°(0) §*(mj)
ZwW@wW Z | mz g3(0) gh(m}) mz 97(0) g3(m%)
W @ W | mw g3 (0) gl (m3) | 4V3Gr = T (1 4 60) | gh(0)  «

Table 2. Three types of fits are considered. For each sector the free parameters are listed. External parameters in the fits in addition to the precisely known fine
structure constant v, the Fermi coupling constant G g and the Z boson mass 1., are listed separately. The quantity 8, is defined as 8o = 1/ d(mzz)— 128.72

(2.31). The parameters S, T, U are defined in (2.33) and &, in (2.22).

Experimental inputs 6-parameter fit 4-parameter fit 2-parameter fit
o, Gp, my, (input) (input) (input)
low energy neutral currents F0)) §27(0) 1 S T | b me my | ba
Z parameters §(m%) gimy) &mLy | as |S T (M%) | b s | My my | o s
My, i (0) | S T U | b my mg | ba
___ _Dumber of fit parameters | 6 ... N 4o 2
number of external parameters ) O [ R B | 277

my, €40), §%(0), §%(0) and §5y (0), 5%(m3), g3 (m%) and

Apart from the vertex form factor Sb(mzz) the remain-
ing 8 parameters characterise the universal propagator cor-
rections. On the experimental side, the three quantities o,
Gr and mj are measured so accurately that it is justifi-
able to treat them as constants: o = 1/137.0359895 and
Gr = 1.16639 x 1075GeV~? from the PDG listing [25],
and m, = 91.187 GeV from the LEP results [26]. Among
the 8 universal parameters above, 2(0) = 47c and m, are
fixed immediately, while G fixes the ratio g%, (0)/m}y,
once we assume the SM dominance of the vertex and box
corrections (8¢ ) to the muon decay lifetime. Since the gauge
boson properties are fixed at tree level by only three param-
eters in general models with the SU(2) x U(1) symmetry
broken by a vacuum expectation value, the remaining 5 uni-
versal parameters serve to test the theory at the quantum
level (see Table 1). We therefore first determine from pre-
cision experiments the 5 parameters, 5%(0), §5(0), g3, (0),
§2(m%) and g%(m%), together with &,(m%), and then con-
front their values with various theoretical predictions.

In the fit to the Z boson parameters the strong coupling
constant as(m ) is treated as external parameter which can
be varied within certain limits. In this way the analysis re-
mains transparent and easy to update. The fitted electroweak
parameters 32(m%), §5(m%) and 62(m?%) are thus presented
as parametrizations in « (see Table 2).

When the new physics scale is significantly higher than
the scale (<m%) of precision measurements, new physics
contributions to the running of the charge form factors can
be neglected.

5. By assuming further that the running of the charge form
factors between ¢? = 0 and ¢* = m?, are governed only

by SM physics, three universal parameters sensitive to

radiative effects can be determined. We adopt a modified
version of the S, T', U parameters of {4] by including the
SM radiative effects as well as new physics contributions.

Among the 5 universal parameters, the values of 52(0)/a
and §%(0) can then be calculated from 5%(m%)/a(m%) and
35(m%,), respectively, using SM physics only. There are then
3 remaining universal free parameters which correspond to
the parameters .S, T" and U of [4], €, €, and €3 of [7], or the
other related triplets of parameters in [5]. When the scale of
new physics that couples to gauge boson propagators is near
to the weak boson masses, its signal can be identified as an
anomalous running of the charge form factors. This point
has been stressed in [12] in connection with the possible
existence of light SUSY particles. It has also been pointed
out that when new physics effects to the electroweak gauge
boson sector are parametrized by the four dimension-six op-
erators of [10], there occurs anomalous running of the charge
form factors [11]. The triplet parametrizations are then no
longer sufficient to account for new physics degrees of free-
dom, and all 5 parameters in Table 1 should be regarded
as free. Several alternative approaches to the same problem
have been proposed in [12, 14, 18].

Note that in order to obtain the charge form factors from
the three known parameters o, Gp, m and the radiative
parameters S, T and U that are calculable in a given model,
the effective QED coupling at the Z mass scale, a(m%) is
needed. Its value is calculable from « in the SM but suffers
from uncertainty in the hadronic vacuum polarization con-
tribution [27-29]. The effect of this uncertainty on the final
results turns out to be non-negligible. In order to gauge the
effects due to this uncertainty quantitatively, we introduce
6o = 1 /d(mzz) — 128.72 as external parameter and allow
it to vary in the fit (see Table 2). It is then straightforward
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to examine the effects of shifts in the &(m?%) value and the
impact of future improvements in its measurement.

In the minimal SM, the three universal parameters S, T',
U and the Zb, b, vertex form factor 8,(m%) depend on just
two parameters: m; and my,.

6. Finally, by assuming that no new physics contributes sig-
nificantly to electroweak precision experiments, we can
express all the radiative effects in terms of the two pa-
rameters of the minimal SM, m; and m ;. The x? curves
of the global fit are shown as a function of these two
parameters, for several values of a;(m ) and d(mZZ).

The preferred range of m, 1s presented as a function of my,
Qs 84, that of my; as a function of my, a;, 84, that of o,
as a function of my, my, 6., and that of §, as a function
of m;, my, «as. The chosen value for the parameter 8,
is essential, since it is not well constrained by the present
precision measurements alone.

A clear advantage of this approach is that we can test
the electroweak theory at three qualitatively distinct levels.
If we cannot fit all the data at a given ¢ with common form
factor values, we should either look for new physics affect-
ing the relevant vertex/box corrections significantly or else
we should introduce new tree level interactions such as those
induced by an exchange of a new heavy boson, or from new
strong interactions that bind common constituents of quarks
and leptons. If the "universality’ in terms of the above four
charge form factors holds, but their ¢?-dependence does not
agree with the expectations of the Standard Model, we may
anticipate a new physics scale very near to the present ex-
perimental limit [12], or effective higher dimensional in-
teractions among the gauge bosons [10, 11]. New physics
contributions which decouple at low energies can thus be
identified by their anomalous running of the charge form
factors. If the running of the form factors is found to be
consistent with the SM, then our approach reduces to the
standard three parameter analyses [4, 5, 7], or those with
three plus one parameter [12, 14] when including the Zb; b,
vertex parameter &,(m?%) as well. Deviation from the SM is
still possible, since the SM has only two relevant free pa-
rameters, m; and my. In this case sensitivity to those new
physics contributions which do not decouple at low energies
remains.

As emphasized at the beginning of this section, we
present at all stages of our quantitative analysis the best-
fit values of the model parameters, including a parametriza-
tion of the x? goodness of the fit around its minimum as
functions of the external parameters as = ag(mgz)yg and
8o = 1/a(m%) — 128.72 =~ (1/&(m%) — 1/hadrons + 3.88.
One can examine consequences of possible future improve-
ments in the measurement of «, [30] and those of hadronic
contribution to é, by adding to the quoted x? function terms
of the form [(as — (as))/(Ac))* and [(6 — (64 ))/ (A8

The paper is organized as follows. In Sect. 2, we present
our formalism in detail. The helicity amplitudes are stated
for general four-fermion processes in terms of the univer-
sal charge form factors and process-dependent vertex and
box corrections. Definitions of the form factors and the S,
T, U parameters are given and their SM values are shown.
Section 3 contains theoretical formulae for the electroweak

observables expressed in terms of the helicity amplitudes of
Sect. 2, with QCD/QED corrections. Numerical predictions
are also given for wide ranges of the form factor values, and
also in the minimal SM. In Sect.4, we present our model-
independent parametrizations of all experimental data and,
confront them with our theoretical predictions. The universal
charge form factors and 6b(m22) are determined by assum-
ing SM dominance in the remaining vertex and box correc-
tions. Section 5 presents a systematic analysis of the elec-
troweak data by gradually tightening the theoretical assump-
tions. First the running of the charge form factors §%(¢*) and
§%(g%) is tested, then the 4-parameter (5,7, U and &,(m%))
fit to all electroweak data is performed by assuming SM run-
ning of the charge form factors. Finally, constraints on m;
and m; are discussed in the SM fit. The total x? of the SM
is parametrized in terms of m,;, my, a, and 6,. In Sect. 6,
consequences of the new precision measurement of the left-
right asymmetry [31] and the impact of a top quark mass
measurement are considered. Section 7 summarizes our ob-
servations. Details of the theoretical formulae used are col-
lected in the appendices. In appendix A, we give all the SM
radiative correction terms completely at one-loop level, and
partly at two-loop level for O(aa;,) terms. They are classi-
fied into three parts, the propagator corrections, the vertex
corrections and the box corrections. In appendix B, we dis-
cuss the renormalization group improvement of the charge
form factors and hadronic contributions to the gauge boson
propagators. Appendix C gives the complete analytical for-
mulae for the S, T, U parameters and the Zby by, vertex form
factor 5b(m2Z) in the SM. Here all the known two-loop level
corrections are included. We also give convenient approxi-
mations to the exact formulae. Appendix D provides explicit
expressions for the A, B, C, D functions [32] that are used
to express all the one-loop correction factors.

2 Basic formalism

2.1 S-matrix elements, weak boson masses, and charge form
Jactors

All the precision experiments sensitive to electroweak physics
at one-loop level so far are concerned with processes involv-
ing external fermions, that is, leptons or quarks (excluding
top quarks), whose masses can safely be neglected in the cor-
rection terms as compared to the weak boson masses. There
are the Z boson properties as measured at LEP and SL.C, the
neutral current (IVC') processes at low energies (< m ), the
measurements of charged current {CC)) processes at low en-
ergies and those of the W mass at pp colliders. The relevant
observables in these processes are then expressed in terms
of the S-matrix elements of four external fermions which
form a scalar product of two chirality conserving currents.
All the information on electroweak physics is contained in
the scalar amplitudes which multiply these current-current
products.

For example, consider the S-matrix element responsible
for the generic 4-fermion NC' process ij — ij (or any one
of its crossed channels). This includes e*e™ — ff as well
as v,q — v,q. The matrix element has the form



where J/* and J}* denote currents without coupling factors,
that is, J! = ¢ py* Paps for i = f,, where P, = (1+ays)/2
with a = =1 are the chiral projectors.! All radiative effects
interfering with the tree-level SM amplitudes can be cast
into the above form as long as terms of order m%/m7 in the
one-loop amplitudes are neglected (/¢ denoting the external
fermion mass). The one-loop corrections then appear in the
scalar amplitudes M;; which depend on flavor and chirality
of the currents and on the invariant momentum transfers s
and ¢ of the process.

In neutral current amplitudes, the photonic corrections
attached only to the external fermion lines are U(1) gauge
invariant by themselves [3]. Therefore, finite and gauge in-
variant amplitudes can be obtained by excluding all the ex-
ternal photonic corrections. We find the following closed
form for the generic neutral current amplitude M;; of (2.1)
at one-loop order (see details in Appendix A):

MNC = % {éz(s) +&(If+17)(s) ~ ié2Aw(8)]

To(s)

73(8)}

S

+2[(Quly) 2% + (1))

1

s — mZ + zs 0(3)
o (1= Q) (1 - )
x| 329+ 35 (I + 1Y) () — 9% Az (s)]
+(Ii — Qi) 5% [13j (@T + T )(s) + TY(s)
GOREVWIO)]

(s
+(hy = Qi8%) 35 | 1u(@Th + Ii)(5) + Iits)
(&

+

—Qi(5%(s) — 8% + iA'yZ(s))] }

+BJI%(s,1). (2.2)

Here s is the momentum transfer of the current J, and
t is the momentum transfer between the fermions ¢ and j.
The hatted couplings & = §5 = §, 3¢ and all the ultraviolet
singular loop functions are renormalized in the MS scheme,
and hence they depend either implicitly or explicitly on the
unit-of-mass p. Three of the four charge form factors of Ta-
ble 1, &2(s), 5%(s) and g%(s), appear in the NC amplitudes:

() = éz[ |- Reﬁ}”w(qﬁ] (2.32)
2 = [ 145 Re T (g )] , (2.3b)
@ = 93 [ 1 - Re T3, 5@ (23¢)

Imaginary parts of the propagator correction factors denoted
by Ay, (s), Ayz(s) and Azz(s) are defined as follows:

! We use the chirality index o = +1 for right-handedness and ¢ = —1
for left-handedness throughout the paper; e.g., P,; = Py = Prand P_; =
P_ = Py, for the chiral projectors, fr = fr and f_ = fp for chiral
fermions
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Avy(@) = Im T (), (2.42)
~~n —vZ
A,y z(¢) = $¢ImTI 1 (D), (2.4b)
—=ZZ
—2z7 Im I (m5
Agala) = T 5" — L2, (24¢)
VA4

The vertex functions I'{~(s) and the box functions By, JACH)
are process specific. The SM contributions to all the two-,
three-, and four-point functions in (2.2) are calculated in the
't Hooft-Feynman gauge. Their explicit forms are found in
appendix A.

The residues of the - and Z-poles are separately u-
independent and gauge invariant, and therefore physical ob-
servables. For q2 = 0, the vanishing of the vertex functions

rf~o=0, Ti"©0)=o, (2.5)

is ensured for all f, by the Abelian and non-Abelian parts
of the Ward identities, respectively. The universal residue of
the photon pole gives the square of the unit electric charge
&2(0) = 4ra.

Likewise, the charged current (CC) process 15 — i'j’
can be expressed by
1

T
s—mi, + zs—W—H(s)

x{ (o) + 5 [T+ T ()~ idww )] }
+B{%(s,1), (2.6)

cC _
M§C =

with an appropriate CKM factor V;; V), accounting for
quark family mixing. The W propagator corrections appear
in the charge form factor 3, (s) and in the imaginary part
Aww(s):

Giw@) =g [ 1 - Rell 7 (g )] @7)
TT 2
Aww(e) = ImITo () - 51“—1“—2(”@ . 238)
My

Factorization of the external photonic corrections does not
hold for the charged current processes, and hence all the one-
loop correction terms are included in (2.6). Explicit forms of

the SM contributions to the propagator function i T (q )
are found in Appendix A.

The gauge boson two-point functions appearing in (2.3),
(2.4), (2.7) and (2.8) are defined as follows:

04 )—HT (mv)
¢ —mi

where m.y, is the physical mass of the gauge boson V (that

is, my,, my and m. with m, = 0) and the subscript T'

stands for the transverse part of the vacuum polarization

tensor I1,,,(q),

Tpo ) =

2.9

ey Al
q a7 q
2P = (—g,“,+q—qz——)nﬁB(qznTHz‘B(q?).(z.lm
Contributions from the longitudinal part of the gauge boson
propagators are consistently neglected in the one-loop cor-
rections, because they give terms of order m7 /mi (V=2
or W) in the weak amplitudes.
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The gauge boson propagators are calculated in the
't Hooft-Feynman gauge and the so-called pinch terms
[2, 33, 34] of the vertex functions arising from diagrams with
the weak boson self-couplings are included in the overlined

. —=AB
functions 11 (g%):

A

I €
I (% = I - o @’ Bo(¢% myy, my),  (2.11a)

sa A2 2
—~Z € C m
T3 Aq) = P2 (%) — Y27 (¢~ Z2) By(%s myy, myy),

472 2
(2.11b)
=ZZ g7 €
7 (@) = TF# (@) ~ 2o (¢ = my) Bo(@s m, may),
2.11c)

—WWw
Iy (@ = IV ()
«@2 2 2
4 (@ - mw)
x [ & Bo(g*; myy, mz) + 8 Bo(q*; myy, my)].
(2.11d)

Here By is a Passarino-Veltman function [32] in the notation
of appendix D. The overlines on the vertex functions T;"(s)

in (2.2) and (2.6) and T (s) in (2.6) indicate the subtraction
of the pinch term associated with this prescription (note, the
pinch terms in (2.11) have a negative sign in our convention).

The absorption of the above ¢*> dependent propagator-
like parts of the vertex functions into the effective charges
[2] improves over the usual method of absorbing the rele-
vant vertex term at zero momentum transfer [3] in two ways.
One is that the remaining vertex parts do no longer give rise
to large logarithms of the type In(—q?/m3,) at |¢*| > m3,,
and hence the effective charges are useful in making the im-
proved Born approximation [2] even at very high energies.
The second is that the effective charges are now gauge in-
variant [2, 34}, and hence their properties can be discussed
independently of the other process specific corrections of
the same order. Most importantly, we can obtain explicitly
renormalization group invariant relations between the MS
couplings and the effective charges

1 1

= FFYY 2
eX(q?) - 82(1) [1 + ReHT,'y(q )] ) (2.12a)
202y _ a2 &%) —=vZ 5

= s Rell , 2.12b
S = 8w+ oy Rellry (@) (2.12b)

in an arbitrary gauge of the electroweak theory. This enables
us to discuss the renormalization group improvement of the
above two effective charges as a whole, that is, without sep-
arating the contributions from the SM fermions and the rest.
The trajectories of all the MS couplings (¢ = §§ = §,8¢)
are completely fixed by the above two equations at the one-
loop level, which can be used to study quantitatively the
heavy particle threshold corrections in Grand Unified Theo-
ries (GUTs)[21]. L

In the analysis presented here the MS couplings act as
the expansion parameters of the perturbation series, since we
find them the most convenient when studying consequences
of various theoretical models beyond the SM. Their useful-
ness in the SM analysis has been emphasized in [35], and

they are often used in the analysis of new physics contri-
butions to the precision experiments [5]. However, it is not
convenient to use the MS couplings at a specific unit-of-
mass (1) scale, such as o = m, when dealing with a theory
with particles much heavier than the weak bosons because of
the appearance of large logarithms of their masses. Hence,
we adopt the following renormalization conditions

er =& (m%), § =54 (mk), (2.13)
consistently for all processes studied. The above condi-
tions renormalize all the logarithms of large masses with
the help of the renormalization group identities (2.12) at
|¢%| < O(m%). Note that the running of €*(¢%) and 5%(¢%) at
low energies arises from the QED x QCD interactions [36],
and hence the ratio €2(¢%)/5%(¢?) is not an appropriate expan-
sion parameter of the weak corrections at |¢%| < m%. Note
further that, apart from details concerning the higher order
terms, the effective charges #2(q%) and 5%(¢?) (2.12) are the
same as the real parts of the corresponding star-scheme [2]
charges, e2(q%) and s2(g?), respectively. More details on the
treatment of the renormalization group improvement and the
hadronic contributions to the charge form factors are given
in appendix B.

Since we adopt the LEP convention [3] regarding mass
and width (my, and I'y') for both Z and W, the Breit-Wigner
propagator factors in (2.2) and (2.6) have the running width
factor, and the imaginary parts (2.4c) and (2.8) have the as-
sociated subtraction terms. These masses and widths can also
be defined in terms of the more conventional pole masses
and widths [37], denoted by my;, and Iy, as follows [38]:

my =my,+ Iy, (2.14a)
Iy = Fv’p £/ 1+ (Fv‘p/m/‘/’p)z . (214b)

The Breit-Wigner propagator function with the fixed width
and that with the running width are then related by the exact
relation [38]

1 _ 1+iFv/mV . (2.15)
s—mi, +imyply, s—mi +isly/my

The imaginary part of the numerator Azz(g%) (2.4c) and
Aww(g?) (2.8) are arranged such that the imaginary parts of
the full amplitudes vanish exactly at zero momentum trans-
fer: Ay (0) = 0. The theta function 8(s) (8(s) = 1 for s > 0
and 6(s) = 0 for s < 0) in the running width factor of (2.2)
and (2.6) then ensures the reality of the amplitudes at s < 0.
It should be noted that the imaginary part Ay (g?®) vanishes
at ¢ = m, at one-loop level, if all the contributing particle
masses can be neglected. As long as the relations (2.14) and
(2.15) are respected, physical consequences for observables
near the W- or Z-poles remain unchanged. When constrain-
ing the electroweak parameters, however, we often refer to
the weak currents at zero momentum transfer. The masses in
the LEP convention are more appropriate to use in this case
[38], since they absorb reducible higher order contributions
from the W and Z widths.



2.2 Vertex and box corrections

In this subsection, the vertex and box corrections are nu-
merically estimated in the SM, while their explicit forms
are given in appendix A. First the neutral current (NC) am-
plitudes near the Z-pole and at low energies (|¢*| < m%)
are discussed, then the charged current (C'C’) amplitudes in
the zero momentum transfer limit. Except for the Zb b,
vertex, all the vertex and box corrections are assumed to
be dominated by these SM contributions in the following
analysis.

Four types of vertex form factors appear in the NC am-

plitudes (2.2). Flf and T{ appear both in the yf f and Zf f
vertices, while I 3f and F4f appear only in the Z f f vertices:

ri@) = - {Q[1+ (@] + L TI@}, @16

P @) = ~g,{ (1 - Qs8) [1+ I{ (@]
+Ly [PTy (A +T (D] + T (q2)}. (2.16b)

The SM contribution to the vertex form factgrs that are
non-vanishing at one-loop order are Flf =(g?), FgL (¢%) and
IJ*(g?). They can be expressed by

fre 2 Z ¥ d?
I''™(g) = <—4ﬂ_—> 17(a°), (2.17a)
e (g ngf 2 i
F'(q)-( ) Z(q2)+Z L | Iy,
(2.17b)
gW’ Iy
T =2 Z L Tow(d, 2.17¢)
ngf’ 2
I @ =3 [P Thw(@, (2.17d)
fl
with the gauge-boson—fermion coupling convention
=g =0, 97" =0,(-0s9),
(2.18)

z R R w g
gH =g, (s - Qs ), g = =7 Vigr.

Explicit forms of the functions I, (¢?), T;W(qz) and
I’T{LW(qz) are given in (A.18)-(A.20) in appendix A.2. Ex-
ternal fermion self-energy corrections are included in the

functions I'/;(¢?) and Flfvlv(q2). For right-handed fermions

T;‘R((f) = 0 holds, since only those diagrams with W ex-
change contribute to the vertex function I", at one-loop or-
der. The vertex functions I 3f “(s) are found to be propor-
tional to the square of the fermion mass inside the loop,
and are non-vanishing only for f, = by, in the SM, within
our approximation of using diagonal KM matrix elements
and neglecting terms of order (mp/m;)?a. For large m,
(m? FbL (s) 1s proportional
to mt/mW [39, 40]. The functions Ff “(s) can, in general,
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be present, but happen to vanish for all f, in the SM; they
are, however, found to be non-vanishing in some extended
models such as the minimal SUSY-SM. These analytic ex-
pressions agree with the known results of [40—44]2.

The numerical values of the vertex form factors Flf (¢,
Tg(qz) and F3f(q2) at ¢ = m} are given in Table 3. All
the numerical results presented in this section and in the
following sections are obtained by setting
4r/e* = 128.72,

§? =0.2312,

(2.19a)
(2.19b)

with € = §§ = §,38¢ in the one-loop correction terms. They
are fixed by using the renormalization conditions (2.13) and
the SM predictions for @(m%) and 5%(m%) at m; = 150 GeV,
myg = 100 GeV, as(my) = 0.120 and 6, = 0. We empha-
size that we do not change the numerical values of (2.19)
when discussing experimental constraints on the charge form
factors 62(mz) and sz(mz) All our predictions for the Z
parameters can be reproduced simply by using the numer-
ical values listed in Table 3 and (2.19), together with the
imaginary parts of the gauge boson propagator corrections

as(m )] O 011 012 0.13
A, (m%) [0.01726 0.01760 0.01763 0.01766
A, z(m%) [0.00248 0.00257 0.00257 0.00258

(2.20)

Azz(m%)|0.00005 0.00003 0.00003 0.00003
A

which are obtained by using the perturbative order acrs ap-

proximations of appendix A with the effective quark masses
of (B.25) and (B.26). It is worth noting that the real part
of the vertex corrections (Table 3) and the imaginary part
A, (m%) interfere with the leading Z-pole amplitude: the
latter contribution has been subtracted in the Z parameters
[26], whereas the former contributions modify the scatter-
ing amplitudes by as much as 0.5%, and hence they can
contribute to the cross sections at the 1% level.

Note further that the vertex correction without the pinch

term subtraction [3, 41] sz (g% is related to the I',"(g%)
function by

Bo(0; W, W)]
2.21)

A2
f
It@=riv@g - 8—97;Re [Bo(g% W, W) —

in the 't Hooft-Feynman gauge. The difference is univer-
sal (f-independent) and we find T2"(m%) = It (m%) —
0.00134. The vertex corrections are slightly larger in mag-
nitude after subtraction of the pinch term.

It is convenient to introduce the following special form
factor

2 We note the following misprints in [40]. In the last line of (2.7),
the factor 1/(m? — M?2)? should read 1/(m? — M 2). In the first line
of (2.8), the term 4g*M? should read 4¢?M*, and in the last line
of (2.9), the term m/2M? should read m?/2M?. Our vertex func-

—_f! 1
tions Flfw, FfW and I’j; w are then related to their functions p, A

and = by the identities: FlfV/V(qz) = p(—qz,m%,v,ma,), szw(qz) =
[p+ A (=¢?, miy, m3)+2 [ Bo(q%: My, myy) — Bo(0s myy,, my )], and

Il @) = -2 5(=, mb,,m)
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Table 3. Vertex form factors Flf (g%, Tzf (g% and F3f (g%) in the SM at ¢2 = mzz. The definitions of the form factors are given in (2.17) and their explicit

forms in appendix A.2.

f rf T rf

vy, 0.00252 +0.00431¢ | —0.00680 — 0.005651

143 0.00185 +0.00325¢ | —0.00680 — 0.005651 _

12 0.00020 +0.000321¢ _—

Uy, 0.00203 +0.003547 | —0.00680 — 0.005651% —_—

UR 0.00009 +0.00014+ _—

dr, 0.00225 +0.00389¢ | —0.00680 — 0.005651 _

dr 0.00002 + 0.00004 ¢
by, (m¢ = 100) | 0.00176 +0.00107 ¢ —0.00402 + 0.00000 1 —0.00347 +0.000001
br, (m¢ = 150) | 0.00141 +0.00107 ¢ —0.00261 +0.00000% —0.00763 + 0.00000 ¢
br (m¢ =200) | 0.00126 +0.00107 ¢ —0.00179 +0.00000% —0.01270 + 0.00000 ¢

IPe(s)+ EZTSL (s)+ I'2“(s) + higher order terms,
(2.22)

which is treated also as a free parameter in our fit at s = m?

to deal with the strong m; dependence of the Zb; b; vertex
(see also [12, 14]). In this way, the importance of the Zb; b,
vertex correction [45] can be assessed independently of the
specific SM mechanism and also the data analysis is kept
separate from the evaluation of &, in a specific model. In
the SM, the parameter &, can be evaluated by including
O(asm?) [46] and O(m‘t‘) [47, 48] two-loop corrections of
the SM, which are given explicitly in appendix C.4: see
(C.54).

At low energies, light fermion masses may not be ne-
glected compared to the momentum transfer ¢%. In the limit
of |¢*|/m% < I and m}/m7 < 1 but at fixed m}/q’, the
vertex functions reduce to

bp(s) =

Iy =— ?Z[JZ(Q f)+0( ZZ)} (2.23a)
Flfév(qz)-—g;[Jw(q f)+0(q—z)], (2.23b)
Thw(@) = ;—3 [7w(q2; M+ O(i—i)} . (2.23¢)

w A

The functions Jz(¢%; f), Jw (g% f) and Jw (¢%; f) have the
same form as the fermionic contribution to the neutral gauge
boson vacuum polarization functions: see (A.27). The form
factor T; “(¢?) is often called the neutrino charge radius term
[49]. The subtraction of the pinch term makes it gauge in-
variant [34].

For the NC process fo(p1)f5(p2) — falD3)f5(pa), as
well as for its crossed channels, the box correction terms in
(2.2) can be expressed as

Bil'(s,t)= 162 21142
X [Il(u,s;mZ,O) — Iz(t,s;mZ,O)} (2.24a)
Wff//ng f///
l67r2 L

{+I1(u,s;mw,mfm) for Lylip <0 (2.24b)

—I(t, s;myy,mygm) for Iyplyp >0

a _a(s t) =

167 219

X [L(u, s3mz,0) — Ii(t, s5mz,0)] , (2.24¢)

Table 4. Box form factors B(eq, fo) = Bg{,(s, t) for the process e €4 —
fofo inthe SMat s = -2t = mZZ. The definitions of the form factors are
given in (2.24) and their explicit forms in appendix A.3.

f SB(evaa) sB(er, fo)
vy, 0.00109 + 0.000001% —0.00006 + 0.000001
lr —0.00005 + 0.00000¢ —0.00002 + 0.000001
Lr —0.00002 + 0.00000 ¢ 0.00001 + 0.0000014
ur, 0.00104 + 0.000007 —0.00003 + 0.000001
UR —0.00001 + 0.000001 0.00001 + 0.0000014
dy, —0.00001 + 0.000001 —0.00005 + 0.000007
dn 0.00000 + 0.00000 7 0.00000 + 0.000001
by, (my = 100) —0.00002 + 0.000001 —0.00005 + 0.0000014
by, (my = 150) —0.00001 + 0.000001 —0.00005 +0.000001
br, (my¢ = 200) 0.00001 + 0.000001 —0.00005 + 0.00000 7
where s = (p; —p3)%, t = (py — ps) and v = (p; +p,)* are the

Mandelstam variables satisfying s + ¢+ » = 0. In the second
term of (2.24b), f” and f"" are the weak isospin partners
of f and f', respectively, where all external and internal
fermion masses except for my» are neglected: the upper
term (I3 ;I35 < 0) should be taken for (f, f') = (¢, u), (v, ),
and (v, d), whereas the lower term (I3 ;I35 > 0) for (f, f') =
(¢, d), and (v, u). The explicit form of the box functions I;
and I, are given in (A.30) of appendix A.3. These analytic
expressions agree with the known results of [40-44]. It is
worth noting here that the box contributions to the helicity
amplitudes have the above simple current product form only
when the external fermion masses can be neglected.

The numerical values of the box functions By;(s,t) for
the process ete™ — ff are given in Table 4 for s = -2t =
m%. They contribute negligibly to the Z parameters, because
they do not interfere with the dominant Z-pole amplitudes
being almost purely imaginary near the pole. The imaginary
parts appear in the box functions only above the W-pair
production threshold.

The box contributions are found to be non-negligible in
some low energy NC processes. In the s =t = u = 0 limit,
one finds

4
LO,0my,0)= ——, (2.25a)
my
1
L(0,0;my,0) = ——. (2.25b)
my

The WW box contributions to the processes with the I;
function, that is, the low energy v—¢, v—d and e-u scattering
processes are found to be significant.



Precise values of the charged current matrix elements
are needed only at low energies. The muon decay constant
is given by

Gp = T +0%

7 2.26
s (2.26)
where the factor &

52
g 1 I
‘SG‘W[]’L(@"])]n?} ~ 0.0055 (2.27)

denotes the sum of the vertex and the box contributions in the
SM. Its numerical value above is obtained for the couplings
of (2.19). The identity (2.26) gives the physical W mass in
terms of g%, (0), once the &, value is known for a given
model. The overline here again indicates the removal of the
pinch terms with the consequence that the numerical value
is significantly (about 20%) smaller than the standard factor
(50]

2
g 7
bo="=|3—| -5 —
<782 [ (4 2

which was obtained simply by subtracting the singular vertex
function at zero momentum transfer. The difference

22
b — b6 = 15 | Bol0: W, W) — & By(O; W, Z)

s

1
1) In Tz} ~ 0.0068 , (2.28)
¢

—§ By(0; W, ’y)} (2.29)
is the pinch term contribution [34]. Note that the sum of
the propagator and the vertex/box corrections is scheme-
independent and that the correction term 5G of (2.27) should
be used together with the charge form factor g, (0) which
contains the associated pinch term.

2.3 Constraints due to o, Gp and m,

Among the electroweak observables the three quantities «,
G r and m; have been measured with outstanding precision,
namely Aa/a =~ 5 x 1078, AGp/Gp =~ 2 x 107° [25],
and Am,/m, ~ 8 x 1073 [26]. For this reason o, Gp
and m , are chosen as our basic electroweak parameters and
treated as constants in the analysis (see Tables 1 and 2).

On the other hand, the tree-level properties of the gauge
boson propagators are fixed completely by three parame-
ters, the two gauge couplings g and ¢’ for the SU(2)., and
U(1)y gauge groups, respectively, and one vacuum expecta-
tion value v = (V2 Gp)~ /2 x 246 GeV, in models where
the electroweak symmetry breaking sector has the custodial
SU(2) symmetry [S1]. Consequently, the four charge form
factors €2(¢%), 5%(¢%), §%(g%), and gy, (¢*) are completely
determined by finite quantum corrections in this class of
models when expressed in terms of the three constants c,
Gr and m.

In this subsection, the prescription for calculating all
charge form factors in terms of (o, G, m ) is given explic-
itly in an arbitrary model with the broken SU(2), x U(l)y
gauge symmetry. Their numerical predictions are given in
the SM.
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The form factor £2(¢%) = 4ra(g?) is fixed by the follow-
ing identity
1 1 =RQ, ». =QQ
S =R TR - H“(O)} ,
which gives the renormalization group improved running

(2.30)

a(q%) as explained in appendix B. Here ﬁgQ(qz) is the vy
propagator function without the overall coupling factor &’
[2]: see (A.1).

In principle, the effective coupling &(m?%) can be calcu-
lated from the observed « value by using the above iden-
tity. In practice, however, the right-hand side suffers from
non-perturbative QCD corrections to the light quark contri-
butions. We make use of the dispersion analyses [27-29] to
estimate the hadronic contributions to the running of a(q?)
and 52(¢%) form factors at 0 < |g?| < m%. Details can be
tound in appendix B.

In order to take account of uncertainty in the hadronic
contribution and also possible new physics contributions, the
parameter 0, is introduced as an external parameter in the
analysis:

= 128.72 + 6, 2.31
a(m?) @30
which can be expressed by
N =QQ, 3. =0Q
B A g + 41Re | TP (m) — HTW(O)] v (23

for m; = 150-200 GeV as stated in (B.32) and (B.30) of
Appendix B. Here 6,9 = 0 £ 0.10 (B.22) 1s the present
estimate [28] for the uncertainty in the hadronic contribution.
The parameter 6, being treated as an external parameter
serves also to assess future improvements in low energy
e*e™ hadroproduction experiments as well as possible new
physics contributions.

The remaining three charge form factors can be fixed by
introducing the three radiative parameters S, 7' and U that
are defined by the following identities:

Q%V 0) mZZ

— =1-aT, (2.33a)

my, §50)

202 N7 (002
~471' s (7732)02(mz) _ 7§’ (2.33b)
gz(o) a(mz) 4

220,02
‘47r a s_(mzz) E*S+U (2.330)
gw(0)  a(my) 4

The parameters S, T and U can be calculated perturbatively
in any models from the gauge boson propagator functions
of (A.1) by

S=167Re [ﬁ;%(ntzz) T Z(O)] , (2.342)
T= 4_\%§£ Re [ﬁ;}’ ©) T (0)} , (2.34b)
U=167Re [ﬁ? ,(0) — ‘ITITIVW(O)} . (2.340)

For models without custodial SU(2) symmetry, the 1" pa-
rameter is sensitive to the ultraviolet cut-off, and hence is
un-calculable from (&, G g, m ) alone. In this case it should
be regarded as the fourth basic parameter of the theory.
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Our definitions (2.33) of the three parameters S, 7', U
are inspired by the pioneering work of Peskin and Takeuchi
[4]. Our definition, in contrast to theirs, includes all radia-
tive effects from both SM and new physics contributions.
The original parameters, denoted below by the index PT, are
approximately related to ours by subtracting the SM contri-
butions evaluated at m; = 150 GeV and m; = 1000 GeV:

Ser & S — Sgm(my = 150 GeV, my; = 1000 GeV), (2.35a)
Ter ~ T — Tsm(me = 150 GeV, my; = 1000 GeV), (2.35b)
Upr ~ U — Usm(my = 150 GeV, my = 1000 GeV), (2.35¢)

provided the scale of new physics is much larger than m .
The expressions (2.34) agree with the modified S, T, U
parameters of [34]. The same form of the definitions without
the pinch terms (in the ’t Hooft-Feynman gauge) have been
used in some earlier works [11, 52, 53].

Explicit forms of the SM contributions to the S, T', U pa-
rameters are given in appendix C, together with the SM con-
tribution to the Zb; b, form factor 8,(m%). All the known
two-loop corrections of order aas [46, 54-56] and order m‘t1
[47, 48, 57, 58] are included. The recently found [56, 59]
small two-loop corrections of order m?; are neglected. For
practical reasons we adopt the perturbative order cor, {46,
54-56] corrections at o, = a5( ; )z in calculating all the

parameters S, T, U and 5b(m22). The reader can therefore
unambiguously reproduce our results. The effects due to non-
perturbative threshold corrections [60-62] should be evalu-
ated separately, and one can obtain more precise predictions
of the SM from our formulae by adjusting the effective top-
quark mass to produce the same S, T, U, and &,(m%) val-
ues. It should be noted that at present the uncertainty in
the SM contribution to the 7' parameter is such that m;
can be predicted with a few GeV uncertainty for a given T
value {62]. Fig. 1 shows the SM contributions to the S, T,
U and 5b(mzz) parameters as functions of m; for my =1-
1000 GeV at o (m;)=0.12. It is worth noting that the T'
and ép(m2%) parameters are proportional to m> for large m,
(m% > mY), the parameters U and Eb(mzz) are almost inde-
pendent of my, the T parameter decreases with increasing
my, and the S parameter becomes negative for small m ;.

Once the S, T, U parameters are calculated in a given
model, the three charge form factors can be predicted as
follows:

1 1+é5—aT

= 2.36
%O AV2GrmL (2.362)
2m2y =+ L o 1 5
§°(mz) = 3 \/4 ez(mz)<gzz(0) + 16”), (2.36b)
52 2
l Smp) L sem. (2.36¢)

72,0)  &m%) 16x
The expression (2.36a) follows from (2.33a) and (2.26) up

to terms of order o?. Its explicit form takes account of the
reducible order m{ corrections [63], and it makes clear that
the combination

5 —al (2.37)

determines the neutral current charge form factor g%(¢%) in
terms of G FmZZ. In fact, the pinch term contribution to T
in (2.34b) and the one removed from the vertex contribution
in 6 (2.27) cancel in the combination 6, — a7

It is clear from (2.36) that g7 (0) is fixed by 6, — o,
§2(mzz) by g%(0), a(m%) and S, and g%V(O) by §2(m2Z),
@(mzz) and S+U. It is instructive to express these form fac-
tors approximately as linear combinations of the parameters
S, T, U and 6,:

35(0) = 0.5456 +0.00407, (2.38a)
54 (m%) = 0.2334 + 0.0036S — 0.0024T
~0.00266,, , (2.38b)
G5y(0) = 0.4183 — 0.0030S + 0.0044T + 0.0035U
+0.00146, . (2.38¢)

Expressed in this form, it becomes obvious that essentially
3%(0) measures T', 32 (m%) measures S — 0.7, and gy (0)
measures T+ 0.8U — 0.7, if the SM values of é, and é,
are assumed. Here the coefficients are obtained by setting
6¢ = 0.0055. Results for arbitrary b¢ are obtained by the
replacement:

0.0055 — &,
- .

T—T+ (2.39)
Note that the combination 5G—aT vanishes in the SM (5G =
0.0055) for T' =~ 0.75. Fig. 1 shows that this cancellation
occurs at around m; = 175 GeV. The SM predictions for
the neutral current experiments can then be reproduced rather
accurately by using the ’tree-level’ predictions with 6, —
aT = S = 0 in (2.36), since the SM contribution to S is
rather small. This should not, however, be imerpreted as
absence of any quantum corrections [64] (that is, 6, =T =
0), but rather as evidence for the large quantum correction
aT =~ 0.0055 within the SM (see also Sect. 5.3).

Finally, the running of the remaining three charge form
factors is calculated by

() Fm)
2D Emly)
1 1
@D GO

—3 —3
Re [HT?V(QZ) - HT?W(mZZ)] . (2.40a)

=33 —33
=Re [HT,Z(qz) - HT,Z(O)}
R —=3 -3
_24%Re [HT?Z(qZ) - UT‘?Z(O)]
4§ Re[ T2 50D — T750)] . 40b)

1 1

T (@ GO

Equation (2.40a) is the solution of the RG equation (see ap-
pendix B), and hence is valid at arbitrary ¢2. At |¢%] <
m%, the parametrizations of the dispersive analysis [27-
29] are used for the light quark contribution. Equations
(2.40b) and (2.40c) are valid perturbative expressions pro-
vided |g?|<O(m%). At very high energies (|¢*| > m%), the
more elaborate expressions (B.38)—(B.41) should be used
to estimate accurately the charge form factors §%(¢g*) and

gw(q2)~

Re[Try (@) — rw(©)] . (2400)
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Fig. 2. The four charge form factors in the minimal SM as functions of the momentum transfer scale. The SM predictions are given for m; =
100, 150, 200GeV and m, = 100, 1000 GeV. The parametrization[27] of the hadronic vacuum polarization contribution is used in the space-like re-
gion (—mZZ < g% < 0). In the time-like region (0 < ¢% < mzz) only the heavy quark (¢, b) threshold corrections are taken into account. The light quark
contributions at |g2| > mzz are calculated in perturbative QCD by requiring continuity at ¢* = T”ZZ' See appendix B for details.
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Fig. 2 displays the four charge form factors 1/a&(q?),

5%(¢%), 3%(¢*) and g%, (¢*) as functions of 1/]q2| for both
time-like (g> > 0) and space-like (¢> < 0) momenta. They
are obtained in the SM for several m; and my values,
namely m; = 100, 150, 200 GeV, and m; = 100, 1000 GeV.
The trajectories are fixed such that the known values of the
three basic parameters (o, Gg, and m ) are reproduced for
6G = 0.0055, 6o = 0 and as(my) = 0.12. The running of
the form factors &(¢g?) and 5%(¢?) at |¢*| < m% is due to the
QEDXxQCD quantum effects [36], and its detailed treatment
is given in appendix B. The threshold effects are clearly seen
in the time-like trajectories. Light hadron threshold effects
do not show up since we adopt the dispersion integral fit
of the hadronic contributions to the vacuum polarizations in
the space-like region [27-29] also for their contribution in
the time-like region. The runnmg of the gZ(q2) and gW(qz)
form factors freezes at |g?| < m%. It is clearly seen that
the weak boson threshold effects are significant for all the
charge form factors in the time-like region’.

In Sect.4, the charge form factors (2.3) and (2.7) are
determined from the three sectors of the electroweak pre-
cision experiments under the assumption that there are no
new physics contributions to the vertex and box corrections,
except for allowing the Zb; b, vertex to take on arbitrary
values.

3 Predictions of electroweak observables

In this section, all electroweak observables are expressed
in terms of the helicity amplitudes of (2.2) and (2.6), to-
gether with the external QED and QCD correction fac-
tors. The predictions are restricted to the models respecting
SU2)., x U(1)y gauge symmetry with spontaneous break-
down to U(1)gm and presented as functions of the charge
form factors 52(0), 97(0), gW(O) 52(mz) gz(mz) and the
vertex form factor 6b(mZZ) It is assumed that the remaining
vertex and box correction are dominated by the SM contri-
butions.

3.1 Z boson parameters

The following observables on the Z-pole (s = m%) are used
in the fit:

FZa 0'}9,,, Rfv Aloiév PT7 ALR7 A%];)7 Aloig> Rb' (31)

Since the Z mass m , is measured very accurately, the value
my, = 91.187GeV is treated as a constant in the fits. The
contributions from the SM box corrections are very small
on the Z-pole (see Table 4), thus the cos f-dependence of
the box correction factors is neglected.

The total cross section for the process ete™ — ff is
given by

3 Note that the charge form factor gW(qz) suffers from an infrared sin-
gularity at ¢° = m%,v due to the opening of the W +y threshold on the pole
[65]. The charged current cross section near the W-pole may be expressed
more conveniently in terms of g;;,(0), or G szw.

of =o(e*e” — ff)

€ e e e 2 CfV

= m{ (Mt il o gl nagh ) 2

e e 2 e [3 2 C A
+(‘ML£—ML1{1 +‘MR£—MRfR >—£— }
( >3 29 ) , (32)

for unpolarized beams, where the last term proportional to
&(s)/m accounts for the final state QED correction. Here and
in the following

ML= MYG (s = @e- +per)’ t= - —pp)D)  (33)
B 8

denote the NC' amplitudes of (2.2). The factors C,yr and
Cya for quarks contain the final state QCD corrections for
the vector [66] and axial vector current [67, 68] contribu-
tions, respectively, together with the finite mass corrections
of the final state fermions [69]:

A 2
C’qu3{&2—ﬂ+ +1.409a% — 12767 o*

~2
2 T%‘@ (a +8.736 a2 + 45.146 43 ) },(3.4a)

Coya =3 {Bg+a+ 1.409 a2 — 12.767

2
(‘[)(131 +14.286 )
2(\/_) m?
[f( D+6 ( lnm—22>]},(3.4b)
with
a=a/s) = % ) (3.5)
52
By=1/1- ———4mq§*/§) , (3.6)

where 14(,/s) denotes the MS running quark mass at

= /5. The masses of the three lightest quarks (u, d, s)
are neglected, while the bottom and charm quark running
masses, Mp(y/s) and 1h.(,/s), are obtained from 7h,(mp)
and 7i.(m.) by the two-loop renormalization group equa-
tions:

Mp(v/3) _ Me(y/5)

Mp(me)  The(ms)
(a(5)(\/§)' B ['bg) + b(l5)a(5)(\/§)' ( g - b(()5))
T @) B 6Ty ’
(3.7a)
Me(my) _ [a®my) 2@ 66" + ba®(my)] ( ‘—)
Me(me) ~ [a®m)] [0 + 5P a®(m,) ] ’
(3.7b)
where [70, 71]
bglf) _ 33 — 2nf b(nf) _ 153 - 19 ng 7 (3.8a)

6 U T 12



(ng) _ (ny) - 303 — lOnf

Yo =2, M T3 (3.8b)

are the coefficients of the S-function and the anomalous mass
dimension in the effective nz-flavor QCD. The running cou-
pling a®(u) of the effective n ¢ = 4 theory is calculated
from a given a®(m ) = a(m )/ by solving the three-
loop QCD renormalization group equation with the two-loop
matching condition [72]:

7 3
aD(me) = amy) + == [P my)| (3.9)

at 44 = my. The relation between the MS quark mass 7, (m,)
and the physical mass m, is given in [73] as

-1
Mg(my) = my [1 + ga("f)(mq) + Kq[a("f)(mq)]zJ , (3.10)

with Ky = 12.4 (ny =5) and K. = 13.3 (ny = 4), for bot-
tom and charm quarks. The following table summarizes the
running quark masses, (1) and (), for as(my)ys =
0.11, 0.12, 0.13, mp = 4.7 £ 0.2GeV, m., = 1.4 £ 0.2GeV
and m, = 91.187 GeV (the difference my — m, is fixed to
3.3GeV [74] in evaluating 171.(1)):

os(m s 0.11 0.12 0.13

m. (GeV)| 1.40+0.20 1.40+0.20 1.40+£0.20
me(m) |1.13£0.18 1.03+0.19 0.86+0.20
Mme(my) [09040.17 0.76 £0.17 0.56 £0.17
me(my) |0.65+£0.13 053+0.12 0.37+£0.12
myp (GeV)|4.70 £0.20 4.70£0.20 4.70+0.20
mp(mp) | 4.17+0.19 4.06+0.18 3.92+0.18
my(my) 13.05+£0.16 2.83+0.15 2.59+0.15

G.11)

The function f(m,) in the O(a?) axial part of (3.4b) is given
by [56, 68]:

2
f(mt)=21n%~£+§<mz)
i

12 81 \2m,
m 4 m 6
—-0.5767 Z ) +0.7873 zZ ) (3.12)
2 me 2 my

The minus sign should be taken in front of f(m;) in (3.4b)
for u, ¢ quarks, and the plus sign for d, s, b quarks. These
formulae are sufficient to calculate the factors Cqy and Cg4
as functions of a,(my), my and m.. For charged leptons,
the corresponding factors are

_ 32
Cypy = %2—@ , (3.13a)
Coa=0;. (3.13b)
with

4m3

The effect of the charged lepton masses is negligible except
for the T lepton.

Near the Z-pole, s ~ mZZ, the cross sections are sensitive
to the total Z width, I'z, and hence it should be evaluated
at two-loop level [41, 44, 75]. The Z width is calculated in
a similar way as the total cross section case (3.2):
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(3.15)

Iy=) Ty,
f

m 2Csy 2Csa
£y = g aaf e[ G o ot e

3 a(s)
1+ Q% — 1
><<+4Qf W), (3.16)
by using the Z — f, f, decay amplitudes
T(Z — fafa)=ML ez Js. . (3.17)

Here ¢/, is the normalized Z wave function, J}‘I are the

currents of (2.1), and the scalar amplitudes Mg: can be ex-
pressed by

M{ = (Iy, = Qs) [ Gz(m¥) + Rl (m})]
+gzRe| by, (275" (m) + T (m3))

—Qs(Fm) - §2)] .

It is straightforward to evaluate the partial and total widths
from the above formulae,once the three form factors j% (m%),
3%(m%), dp(m%) and as(my) are given. Fig. 3 shows the
predicted I'z(GeV) in the plane of 52(m%) and g%(m?%) for
as(m,) =0.11, 0.12, 0.13 and &,(m%)=0 (a), —0.01 (b) and
—0.02 (c). In the SM, 63(m%)< ~0.003 holds for all m, (see
Fig. 1), 8(m%) = —0.01(—0.02) for m; ~ 175 (270) GeV. *
It is clearly seen from the figure that 'z increases with grow-
ing s and 85, and that it remains roughly constant when as
increases by 0.01 and, simultaneously, 8, decreases by about
0.006. The net effect is a strong anti-correlation between the
fitted o, and 8, values (see Sect.4.1).

In the SM, all the form factors are calculable in terms
of m, and my. In Table 5 the SM predictions are shown
for the partial and the total Z widths for several m; and
mpy values, for as(m,) = 0.12, 64 = 0, §5 = 0.0055 and
(my, me) = (4.7, 1.4) GeV. The numerical values turn out
to be larger by about 1/5000 than those quoted in [44].
Uncertainties in our predictions are estimated as follows:
(i) Change of m; and m, by 0.2 GeV affects I}, by less
than 0.2 MeV (<1/2000 of ;) and I, by about 0.03 MeV;
(i) Setting §, = §,(m%) and &> = 32(m%) in the amplitudes
(3.18) affects the total width by about 0.2 MeV for the m;
and my; values of Table 5; (iti) If the imaginary parts in
the amplitudes (3.18) are also included, the total width in-
creases by about 0.01 MeV; (iv) QCD higher order effects

(3.18)

4 The m¢-dependences of the electroweak Z boson observables are not
completely absorbed into the three form factors, g%(mzz), §2(mzz) and
Sb(mzz). Mild m¢-dependences remain in the two-loop QCD correction
factor f(my) of (3.12) and in the Zb, b, vertex function Flb” (m:Z) (Ta-
ble 3). When Sb(mfz) is allowed to vary in the fit, these residual my-
dependent terms are determined by using the SM m-dependence of the
5b(m2Z) form factor (see Fig. 1), which can be inverted approximately

as my(GeV) = 21.774/—1048,(m%) — 9.9 — 31.2 valid in the region

75 GeV<mg <400 GeV. We set my =75 GeV for §p(m%) > —0.0036
and m¢ =400 GeV for Sb(mzz) < —0.0405. With this prescription the
parameter Sb(mzz) covers the full m¢-dependences of the vertex correc-
tions within the SM, while it still allows gb(mzz) to measure large new
physics contributions to the Zb, b, vertex because of the relatively mild

m¢-dependences of the f(m¢) and Flb"(mzz) factors
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Table 5. Partial and total Z widths in MeV units in the minimal SM for m, = 91.197GeV, as(m,) = 0.12, §o =0, 5(;

me = 1.4GeV. See (3.15)-(3.18) in Sect. 3.1 for details.

= 0.0055, my, = 4.7GeV and

my (GeV) 150 150 175 175 200
my; (GeV) 100 1000 100 1000 1000
G5 (m2) 0.55516 0.55405 0.55641 0.55523 0.55784 0.55656
§§(m22) 023119 0.23245 0.23040 0.23170 0.22952 0.23086
Sb(mzj) —0.00789 —0.00792 —0.00994 —0.00999 —0.01226 —0.01230
r, 166.95 166.61 167.32 166.97 167.75 167.37
I.=T1, 83.81 83.59 84.04 83.80 84.30 84.04
I, 83.62 83.40 83.85 83.61 84.11 83.85
Iy 299.20 297.94 300.41 299.09 301.76 300.35
I. 299.14 297.88 300.35 299.03 301.70 300.30
Ty=1T%s 382.65 381.28 383.77 38234 385.09 383.56
oy 376.90 375.51 376.25 374.79 375.55 374.01
I, 1740.54 1733.87 1744.55 1737.59 1749.18 1741.78
Iy 2492.63 2484.27 2498.44 2489.70 2505.15 2495.82

(0) §,(m2) —O 0

)

o
o
o

2
f3

(m

0.558
0.556
0.554
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0.552
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Fig. 3. The Z total width I'; as function of the universal charge form
factors g2 (m%) and §2(m%) for §p(m%) = 0 (a), &,(m%) = —0.01 (b)
and 8,(m%) = —0.02 (c). Three cases of as(m ) (0.11,0.12,0.13) are
shown for each Sb(mzz)

may affect the hadronic widths at the level of af ~ 1/4000;
(v) The present uncertainty in 1/a(m%), 8, = +0.1 affects
§%(m%) by ¥0.00026 (2.38b), and hence the Z width by
about +0.65 MeV (~ 1/3000 of I'z). These uncertainties
are still an order of magnitude smaller than the actual experi-
mental error of A(I'z) =7 MeV [26] (A(I'z)/I'z ~ 0.003).

Note that we adopt the perturbative order ar, [46, 54—
56] corrections at as = (M z )y in calculating all the SM
predictions, since it allows the reader to reproduce our results

straightforwardly. The effects of non-perturbative threshold
corrections [60-62] may be accounted for by adjusting the
effective top-quark mass to produce the same T parameter
value.

Once the Z width, I'z, is determined the formula (3.2)
gives the total cross section for the process efe™ — ff at
all energies, up to the cos §-dependence of the box form fac-
tors which can be safely neglected near the Z-pole. At LEP,
the on-pole cross sections ¢ are obtained after subtracting
the v-exchange contribution to the amplitudes. Because of
this subtraction, we cannot simply compare O'f(mzz) of (3.2)
with the corresponding published measurement. In fact, the
subtraction procedure is not completely model-independent
and the following two cases are examined: (i) In the ampli-
tudes (2.2) only those terms multiplying the Z propagator
factor are retained; (i1) From the full amplitude (2.2) the
v-exchange amplitude Q;Q;[€°(m%) — 18*A,,(m3)]/s is
subtracted. The above two prescriptions differ by contribu-
tions from the ~ vertex corrections and the box corrections,
but the numerical predictions for o9 are found to differ by
at most 0.0003 nb and are thus negligibly small compared
to the actual experimental error of A(c%) =0.14 nb. The
pole amplitudes (i), the term with the Z propagator factor
in (2.2), are used below when confronting the theoretical
predictions with the LEP/SLC experiments.

It must be pointed out here that the quantities quoted
as a by the LEP electroweak working group [26] are not
the peak cross sections as obtained above, but that they are
rather defined by the following identities’:

120 I,T
a%(LEP) = s F%fA (3.19)
0

This quantity does not agree with the pole cross section 0%
as calculated above, but agrees rather accurately with the
modified expression:

5 We thank T. Mori for pointing out our misunderstanding of az af-
fecting the earlier version of the present work. The notation of the LEP
electroweak working group is misleading, since [26] does not explicitly
state that their ‘72 value is not the peak cross section. In order to avoid
any ambiguity it would be better to call this quantity (12 7r/mzz)l"e Fh/lg
and explain precisely from which experimental quantities it is calculated.
It is also desirable to publish the total hadronic cross sections at \/s = m.,
without subtracting the y-exchange contributions, since the full total cross
sections can be calculated unambiguously.
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solid (dashed) lines are obtained for gZ(mZZ) =0.55 (0.57).

o%(LEP) ~ o - (1 (3.20)

3 &(s)
P2 ) |
For example, the SM predictions for m; =175 GeV, my =
100 GeV, a;s(my) = 0.12 and 6, = 0 give:

3 a(my)
f ol ag.(uz WZ ) o'} (LEP)
C=¢, | 1.995nb 1.998 nb 1.997 nb|. (3.21)
h__[41.399 nb 41.476nb _ [41.463 nb
b [8.928nb 8.945 nb 8.942 nb

The right-hand side of (3.20) reproduces the LEP definition

(3.19) with an accuracy of 1/3000, while the peak cross

sections 0? as obtained from (3.2) with the Z-pole part of

the amplitudes are off by about 1/1000 to 1/600. The for-
mer uncertainty of about 1/3000 is typically on the order
of the higher order corrections, while the latter difference,
especially the difference between o9 and ¢%(LEP), shows
up clearly in the fit as a significant shift in the fitted &,(m?%)
and o, values.

Figs. 4, 5, 6 show

oY (LEP) = Z o%(LEP), (3.22)
f=u,d,s,c,b

Ry =0y (LEP) / 0Y(LEP) = I}, / Iy, (3.23)

Ry = 0)(LEP) / 62(LEP) = I}, / I, (3.24)

respectively, in the plane of 5%(m%) and &,(m%)
out to be almost completely independent of g% (m%), as
the predictions at §%(m%) = 0.55 (solid lines) and §%(m%) =
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Fig. 6. The ratio Ry = 02 / ag of the b-quark production cross section to the
hadronic cross section on the Z-pole as function of 52(m%) and &,(m2,)
for as(m,) = 0.11,0.12,0.13. The solid (dashed) lines are obtained for

§%(m%) =055 (0.57).

0.57 (dashed lines) are almost degenerate. Fig. 4 shows that
o? is sensitive to both a; and &, but an increase of o, (m )
by 0.01 can be compensated by a simultaneous decrease of
5, by about 0.006, just as for I'z. Fig. 5 shows that the
ratio Ry is only sensitive to a linear combination of 52(m72)
and 8,(m%). At fixed §2(m%), the correlated change of a;
and & leaving I'z and 02 unchanged, keeps also the Ry
value roughly unchanged. The reason for this behaviour is
in the fact that the o,-dependences of the three Z-resonance
observables, Iz, CY?L and Ry, are solely contained in just the
quantity Iy, which depends on o, and &, approximately in
the combination

Sp(m%) + 0.6 ag(my) . (3.25)

Hence, in order to get o, independently of &, the mea-
surement sensitive to another combination is required. For
instance, Fig. 6 shows that the ratio R, does measure Sb(mZZ)
rather independently of a, and 3% (m%). An accurate mea-
surement of R, offers the key to disentangle a; and & (see
also Sect.4.1).

The asymmetries on the Z-pole provide the measurement
of the universal parameter 3°(m%) almost independently of
§%(m%) and 8p(m%) and with little or no dependence on the
QCD coupling a.

The forward-backward (FB) asymmetry is given by

el 2 el 2 el 2 el 2
oo 3 M| MR - a - (at
FB = 7 nE e 2 212 (3.26)
€ € €. €
vzt |+ |+ | MR+ |0
for leptons, and
AO’Q _ E :
FB = g
2 2 2 2
wqq |MLL| I MeR |~ | MLR| — | MaT
x 3 g2 2 2 2 2 !
o {‘MEZ*ME}% MR MR }*”5{ ML =MI R | MR L MR R }

(3.27)

for quarks (q = b, ¢). Here, the physical heavy quark masses
\/1—4m2/m%. The QCD
corrections for the FB asymmetries [76] have not been
included in (3.27). The reported asymmetries from LEP
Agf(LEP) and AP (LEP) have been corrected for these ef-

myq are used in the factor G, =



574

fects assuming a linear a;-dependence and o = 0.12. There-
fore, we estimate the LEP asymmetries for a given value of
as(my) by using the following simple formula:

1+kAa

1+kA%
™

with k4 = 0.75 [26]. The uncertainty in the coefficient
Ak 4 = 10.25 affects the above «; dependence by less than
1/1000 in the range 0.11 < as(my) < 0.13. The QCD
correction depends on details of the final charm and bottom
quark tagging procedure, and hence it is desirable to have
the a;-dependence of the corrected asymmetry value from
each experiment.

The 7 polarization asymmetry is defined by the ratio of
the left- and right-handed 7 pair cross sections:

AYI(LEP) = A% (3.28)

P, = IR — 911 (3.29)
o Y

By neglecting the 7 mass one finds
2 2
+ ‘Mﬁ% -

2
Mk |5t

(3.30)
et |? et | et |
Mz, +‘MRR +|Mgf

Likewise, the left-right beam polarization asymmetry is
defined by

Xf: (o —of)
> (of+af)

f
where the cross sections for completely polarized beam are
expressed in terms of the helicity amplitudes by

J‘? =o(epeh — ff)

Algr = (3.31)

- -1 jM,-f£+Mf;; L |aaef - waeh
(1 T il &) ) , (3.32a)

a]‘? = o(el‘%eL —fH
- 51 lMgz M| R |nagf - a2 |
( Q2 O‘(s)) (3.32b)

The cross section for the electron beam polarization P, is
then

1-P 1+ P,

> Sof+ 5 of. (3.33)
We comment here that the factorization identities
Alr = _PT ;

ANt = (PT>2,

O'f(Pe) =

(3.34)
(3.35)

do not hold exactly even in our Z-pole approximation to the
amplitudes (2.2), since they do not factorize into Z produc-
tion and Z decay amplitudes at s = m%. We find for instance

for the SM predictions at m; =
os(myz) =0.12 and 6, = 0:

175 GeV, my = 100 GeV,

5°(m7)[0.23040

Arr |0.14801

=P, 10.14802 (3.36)

Agy 0.01667
3(P,)*]0.01643

The identity (3.34) holds rather accurately, but the iden-
tity (3.35) receives a correction of 1.4%. This is mainly
because of the subtle cancellation among the squared ampli-
tudes of (3.26) rendering the asymmetry Afy sensitive to our
detailed treatment of the order o effects such as the treat-
ment of the imaginary part and the choice of the couplings
§% and &2

In Fig. 7, all asymmetry parameters on the Z-pole are
plotted as functions of 52(m22). For each asymmetry, the
contributions from both the y-pole and Z-pole terms are ex-
amined using the following helicity amplitudes: (i) The full
helicity amplitudes (2.2) including the v and Z exchange
as well as the box contributions. (ii) The helicity ampli-
tudes obtained from the full amplitudes (2.2) by subtracting
the real and imaginary parts of the ¥ exchange contribution
Q:Q; [éz(m%) — iézAW(m?Z)]/s. (ii1) The helicity ampli-
tude retaining only the Z-pole term, the term multiplying the
Z propagator factor in (2.2). (iv) The helicity amplitude in
the improved Born approximation (IBA) of the Z-exchange
amplitudes:

(M;l);)lBA
| 350mY) [Be, — Qe Bm3)] [13 = Qr 8m3)]

= 2 s
s—mZ+zs

(3.37)

on the Z-pole s = m%. In Fig. 7, the predictions of (i)
are denoted by ‘Full’, (ii) by ‘Full — «’, (iit) by ‘Z only’,
and (iv) by ‘IBA’. The prescriptions (ii) and (iii) give al-
most identical predictions, and we adopt (iii) in the fit. It
is worth noting that the subtraction of the y-exchange am-
plitudes affects the asymmetry Af; significantly, but not the
other asymmetries. Note particularly that the IBA gives con-
sistently larger asymmetries by as much as 10% for AfQB, and
by about 5% for the rest. Hence, the ‘process-dependent’ ef-
fective sin® Oy factor determined from each asymmetry by
making use of the IBA-like formula (3.37) differs signifi-
cantly from the process-independent universal form factor
5%(m%). We find approximately,

sin 655 (A%E) & 82(m%) +0.0009, (3.38a)
sin® 6584V ) ~ 32(m%) +0.0010, (3.38b)
sin? g5 (A%D) & 52(m%) +0.0010, (3.38¢)
sin? G5 A%) = 52(m%) +0.0009 . (3.384d)

A related study is found in [77].

In the SM, all the form factors §5(m%), §2(m%) and
8p(m?%) are calculable as functions of m; and m (see ap-
pendix C for details). The main uncertainty in these calcula-
tions appears in the parameter &, (2.31) which parametrizes
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Fig. 7. The asymmetries on the Z-pole as functions of the effective charge 52(mzz): the leptonic forward-backward asymmetry AgB (a), the left-right beam

polarization asymmetry A;lR (b), the b-quark forward-backward asymmetry A

0,b
FB

(¢), the forward-backward asymmetry of the c-quark Agg (d). The solid

lines (‘Full’) are obtained from the full helicity amplitudes (2.2) including the ~ and Z exchange as well as the box contributions (which are negligibly
small). The long dashed lines (‘Full —v’) are obtained by subtracting from the full amplitudes (2.2) the real and imaginary parts of the ~y-exchange
contribution Q;Q; [é2(mzz) - iéQAw(mZZ)]/s. The thick dashed lines (‘Z-only’) are obtained by retaining only the Z-pole term, the term multiplying
the Z-propagator factor in (2.2). The dotted lines (‘Z-only(IBA)’) are obtained by using the improved Born approximation to the Z-exchange amplitudes.

The thick dashed lines (‘Z-only’) are used in the present analysis. QCD corrections to Aghb and AgB

the uncertainty in the hadronic vacuum polarization contribu-
tion to 1/&(m%). Hence, all Z parameters can be predicted
accurately in the SM as functions of four parameters: m;,
My, o, and d,.

Figs. 8 shows the m;-dependence of all Z parameters
for three m; values 60 GeV (dashed lines), 300 GeV (solid
lines) and 1000 GeV (dash-dotted lines), at as(m ) = 0.11,
0.12, 0.13 and 6, = 0 (1/&(m%) = 128.72). Shown by
horizontal lines are the experimental data from LEP [26]
and SLC [31] (see sections 4 and 6). The m-dependence
is sizeable for all the observables. In Ry, and o9, the m,-
dependence comes mainly from the Zb;b; form factor
6b(m2z), and hence these parameters have little sensitivity
to my; (see Fig. 1). The m,-dependences of all asymmetry
parameters including P, come from the form factor §2(m2g).
Ry receives m;-dependences from both &,(m?%) and 5%(m?%).
Finally, the total Z width is the only quantity sensitive to
the form factor §%(m%). In conclusion, the m,-dependence
of I'z is a combined effect of all three form factors g% (m?%),
5% (m%) and &p(m%).

Likewise, Fig. 9 shows the «a, dependences of the
hadronic Z parameters for the three m; values 100 GeV

)€

are calculated for cxs = 0.12.

(dashed lines), 150 GeV (solid lines) and 200 GeV (dash-

dotted lines), all at m;; = 100 GeV and 6, = 0. It can be

seen that the ratio R;, and the asymmetries Apy and Apy are

almost independent of a;s. I'z and R, grow linearly with o,
because of the final state QCD correction factor (3.4). 02 de-
creases with increasing «, since it is proportional to the fac-
tor I, /I'}. The ratio R exhibits the strongest dependence to
a,. As emphasized above, however, the as-dependences of
all Z observables are approximately proportional to a com-
mon factor 5b(m2Z)+O.6as(mZ), and hence either an accurate
determination of 5b(m22) (via Rp) or else the assumption of
SM dominance to the form factor Sb(mzz) is crucial for the
extraction of as(m ) from these experiments.

3.2 Low energy neutral current experiments

The data of four types of low energy neutral current ex-
periments are analysed: neutrino-nucleon scattering (v,,—q),
neutrino-electron scattering (v,—€), atomic parity violation
(APV), and polarized electron-deuteron scattering (e-D).
Theoretical predictions are given for all model-independent
parameters [24, 78, 79] characterizing the electroweak low
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energy neutral current experiments. They are the effective
v,—q coupling factors [78]

91, 9%, 6%, 6% (3.39)

for the v,—q scattering experiments, the effective neutral
current parameters [79]

2
Sve

Pres (3.40)

for the v,,—e scattering experiments, the weak charge of nu-
clei [80]

QW(A’ Z) bl

for parity violation in atoms, and the effective neutral current
couplings [24]

2Cy — Ciq,

(3.41)

2Ch, — Caa, (3.42)

for the e-D polarization asymmetry. Definitions of these
model-independent parameters are given below and re-ex-
pressed in terms of the helicity amplitudes of (2.2).

In this subsection terms of order « - (¢*/mi,) are ne-
glected, while keeping terms of order ¢°/m?, and « -
(m%/q?). The generic amplitude for the process ij — ij
follows then from (2.2):

; 1 ) .
MYC = 55{ Qi Q) [F(H) + & i)+ E T ()]
Qi ) T + Qs 5 & To(@) |
1 R A2\ =
# oo { B Qi By - Q550

—(I3; - Qi$*) Q; §7 [ — &
(s, - Q38 Qi 3% [ - ]
2
+ BNC(0,0)+ O(ézrs—zw) . (3.43)

All electroweak observables of the low energy neutral cur-
rent sector are calculated by using the above approximation.
Contributions from the neglected terms are completely neg-
ligible. The numerical predictions for all observables (3.39)-
(3.42) depend on just the two universal charge form factors
5%(0) and gZZ(O), since the running of the charge form factors
1/a(¢?) — 1/a and 3%(g*)/a(q*) — 3%(0)/c at low energies
|¢?| <« m?% are governed completely by known physics only
and are hence accurately calculable (see appendix B). Al-
though the expression (3.43) with the MS coupling normal-
ization (2.19) is used in all numerical calculations presented
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below, we often quote below a slightly more compact ex-
pression that is obtained from (3.43) by dropping the terms
proportional to [3%(¢?) — 4%] and replacing 3% by 5%(¢%) in
the term multiplying the Z propagator factor. This is a valid
approximation to (3.43) differing only by terms of order

P - 3P

3.2.1 Neutral currents in v, — q scattering. The neutral cur-
rent data from the v—q scattering experiments can be conve-
niently parametrized by the four model-independent param-
eters [78]

g2 =u +d>, (3.44a)
62 =uk —d%, (3.44b)

for ¢« = L or R. The effective chiral couplings g, (=
uy,dp,up,dp) can be directly expressed in terms of the
helicity amplitudes of (3.43) by

MLUI&q ( d L,R) (3.45)
«= — =u,d; a=L,R), .
TG, !
with the notation Mc’fﬁ = M{:JC; The amplitudes (3.43) can

then be written in compact form:
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TH(t)

1o
Mll,qu =50Qq¢é :

2
+3 [y, ~ Qu%0)]

3%(0)
- 2

+B#%0,0), (3.46
- e (0,0),  (3.46)

t

and the charged current factor is approximated by

[1+6c.0]7?
<_t>c.c. ’

2
my,

Gee =G (3.47)

1+

The QED correction factor 8. .. is accounted for (following
Sirlin and Marciano [81]) by,

84 mz
Sce. = - [m 2<_—t7>— +2} (3.48a)
~ 0.017 for (—t)e.. =20GeV?. (3.48b)

Note that the leading logarithm approach of [36] gives

2
R e 14 (3.49)
m <—‘t>c.c.
~ 0.013 for (—t)e.c. =20GeV?, (3.49b)

for the above correction factor. In our numerical calculation
we adopt the factor (3.48b). The v, charge radius factor

T, (t)/t and the box form factors B;*(0,0) in the amplitude
(3.46) can easily be read off from the generic expressions in
appendix A:

Tot) 1 @

_ Twi(t: , 3.50
t mi, 1672 wt ) (3.50)
with
_ 2 5
Jw(t;my,) = 4F3(t my, my) — 3 Inmy — 1 (3.51a)

2

—t 1 t m
2 ° +O<—2—, —“) . (3.51b)
myy t

= —-1nN—— —
3 m%v 9

from (A.27b) and

By (0,00 =~ g7 w%;l%v i 6437?2%@ (% - %gz)z’ (3.522)
BY(0,0) = 64224;% (—§§2>2, (3.52b)
BLi'0,0)= 16 ngmﬁv * 643724727122 (7% - %52) » 3:52¢)
B4(0,0) = - 64372%”22 (%gz)z, (3.52d)

from (A.35). These expressions are sufficient to evaluate
the helicity amplitudes (3.46) as functions of 5%(0) and
§%(0), for the MS coupling normalization of (2.19). We set
my, = 80.24 GeV and m; = 91.187 GeV in all numerical
calculations.
At (—t)pc = 20GeV?,

iy P 20 GeV?; ~ —0.0037

W‘]W(t—* € ,mu)wf. N

and the g, ’s are approximated as

(3.53)
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+0.0031 (go = uyg)
+0.0026 (g0 = up)
—0.0074 (go =d) 7
—0.0012 (g = dp)

(3.54)

for the MS coupling normalization of (2.19). Here the uni-
versal p parameter is defined by

O 1 35O
42GQpmy  1+6;—aT 054864

o ~ 0.9923 5 [13% ~Q, §Z(t)] +

P (3.55)
The relation between the form factor §7(0) and the 1" pa-
rameter is seen in (2.36a). The running of §%(t) is estimated
as

[5%(0) ~ 0.0097]

F(t = —20GeV?) ~ wj
a

~ 1.0295 5°(0) — 0.0100. (3.56)

The approximations (3.54)~(3.56) are found to give excel-
lent numerical predictions for all g, as functions of the two
charge form factors, 52(0) and §%(0).

The major effects of radiative corrections can be made
transparent by parametrizing the model-independent cou-
pling factors of (3.45) in terms of the effective couplings
Puq and s2 of [82]:

up = p,,q( % - gsiq) + 4, (3.572)
dy, = pug (—% " %sgq) +4q, (3.57b)
Up = pyq(—gsﬁq) ‘A, (3.57¢)
dr = pua ;siq) + A, (3.57d)

The extra terms Ay, are fixed such that they do not inter-
fere with the leading terms in the most accurately measured
quantities, that is, g7 and g%. One finds

% (2, %
" = o (c + ) agr, (3.58)
~2 2
_ Y97 (o S
AdL—S—’n'z(c —?)a[,L, (3.58b)
A2 a4
_ 9z 3
AdR = 2Au}i = ? 'g 5 (358C)
with
1/9 3, 8,
BL= TH@ (§ 2° 7150 ) ' (359

The radiatively corrected amplitudes can then be expressed
approximately in terms of the effective strengths ‘p,,” of the
neutral current and the effective weak mixing factor ‘s%q’ in
the v,—q scattering process. In terms of the two universal

charge form factors §%(0) and §%(t) they are given by

— 1+ (_t>cAc. ~2
14 ml, gz
va = ~5ag, 3.60
p 4 [1 +6C.C.]1/2 1 + (’“t)nx. 871'2 aZ ( a)
™z
2 2 é2 — éz
8,4() =57 + 1622 Jwt;my) — [y Oy - (3.60b)

The box factors in (3.60) are obtained from (3.52):

a2 ~2
97 o - G2 (5 155 1g4 lig
gz % = 167r262(2 7° 75 Y90
~ 0.0074, (3.61a)
@ & (S 6ly 9. 4
g2 “ T Tem*\ 2200 100 9
~ 0.0018, (3.61b)

where m#;,/m? is replaced by % in order to reproduce the
expressions in [82]. With the estimates (3.53) and (3.56), we
find

Puq = 0.9923 5 +0.0074
S0, A 1.02955%(0) — 0.0155 .

(3.62a)
(3.62b)

These equations are useful in understanding qualitatively the
effect of the v, —q scattering experiments off isoscalar tar-
gets, but we find that they give slightly inaccurate approxi-
mations to the quantities g, (3.45).

In the following table, we compare the numerical predic-
tions for the basic quantities ¢, and the model-independent
parameters of (3.44) by using the exact matrix elements
(3.45) and by using the approximation (3.57), for gZZ(O) =
0.5492 and 32(—20GeV?) = 0.2359 (the SM predictions for
my =175 GeV and my = 100 GeV):

(3.43)] (337
exact| approx.
ug| 0.3435] 0.3343
up|-0.1537|-0.1537
d, |—0.4260|-0.4336
dr| 0.0769| 0.0760 (3.63)
g2 | 0.2995 0.2998
g%| 0.0295] 0.0295
62 |-0.0634| —0.0763
§%] 0.0177] 0.0177

It is clearly seen that the formulae (3.57), although reproduc-
ing u; and d;, rather poorly, give, as expected, an excellent
approximation for the most precisely measured parameter
g%. They give, however, a rather poor approximation for the
parameter §2 being off by 20%, which is unsatisfactory in
view of the experimental uncertainty (see Sect.4.2.1).

Fig. 10 illustrates the relation between the model-indepen-
dent parameters (g7, g%) and the two universal form factors
(5%(0), §%(0)). The present data [78] (see Sect.4) constrain
the 2-dimensional parameter space to the ellipse drawn in
the same figure. The dashed line is the p=1 (65 — o1 =0)
curve: gé(O) = 4\/§Gpmzz = (0.5486. The thinness of the
ellipse in the (g%, g}a) plane implies a strong correlation be-
tween $%(0) and QZZ(O). It is worth noting that the effective
charge 52(0) derived from v,—q scattering experiments at
¢? ~ —20 GeV? is larger than the process-dependent effec-
tive mixing factor slz,q by as much as 0.01: see (3.62b).

3.2.2 Neutral currents in v, — e scattering. The total cross
section for the processes v e — v,e and e — Dye in
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terms of the helicity amplitudes M;;® and M}y are given

by
El/ ! IJ€2 2
0"t = T /Odz{]MLz +(1- 27 | M }
(3.64a)
7 CEV : V€2 Y, 2
a"e:m47r i dz{(l—z)leL‘i + | My }

(3.64b)

where the variable z is related to the momentum transfer ¢
by

(s — m2)?

S

<= —t/tmux y  bmax = ~2m.E,, (3.65)
with the approximation s = (p, + p.)* =~ 2m.E,. The am-

plitudes in (3.64) are obtained from (3.43)

me L oTo® 1] 1 5 7 350) e
ML‘L =—§€ . +§ —§+S (t) t——mZZ +BL/L (an)?
(3.66a)
e 1,05 1, g% )
My = 1220, 5Sz(t)tg_zm)zz + BY£0,0), (3.66b)

where the v, charge radius factor T;(t)/t is given by (3.51)
and the box form factors B/;°, By by

397 (1)2(_% + §2)2,(3.67a)

16m2m?% \2

() ()

-2z _(_) (&),

16mw2m?% \2
see (A.35). It is then straightforward to express the cross
sections (3.64) in terms of the universal charge form factors
5%(0) and g7(0). Our results (3.66) and (3.67) agree with
[83].

As in the case of the v,—q scattering analysis it is useful
to introduce the process-dependent effective couplings p,.e
and s,zje [24]:

g\4
16m2m2,,

B/:¢(0,0) =

B/ (0,0) = (3.67b)

Y 1
M* =2V2GF pue [ - — s?,e(t)J , (3.682)

2
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M = 2V2 G pue {—sie(t)J . (3.68b)
From (3.66) and (3.68) one finds
~2
_ - gz (19 a2 | gad
p,,e—p'f@[‘li‘—’]s + 635 } s (3693)
2 <2 & -
S,y =5+ 6 Jwtsmy)
)
BR[O V.
= [ 2 53 + 65", (3.69b)

by neglecting higher order terms and by setting m#, /m% =
&. Here 5 and Jw(t;m,) are given by (3.55) and (3.51),
respectively. The cross sections can then be expressed in
terms of the model-independent parameters p,. and s2, by

a’®  2m, G% ,
El/ - T ve
1
></ dz{ [% — 2]+ = 2220 } , (3.70a)
0
0% 2m.G% ,
Eu - T ve

1
x / dz{(l . [l — 2.0]7 + [s2. )] } (3.70b)
; 2

where t = —2m, E,z (3.65). For E, = 25.7 GeV (CHARM-
II [84]), we find

tmax = 2mMe E, ~2m 3.71)

2
-
In this momentum region the running of 5%(t) is negligible:

2200 _ — 2
S_z(t)z{l.00723(0) 0.0018 (¢ = —m?)

1.0080 5%(0) — 0.0020 (t = —2m?) ~ (3.72)

Also the v-charge radius factor 7W(t;m#) has little ¢-
dependence:

&2 —0.0061 (t =0)
—— Jw(t;m,) = { —0.0060 (t = —m7)

3.73)
tom ~0.0059 (t = —2m2)

Thus, the t-dependence of the effective mixing factor s2,.(t)
(3.69b) is negligibly small. From (3.69), (3.72) and (3.73)
follows

(3.74a)
(3.74b)

pre = p+0.0121,
s2,(0) & s2.(—m?) ~ 1.00725°(0) — 0.0103 .

In the limit of negligible t-dependence of s2_, (3.70) be-
comes:

Q

e T | CEES I [CA T e

o’ 2m.G% 1 /1 2 2
AR ARCA | e

with s2, = s2,(0). This is the form entering the analysis
of [79]: they combined the three experiments [84] and ex-
pressed the result in terms of the model-independent pa-
rameters p,. and s>, (3.40). In our analysis the above

parametrization (3.75) is used to reproduce the combined
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3%(0) = 4V2Gpm? = 0.5486.

measured cross sections from the fit [79] in terms of p, and
s2.. These cross sections are then analysed in our framework
by using the defining equation (3.64).

Fig. 11 illustrates the constraint by the data similarly
to Fig. 10. The approximation (3.74) is found to reproduce
our results accurately. The dashed line denotes the curve
p=1 (g — oI =0). The ratio of the v,e and F e cross
sections is measured accurately, and hence the form factor
5%(0) is constrained fairly independently of §%(0) from the

v,,—e scattering experiments.

3.2.3 Neutral currents in e—q interactions. The effective La-
grangian of the parity-violating e—q interaction [24]

G _ _
Lpy = —7; Eq: [Clq YV Vse - Yy vuthq

+00 Dot be - Byt (BT6)

can be rewritten in terms of left- and right-handed currents
as follows:

G € €
Lpy = _7; ;[Clq (Ja—J5) - (Jh+J7)
+Cq (T +J5) - (T = TE) |
(3.77)

The effective couplings C4, Cy, expressed in terms of the
helicity amplitudes read:

Cig=Cit +CP
— |
= M — M+ M — Meq} +C . (378a
2\/5 GF‘ L L RL LR RR 1q ( )
Cag=Cp +C3P

! o)
=570 M3 MG+ M — M| +C) . (3.78b)

Here CS) and Cé;’) denote the sum of the contributions from
the photonic correction to the axial vector Zee vertex and

the Z~ box correction {85], which are not included in our
helicity amplitudes (3.43). They are found in [85, 86]:

22 A2
=9z¢ A
=425 {a(1, -2, 8)

+613,Q, (1 — 4 §2)(1n %—222 + %) } :

(4\/50[«' my) C;Z)

(3.79a)

~ éz X
- ?ng {_213(,@5(1 —48%)

2 3
+6Qq(I3g ~2Q4 5 (in “Z+2)} 3I%)

M?= (—t) ~1.5GeV? is used in the analysis of the SLAC
eD scattering experiments [87]. By inserting (3.43) into C’{‘;’

and C%I defined above, one finds

&2 €L
2V2Gr - ClY = %(*Qq) [2 (It = Iym) + T,y ] ®

72(0 1
tg_Z(m)} (3 ) (50— 2Q5®)

eq eq eq eq
+Bry, — Bp + By g — Bpg,

+

(3.802)
2
e Eal [+
2V2Gr Gl = T [(~Qq)2 (Ife — 1) — 2I3qF‘2“] 0

33(0) [
+W (*5 +23 (t)) (I3q)

+B[] ~ B} + Bpi, — Bik - (3.80b)

By adopting the SM predictions for the vertex and box form
factors of appendix A, the model-independent parameters
C}q of the low energy effective Lagrangian (3.76) are readily
evaluated as functions of 5%(t) and §%(0). More explicitly,
one finds

=2
2 v Gz0) S
W2Gpmy CM = T [13q —2Q,3 (t)]
)
gz € 2 —
+425Q, [ (1 =480z +2(w — Tw) |
iz [ 3 2 4242
toeg 7 Da(Bg —2Qq8 J[1+(1 — 48]
62
220=0- 5= d)} . (8l
=2
2 v _ 9z(0) _2
W20rmy O3 = L iz T [1 43 (t)]
A2 é2 .
925 21, Qu2 I3 = 4Qq 1)z

+2QqJW—413q7W]

A4 3
T { S =489 [(Thg = Qg 8 +(Qy 8]

A2
+28(q=u)— %(q=d)}, (3.81b)
where the factors Jz = Jz(t;me), Jw = Jw(t;m,,) and
Jw = Jw(t;m,, ) are given in appendix A. The sum of
(3.81) and (3.79) agrees with [85].
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At t = —1.5GeV?, 3(t) is calculated from 5%(0) as
F(t) ~ 1.0183 5%(0) — 0.0058,, (3.82)

and the numerical values for Jz, Jw and Jw are Jy =~
—6.97, Jyr~—6.80, Jyy~—7.69. The non-universal (vertex
and box) corrections for C;, are estimated numerically as

Cru & [C] 5 +0.0061 +0.0007, (3.83a)
Cra = [C] g4 — 0-0011 +0.0009, (3.83b)
Cou & [C1] 15a +0-0082 +0.0048, (3.83¢)
Caa = [Chq | g — 0-0070 +0.0043, (3.83d)

where the second terms in the r.h.s. denote the electroweak
vertex/box corrections for C’ﬁ;’ , and the last terms denote

the external photonic corrections, C’Eg)
expressions [Cﬁ;’ ]IB s can be expressed by

. The improved Born

p _
[Cl]\;j]IBA = W [I3q —2Q, 32(t)] ) (3.84a)
[C%]IBA = ﬁ I3, [1 - 452(75)} ) (3.84b)

with p = §%(0)/(4v/2 Gp m%) as in (3.55).

In the polarized eD experiment only the combinations
2C1, — Ciq and 2C,, — Cyq [24] are well measured. A
model-independent determination of these two combinations
is performed in Sect. 4. Fig. 12 shows the relation between
the model-independent parameters (2C4, — Ci4, 2C5, — Cagq)
and the two universal parameters (3%(0), QZZ(O)), together
with the 1-¢ contour of the result of the analysis obtained in
Sect. 4 from the experimental data [87]. Note that the vertex
and box corrections (especially the WW box contributions)
in (3.80) are important in these combinations yielding:

2C), — Cig =~ [20M — CMipa +0.0134 +0.0005 , (3.85a)
205, — Chg = [2C — CMiga +0.0234 + 0.0052 . (3.85b)

As before, the second terms denote the vertex/box correc-
tions in C{}]’I , while the last terms denote contributions from
C;;- The majority of the non-universal contributions above
come from the WW box diagram. Since the typical contribu-

tion of the improved Born approximation to these factors are
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2CHM — CM]iga ~ 0.7089 and [2CM — CMipa =~ 0.0751
for jﬁz(o) = 0.5492 and 52(—1.5GeV?) = 0.2375 (the SM
predictions for my = 175 GeV and my = 100 GeV), the
non-propagator correction terms are appreciable in these ob-
servables.

In the case of atomic parity violation the momentum
transfer is so small that the matrix elements for nucleons
should be calculated. Marciano and Sirlin [85] introduced
effective couplings C, and C), for nucleons, which may
be separated as in (3.78)

Cip=Cil+CY, (3.86a)
Cin=CM+CV. (3.86b)

Here C{‘g and CM are the contributions from the neutral
current amplitudes (3.43), which can be expressed in terms
of CM and C] by

(3.87a)
(3.87b)

ci =20l +Clf,
cM-cMio20cM,
or more explicitly,
1
(4V2Gr m%) CY = 5(0) [ 5 - 252(0)]

9% €
1672

~4
g 9 20, R 7,
+- 92 {1—6(1 - ?sz> [1+(1 - 48] +—2—c2}, (3.88a)

+

{ (1 = 4805 +2 (Jw — Tw) }

1672
(426G m) CiY = §3(0) [—%]
with

2. m?: 1

=ZIn—% — - 3.89
Jz 3 anZ 5 (3.892)
Jw — Jw = 5 (3.89b)

which can be obtained from (A.27) by taking the ¢*> — 0
limit. Cg) and Cfl) are the contributions from the photonic
correction to the axial vector Zee vertex and the Z+v box
correction [85]:

4\/iGFmZZCSJ)
e 22 [k + 2
_ —(1-489 +5(1—4S)|:K+‘5‘(§1)Bj| )

T 1672
(3.90a)

4V2Gpm%y C
gZ éz a2\2 22 n
= e -4+l -4 ){K+(§1)B] - (3.90b)
w

The last terms on the right-hand sides of (3.90) denote the
~vZ-box corrections which are sensitive to the nucleon struc-
ture. The constants K, (£;)%; and (£;)’% have been estimated
in [85] to be

K=96+1, (&% =255, (& =1.74.

(3.91)
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By estimating numerically the vertex/box corrections in
(3.88) and (3.90), we find

Ciy ~ [CH] | +0.0107+0.0027, (3.92a)

Cin = [C’M] +0.0038 + 0.0023, (3.92b)
In
IBA

where the second terms denote the weak vertex/box correc-
tions for C’{\;{ and C, and the last terms denote the photonic

corrections, Cfg) and C'?). The improved Born approxima-

tions [CM] ., and [CM]  are given simply by

IBA IBA

1
[Cl]\g]IBA =p ['2' - 252(0)] ) (3.93a)

Ol =7|-3]

Their typical numerical values are found to be [C}]

IBA ~
0.0223 and [C{1] ., ~ —0.5005, for §%(0) = 0.5492 and

52(0) = 0.2389 (the SM predictions for m; = 175 GeV and
my = 100 GeV). Note that the non-universal corrections are
important especially for C',, where the effect comes mainly
from the WW box contribution, or the term with the factor
1¢% in (3.88a).

The weak charge Quw (A, Z) of an atom is given in terms
of Cjp an Cy,, by

(3.93b)

Qw(A, Z) = 2A — Z)Cip, +2ZCy,, (3.94)
which in the case of cesium is
Qw ('32Cs) = 156 C1, + 110Cyp . (3.95)

Numerically they are estimated as

Qw(Cs) ~ g5(0)[ —41.92 — 400.995%(0) ] + 1.77 + 0.65,
(3.96)

where the first term comes from the IBA approximation to
CIA;{ and C{\;{ (3.93), the second term comes from the elec-
troweak vertex/box contributions to them, and the last term
from the external photonic corrections of (3.90). It is clear
from the above result that the vertex and box corrections
should be carefully taken account of in extracting the elec-
troweak parameters from the (Qy measurements.

In Fig. 13, the parameter Qw(Cs) of (3.95) is shown as
a function of the two universal parameters (5%(0), gZZ(O)) in
the range 0.20 < 3%(0) < 0.26 and 0.52 < g%(0) < 0.57
together with the 1-o contour of the data [80] (dashed lines).
The horizontal straight dashed line denotes the line p = 1
(6c — oT = 0). It is worth noting that the correlation in
the 5%(0) and J5(0) form factors obtained from the cesium
weak charge Qw(133,55) in the figure is opposite to that
obtained from the v,—q scattering experiments (see Fig. 10).
The cesium @y measurement implies an anti-correlation
between 5%(0) and §%(0), or j. This is opposite to the trend
observed for the constraints from the v,-q experiments. For
further discussion, see Sect. 4.

3.3 Charged current experiments

In the charged current sector we consider two precision ex-
periments: the muon lifetime [25] and the W boson mass
measurements [25, 88].

LS UL S V0 U O O R B R N

1111”1\11|||1|

(=)
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>
T T T T T
I [ i

0.53
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Fig. 13. The weak charge (Qw) of the cesium atom 12*C; in the atomic

parity violation experiments as function of the two universal parameters
(3%0), § %(0)). The 1-o contour of the present data [80] is shown by dashed
lines: see (4.22) in Sect.4.2.3. The 5 = 1 line corresponds to §2Z(0) =
4V2Gpmk = 0.5486.

From the matrix element (2.6) one finds for the muon
decay constant

_ 3@ +§%
4/2mi,
where the factor ., denotes the sum of the vertex and the

box contributions. It has been calculated within the SM in
[50]:

Gr (3.97)

~2
- g 1 1
=——|1 — = 3.
ba 87r2[ +<4§2 1>ln 62:| , (3.98a)
~= 0.0055, (3.98b)

where the pinch term [34] has been subtracted as explained
in Sect.2: see (2.27) and (2.28).

The expression (3.97) enables one to predict the physical
W mass in terms of the charge form factor g%, (0). Numeri-
cally, one finds:

2 _ G0 +g%g

mdy = W79 %6 3.99a
55 — 0.0055

~ [15155.9 T (0)+46.7 62+ 35.2] GeV2.

(3.99b)

Once the numerical value of SG factor is known, the mea-
surement of the my, mass determines directly the charge
form factor g, (0).

The form factor g%v(()) can be calculated in terms of
the S, T and U parameters in the SU(2);, x U(1)y models.
Insertion of the expansion (2.38c) leads to

my (GeV) = 79.840 — 0.291 S+ 0.417T + 0.332U
—0.136 64 , (3.100)

in excellent agreement with (3.99) for 56‘ = 0.0055. The
prediction for a different §, value follows from the above
expression by simply making the substitution (2.39).

Fig. 14 shows the SM predictions for my, in the plane
of my and my, for 6, =0 and 5G = 0.0055. In the O(aa)
corrections to the SM contributions to the S, 7', U param-
eters as(m,) is set to 0.12. Changing a,(myz) by +0.01
affects the prediction of my, by about 70.004 GeV. The
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mean and standard deviation of the present m,, measure-
ment (see Sect.4.3) are indicated by dashed lines.

Note that among the electroweak observables examined
in this paper, only my, is sensitive to the U parameter.
Hence, when performing a general fit to the S, T', U param-
eters, the mean ((U)) and standard deviation (AU) of the U
parameter are determined solely by the mean ({my,)) and
standard deviation (Amy;,) of myy,:

(Uy = [ (my(GeV)) — 79.840

+0.291 (S) — 0.417 (T) +0.136 6, | /0.332,(3.101a)
AU =~ Amy,(GeV)/0.332. (3.101b)

Here (S) and (T') denote the best-fit values from other exper-
iments. The present experimental error of Amy,, = 0.16 GeV
induces AU = 0.48, while Am,;, = 0.05 GeV, the preci-
sion anticipated in future LEP200 experiments, would give
AU = 0.15. The full error AU should be slightly larger than
the above estimate, since S and T were fixed and set at their
best values in deriving (3.101b).

4 Experimental data and the electroweak parameters

Based on the formalism introduced in the previous sec-
tions the values for the form factors are inferred from fits
to the data of electroweak precision experiments: g(m%),
5% (m%), 6p(m%) from the LEP/SLC experiments on the Z-
pole, §%(0), 5%(0) from the low energy neutral current exper-
iments at ¢ ~ 0, and g2, (0) from the W mass measurements
at pp colliders.

4.1 Z boson parameters

The analysis is based on the data from the LEP and SLC
experiments published up to the year 1993 [89, 26, 90].
Discussions of the recent update from LEP [91] and the
precision measurement of the left-right asymmetry at SLC
[31] are postponed to Sect. 6.
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The Z line-shape parameters resulting from a combined
fit performed by the LEP electroweak group [26] are:

m,(GeV) =91.187 + 0.007
I'z(GeV) =2.489 + 0.007
od(mb)  =41.56+0.14
Ry =09 /09=20.763 + 0.049
A% =0.0158 + 0.0018
1 -0.157 0.007 0.012 0.075
1 —0.070 0.003 0.006
Peor = 1 0.137 0.003 4.1)
1 0.008
1

The other electroweak data used in our fit are [89, 26]:

P, = —0.139 + 0.014, (4.22)

A% =0.10 + 0.044 (SLD[90]), (4.2b)

A% = 0.099 + 0.006, (4.2¢)

A% = 0.075 + 0.015, (4.2d)

Ry =0)/0% =0.2203 £ 0.0027 (LEP+SLD).  (4.2¢)

Definitions of all the above observables and their theoretical
expressions have been given in Sect. 3.1.

The Z mass, m,=91.187 GeV, is treated as an input pa-
rameter neglecting its error. This is justified because of the
smallness of the experimental uncertainty and correlations.
For the fits to be described below a few general conditions
are anticipated: (a) only three neutrinos (/V, = 3) contribute
to the invisible width of Z, (b) the perturbative QCD cor-
rections with the finite quark mass effects are taken as given
explicitly in Sect. 3.1, (¢) the vertex and box corrections are
calculated in the SM and given in Table 3 and 4, (d) the
Zb, b, vertex is taken into account by the quantity 8p(m%),
which is treated in the fit as a free parameter just as the
universal parameters §%(m%) and 5% (m%).

Various methods to determine the QCD coupling con-
stant have led to consistent results with a typical uncertainty
of Aag(mz) =~ 0.01. However, this is far from making it
precise enough to be used as a fixed input parameter, since
the fitted electroweak parameters are found to be rather sen-
sitive to the assumed value of as(mj): see, for instance,
(4.3) below. For this reason, and also for the convenience of
GUT studies, a; = as{m gz )yg is treated throughout our fits
as an external input parameter and, consequently, the best-fit
values of the fit parameters and the minimum x? are always
presented as functions of a;. Once a precise determination of
o from independent data is available, it is straightforward
to get the correspondingly adjusted best-fit values without
repeating the fit. It is also easy to infer from our results the
quantitative consequences of a particular GUT model pre-
dicting the relationship between o and sin? O (M )ys:

The overall fit to all Z parameters listed above gives the
following result:

gL(m%) = 0.5542 — 0.00030 %=212 4 0.0017
§(m%) = 0.2313 +0.00008 £=%12 + 0.0007
bp(m%) = —0.0061 — 0.00430 =012 + 0.0034
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1 0.14 —-0.36
Peorr = 1 020 ), (4.3a)
1
2
as —0.1029
X =1.53 + (W) , (4.3b)

where the errors and correlations are nearly independent of
a,. The above parametrization for the «; dependences of the
mean values and X2, are accurate interpolations of our fit re-
sults (at the level of 1%) in the range 0.09 < a; < 0.15. The
bottom and charm quark masses were set to my = 4.7 GeV
and m. = 1.4 GeV. A shift of the bottom mass by £0.2 GeV
implies only the fitted Sb(mzz) value to be displaced by
40.0002, which is negligibly small compared to its error
(£0.0034). Similarly, shifting the charm quark mass by
+0.2GeV does not affect the above results, as expected.
In particular, in the favored range 0.11<a(m;)<0.13 the
quality of the fit is good, e.g. x2,, = 4.6 at a; = 0.12 for
9 — 3 = 6 degrees of freedom.

Results of the fit (4.3) are displayed in Fig. 15 by the 1-0
allowed contours in the three projections, (3%(m%), 5 (m%)),
(8% (m%), b(m%)), and (8,(m%), §%(m%)). The contours are
shown for three representative as-values: «s=0.11 (dashed),
0.12 (solid) and 0.13 (dash-dotted). Also shown by the lat-
tices are the SM predictions for m;=(100-200) GeV and
my=(50-1000) GeV. In these SM predictions, all known
two-loop corrections of the O(m?) and O(aq,) level [46,
47, 54-58, 63] are included, as explained in detail in ap-
pendix C. Hence, the predictions depend weakly on a, due
to the O(aax) corrections, as well as on SG and 6, which are
needed to predict the charge form factors from the known
(o,GF,my) values. The SM predictions in Fig. 15 are cal-
culated for «g=0.12, 5G=0.0055 and 6,=0. Changing o, by
£0.01 has little effect, but changing 6, by £0.10 leads to a
shift in the SM predictions for §2(mZZ) by F0.00026, which
is as large as 40% of its uncertainty: see (4.3).

It is clearly seen from the figure and (4.3) that the weak
mixing form factor 3"2(m22) is determined almost indepen-
dently of a,, while the Z coupling strength g% (m%) is anti-
correlated with the assumed «, value as a reflection of its
sensitivity to the total Z width. This anti-correlation leads
in the SM to a preference of larger m, for smaller «, since
g%(mzz) grows with m; (see Fig. 2). Furthermore, the fitted
Sb(mzz) value depends strongly on the a; value assumed.
The minimum of x? is reached at a, = 0.1029 in (4.3b),
a value slightly outside the range 0.11Sa,(m;)<0.13 ex-
pected from various QCD analyses [30].

It is instructive to elucidate the properties of the fit to
the Z parameters in three steps. First, the relatively small
sensitivity of the parameter 5%(m%) to a, can be under-
stood easily, since it is derived essentially from the asym-
metry parameters being either completely or nearly insensi-
tive to QCD corrections. Indeed, the fitted values of 52(m22)
as determined from each asymmetry measurement (see also
Fig. 7) turn out to be:

(from A%), (4.4a)
(from P,), (4.4b)
(from A%;), (4.4c)

5% (m%) = 0.2309 £ 0.0010
5% (m%) = 0.2316 + 0.0018
5% (m%) = 0.2365 + 0.0055

52(m%) = 0.2313 + 0.00004 2012 4+ 00011 (from A%D),

0.01
(4.4d)
§4(m7) = 0.2302 + 0.00004 2012 4 0.0035 (from Apy),
(4.4¢)

almost independent of QZZ(mZZ) and 5b(m22). Note that al-
though the quark (q = b, ¢) forward-backward asymmetries
have mild as-dependences due to the perturbative QCD cor-
rections [76], they still can be neglected compared to the
experimental uncertainties. From the above asymmetry data
alone one finds

5%(m%) = 0.2312 + 0.0009
(from A% P, A%p),

8% (m%) = 0.2312 + 0.00002 2212+ 0.0007

(from A% P, A%, A%E A%). (4.5b)

(4.5a)

The precision of the above determination of 5%(m%) from
the asymmetry data alone is almost as good as that of the
global fit to all the Z parameters. These asymmetry measure-
ments are particularly important for GUT studies, since the
parameter §2(m%) is directly related to the unifying coupling
82(w) = sin’ Oy, (W via (2.12).

Next, the best-fit value §Z(m22) ~ 0.2313 is taken to
probe the sensitivity of the remaining four observables to the
parameters §5(m%) and é,(m%). As explained in Sect.3.1,
three of the remaining four observables, Iz, 02 and Ry,
are sensitive to the a, value assumed, but only through the
combination 5b(7n22) + 0.6 (3.25), or equivalently o, +
1.66b(m22). I'z is also sensitive to gZZ(mzz). Hence, a 2-
parameter fit to the above three observables for §2(m%) =
0.2313 leads to:

g% (m%) = 0.5547 + 0.0017

s + 1.65,(m%)= 0.106 + 0.007 } Peorr = —046. (46)

The above result is found to be insensitive to the a,; value in
the range 0.10 < a, < 0.14. The above result for §%(m%)
is consistent with the global fit (4.3), as may be verified by
evaluating gZZ(mzz) at the minimum of x? (a, = 0.1029).
The anti-correlation above reflects the fact that Iy re-
mains unaltered, while increasing g%(m%) and decreasing
as + 1.66,(m%) simultaneously.

Only one Z observable is now left, namely Ry. In
Sect.3.1 R, was found to be sensitive to the parameter
6p(m%) alone. A 1-parameter fit to Ry yields:

5p(m%) = 0.0012 £ 0.0068 , 4.7)

keeping the other parameters fixed at 3%(m%) = 0.2313,
gZ(mZZ) = 0.5542 and «, = 0.12. However, this fit is in-
sensitive to variations around the values of the fixed param-
eters. Note, the SM predicts a negative value of 8,(m%) for
large my (see Fig. 1). Thus, there is poor agreement with the
expected large m, behavior of the Zb; b, vertex correction
from the present K; measurement alone. Since the parame-
ter oy enters the fit only in the combination oz + 1.66;,(m%),
the fitted Sb(mzz) can be interpreted as a constraint of aj.
From (4.6) and (4.7) follows

a, =0.104 £ 0.013. 4.8)
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Fig. 15. 3-parameter fit to the Z boson parameters: the Zby by, vertex form factor Sb(m2z) is introduced as the third parameter of the fit in addition to
the two universal charge form factors §z(mzz) and gZZ(mZZ): see (4.3). The 1-o contours are shown for three representative as(m ) values, 0.11 (dashed
lines), 0.12 (solid lines), 0.13 (dot-dashed lines). Also shown are the SM predictions in the range 100 GeV< m; <200 GeV and 50 GeV< m <1000

GeV, which are calculated assuming (Aé)hadmnS = —3.88 (64 = 0)[27] for the hadronic vacuum polarization contribution to 1/ o‘c(mZZ).

The fit to the Z shape parameters with both &, and o left

52(m%,)—0.2313 0 —0.12
+0.0004 =058 000632012 1 0.0168

h/s :
sp(m%) = 0.0014 £ 0.0070 } =, 3% (m%)—0.5542
Peorr = —0.85. (49) 6b(mz) = —0.0078 + OOOOOW
as(myz) = 0.103 £0.013 md )—0.2313 ,
, , +0.0011 20222 — 0.0061 2257022+ 0.0044
The large errors and the strong anti-correlation among them : :
(from Ry ), (4.10¢)

show that it makes little sense to extract o model-indepen-
dently from the electroweak experiments on the Z-pole, as
also noted in [92]. The low best-fit value of «, reflects es-
sentially the actual value of Rjp, which is larger than the SM
prediction in the range 150 GeV < m; < 200 GeV (see
Fig. 8). It is therefore necessary to assume the SM contri-
butions to 5b(m2Z), and to a lesser extent those to §2Z(m22),
in order to extract as from the electroweak Z parameters.
The result of such an analysis is given in Sect.5.4, where
consequences of the minimal SM are studied.

Finally, we present the result of 1-parameter fits to four
observables, I'z, 02, R, and Ry, respectively, in terms of
the parameter 8,(m%), for various values of §%(m%), §2(m%)
and «;. Here, we neglect correlations in the errors and find:

By(my) = —0.0068 — 0.0084 Tamz)-0-5542

0.0012 + 0.000082(mz)~0-5542

dp(mz) = 0.0017

~0.0001 £mL=0B1 _ (5001 2:=0.12 4 (5 0068

0.0007 0.01
(from Ry ). (4.10d)
The above fits clearly confirm quantitatively our observa-
tions that I'z, 0¥ and R, measure the combination 8,+0.6 a,
(3.25), that I'z is also sensitive to §5(m%), and that Ry is
sensitive only to 6,(m%). At present the data I'z, o} and R,
favor a negative 5b(m22) value consistent with the SM pre-
diction for 150 GeV < m; < 200GeV, while R data gives
a 8y(m%) value consistent with zero, at o, & 0.12. The com-
bination of all the above measurements together with all the
asymmetry data, and properly accounting for the correlations
in the errors, yields

+0.0020 52(m;z‘())80(;.2313 — 0.006] % of(?flz +0.0077 5b(mzz) = _0.0062 — 0.0014 gzz(ngzo)o—lg.sscu
(from I7), ~ (4.10a) +0,0009 £0m2)_0B13 _ 0 0046 €:=012 - 0,0031,
By(mi) = ~0.0210 +0.0000L£m2)=0.5542 (411
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in accordance with the result (4.3). Note that the coefficient
in front of o in (4.11) is smaller than 0.6 in the combi-
nation (3.25) as a consequence of including the additional
information due to Ry.

4.2 Low energy neutral current experiments

The two universal parameters 52(0) and §%(0) can be ex-
tracted from four types of low energy neutral current exper-
iments: the neutrino-nucleon scattering (v,—q), the neutrino-
electron scattering (v,—e), atomic parity violation (APV) and
the polarized electron-deuteron scattering experiments (e~
D). Effects due to small, but finite, momentum transfer in
these processes are accounted for by assuming the running
of these form factors to be governed by the SM particles
only (see Fig. 2), which, at low energies, is an excellent ap-
proximation. Vertex and box corrections are calculated by
assuming that they are dominated by the SM contributions.
For details of the theoretical predictions, see Sect.3.2. For
each sector, first a model-independent parametrization of the
data is given, and then the fit result in the (3X(0), gz(0))
plane.

4.2.1 Neutral currents in v,~q scattering. For the v,—q data,
the results of the analysis of [78] are adopted. In terms of the
model-independent parameters (g%,g%,&i,&}z), the following
fit has been obtained:

g2 =[ 0.2982 — 0.0058(m, — 1.5)] + 0.0028 + 0.0029,
g5 =[ 0.0309 — 0.0053(m, — 1.5)] £ 0.0034 + 0.0028,
6% = [ —0.0588 — 0.0025(m. — 1.5)] & 0.0233 + 0.0042,
§2=[ 0.0206 +0.0010(m, — 1.5)] + 0.0155 + 0.0039,

4.12)

where the former and the latter errors denote the experimen-
tal and the parametrization errors. The correlation matrices
for the two types of uncertainties also quoted in [78] are
respectively

1 -0.751 —-0.100 0.118

(exp) _ 1 0.064 0.097
Peor 1-0.436 |
1
1 -0.914 —-0.975 0.606
1 0945 -0.677
(par) _
1

The fitted parameters depend on the assumed value of the
charm quark mass (1, in GeV units) [93] entering the slow-
rescaling formula [94] for the charged current cross sections.
The data [78] constrain the charm quark mass to

me = 1.54 £ 0.33 GeV. (4.14)

After summing the experimental and the parametrization er-
rors in quadrature, and integrating out the m. dependence
of the above parametrization under the constraint (4.14), the
new model-independent parametrization of the v,—q data
gives:

g2 = 0.2980 + 0.0044
g% = 0.0307 +0.0047
82 = —0.0589 + 0.0237

~
!

6% = 0.0206 & 0.0160

1 —0.559 —-0.163 0.162
1 0.156 —0.037

1 -0.447 }°
1

(4.15)

Peorr =

which properly accounts for the uncertainty in m,. The
parametrization (4.15) serves as input to our analysis.

By using the theoretical formulae (3.44) and (3.45) of
Sect.3.2.1 the data (4.15) can be confronted with the predic-
tions in terms of 3%(0) and §%(0). Corrections due to small,
but finite, momentum transfer are evaluated at

<_t>n.c. = (_t>c.c. =20 Gevz, 4.16)

in (3.47) and (3.51) and in the running of 52(t): see (3.56).
The fit result is:

%(0) = 0.5500+9.%77 o y
52(0) = (0.24207+0.0130 Pcorr = Y. , (4.17a)
- ~0.0142
X =0.13, (4.17b)

Asymmetric errors are quoted. The non-gaussian behaviour
of the ¥? function reflects the non-linear transformation be-
tween the charge form factors (§%(0), 52(0)) and the model-
independent parameters (g7 , g%, 62 ,6%), as seen in Fig. 10.
The strong positive correlation between the fitted values of
52(0) and g%(O) is a consequence of (4.15): the precisely
measured combination g2 + g% in (4.15) dominates the total
neutral current cross section off isoscalar targets. The 1-o
contour of the above fit is shown in Fig. 16. It can be re-
produced rather accurately by the following parametrization:

§2(0) = 0.5497 + 0.0080
522((0)) =0.2413 £ 0.0136 } Peore = 0.916, (4.18a)
Xina = 0.13, (4.18b)

which serves merely for estimating the constraints from the
v,,—q experiments. We stress that all the quantitative analyses
in the following sections are performed by fitting directly to
the original parametrization of the data (4.15).

4.2.2 Neutral currents in v,—e scattering. Thev,,—e data from
the three experiments: CHARM, BNL E374 and CHARM-II
[84], have been summarized in [79] in terms of the model-
independent parameters s2, and py:

pre = (P)ks® =1.007 £ 0.028

y - =0.09. (4.19
§2, = (sin® Oy)"¢ = 0.233 + 0.008 } Peo (*+19)

As explained in detail in Sect.3.2.2, first the total cross
section ¢¥¢ and o”¢ is reconstructed by using the formula
(3.75), and then the fit is performed by using the theoreti-
cal expressions (3.64). The reconstructed cross sections are
found to be

ov¢/E,(10~%cm?/ GeV) = 1.56 + 0.10 051
078/ E5(10~*cm?/ GeV) = 1.36 £ 0.09 [ Peor = 220
(4.20)



0.57

TTTTTTTTT

0.56

llllH'HLL’_'_LLLHIH

]HHHMII

0.55

g, (0)

0.54

0.53

052 il J,J_LLJ.J,LL_I_LLLI_[_I_L - ALy .l,i_LLlL A Ll_l:
0.21 0.22 0.23 0.24 0.25 0.26

Fig. 16. Fit to the low energy neutral current data in terms of the two univer-
sal charge form factors 5%(0) and 37(0). 1-o contours are shown separately
for the v, ~q data[78], the v, e data[84], the atomic parity violation (APV)
data[80], and the SLAC e-D polarization asymmetry dataf{87]: see (4.17a),
(4.21), (4.23) and (4.34), respectively. The 1-o contour of the combined fit,
(4.35), is shown by the thick contour. The straight dashed line shows the
‘tree’ level prediction of the minimal SM: g = QZZ(O)/(4\/§GFmZZ) =1,
or §3(0) = 42 G g m%, = 0.5486.

and the 2-parameter fit to the above data gives

37(0) = 0.5459 £ 0.0154

52(0) = 0.2416 + 0.0079 } Peore = 0.09. (4.21)

The same result follows if we use the approximation (3.74)
directly to fit the parametrization (4.19). Here x2,. = 0, since
the number of degrees is 2 — 2 = 0. The result is shown in
Fig. 16 by the 1-0 contour. The weak mixing form factor
5%(0) is measured more accurately in the v,~e experiments
than in the v,—-q experiments, whereas for 3%(0) it is the
other way around.

4.2.3 Atomic parity violation. As for the APV experiments
the result of the analysis [80] on the parity violating transi-
tions in the cesium atom (A4, Z) = (133, 55) are used:

Qw(135,55) = —71.04 + 1.81. 4.22)

The quoted uncertainty is the quadratic sum of experimental
and theoretical errors. After correcting for the vertex and
box corrections [85] as explained in detail in Sect.3.2.3,
one finds

52(0) = 0.2294 — 0.6178 [ §%(0) — 0.5486] & 0.0082. (4.23)

Here the value §%(0)=0.5486 stands for the prediction at p=1
or T = b, /. The result is shown in Fig. 16 by 1-o con-
tours. As anticipated in the previous section, the correlation
between the fitted 3%(0) and §%(0) values is opposite to that
from v—q fit. As a consequence, the constraints on both 32(0)
and §%(0) are improved significantly by combining the two
types of experiments.

4.2.4 Polarization asymmetry in e—D scattering. Finally, for
the SLAC eD polarization asymmetry experiment [87] a
model-independent fit is performed to the original data by
using the two combinations, 2C},, — Cj4 and 2C,, — Cyy
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of the coefficients of the effective parity violating e—g neu-
tral current operators [24]: see (3.76). In the quark parton
model with the valence quark approximation the observed
polarization asymmetry is expressed in terms of the above
parameters by
A 6Gp
Q* 5V2e(-QY
1-(1-y)
201, —Ci)+(2Chy — Cyg) ————
X{( tu = C1a) + (202 — Caa) 7 PR

which depends on the scaling variable y, but not on z. The
mild Q? dependence due to the running of the effective QED
charge €(—Q?) is accounted for. There have been extensive
studies [95, 96], which show that the above approximation
is in fact valid on more general grounds, but that it may
suffer from higher-twist contributions. We therefore perform
a new model-independent fit to the original data [87], and
obtain quantitatively the theoretical uncertainty in the fitted
parameters.

By taking account of the sea-quark contributions and
finite R = or/or [95], as well as possible higher twist
contributions [96, 97], the above simple expression for the
asymmetry (4.24) is modified as follows:

A 6Gp 3
& " s7ancan 0~ 0o(1-3)

+2Cy, — CZd)(b + %C) } (4.25)

}, (4.24)

with
I~ (1 - 1/)2 €s
= 1+8356 —e, — =),  (4.26)
l+(l——y)2—y2Tf—R( ¢ 5) (
c=1.346 — €,/5. @.27)

Here the z-dependent parameters €, and €, denote the rel-
ative contribution of the sea u-quark and that of s and §
quarks, respectively, which are parametrized by

(1 -2
Jz
e(l —x)*
€s = 3 Tz
The uncertainty in the factor € above is estimated to be

€e=0.1+003. (4.30)

€y =€

(4.28)

(4.29)

The effects of introducing sea-quark contributions in the fit is
shown in Fig. 17(a). As found in [95], the effect is very small
along the tree level SM prediction as shown by the straight
line in the figure. Some representative values of sin? By in
the SM are denoted by blobs. The longitudinal to transverse
cross section ratio R = o, /or is allowed to vary within the
rather conservative limits

R=02+02. 4.31)

The effect of introducing the R parameter alone is shown
in Fig. 17(b) and the result turns out to be insensitive to
its uncertainty, especially along the tree-level SM trajectory,
confirming the earlier observation of [95]. Finally, the pa-
rameter § in the factors b and ¢ parametrizes the higher twist
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Fig. 17. Fit to the SLAC e-D polarization asymmetry data[87] in terms of the model-independent parameters 2C',, — C4 and 2C,,, — Cyq4 [24] of the
effective weak Hamiltonian (3.76). Uncertainties due to the sea-quark contributions (a), the longitudinal to transverse virtual photon cross section ratio
R =0 /or (b), and the higher twist effects (c) have been examined, and the fit (d) is obtained after taking account of all the uncertainties. Shown by the

solid lines are the tree-level predictions of the SM, and the blobs show the predictions at selected sin? 0y, values.

effects as expected in the MIT bag model [97]. Taking as the
magnitude of the uncertainty the largest value of the MIT
bag model estimate of [97] yields

6 =(1.58+ 1.58) x 107°. (4.32)

The effects of introducing the  parameter alone are shown
in Fig. 17(c). As in the case of the sea-quark contribu-
tions (Fig. 17(a)), the effect is negligibly small along the
line representing the tree-level SM prediction. Note that the
higher-twist effects are found to be rather model dependent
[98]. The MIT-Bag model estimates [97] adopted here lead
to quite small corrections, as in the neutrino scattering off
isoscalar targets [99]. Further study on the higher twist ef-
fects may be needed to achieve precision measurements of
the electroweak parameters in these reactions.

After allowing for all of the above uncertainties, one
finds

2C'lu - C’ld
20, — Oy

+0.94 + 0.26
—0.66 £ 1.23

} peor = —0.975  (4.33)

with xZ,. = 9.95 for 11 data points, that is, a good fit. The
above result is shown in Fig. 17(d). Because of the strong
correlation, only a linear combination of the two coupling
factors is measured well.

By using the theoretical formulae (3.78), a fit is made
to the data (4.33) in terms of the two parameters 52(0)
and §%(0). In order to fix the g*>-dependent factors (@2 =

—¢») (=@, To(—Q% and 5%(—Q?) in the amplitudes

we choose (Q?) = 1.5GeV2. Note, however, that Q2-
dependence of each data point [87] and that of the QED
running coupling &2(—Q?) in (4.25) have been respected in
the model-independent fit (4.33). The result is:

82(0) = 0.2273 + 0.3067 [ §%(0) — 0.5486 ] + 0.0092,(4.34a)
X = 0.46 — 1.77[55(0) — 0.5486 ], (4.34b)

and shown in Fig. 16. Note that the parametrization (4.34b)
is valid only in the vicinity of the SM predictions §%(0) ~
0.55 (but is valid in the whole region of Fig. 16), and that the
global X2, is zero, since the two parameter parametrization
(4.33) is adopted as the original data of our fit.

4.2.5 Summary of low energy neutral current experiments. In
this section the fits to the electroweak observables in the four
low energy neutral current experiments are summarized. The
fit results are illustrated in Fig. 16 by 1-o allowed regions
in the (32(0), g5 (0)) plane. Since all four pieces of informa-
tion are consistent with each other, a combined fit can been
performed:

% (0) = 0.5462 + 0.0036
=0.53, 435
$2(0) = 0.2353 £0.0044 f P (4.352)
X = 2.22. (4.35b)

The fit with 7 = 9 — 2 degrees of freedom is good and its
result is shown in Fig. 16 by the ellipse with the thick 1-o
contour.



It is sometimes useful to analyse the neutral current sec-
tor with and without inclusion of the neutrino data, since
in some models they receive different new physics contri-
butions. To this end the fit is done separately for v,~¢ and
Vy,—e experiments:

3%(0) = 0.5496 + 0.0068
§2(0) = 0.2414 =+ 0.0047 } peors = 0.75, (4.36a)
X2 = 0.19. (4.36b)
The fit for the APV and eD experiments gives:
=2 —
o om0 oo ) o= 0% @3
X2in = 0.46. (4.37b)

These two fits are again consistent and their combination
reproduces, of course, the above global fit (4.35).

4.3 Charged current experiments

The W mass measurements have been updated recently by
the CDF and DO collaborations. By combining the most re-
cent measurements [88] and the previous result of PDG [25]
one obtains

my = 80.24 +0.16 GeV. (4.38)

Note that in this analysis the W mass definition follows the
LEP convention [3], as opposed to the pole mass defini-
tion: see (2.14). The pole mass should be smaller by about
0.03 GeV. The difference is still negligibly small as com-
pared to the error of 0.16 GeV. It is worth noting that the W
propagator with running width factor gives a more accurate
description of the scattering amplitudes when no imaginary
parts are introduced outside the propagator factor.

The electroweak parameter §i;(0) is now obtained by
combining the my, measurement with the p life-time pa-
rameter Gr (3.99): we find
G (0) = 0.4225 — 0.0031 ‘50—2@5—5 +0.0017, (4.39)
where 6, = 0.0055 is the SM estimate for the process spe-
cific correction to the u life-time: see (3.98). No other ex-
periment in the charged current sector is accurate enough
to provide adequate information for our electroweak analy-
sis. Precise measurements of the W shape parameters [100]

would improve our knowledge in this sector considerably.

5 Systematic analysis

In this section, first the q2-dependence of the two charge
form factors g%(q?) and 3%(¢%) is examined between ¢* = 0
and g = m%. Next a combined fit in terms of the S, T and
U parameters is made assuming the g>-dependence of these
charge form factors to be governed by the SM. Finally, only
the SM particles are assumed to contribute to the radiative
effects and the preferred range of the two mass parameters
my and my is searched for. Also the a; and 6, dependences
of the fits are discussed in detail.
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5.1 Summary of all experimental constraints
on the electroweak parameters

The information on all electroweak precision data has been
represented in the previous sections in terms of the charge
form factor values (see (4.3), (4.35) and (4.39)) and is,
for convenience, collected in Table 6. In addition, the fine
structure constant « determining the charge form factor
€2(0) = 4ma (see Tables 1 and 2) has been used as an
input parameter. In calculating x? the model-independent
parametrizations of the original data are used as inputs for
the fit: (4.1)-(4.2) for the Z parameters (Sect.4.1), (4.15)
for the v,—g scattering experiments (Sect.4.2.1), (4.19) for
the v,—e scattering experiments (Sect. 4.2.2), (4.22) for the
atomic parity violation experiments (Sect.4.2.3), (4.33) for
the e-D polarization asymmetry measurements (Sect. 4.2.3),
and (4.38) for the W mass measurements (Sect.4.3). The
x? fits in each of the various sectors look all fine and it is
concluded that the whole body of data is consistent with the
assumption of the SU(2), x U(1)y universality and the SM
dominance of the vertex and box corrections.

5.2 Testing the running of the charge form factors

If there are new particles coupled to the weak gauge bosons
with masses near or below my;, and m ,, their signal can be
identified as an anomalous running of the charge form factors
[12, 11]. In principle, the running of all four charge form fac-
tors provides us with information on new physics contribu-
tions via (2.30) for 1/&(q?), (2.40a) for 532(¢%)/&(q?), (2.40b)
for 1/3%(¢?) and via (2.40c) for 1/32,(g*). At present, only
two of the four form factors, 5%(¢%) and §%(g*), have been
determined with sufficient accuracy at two different energy
scales, g> = 0 and m%.
The results collected in Table 6 yield:

4 4
= 033+12(a, —0.12)£0.17
gz(mz)  §7(0)

_2 2 52

Sz FO a4 e, 012)£062
a(my)sm &4

peo = —0.49. CRY

In the absence of a precise value for &(m%) the SM pre-
diction &(m%)sm = 1/128.72 (or, more generally, 6, =
1/&(m%) — 128.72 = 0) is used above.

Fig. 18 illustrates SM running of the charge form factor
37(@®),

47 4 1
gz(m%) gz 4
as a function of m,;, together with the experimental con-
straint (5.1). The qg-dependent Sz function is defined in
terms of the gauge boson two-point functions in (B.41a)
of appendix B. The difference (5.2) takes the form (2.40b)
of Sect.2. The m; dependence of the SM prediction is very
small compared to the experimental error for m; > 100GeV.
The SM is consistent with the data as long as the Higgs
boson mass is not too small. Note that the 1-o constraint
on my, my > 2.9GeV (67%CL), is obtained merely by

[S2(m%) - 520)], (52)
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Table 6. Summary of all the electroweak data used in the fit, and the fit results. The Z boson parameters are studied in Sect. 4.1, the low energy neutral
current experiments are studied in Sect. 4.2, and the charged current experiments are studied in Sect.4.3. In addition, we use the fine structure constant o

datum which fixes the charge form factor &

(0). x? has been calculated by taking the model-independent parametrizations of the original data as the inputs of

our analysis: (4.1)-(4.2) for the Z parameters (Sect. 4.1), (4.15) for the v, —g scattering experiments (Sect.4.2.1), (4.19) for the v, —e scattering experiments
(Sect.4.2.2), (4.22) for the atomic parity violation experiments (Sect.4.2.3), (4.33) for the e-D polarization asymmetry measurements (Sect.4.2.3), and

(4.38) for the W mass measurements (Sect. 4.3).

Z parameters measurements (Sect.4.1)
data mzy FZs O’g, R£7 Ag’;) P"" ALR’ A%;* A(ll’Bc’ Rb
fit parameters m , (input), §2(m22), gz(mzz), gb(mZZ) | dof =10—4
external parameter (s )
g3 (m3) = 0.5542 — 0.00030 2=0-12 -+ 0.0017 10.14 —0.36
§(m%) = 0.2313+0.00008 257042 3+ 0.0007 peon = 0.20
8p(m%) = —0.0061 — 0.00430 2=2:12 + 0.0034 1
as —0.1017\ 2
X2/ (d.0.£) = [2.48 + (—sﬁn—7—> }/6
Low energy neutral current experiments (Sect. 4.2}
data (QZL y 9% y 5% s 6%{); (pve , 33,3), QWa (2Cyy — Ciq, 203, — Coa)
fit parameters 32(0), §2Z(0) dof =9-2
§%(0)=0.5462 % 0.0036
_ZZ Peorr = 0.53
34(0) =0.2353 £ 0.0044
X2in/(d.0.f)=2.22/7
Charged current experiments (Sect.4.3)
data Gr, My
fit parameters G g (input), g1;,(0) dof =2-2
33y (0) = 0.4225 — 0.0031 2222 4 9,0017
X/ (@.0.£)=0/0
T T T T 1T T T T T I o171 l as 100 Gev g
: ; E = 128714 g + 0024 (14552 ) (=)
015 (L Wiz, a(mz) sm ™ m
-0.20 |- 4 (5.3a)
& E E = =2
N% -0.25 [~ = {Sz(mzz) _ 8 (0)}
ton E 3 7
5 030 [~ o, (GeV) = 100 - 200 . a(m'zz) @  lsm
<t - 4 2
C-035 B - h: « 100 GeV
N’: £ 1-0 allowed range 4 = —309 + 'ﬂ + 0009(1 + 5—8) (‘—_‘ y (53b)
£ 040 = 2 T my
e 5 LEP limit —31 ] ;
1S 045 " e The m; dependences of these runnings are very small for
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055 - K The running may be appreciable, if there is a charged
5 ‘ ] fermion with mass near to half the Z mass [12]. The case of
_0.60 - ) TS T ST W N WO TS TS I N N . . . .
1 10 100 a light wino, the fermionic partner of the W in the supersym-
m,, (GeV) metric SM, is shown in Fig. 19: (a) 47r/§%(m22)~47r/g%(0),

Fig. 18. The running of the charge form factor gz(qz), 47r/g22(mzz) —
47r/§22(0), as functions of m calculated in the SM for 100 GeV < my; <
200GeV. The 1-¢ allowed range from the neutral current experiments on
the Z-pole and at low energies, (5.1), is also shown for comparison.

comparing the Z boson coupling strengths at ¢’=0 and
g*=m%. These values are, however, obtained by neglecting
the Z — H ff contribution 10 Iz, and are anyway excluded
by direct searches at LEP (my > 63 GeV) [101].

The Higgs boson does not contribute to the running of the
other neutral current form factors, 1/a(q?) and 5%(¢%)/&(q%).
They are affected by loops of charged particles only, and,
for instance, the top quark contributions to the running of
these form factors are parametrized in appendix B, in (B.27)
and (B.28):

(b) 3% (m%)/aim%y) — §(0)/a, and (c) 6o = 1/a(mz) —
128.72. The singularity at m.,, = m,/2 of the charge
form factor 47 /G5 (m%) in (a) reflects [65] the deviation of
the Z line-shape from the Breit-Wigner form assumed both
in the experimental fit and the corresponding theoretical for-
mulae, and is unphysical. The 1-o bound on the wino mass,
Mo > 46.1GeV, as read off from Fig. 19 is unrealistic,
since the threshold 2m; , = 92.2GeV is less than a half
width away from the Z-pole. In order to derive constraints
on particles very near to the threshold, one should look for
deviations of the Z line shape from the simple Breit-Wigner
form [37, 65]. When calculating the predictions for (b) and
(c) the hadronic vacuum polarization contribution to the run-
ning of these form factors is set to dy,¢ = 0, while the present
estimate [28] is 8pq = 040.1 (B.22). Wino of masses around
50GeV may shift 6, = 1/a(m%) — 128.72 from its canon-
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Fig. 19. The running of the charge form factor § Z(q2), 32(¢%) and &%(¢?)
as expected from the one-loop contribution of the wino (fermionic partner
of the W in the supersymmetric SM) to the three neutral current prop-
agators. () 4w/5%(m%) — 47/§5(0); (b) F4(m%)/aimy) — 5%(0)/a;
©) 6o = l/d(mzz) — 128.72. The SM contributions are shown for m¢ =
100, 200 GeV and m 4 = 60, 1000 GeV. The singularity at myipo = M, /2
in (a) reflects[65] the deviation of the Z line-shape from the standard Breit-
Wigner form that has been assumed both in the experimental fit and in our
theoretical formula. The 1-o allowed ranges from the neutral current ex-
periments on the Z-pole and at low energies, (5.1), are also shown for
comparison. There is no direct measurement of 64 .

ical value 6, = O by about 0.1, which is of the same order
as the present uncertainty in the SM prediction.

It is clearly seen from Fig. 18 and from (5.3) that the re-
sults (5.1) are consistent with the SM predictions in the range
my > 60GeV and m; > 100GeV. The study of the two
examples, a very light Higgs boson and a supersymmetric
wino, demonstrates that more accurate values of 52(0) and
3%(0) are needed to detect effects of new physics through the
running of the charge form factors. Accurate measurements
of the charge form factor 1/a(g?) at |¢2| ~ m% should also
provide independent information.

Fig. 20 shows the above results in the (52(m2Z), gzz(mzz))
plane, where the Z parameter fit ("LEP+SLC’) is taken from
Fig. 15 for as = 0.12, and the combined low energy fit of
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Fig. 20. 2-parameter fit to the combined low energy neutral current data
and the Z parameters. The latter fit ('LEP+SLC’) is copied from Fig. 15 for
as(my) = 0.12. The low energy combined fit of Fig. 16 has been rescaled
to the m, scale by assuming the SM running of the two charge form
factors, 32(¢?) and §ZZ(q2), which depend on m¢ and m ;. Uncertainties
due to m¢ and my; in the SM predictions for the running of the form
factors are illustrated by drawing the results for m¢ = 100, 200GeV and
my, =60, 1000 GeV in the same figure. The 1-0 contour of the combined
fit, (5.5), is given by the thick contour, for which the above uncertainties
give negligible effects.

Fig. 16 has been rescaled to the m, scale by assuming SM
running of the two charge form factors, 5%(¢?) and §%(¢%).
The combined low energy neutral current data (see Table 6
and Fig. 16) are displayed for various choices of m; and m g
in order to put in evidence their small, but finite, effects on
the running of these form factors. The four contours are
obtained for m;=100, 200 GeV and m =60, 1000 GeV. At
my = 175GeV and my = 100GeV, the fit (4.35a) for the
low energy neutral current data can be re-parametrized as

g% (m%) = 0.5533 £ 0.0037

54
54 (m%) =0.2266 + 0.0047 4

} Peorr = 0.53.

It is seen from the figure that the low energy neutral current
fit and the Z parameter fit in terms of the charge form factors
5%(¢g*) and §%(q?) are in accordance with the running of these
form factors as predicted by the SM.

The thick solid contour marks the result of the fit to
all neutral current experiments as summarized in Table 6
assuming the SM for the running of g%(q?) and 5%(¢?):

gy(m%) = 0.5544 —0.00023 %212 £ 0.0015

F(my) = 02312 +0.000082:-512 + 0.0007
bp(m%) = —0.0064 — 0.004372=212 + 0.0034
10.16 —0.32
Peorr = 1 020}, (5.5a)
1
a; —0.1024\
2 =4 = 5.5b
Xmin =467+ \ ~G 0127 (5:3b)

In the global fit the uncertainty due to m; and m g in the run-
ning of the form factors is negligible in the range m;=100-
200GeV and m =60-1000GeV. The x2;, value of 6.6 for
as = 0.12 is acceptable for 15 (=18 —3) degrees of freedom.
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In conclusion, there is no indication of new particles with
mass <m in the running of the charge form factors.

Note that the errors in (5.1) are dominated by those of
the low energy experiments. Further improvements in the
low energy precision experiments are required to detect a
signal of relatively light new particles, should they exist,
through anomalous running of the charge form factors. In
comparing the global fit of Fig. 20 with the individual fit to
the low energy NC data in Fig. 16, the fit from the v,—q
and v,—e experiments (4.36) are remarkably consistent with
the Z parameter fit of Table 6, whereas the fit of the e—
q sector (4.37) based on the APV and the e-D asymmetry
measurements are about 1.5 standard deviations away. For
me = 175GeV and my = 100GeV, the fit (4.36a) for v,—q
and v,—e scattering is re-parametrized as

g% (m%) = 0.5568 + 0.0048
52(m%) =0.2331 + 0.0072

while the fit (4.37a) for the APV and polarized e-D experi-
ments gives

g% (m%) = 0.5583 + 0.0170
$(m%) =0.2188 + 0.0093

} peorr = 0.75, (5.6)

} Peore = —0.62. (.7

Further studies of polarization asymmetries in the e—q sector
as well as studies of the neutral current processes at TRIS-
TAN energies might be potentially rewarding.

5.3 Testing the 3 parameter universality

Once the g*>-dependence of the charge form factors is as-
sumed to be governed by SM physics alone, all radiative
effects to the gauge bosons depend on three universal pa-
rameters: S, T, U. They include the SM radiative effects as
well as new physics contributions, as opposed to the origi-
nal definitions of [4]. While the charge form factors §4(m?%),
5%(m%), 9%,(0) can be directly confronted with experiments,
the S, T, U parameter fit suffers from uncertainty in the QED
effective coupling &(m%), the reason being the fact that the
charge form factors are determined by the S, 7, U param-
eters under the (o, Gr,my) constraints (see discussion in
Sect. 2.3). The magnitude of &(m%) is controlled by the ex-
ternal parameter 6, = 1/a&(m%) — 128.72.
A 4-parameter fit yields:

S= —035 —0.0162212 10,067 S +0.33
T= 039 —00582012 0004 Lo 1036
U= 041 +0.058 2012 40,024 Lo 10.54
6y = —0.0064 —0.0043 =012 +0.0034
1 0.83 —0.18 —0.12
I —0.40 —0.32
Peort = 1020 | (5.8a)

1

from the result of the global fit summarized in Table 6. The
best-fit values of S, 7, U and &, are weakly dependent upon
a; and 6, as quoted explicitly in (5.8a). The minimum of x?
turns out to be practically independent of é,. We therefore

add to the fit the independent knowledge 6, = 0.0+0.1 [28]
leading then to:

2 2
- as — 0.1024 S
Xinin = 467 + ( 00127 ) "\oao)

The correlation between S and T is strong, since they are
constrained by the precisely measured weak mixing form
factor 52(m%) via (2.38b).

The above results are shown in Fig. 21 by 1-o contours
as projections onto the (S, 1Y), (S, U), and (U, T') planes.
The contours are drawn for three «; values, a,=0.11 (dashed
lines), 0.12 (solid lines) and 0.13 (dash-dotted lines), and for
me = 150,200 GeV and my = 100, 1000 GeV in the running
of the charge form factors 5°(¢%) and §%(g%) between ¢° = 0
and ¢®> = m%. The fit results depend slightly on m, and
my in the above range. The numerical values of (5.8) are
obtained for m; = 175GeV and my = 100GeV. The SM
predictions of appendix C are drawn in Fig. 21 by lattices
in the region m;=100-200 GeV and m ;=50-1000 GeV.

The fitted T parameter depends only slightly on a5, when
the parameter &, is allowed to vary freely within the experi-
mental constraints. If we fix 8, by a theoretical model, then
the 7" parameter should have stronger o5 dependence due to
the correlation —0.31 between the errors of T and & (sce
Sect. 6.3 for more discussions). The S parameter depends on
6. The fitted S value is shifted by about 0.07 (that is, 20% of
its present uncertainty of 0.33) for [0 ]sm = Ohaa = 0£0.10.

(5.8b)

The parameters S, T and U measure electroweak radia-
tive effects in the gauge boson propagators. The fit (5.8)
shows that the data favor negative S and positive T' at
as = 0.12 and 4 = 0. The point S =T = U = §, = 0,
which represents the case of no electroweak radiative ef-
fects in the gauge boson propagators and none in the Zb; b,
vertex, is about 4.5 standard deviations away from the min-
imum for a; = 0.12 and 6, = 0. However, if in addition
the electroweak radiative effects are dropped in the muon
decay by setting & = 0 in (2.26), then according to the sub-
stitution rule (2.39) the ‘no-radiative effects’ point becomes
T =0.0055/a = 0.75, S = U = 6, = 0 in the fit (5.8), which
is only 2.6 standard deviations away from the minimum. Al-
though this result still assumes the SM radiative corrections
for the remaining vertex/box corrections, it is essentially the
mechanism that led the authors of [64] to state that there
had not yet been an evidence for genuine electroweak ra-
diative effects. Our analysis makes it clear that it is more
natural to interpret significant radiative effects in the T' pa-
rameter which are approximately cancelled by the effect of
the radiative effect 6 in the prediction of the electroweak
observables.

The resulting x2,, of (5.8b) agrees nearly with that of
(5.5b). The effective number of degrees of freedom is in both
cases 15, namely 19 — 4 respectively 18 — 3. The fit to the
NC data contains actually only three parameters, S, T" and
y(m%), corresponding to the charge form factors §*(m%),
gzz(m%z) and 8,(m%) in the global fit. The present fit depends
in addition upon U, when the charged current data (and thus
the forth form factor, §Z,(0)) are included.
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Fig. 21. Global fit to the (S, T, U) parameters for three o5 values and 8, = l/d(mzz) —128.72 =0 and SG = 0.0055. Four 1-¢ contours are obtained for
each a, by using m; = 150, 200 GeV and m ;; = 100, 1000 GeV in evaluating the running of the charge form factors: see (5.8) for a parametrization of the
fit for ms = 175GeV and m = 100 GeV. The fourth parameter of the fit, the Zb Lb ;. vertex form factor 5b(mzz), is allowed to take an arbitrary value, free
from SM constraints. The SM predictions with &, = 0 and 0 = 0.0055 are also given for 100GeV < m; < 200GeV and 50GeV < m g < 1000 GeV.

5.4 Testing the Minimal Standard Model

In the minimal SM, all the parameters §%(m%), 5%(m%),
3%(0), 3%(0), g%, (0) and &3(m%) depend uniquely upon the
two mass parameters m; and m,. Consequently, the results
of the fits summarized in Table 6 are constraining m; and
™ . We should repeat here that the SM contributions from
the top-bottom doublet to the form factors are calculated by
using the simple O(ac;) two-loop formula [54-56]. Non-
perturbative tf threshold effects [60-62] will affect these
corrections and the predicted m; value will shift upwards
by as much as a few GeV [62] from the effect in the T
parameter. Our approach separates clearly the data analy-
sis in terms of the generic form factors and the analysis of
the SM contributions to these form factors. Uncertainties in
the latter process can hence be studied separately. In fact
if the SM m;-dependence of the fit is dictated by the m,-
dependence of the T" parameter alone, then the sole effect of
the non-perturbative threshold corrections can be expressed
as a rescaling of the m; parameter in the following analysis.

Fig. 22 shows the result of the global SM fit to all elec-
troweak data in the (., m,) plane [102, 103] for three rep-
resentative o, values. The “x” indicate the minimum of x?;
7.4, 6.6, 10.3 for oy = 0.11, 0.12, 0.13, respectively, the in-
ner contours correspond to 1-o, the outer to x? = x2;, +4.61
(that is, 90% CL). Dashed lines show the best m; values
for a given my. Note the positive correlation between the
preferred values of m; and my;, which is found to be in-
dependent of the assumed «; value. On the other hand, the
preferred range of m, depends rather sensitively on a;.
For the cases ay(mz) = 0.11 and 0.12 smaller my val-
ues are preferred, whereas for ay(m,) = 0.13 larger my is
slightly favored. If the lower bound for m;, my > 63 GeV

at 95% CL measured by the LEP experiments [101], is im-
posed, m; below 100 GeV is clearly disfavored for all as,
in agreement with the directly established lower top mass
limit [104, 105].

The x? function in the global fit to all electroweak data
can be represented in terms of the four parameters my, my,
as(my) and 4, together with the constraint 6, = 0.0 + 0.1
[28] by:

2
my — (M
XgM(mt,mH’as,(sa) B <_t~AT7§1t—tl) +X%I(mH7asv6a)1
(5.9a)
where
m m
(ms) = 1452+ 125 In F)% +0.9 In? "10—15
as —0.12 P
—19({ ") —46( — 5.9b
9< 0.01 ) (0.10> : (5.99)
m
Amy =146 — 023 In 2
my n 100
- 150
~(038-005 T_Ofé.) 130, 5.90
and
bo — 0317
X%J(mH)am(sa) =6.11+ (W)

+<a8 —0.1173+o.0055(,t)2

0.0060
oy —0.1244 400256, | my
0.0136 100

2
as—0.1322\ ,my [ ba
(G2 e T (e ) (504
( 0.0700 )l“ 100+(0.1o ©5d)
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Fig. 22. Electroweak constraints on (g, m g) in the minimal SM, for three selected o, values at 6o = 0. Dashed lines show the best my values for a
given m;, and the solid contours are for x2=x% +1and x? = Xiin +4.61. The minimum point of x? is marked by “x”. The region my < 63GeVis
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excluded by LEP experiments [101].

Here m; and m g are measured in GeV. This parametrization
reproduces the exact x? within a few % accuracy in the range
100GeV < m; < 250GeV, 60GeV < my < 1000GeV
and 0.10 < as(m) < 0.13. The best-fit value of m; for a
given set of my, o and &, is readily obtained from (5.9b)
with its approximate error of (5.9c), mutatis mutandis for
mp. Due to the quadratic form it is easy to get the o, or
do independent results. Also additional constraints on the
external parameters «; and &, such as those from their
improved measurements, can be discussed without difficulty.
As explained in Sect. 4.1, the SM does not fit well the ratio
Ry If we remove from our global fit the data on Rp, we find
that the best-fit m, value above becomes larger by 3.9 GeV,
almost independent of my and s, and the X2, decreases
by 2.4.

Fig. 23 displays the overall x? of the SM fit, X%M’
as function of m; for my = 60, 300, 1000 GeV and
as(myg) =0.11, 0.12, 0.13. Also the uncertainty due to é, is
shown for three cases, 6, = —0.1 (a), 0 (b), 40.1 (c). The re-
sults of the parametrization (5.9) is shown by the dotted line.
It is remarkable to see that the present knowledge of 6, to
£0.10 affects the best-fit value of m, by about 5 GeV, while
the uncertainty in o, of +0.01 affects it by about 2 GeV.
This observation emphasizes the importance of the asymme-
try measurements for the prediction of m; through §%(m%),
where the dependence on §, in the SM is not negligible: see
(2.38b). On the other hand, the o -dependence of the fitted
m,; comes from the constraint due to the Z total width, I'z,
which in turn is sensitive to m, mainly through §%(m%). We
come back to this point in the next section when discussing
the new left-right asymmetry measurement [31].

In Fig. 24 the overall x? is plotted as functions of My
for m; =120, 140, 160, 180, 200 GeV and a;(m ) = 0.11,
0.12, 0.13 setting 6, = 0. The dotted lines indicate our ap-
proximation X%M of (5.9). Obviously, the best-fit value of
my depends very sensitively on the m; and «; values. A
small value of the Higgs mass is favored for m; < 140GeV,
values of a few hundred GeV for m; around 160 GeV and
large values for m; > 180GeV. The preference of lighter
™y is more pronounced for small o, while heavier m for
larger ;. However, the m; dependence of x? is very mild
and meaningful upper bounds on my; can only be obtained

for small o, and small m;. The upper and lower bounds
on m; will be discussed more quantitatively in Sect. 6 after
inclusion of the new left-right asymmetry data [31].

For given m; and my the QCD coupling az(m ) may
be extracted within the SM from the electroweak data alone
with the resuit:

as = {as) +0.0060, (5.10a)
_ _ me 2
() = 0.1165 — 0.00085 (100)
My 2 ba
+0.00031 (ln AL +2.6) 0.0006 52 , (5.100)

where m; and my are measured in GeV. The above paramet-
rization reproduces well the a, dependence of the x? func-
tion (5.9) in the range 100GeV < m; < 200GeV and
60GeV < my < 1000GeV. The error on «, determined
from the electroweak data is found to be approximately
0.0060, almost independently of the assumed m;, my and
8, while the mean value (a,) is slightly sensitive to them;

0.1159 for {ms, my) = (150, 60)GeV

0.1153 for (my, my) = (175, 60) GeV

0.1145 for (my, my) = (200, 60) GeV 5.11)
0.1220 for (m;, my) = (150, 1000)GeV > ™
0.1214 for (m, my) = (175, 1000) GeV

0.1206 for (m;, my) = (200, 1000) GeV

<0‘5> =

for 6, = 0. There is a tendency in the SM fit to prefer larger
a;, for larger myy.

Furthermore, if all radiative effects are assumed to be
dominated by the SM contributions, the present electroweak
data have some sensitivity to the parameter 6, = 1/ d(mzz)—
128.72. By excluding the last term in (5.9d), (6,/0.1)% [28],
the electroweak data alone provide the constraint:

8o = (6a) £0.24, (5.12a)
150
(64) = 0.010 — 0.139 -@EWIS—
My as —0.12
. M gq1p %722 5.12
+0.246 0 T —0.112 %2, (5.120)

where m; and my are measured in GeV. The above para-
metrization is valid in the range 120 GeV < m; < 200GeV,
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Fig. 23. Total x2 of the SM fit to all the electroweak data as functions
of m¢ for my = 60, 300, 1000GeV and as(m,) = 0.11, 0.12, 0.13.
The uncertainty 6 in the hadronic vacuum polarization contribution to the
effective charge 1/ &(mZZ) is shown for three cases, 6o = —0.1 (a), 0 (b),
+0.1 (c). The dotted lines are obtained by using the approximate formula
(5.9). The degree of freedom is 19.

60GeV < my < 1000GeV and 0.11 < a, < 0.13. For
some representative m; and my; values the exact evaluation
of the x? function leads to:

—0.09 for (my, my) = (150, 60) GeV
—0.45 for (my, my) = (175, 60) GeV
(Ba) = —0.87 for (m¢, my) = (200, 60) GeV
@ 0.59 for (my, my) = (150, 1000) GeV °
0.25 for (my, my) = (175, 1000) GeV
—0.12 for (my, my) = (200, 1000) GeV

(5.13)

for as=0.12. The above fit is consistent with the direct mea-
surement [6qJsm =~ Ohyg = 0 £ 0.10 when m; and my; are in
the preferred range in Fig. 22. This confirms the importance
of the direct ép,4 measurement in constraining the model
parameters from the electroweak precision measurements.
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Fig. 24. Total x> of the SM fit to all the electroweak data as func-
tions of m, for my = 120,140,160, 180,200GeV and as(m,) =
0.11, 0.12, 0.13. The hadronic vacuum polarization contribution to the ef-
fective charge 1/ d(mZZ) is fixed by setting 8, = 0. The dotted lines show
our approximation (5.9). The degree of freedom is 19.

Considering the X2, per degree of freedom (see paramet-
rization (5.9) and Figs. 22-24) the SM predictions provide
a good description of the data over a still wide range of
m; and my for the values of o, and 6, in the ranges:
0.11<a<0.13 and —0.1<6,<0.1. In conclusion, the anal-
ysis of the present precision experiments does not show a
signal of new physics beyond the SM.

6 Discussion

In this section, the consequences of the update of LEP data,
the new precision measurement of the left-right asymmetry
at SLC [31] and the impact of a direct top mass measurement
are considered. Finally, the predictions of all electroweak
observables within the SM are discussed.

6.1 Update of LEP data

Recently the LEP Electroweak Working Group has published
a report [91] summarizing the combination of preliminary
LEP data for the 1994 La Thuile and Moriond conferences.
During 1993 the four LEP experiments have performed a
high precision scan roughly 1.8 GeV above and below the
Z resonance and within 200 MeV of m . The new Z shape
parameters agree with the ones quoted in Sect.4.1 within
one standard deviation. The Z mass moved to 91.1895 +
0.0044 GeV with improved uncertainty. Changing of the
‘constant” m,, from 91.187 GeV to 91.1895GeV does not
lead to noticeable effects in the analysis. The total Z width
increased to 2.4969 1 0.0038 GeV with considerably re-
duced uncertainty, also the forward-backward lepton asym-
metry increased to 0.0170 + 0.0016. Other parameters, o3,
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Ry, Ry, have changed very little. The correlations in the Z
line-shape parameter fit have become slightly smaller.

For the time being no attempt has been made to incorpo-
rate the updated values, since the analyses of the 1993 data
are still preliminary.

6.2 The new left-right asymmetry data at SLC

As emphasized in Sects. 3 and 4, the left-right asymmetry as
well as the other asymmetry measurements at LEP have the
advantage of determining the universal parameter 5%(m%)
almost independently of the other form factors, §%(m%) and
5b(m22), and almost unaffected by uncertainty in a;. Since
the parameter 52(m%) is directly related to the MS coupling
§%(u), these asymmetry measurements are particularly im-
portant for the GUT studies.

The new measurement of the left-right asymmetry [31],

AYp = 0.1656 + 0.0076, (6.1)
implies
5%(m%) = 0.2282 4 0.0010. (6.2)

This value is 2.5 standard deviations smaller than (4.5b). Ex-
cluding the possibility of a shift caused by a systematic effect
this measurement may be considered as a statistical fluctu-
ation and then be combined with the other asymmetry data
on the Z-pole, that is, the lepton (e, 1, 7) forward-backward
asymmetry [26], the 7 polarization asymmetry [26], the left-
right asymmetry [31] and the quark (b,c) forward-backward
asymmetries [26], as well as with the old left-right asymme-
try data from SLD [90]. The result is

§%(m%) = 0.2302 + 0.0005 . (6.3)

The new average (denoted by “ALL”) is shown in Fig. 25
together with the individual contributions.5 Note that §%(m%)
derived from the 7 forward-backward asymmetry is as small
as (6.2) from the new left-right asymmetry. Although the
inclusion of the new left-right asymmetry lowers the §2(m%)
fit value by about 1.5 standard deviations, the quality of the
fit (x? = 6.6 for 5 degrees of freedom) does not indicate an
inconsistency with the other data, as may be seen also from
the histogram of the distribution in the figure.

With the proviso of excluding a shift due to systematic
error sources we include the data (6.1) into our global analy-
sis, and discuss its effect by comparing the results with those
obtained in Sect. 4. The 3 parameter fit to the Z parameters
only gives

g%(m%) = 0.5538 — 0.00031 2-%12 10,0017

§(m3%) =0.2303 + 0.00006 2212 + 0.0005
6p(m%) = —0.0071 — 0.00432 2:=0-12 + 0.0035
1 0.11 -0.37
Peorr = 1 0.16 (6.4a)
1
g 2
X2 =5.78 + <———a’ 0_0?‘2‘;)00) (6.4b)

S In Fig. 25 and in the following analysis, we use the corabined result of
{90} and [31] as the data for Afy: APy = 0.1637£0.0075 gives 3*(m%) =
0.2284 £+ 0.0010
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Fig. 25. The universal weak mixing form factor §2(m2) as determined
from various asymmetry measurements on the Z-pole: the lepton (e, , 7)
forward-backward asymmetries [26], the 7 polarization asymmetry [26], the
left-right asymmetry [31] and the quark (b,c) forward-backward asymme-
tries [26]: see (4.4), (6.2) and the footnote 6. Also shown is the deviation “x’
(that is, x = ((§°(m%)) — 0.2302)/0(5%(m%))) for each fit individually,
where (§2(m2z)) and a(Ez(mZZ)) denote mean and standard deviation of
each fit, respectively. At the bottom the above x-values are histogrammed.

The result is shown in the (5%(m%), §%(m%)) plane by the
thick lines of Fig. 26(a) for three values oy = 0.11,0.12,0.13
along with the old fits (thin lines) copied from Fig. 15.
The SM prediction for é, = 0 is also shown in the range
100GeV < m; <240GeV and 1GeV < my < 1000GeV.
It can be seen that the new A; g measurement by itself im-
plies large m, (m:2200GeV) for my > 50 GeV. The com-
bined fit, however, favors m;~180 GeV for m ,~100GeV.
The remaining two parameters §o(m%) and &y(m%) are
less affected. The sznin per degree of freedom is 8.4/6 for
as = 0.12, which is fine.

Next, the 4-parameter fit in terms of S, T,U and & is
performed analogously to the one in Sect.5.3. Combining
the above result with (4.35) from the low energy neutral
current experiments and (4.39) from the W mass measure-
ments leads to

S=-067 —0.0242=012 40066+ 40.30

0.01 0.10
T= 030 -0060%-212 _0004 L +0.36
U= 024 +0.0532-212 40.024 Jos +0.54
8y = —0.0074 —0.0044 =012 +0.0034
1 0.87 —0.25 —0.19
I —0.42 —0.33
Peorr = 1 0.19 y (6.5a)
i
2 2
Ximin = 8.60 + (——as 0_0(1'369 98) + (g%) : (6.5b)

where m; = 175GeV and my = 100GeV are used to cal-
culate SM running of the form factors between ¢* = 0 and
¢ = mzz. Fig. 26(b) shows the 1-o contours in the (S, T)
plane for the three values o = 0.11,0.12,0.13 for §, = 0.
The old fits (5.8) are also shown by thin lines. The results are
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Fig. 26. Impact of the left-right asymmetry data [31] by the SLD collaboration. The band (mean (dashed line) and the 1-o (solid lines)) represents the
constraint from the new left-right asymmetry data alone. The constraints from the fits with and without (see Figs. 15 and 21) the new asymmetry data are
shown by thick and thin lines, respectively, for as(m,) = 0.11,0.12,0.13. The ZbLbL vertex form factor 5b(m2Z) is allowed to take an arbitrary value,
free from SM constraints. (a) The fits are shown in the 52(mzz)—§zz(mzz) plane: see (6.5). The SM predictions are obtained by assuming ., = 0 in the
range 100GeV < my < 260GeV and 1 GeV < my < 1000GeV. (b) The fits are shown in the S-T" plane, where o =0 and 6., = 0.0055 are assumed,

and m; = 174GeV and m, = 100GeV are used to calculate the SM running of the charge form factors between ¢ =0and ¢* = mZZ: see (6.5) for
parametrization of the result. The results are insensitive to the actual (my, m ;) values in the region m; > 100GeV and my > 50 GeV (see Figs. 18 and

19). The SM predictions are given in the range 100 GeV < m; < 260 GeV and 50GeV < m < 1000 GeV.

insensitive to the above (m;, m ;) values assumed in the run-
ning of the charge form factors in the region m; > 100 GeV
and my > 50GeV, although they are considerably modified
for m g $50GeV (see Fig. 18). It is worth noting this quali-
tative difference between the fit to 52(m%) and g4(m%) and
that to S and T'. As a matter of fact, the experiments on the
Z resonance are far more precise than those from the low
energy neutral current experiments implying that the global
fit to all the electroweak measurements in the neutral current
sector measures essentially 52(m%) and §%(m%). In the SM
the two charge form factors can be calculated for arbitrary
m; and my, as shown in the figure for m,;=100-240GeV
and my=1-1000GeV. On the other hand, in our defini-
tion, the T parameter determines §%(0) rather than g% (m%).
Hence, only if the running of the §%(g?) between ¢* = 0 and
¢*> = m% is small, can we make the global fit to the S, T
parameters. For this reason we restrict the SM predictions
to the region my =50-1000GeV in the (S,T) figure. It is
remarkable that the electroweak data including the new left-
right asymmetry measurement clearly favor negative S, thus
putting severe constraints on technicolor models [4]. Note
that in the (S, T) plane only the S parameter is strongly
affected by the new Ay data, while the T parameter is con-
strained, independent of the S parameter, by §%(m%) from
I'z.

Next, the impact of the left-right asymmetry measure-
ment on the SM fit is discussed using all electroweak data.
Fig. 27 shows the results of the SM fit in the (m;, my)
plane for as(m;)=0.11,0.12,0.13, and for 6, = —0.1 (a),
0 (b), and +0.1 (c). The contours of x? = x2, + ! and
x? = X2, + 4.61 are shown by thick lines. The minima
of x? in the figure are marked by crosses: 12.1, 11.4, 15.7
for a; = 0.11, 0.12, 0.13, respectively, for 6, = 0. The
1-o contour for each a value is now clearly outside the
physical region allowed by the direct Higgs searches at LEP

(myg > 63GeV, denoted by “LEP limit” in the figures),
although the my; dependence of the x? is very mild for
a@s>0.12. The result favoring a light Higgs boson reflects
the fact that the new left-right asymmetry measurement shifts
the S parameter to negative values.

Finally, the status of the SM fit is studied in detai} as in
Sect. 5. To this end the representation of the x” of the SM
fit including the new left-right asymmetry data is obtained
(analogous to Sect.5.4):

2
mye — (T
X%M(mtv mH,as:(Sa) = (iﬁﬂit—») +X%{(mHva376a)v
(6.6a)
where
m m
=1622+12.6 In—Z + 0.8 In*> =&
(my) =162.2 + 6n100+081n 100
oy —0.12 b
S () (Puc B by BENY'[- e .6b
12( 0.01 ) 48(010)’ (6.6b)
m
=12.0—-0.09 In -2
Am, = 12.0 - 0.09 In A
My mt—175
—(0.31-0. HY TR 6
(031 OOSlnlOO) =, (6.6¢)
and
6o —0.75\°
Xy (M, s, 84) = 9.56 + <—“b§—)
o ((©s 01164 +0.005 5, 2
0.0060
(s = 0.1365+0.0308, | my
0.0144 100
a, —0.1255\ ., my 60 \?
2 TH () 6.6d
( 0.0639 )1“ 100+(o.10 (6.6d)
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Fig. 27. Electroweak constraints on (mg, m H) in the minimal SM, including the new left-right asymmetry data [31], for three selected o values
as(mz) =0.11, 0.12, 0.13, and for (a) 6o = —0.1, (b) 6o =0, and (¢) 6o = 0.1. Dashed lines show the best m; values for a given m,, and the solid
contours are for x? = x2, + 1 and x? = x2, +4.61. The minimum point of x? is marked by “x”. The region my, < 63GeV is excluded by LEP

experiments {101].

Fig. 28 (in analogy to the previous results of Fig. 23)
shows the total x? of the SM fit as functions of m; for
my =60, 300, 1000 GeV and ay(m,) = 0.11, 0.12, 0.13.
The uncertainty 6, is shown for three cases: 6, = —0.1 (a),
0 (b), +0.1 (c). The dotted lines are obtained by the approx-
imate formulae (6.6). It is obvious from Fig. 28 and Fig. 23,
or from (6.6b) and (5.9b), that the best-fit value of m; is
shifted by about +17 GeV for given my, o and , values.
Here again the uncertainty of é,, is important for the top mass
prediction, as observed from (6.6b) and Fig. 28: 6, = +0.1

causes a shift 5GeV in the best-fit value (m;). The a,-
dependence of the {m;) values is considerably weakened.

Fig. 29 (in correspondence to Fig. 24 in the previous fit)
shows the total x? of the SM fit including the new left-right
asymmetry data [31], as functions of my for m,; = 100~
200 GeV. Three o cases are displayed; a,(m ) = 0.11 (a),
0.12 (b), and 0.13 (¢), all for §, = 0. The dotted lines show
our approximation (6.6), valid only in the ‘physical’ region
63GeV < my < 1000GeV. As seen, the best-fit value of
myy is as low as 10 GeV for m; <150 GeV, while it increases
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Fig. 28. Total x? of the SM fit to all the electroweak data including the new
left-right asymmetry data [31] as functions of my for m . = 60, 300, 1000
GeV and as(m,) = 0.11, 0.12, 0.13. The uncertainty 8, in the hadronic

vacuum polarization contribution to the effective charge 1/ d(mZZ) is shown
for three cases, o = —0.1 (a), 0 (b), +0.1 (c). The dotted lines are obtained
by the approximate formula (6.6). The degree of freedom is 19.

with my for m;>150 GeV. This trend can also be appreciated
from the global fit of Fig. 26(a) in the (8%(m%), §%(m%))
plane.

6.3 The impact of the top mass measurement

The top quark searches of the two collaborations CDF and
DO at the Tevatron entered in their decisive phase [105, 106].
The range of values for the top quark mass coming out of
the fits to the electroweak precision data is within reach for
direct observation in the detectors at the Tevatron. In view
of the recent publication by the CDF collaboration [106] it
is instructive to examine the impact of the constraint

my =174 £ 16 GeV. 6.7
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(e) as(my) =0.11, at 6o = 0. The dotted lines show our approximation
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1000 GeV. The degree of freedom is 19.

First, the m;-dependence of the global fit to the elec-
troweak data in terms of the charge form factors §*(m%)
and gZ(m %) is considered, now assuming SM dominance to
the 6,(m%) form factor. Using the Z parameters including
the new A;r measurement [31] one obtains

1,,,474
G2(m%) = 0.55430 — 0.00109 22120008 5
+0.00156
my—174
$(md) = 0.23023 +0.00016 2212000 Trr

+0.00054
Peorr = 0.19,

me — 90\’
X?nin = 686 + <—P‘60—‘>

(6.8a)
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s — 0.1187 — 0.0022 =174\ 2
+ , (6.8b)

0.0068

which is a good approximation in the region 150GeV <
my; < 200GeV. Here the errors and the correlations are al-
most independent of the m; value. The fit to all electroweak
data gives

a, —0.12-0.0022 222

S=-0.62 -0.097 +0.066 2= +0.30

0.01 0.10
Ty —174
T= 039-0214 2220025 0,004 S5 +0.34
g —174
U= 0.17+0.182 0205275~ 10,023 fo; +0.53
10.87 —0.22
Peorr = 1-038 |, (6.9a)

1

2
m; — 84
sznin =958 + (T)

s ~ 0.1185 — 0.0022 ™78\ 2 75 \?
+ + . (6.9b)
0.0067 0.10
The appearance of essentially the same combination
— 174
as —0.12 —0.0022 ¢ — 7 (6.10)

16
in (6.8) and (6.9) is the expected consequence of the strong
correlation between 8,(m%) and a as discussed in detail in
Sect. 4.

Next, the above constraint on the top quark mass (6.7)
is imposed on the x? function of the SM fit in the previous
subsection. The result displayed in Fig. 31 shows the im-
provement over Fig. 27. Now, light Higgs boson masses are
moderately favored, as a consequence of the constraint (6.7)
being somewhat larger than the best-fit value of m; obtained
by freely fitting the two parameters, m; and mj; without the
my constraint from LEP.

It is instructive to anticipate the impact a precise mea-
surement of the top mass would have in the context of the
present electroweak data. The top quark mass is expected to
be measured eventually with an uncertainty of about 5 GeV
at Tevatron by the end of this decade [107], which may be
improved to about 3 GeV at an upgraded Tevatron [108].
The uncertainty is expected to be reduced by an order of
magnitude to a few hundred MeV at next linear e*e™ col-
liders [109]. The top mass acts then like an external pa-
rameter and the only remaining free parameter is the Higgs
mass. Fig. 32 shows the 95% CL constraints for three val-
ues of ag(m,)=0.11,0.12,0.13, and for 6, = 0. For small
m; values, rather strict upper bounds on my are found.
On the other hand no strict upper bound is obtained for
m:2180GeV. In the region 160GeV < m; < 190GeV,
the upper bound on my at the 95% CL is approximately
expressed as

1.20 + 1.12 2= for oy = 0.11
[.55+ 1.252=0 for oy = 0.12
1.95 + 1.45 =12 for o = 0.13

where m; and my; are measured in GeV. The upper bound
is lower for smaller m;. Since these bounds are very sensi-
tive to the m; value as well as the assumed o, value, more

m
n -2 <

o 6.11)

accurate constraints on m; are needed to obtain more strin-
gent limits on my. Nevertheless, it is remarkable that the
constraint on the top quark mass (6.7) would favor a rel-
atively light Higgs boson, my = O(100GeV), which may
exist in the minimal SUSY-SM.The electroweak data to-
gether with the direct my bound from LEP [101] my >
63 GeV (95%CL) imply that the top quark should be heavier
than about 145 GeV. This lower m; bound changes by about
F5GeV for 6, = 0.1,

One comment is in order. Though our approximate for-
mulae of the x? for the SM fit, (6.6), reproduce the exact
result within about 1% accuracy in the Higgs mass range
63GeV < my < 1000 GeV as seen Figs. 28-29, one should
not use them in finding the confidence levels of my for
small mg, since the neighborhood of the minimum of the x?
is outside the above range, where the exact x? and the ap-
proximate formulae are fairly different as seen from Fig. 29.

6.4 Summary of the data and the SM fit

Table 7 collects the complete list of all input data (except
for @, Gy and m ) and the corresponding minimal SM pre-
dictions for several sets of (m;, my, o) values. The total
x? of each sector is also given in the table. The correlations
between the errors (given in the text) are properly taken
into account. The numbers demonstrate that the present elec-
troweak experiments are well described by the SM, perhaps
except for a combination of a light top and a heavy Higgs,
see the case (m;,my) = (150,1000)GeV in the last col-
umn of the table. Its total x> at o, = 0.12 is 30.22 for 19
data points, whose x2-probability corresponds to 95%. In Ta-
ble 7 also the results of two approximations are listed. The
‘no-EW’ column is obtained by dropping all electroweak
corrections to the two-point functions (S =17 =U =0) as
well as vertex/box corrections (0 = & = I = By = 0),
while retaining the QED running of the charge form factors
a(q?) and 3%(¢%)/a(q*) due to light particles (excluding the
W and t contributions). The ‘IBA’ column shows the result
of the improved Born approximation, where all the gauge
boson propagator corrections are retained and hence all the
four charge form factors are kept exact, but all vertex/box
corrections (8, = I'; = B;; = 0) dropped, except for 6 in
the y decay.

It is amazing to note that the ‘no-EW’ hypothesis is, from
a statistical point of view, not completely unacceptable. The
comparison between the ‘no-EW’ and the ‘IBA’ hypothe-
sis is surprising, since in the ‘IBA’ prediction all the most
important electroweak corrections are supposed to be con-
tained, including the dominant m? corrections in the T' pa-
rameter. It is even more striking, if SG in IBA is set to O (this
may be called a genuine IBA), to obtain 5%(m%) = 0.2286
for m; = 175 GeV and the total x? jumps nearly to 100. The
measurement of the Z parameters are equally well described
by the ‘no-EW’ and the full calculation for m; = 175 GeV.
This confirms the observation of [64, [10] that there is
no evidence of the genuine electroweak correction in the
present electroweak precision experiments. As explained in
sections 2.3 and 5.3, this is because of the accidental cancel-
lation between the propagator corrections and the remaining
vertex/box corrections. The no-EW calculation for all the
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Fig. 30. 2-parameter fits to the Z boson parameters, where in (a) 52(m22) and g Z(mzz) are free parameters, and in (b) S and 7T are free parameters. In
both cases the Zb; b, vertex correction is assumed to be dominated by the SM contribution, and the m¢ value in the vertex correction is treated as external
parameter in the fit. The 1-¢ contours are shown for three representative o s(m ) values, 0.11 (dashed lines), 0.12 (solid lines), 0.13 (dot-dashed lines}.
Also shown are the SM predictions in the range 100 GeV < m: < 200GeV for 1 GeV < m, < 1000GeV (a), and for 50GeV < m,; < 1000GeV (b).

The SM predictions in (a) and the 1-o contours in (b) are obtained by assuming 6o = | /d(mzz) —128.72 = 0.
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Fig. 31. Electroweak constraints on (m¢, mg;) in the minimal SM, including the new left-right asymmetry data {31] and the constraint m; = 174 + 16
[106], for three selected s values at 6o = 0. Dashed lines show the best m¢ values for a given ™y, and the solid contours are for x2 = xfmn + 1 and
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asymmetries on the Z-pole give almost the same values with
the predictions of the exact calculation for m; = 175GeV
and m; = 100GeV. As discussed in Sect. 4.1, B also gives
a large contribution to x? in the full calculation. For a large
top quark mass, the Zb; b; vertex from factor Sb(mzz) de-
creases (see Fig. 1), and hence it gives smaller R;. For this
reason the present data of R, agree better with the no-EW
and the IBA calculations, where &,(m%) is set to 0.

The most significant differences between the no-EW pre-
diction and the full SM predictions in (m; = 175GeV ,my =
100 GeV) column appear actually in the predictions for the
low energy v,—q scattering and the atomic parity violation
experiments. When evaluating the no-EW and IBA predic-
tions, all the external photonic corrections and the tree-level
propagator effects are retained, as explained in Sect.3.2. The
difference between the full SM predictions and the no-EW
or IBA predictions is mainly caused by the absence of the
WW box contribution in the latter.

Another significant difference appears in the predictions
for myy,, where the no-EW prediction (79.95 GeV) is much
smaller than the observed value, 80.24 £0.16 GeV. This ob-

X”. The region my,

< 63GeV is excluded by LEP experiments [101].

servation has also been made in [110-12]. In contrast to the
low energy neutral current experiments above, the difference
here is due to S and U contributing to my, proportional to
—0.2945+0.332U (c.f. (3.100)). For instance, the full SM for
my = 175 GeV and my = 100 GeV predicts S = —0.232
and U = 0.358, which implies for m;, a shift by 0.19 GeV
corresponding to more than one standard deviation.

Finally, Fig. 33 shows separately for each sector the x2
of the SM fit as functions of m ; for m, = 100—200GeV. In
all sectors, the preferred Higgs mass range is strongly cor-
related with the assumed top mass. For m;=170-180GeV,
a light Higgs boson is favored by the Z parameter measure-
ments and by the low energy neutral current experiments,
while the data of my, alone prefer a rather heavy Higgs
boson. Although the overall trend of the total x> shown in
Fig. 29 is dominated by the contribution from the Z pa-
rameter measurements, also the W mass measurement plays
an important role for some m;, my ranges. For instance,
a relatively light Higgs boson (m<100GeV) appears in-
compatible with a heavy top quark (m; ~ 200 GeV) by the
my, measurement alone.
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Table 7. The SM predictions for the electroweak parameters. The column ‘no-EW’ is obtained by dropping all radiative corrections except in the running
of a(g?) and 5%(¢?) due to light quarks and leptons. The column ‘IBA’ is obtained by dropping all vertex and box corrections except SG, In both ‘no-EW’
and ‘IBA’ cases, corrections due to the tree-level propagator effects and the external QED/QCD corrections are kept. When the predictions depend on
as(mz), we show three representative cases for as(mz) =0.11, 0.12 and 0.13 from top to bottom. The x? values are obtained by taking account of the
correlations among the errors that are presented in the text (see Sect. 4). The total number of the data is 22 by counting also (o, G, ™ ), while the above
three parameters are used as inputs of the SM analysis. The degree of freedom of the fit is hence 22 — 3 = 19.

data no-EW IBA Exact SM
me (GeV) — | 175 175 175 175 150 150
my (GeV) —— | 100 100 60 1000 60 1000
S —— [ -0232 | -0232 | -0283 -0.075 -0264 -0.056
T —— {0887 0.887 0917 0.587 0.614 0.300
U —— | 0358 0.358 0.359 0.353 0.299 0.293
ba —— | 0.0055 | 0.0055 | 0.0055 0.0055  0.0055  0.0055
1/&(m%) 128.85 | 12871 | 12871 | 12871 12871 12872 12872
2(m2) 02312 | 02304 | 02304 | 02301 02317 02309 02325
QZZ(m%Z) 0.5486 | 05564 | 05564 | 05564  0.5552  0.5552  0.5540
5p(m%) S — | -0.0099 | -0.0100 -0.0100 -0.0079 -0.0079
32(0) 02388 | 02389 | 02389 | 02386 02401 02394  0.2408
3% (0) 0.5486 | 0.5492 | 05492 | 0.5493  0.5480  0.5481  0.5468
gg,(O) 04218 | 04242 | 04242 | 04245 04224 04229 04208
I'7(GeV) 2489 £ 0.007 | 2.481 2519 2493 2.494 2.484 2488 2479
2.487 2.524 2.498 2.499 2.490 2.493 2.484
2.493 2530 2.504 2.505 2.495 2.499 2.490
oY (nb) 4156 + 0.14 | 41.53 41.53 41.52 41.52 41.52 41.50 41.51
4147 41.47 41.46 41.46 41.47 41.45 41.46
4142 41.42 41.41 41.41 4142 41.39 41.40
R, 20.763 + 0.049 | 20.734 | 20.747 | 20689 | 20.693  20.665  20.701  20.673
20.801 | 20.814 | 20.756 | 20.760 20732 20769  20.741
20.869 | 20.880 | 20.823 | 20.827 20799  20.836  20.808
AL 0.0158 + 0.0018 | 0.0167 | 0.0182 | 0.0167 | 0.0171 00144  0.0157 0.0132
P 0.139 £ 0014 | -0.149 | -0.156 | -0.148 | -0.150  -0.138  -0.144  -0.132
ALr 0.1637 £ 0.0075 | 0.1494 | 0.1557 | 0.1480 | 0.1500 0.1378  0.1438  0.1318
Ry 0.2203 + 0.0027 | 02183 | 0.2182 | 02157 | 02156 02157 02165 02165
02183 | 02182 | 02157 | 02157 02157 02165 02166
02183 | 02182 | 02157 | 02157 02157 02165 02166
Agg 0.099 + 0.006 | 0.105 0.109 0.104 0.105 0.096 0.101 0.092
0.105 0.109 0.104 0.105 0.096 0.101 0.092
0.105 0.109 0.104 0.105 0.097 0.101 0.092
A‘F’g 0.075 £ 0.015 | 0.075 0.078 0.074 0.075 0.069 0.072 0.065
0.075 0.078 0.074 0.075 0.069 0.072 0.065
0.075 0.078 0.074 0.075 0.069 0.072 0.066
x2 (as =0.11) 7.65 26.38 11.16 11.00 19.88 10.78 29.21
(s = 0.12) 7.40 35.10 10.71 10.94 16.35 10.15 25.10
(s = 0.13) 12.87 49.38 15.76 16.39 18.31 15.09 26.55
g% 0.2980 & 0.0044 | 02887 | 02893 | 0.2995 | 02998 02973 02979 02955
gf 0.0307 & 0.0047 | 0.0302 | 0.0303 | 0.0295 | 0.0295 0.0297  0.0295  0.0298
6? -0.0589 + 0.0237 | -0.0588 | -0.0589 | -0.0634 | -0.0634 -0.0634 -0.0633 -0.0632
zsf 0.0206 + 0.0160 | 0.0181 | 0.0182 | 00177 | 00177 00178 00177  0.0178
x}? 691 6.09 0.24 0.29 0.25 0.19 0.78
s2 £ 0233 + 0.008 | 0.239 0.239 0.230 0.230 0.231 0.231 0.232
Peff 1.007 &+ 0.028 | 1.000 1.001 1.013 1.013 1.011 1.011 1.009
x? 0.61 0.60 0.18 021 0.06 0.11 0.02
Qw 7104 £ 1.81 | -7489 | -7498 | -7321 | -73.17  -13.31 7317 7330
X2 452 474 1.43 1.39 1.57 1.38 1.57
2C1y — Cia 0.938 + 0.264 | 0.709 0.709 0.723 0.724 0.717 0.720 0.713
2C9, — Chg | -0.659 + 1.228 | 0.081 0.080 0.104 0.105 0.096 0.101 0.092
x2 1.96 1.94 1.27 123 1.51 1.40 1.69
myw 80.24 + 0.16 | 79.95 80.39 80.39 80.42 80.22 80.27 80.08
x? 3.23 0.91 0.91 128 0.02 0.03 1.06
X (s = 0.11) 24.87 40.66 1520 15.40 2329 13.88 3433
(s = 0.12) 24.62 49.38 14.74 15.34 19.76 13.26 30.22
(s = 0.13) 30.10 63.65 19.79 20.78 21.72 18.20 31.66

7 Conclusions

A novel method to confront electroweak data with theory at
the quantum level has been proposed and a comprehensive

analysis has been carried out. The electroweak observables
were first expressed in terms of model-independent param-
eters, which in turn were expressed in terms of S-matrix
elements of processes with four light fermions and factor-
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Fig. 32. Constraints on the Higgs mass in the SM from all the electroweak
data including the new left-right asymmetry data [31]. Here the top mass
mmy is considered as external parameter with negligible uncertainty. Upper
(solid lines) and lower (dashed lines) bound of the Higgs mass at 95% CL
are shown as functions of m¢ for as(m ) = 0.11,0.12, 0.13. The hadronic
vacuum polarization contribution to the effective charge 1/ d(mZZ) is set
by 6o = 1/&(m%) ~ 128.72=0.

ized into the short-distance part and the part related with the
external QED/QCD corrections for neutral current processes.
Only two quantities, the Fermi coupling constant G and the
W mass are considered for charged current processes. Since
all electroweak observables were expressed in terms of he-
licity amplitudes, they can be evaluated in an arbitrary model
on and off the Z resonance. Our formalism is hence useful
to study effects of tree-level deviations from the SM, arising,
for instance, from an additional Z boson. After careful eval-
uation of the external QED/QCD corrections, the theoretical
predictions were confronted with experiment in three steps of
increasing theoretical stringency. First, in the class of theo-
ries respecting the electroweak gauge group SU(2)L x U(1)y
broken spontaneously to U(1)gy the radiative effects were
classified into process-independent and process-dependent
ones. Apart from the Zb; b, vertex, all vertex and box cor-
rections were assumed to be given by the SM, while new
physics contributions were studied in the most general way
by four universal charge form factors. Next, by assuming the
running of the charge form factors to be governed by SM
physics alone, the electroweak parameters S, T, U were
determined. Finally, the SM itself was confronted with ex-
periments.

It was our aim to render this analysis as transparent as
possible by developing the theoretical formalism in full de-
tail and by presenting the results in figures and parametriza-
tions in a form useful for appreciating consequences of future
improvements in the experimental data.

The analysis proceeded in two steps. First, the informa-
tion in the whole body of electroweak precision data has
been condensed in the 9 electroweak parameters: my, and
mgz, &(0), 5(0), §3(0) and g7, (0), 3(m%), gz(m7) and
6§(ng). At the present time no direct information exists for
e*(m%). In order to keep the analysis flexible €*(m%) and
also the QCD coupling constant o; have been treated as

external parameters in the fit procedure. Second, this uni-
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Fig. 33. The contributions to x? from each sector of the analysis in the
SM: (a) from the Z parameters including the new left-right asymmetry data
[31], (b) from the low energy neutral current experiments and (c) the my,,
measurements. They are calculated as functions of m g for m; = 100~
200GeV, at as(m,) = 0.12 and 8o = 0. The number of degrees of
freedom is 9 for the Z parameters (a), 9 for the low energy neutral current
experiments (b), and 1 for my, (¢).

versal set of quantities with the complete covariance matrix
has been interpreted within the electroweak theory at three
qualitatively distinct levels.

The main result is that the data can be consistently in-
terpreted at all levels, in particular there is nowhere evi-
dence against the SM. This conclusion is not affected, when
the new precision measurements of the left-right asymme-
try from SLD [31] is included. The fits to the universal
charge form factors or that to the universal S, T', U pa-
rameters work well and do not hint at a violation of the
SU@2)L x U(1)y universality, nor at an anomalously large
non-standard vertex/box corrections. Generally speaking, the
inclusion of the SM vertex/box corrections improves the fit
to the data, while the improved Born approximation gives
a poor fit to experiments. The ratio Ry, = Ug /o% measured
by the LEP experiments turned out to be in poor agreement
with the large Zb, b; vertex correction predicted by the SM.
The fit to the S, T, U parameters gives us information on
spontaneous symmetry breaking. The T" parameter is essen-
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tially determined by the charge form factor §%(m%), and
a positive value is favored. The S parameter is then fixed
mainly via §%(m%), and hence its best-fit value is affected
by the asymmetry data. A negative S value is favored by
the new left-right asymmetry from SLD, and the naive tech-
nicolor models are disfavored [4]. Due to the strong corre-
lation between the fitted S and T values, the region of the
(S, T') plane with relatively large S and 7' (—0.3<5< —-0.1
and 0.5<T'<1) is consistent with the SM prediction for
150GeVEm,;<200GeV and 50GeV<Sm,;5200GeV (see
Figs. 26(b) and 30(b)). The U parameter is measured only
via §3,(0), and it is consistent with zero.

The analysis showed that the experimental precision re-
quired to detect a deviation from the SM is still insuffi-
cient. For instance, the running of the charge form fac-
tors can be tested presently only for 52(¢?) and §%(g*) and
is limited by the precision of the low energy neutral cur-
rent experiments. Nevertheless, the data are precise enough
to show that their consistent description within the SM
is only guarantied, if the top quark mass exceeds about
145 GeV. This low mass bound of m; is nearly indepen-
dent of ay, but changes by about F5 GeV due to the uncer-
tainty +0.1 in the hadronic vacuum polarization contribution
to 6o = 1/a(m%) — 128.72. Note that the SM top-bottom
contribution to the form factors have been calculated by us-
ing the O(aqy) two-loop formula [54-56]. Perturbative tf
threshold effects [60—62] will affect these corrections, and
the predicted m; value may shift upwards by as much as a
few GeV [62].

The near future promises a clarification of the value of
the left-right asymmetry published by the SLD group and the
ratio R, from LEP experiments. The precision scan around
the Z resonance performed 1993 by the four LEP exper-
iments will further improve substantially the Z resonance
parameters. It would be advantageous to publish the data
without the subtraction of the Z—y interference contribu-
tion. Eagerly awaited is the definitive observation of the
top quark. If its mass turns out to be compatible with the
electroweak analysis of the 1-loop effects there is hope to
constrain for the first time the elusive Higgs sector.

By introducing the QCD coupling strength a,(m ;)ys
and the shift §, = 1/a(m%)— 128.72 as external parameters
in the fit, we have made clear the significance of their pre-
cise measurements. Unless these parameters are accurately
measured, the search for effects beyond the SM through the
electroweak radiative effects gets increasingly limited.
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Appendix A SM radiative corrections at one-loop order

In this appendix the propagator, vertex and box corrections
of the standard mode] (SM) are presented, all at one-loop
level and partly at two-loop level for the O(aay) terms of
the gauge boson propagators. All the Green’s functions are
calculated in the ’t Hooft Feynman gauge in the dimensional
regularization and renormalized in the MS scheme. Defini-
tions of the scalar one-loop integrals, A, B, C, D functions,
are given in Appendix D. Vector boson propagators are given
in A.1, the vector boson fermion vertex functions and the
fermion wave function corrections follow in A.2, while the
box corrections are listed in A.3. All the one-loop calcula-
tions are done independently and we reproduce the known
results of [2, 32, 113] for two-point functions and those of
[41-44] for the three- and four-point functions.

A.1 Propagator corrections

There are four vector boson two-point functions contributing
to processes with external light quarks and leptons at one-
loop order. They can be parametrized by [2]

Ty () = T (), (A.12)
T (P =¢dy, {’ﬁ?pQ(qz) - §2ﬁ§Q(q2)} , (A.1b)

—=ZZ 2 [+=33 2773Q MATFEQ
7" @) = 9% {Tr@ - 28T @)+ T2 @)},

(A.l¢)
oy @) = $ T @), (A.1d)
with the coupling factors
97 = % = i , (A2)
and the use of the compact notation
=1-¢&=sin"f,, , (A3)

throughout the appendix. These two-point functions and the
coupling factors are renormalized in the MS (the modified
minimal subtraction) scheme, and hence they depend on the
’t Hooft unit of mass g which appears explicitly in the B
functions as defined in appendix D. The coupling factors of
(A.2) and (A.3) also depend implicitly on the unit of mass
i. The subscripts 7" in (A.1) denote the transverse part of
the polarization tensor

qudv

qu.9v
H}LI/((I) = <g,uv + (}‘2 >HT(Q'2) +

p (g, (A4
The longitudinal parts IT;,(¢?) do not contribute to processes
with light external fermions.

With the help of the four B functions, By, B3, Bs and
Bs (see appendix D), all SM contributions to the above two-

e —AB, 5, .
point functions are expressed compactly. I1p (g°)’s is de-
composed into the bosonic and the fermionic contributions,

—AB —AB
Oy (@) =17 (¢Hs + 1P (Dr, (A5)

and the expressions are given separately.



A.l.1 Bosonic contributions. The bosonic contributions with
pinch terms are given by [34]

. 1
T3% s = T3P s — — @ B¢ W, W),  (A6a)
472
=3
T2 (s = T3P
1 2 1 2 2
5 (@ = 3 ) Bo@ W W), (Ah)
—33
O7()s = T3 ("B
1
rpe (¢° — m¥y)Bo(g*; W, W), (A.6c)

=11
Iy (@5 =11 (@8
1 2 2 a2 2.
T2 (" - mW)[c Bo(q"; W, 2)
+§Bo(@: W,y (A6d)

where the short-hand notation
Bn(qz;Aa B) =Bn(q2;mA7mB)7 (A7)

is introduced for the B functions. Each ITr(¢?) function
without overline is calculated in the 't Hooft-Feynman gauge,
whereas the II(g%) functions with pinch terms are gauge
invariant [34]. The explicit expressions are

— 2 2
HTQQ(QZ)B=— g {[5B0+1233](q2;VV,W)+§},

1672
(A.8a)
2
=3Q, 2 4 11 2, 2
HT (q )B_ 1671'2{[2B0+IOB3](Q ,W7W)+3 »
(A.8b)
=33 5 1 2 1 2.
HT(q )B = 167(2 l:mZB0+ZBS:l(q ’ZvH)
1 /23
“Tom2 [(qu — 2miy ) Bo +9q233} (W, W)
2
— (A.80)
T (D)5 = — 2 Bo+ LBs|( W H
T(Q)B——W My 0+Z s((g; W, H)
1
T [(8@2q2 — (1 - 48md, — mZZ)Bo
9
(3 —2&2)35} @5 W, 2)
'§2 2 2 2
37 (4q” — 2miy)Bo — Bs|(¢"; W,v)
2
—5417?. (A.8d)

At one-loop order of the minimal SM, the first terms in
(A.8¢) and (A.8d) are the only ones in the transverse com-
ponent of the vector boson propagators being dependent on
the Higgs boson mass (mg).

A.1.2 Fermionic contributions. The fermionic contributions
to the gauge boson propagators are known to O(aqa;) two-
loop level:
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2

D Q8 By, )

2%k = T

=Uq,04

2
q 2
+167T2 Cq Z Qf
f d

4
x {8 By . D)+ 5 = By(d: f, f)}, (A.92)

2

5 Y Qe b4 Ba(a 4, ),

16

L3 (¢Hr =

2
q E :
+167T2 C Qs Iy
f=ui,d;

2a; .,
x {4 By £, £)+ 5 = By(@h f, f)}, (A.9)

1
33, 2 _ 2 2 2 2.
IF(@r = 15 f;yqa §7 [46°Bs — 2m2 Bo| (@2 £, )
1
+m504 > (Isf)z{[4q233~— me»Bo] (@ £, )
f=u;,d;
1 a,
+3 2By + Ba] (@ £, f)},
(A.9¢)
1
1, 2 _ 2 _ 2., .
I (@r = 17— 2;[2q By — By (@% v, 60
1 2
+7e=3C0 D |Vat| {[2(1233 ~ Bs) (g% ui d;)
7
1 ag 2.
+6 p [BV+BA:|(Q ,U“d])},

(A.9d)

The summation over ¢, j extends over the three genera-
tions of lepton and quark flavors, (11, v2,13) = (Ve, Yy, Vr)s
(el p 627 83) = (67 H T)v (U] y U2, u3) = (U, ¢, t) and (dl ’ d?.a d3) =
(d,s,b). Cq = 3 is the color factor, Q; the electric charge
of the fermion f in units of the proton charge, I35 the weak
isospin

+1 for f = v; or u;g,
—5 for f =4;p or d;p,
0 for f = £;r, usr or diR,

Iy = (A.10)

while V4, are the Kobayashi-Maskawa quark mixing ma-
trix elements. The O(aay) corrections in perturbative QCD
[52, 55, 56} are given by the functions By and Ba:

Bv(g*m,m) = ¢ By (g m,m), (A.112)
Ba(ghm, m) = ¢ By(@%m,m) + Ba@;im,m), (A.lb)
By (g%m,0) = ¢*B{,(¢*;m,0) + By (0; m,0), (A.11¢)
Ba(g%m,0) = @*Bly(g%m,0)+ BA(;m,0),  (A.l1d)
where
{/(qz;m,m):lni—z+% #4C3+4_;23%<£_2>,
(A.12a)



2 2 2
N SN Am 7\ _
=l 4G [A‘(4m2) AI(O)J,
(A.12b)
By(¢%;m,0) = B);(¢*;m,0)
2 2 2
u 55 4m q
= lst 4Gt [Fl(m2) FI(O)],
(A.12c)

and

2 2
Ba(0;m, m) = m? [12 m A v2m 3—1] . (A.132)
m?2 m2 2

By(0;m, 0) = B4(0;m, 0)

—m[31n2“+—1n— G+ ] (A.13b)
m

2

Here {; = 72 /6, (3 = 1.2020569, and the complex functions
Vi, A1 and Fj are given in [55, 56]. The following limits
are useful:

By (M?*;0,0) = B, (M?*;0,0)

2
1n-ﬁ‘j[—5+55 A¢s + i, (A.142)
2
Bl (M*m,m) = nﬁ—+l—+0(1‘nf2), (A.14b)
B8 oM
2. —_ -
By(M%m,m) = ln +3e O(mz)’ (A.14c)
B(,(M2;m,0)=BA(M2 m, 0)
2 2
e M 115 4 M
=ints . 2 c2+0(m) (A.14d)

A.2 Vertex correction

The vertex form factors I’ lf (g%, T;{_ ¢». I 3f(q2) and I, 4f(<12)
appearing in the helicity amplitudes (2.2) contribute to the
~vff and Zff vertices as follows:

A =
i@y = -&{Qs[1+ 1Y @] + BTy @d}
I = —g,{(bs - Qs8) [1+ I{ ()]

+L [T + T (@) + I (qz)}. (A.15b)

(A.152)

It should be noted that the functions I (¢%) and T3 (¢?)
are common to the vf f and Zf f vertices, and that I’ 3f @)

and I‘4f (¢%) are additional contributions to the Zff vertex.
These vertex functions depend on the chirality of f and their
explicit forms at the one-loop level of the SM are

oI\ 2
ri®g = (fT) i@, (A.162)
Ffu(q )=I1fn(q2)=11fn(q2)=0 (A.16b)
ngf 2 E
F]fL(qz) -— ( ) Z(q2) + Z L W(q2),
(A.16¢c)

— wif p
Ty = -2 Z L ‘ Tow(d, (A.16d)
ngf 2
rfrgh=Y" L47r ! @, (A.16¢)
f/
ri{«¢»=0 (A.160)
with the gauge boson coupling convention
ff:ggffzény Q;szf=—§fo§2,
zsf _ 2 wii_ § (A17)
gy, =gz(I3f_Qf5)7 g \/Efo’a
where
@ = 11(¢% £, 2, /) = Z'm; £, 2), (A.182)

Fly@ = [0+ D@5 £ W, ) = Z/s £, W),
(A.18b)

Thy(@ = [T + T | (@5 £, W, £ = T W, W)
+2Re Bo(g>;, W, W), (A.18¢c)
I (@) = D@ f W, ) + D@ W, f, W) . (AL184)

Here
2

(g m, M) = <2+——>B1(q m, M) — (A.19)

M2
is the external light fermlon self energy correction, and the

last term in (A.18c) of F2W is the pinch term (2, 34] which
is subtracted from the vertex functions as calculated in the
’t Hooft-Feynman gauge. The remaining vertex functions in
(A.18) are

F](qz;manm)
= [242(011 +Cp3) +4C4 — MZCO] (¢*;m, M, m) —

(A.20a)

Tim(g?; m, M, m)
m2
=— { [q2(6‘12 +Cp) +2CH — ZMZCO] (g*;m, M, m)

M2
1
2 )
FZ(qz;Myva)
=2 [qz(cn +Cn)

(A.20b)

m2
+(6 + ME)CN +(q - mz)Co] (" M,m, M) -2,
(A.20c)

Fzm(qz'M m, M)

_m [2M2 (A.20d)

M2
with the shorthand notation for the C' functions of ap-
pendix D:

024]((12; M) m, M) 3

Ci(g%:my, ma, m3) = Ci(0,0,¢% my, ma, ms). (A21)



In the limit of the diagonal KM matrix elements V.4, =
d;5, which is assumed in all our numerical results, the in-
ternal fermion mass m = my is non-negligible only for
f=b.(f' =t). Otherwise we can set m = 0 at high energies
(m?/q* ~ 0) and find
(g% 0,M,0)=In—— — 4 — 2—-

+(3 +2£22) n L i€

+2(1 + A;—;> [Sp(l + M2

(g% M, 0, M)—3ln——+2—2q—

<1+2£),@L+2—M—2(2+M2) L*, (A.22b)

Tim(q%:0, M, 0) = Dom(q®; M, 0, M) =0, (A.22¢)
and
/ w1
T0:0,M)=In+o — -, (A.23)
ReBy(g%: M, M) =1n 1 W 8L. (A.24)

M2

Here Sp(z) = — foz % dt is the complex Spence (diloga-
rithm) function, and

8= \/ 1 - 4(M? — i0)/¢?, (A.252)
L=In g tll . (A.25b)

At low energies, light fermion masses may not be ne-
glected as compared to the momentum transfer g2. In the
limit of |¢*|/m% <1 and m} /m% <1, but at fixed m?%/q?,
the vertex functions reduce to

Il =5 [Jz(q n+o( 2)} (A.262)
Z Z

' (a? __fL .

Iw(q) me [Jw(q fH+0 (mzz)] (A.26b)
w9 q ¢
sz(q)—;l—;[JWm M+0(7)] (A26¢)
where

2 1

Jv(g% ) = 4Fs(d; f,f)—glnmv 5 (A.27a)
- 2 1

Jw(d )= 4R f, ) — 3o myy — 3-3 (A2

The function F3 is defined in appendix D. The last 1/3 factor
is the pinch term.

A.3 Box correction

Box corrections for the process exex — f, f, are expressed

by Bec’:, where A\,o = —1 is used for left-handed fermions
and A, o = +1 for right-handed fermions.
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1 2
Bef £ = ‘ Zee fo’
aas: ) 1672
[Il(u S'mz,mf)_‘IZ(tas;mZ7mf)]
\ Wev Wff’
16 2

y +I(u, s;my,,my) for Iy =+3 (f =ve,w)
_IZ(taS;mW7mf’) for I3f=_% (fzzyd’i) ’

(A.28a)
Bf,{/\(s,t) 16 — ‘gZee fol
x [L(u, s;myz,myg) = Lit, s;my,myp)] ,  (A28b)
with
s =(pe +pe)’ = (ps +py)’, (A.29a)
t = (pe — ps)’ =Pz — pf)s (A.29b)
u=(pe — pp)* = (e — ps)’, (A.29c)

and p; being the 4-momentum of particle ¢. The internal
fermion mass my. is non-negligible only for f = &, for
which the top quark contributes in the limit of the diagonal
KM matrix elements. The functions I;(u,s;my,m;) and
I(u, s;my,, my) are expressed in terms of the D functions
of appendix D:

Il(u, s;mv,mf)z —2u(D]| + Dy — Dz + 2D24)

-—4tD25 — 4SD26 — 16D27 y (A30a)
Iz(’u,, SsMy, mf)= —2u(D11 + D24 — D25)
—4D,5, (A.30b)
where
D’i = Di(07070707u:S;OvmV7mf»mV)7
1=0,11-13,21-27. (A.31)
After reduction of the higher D functions
Li(u,s; M,m) = =2C —2CY +2(u HDY#Y
(A.32a)

2
I(u, 5;M,m) = —— | B{® - BY"|
2(u, s M,m) = ——1 By 0

(s+2u+2M? —m?) [03‘23) + 03‘3“)]

+(s +u)?

—m{s(s+2u—2M2+m2) +2u2}

% [C(()m) + C(()234)]

1
+_——.
(s +u)?

x{ (u—m?) s’
~(2M* -
+2 (M2+u)(M2 —m2+u)u}

M2 +m* +mlu — 2u2)s
(1234)
Dy ,
(A.32b)

is obtained. For the case f # b, the limit m — 0 can be
carried out:

Ii(u,s; M,0) = —4 C§*® + 24 D{*¥ (A.33a)
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L(u, s, M,0) = [B“” B§Y]
23)
+mu(s+2u+2M2)C(()]
2 (124)
—m{s(s+2u —2M%) +242
2 1234
+(S+u)2{szu~ 2$(M4 —uz) +2u(M2+u) }D(() )
(A.33b)
Eqgs. (A.33) agree exactly with [41].
In the low energy limit, only D,; survives:
’ 1
D27(0) 07 07 0? 0’ O’ 07mV70a mv) = 4_77_1_%; ) (A34a)
D27(07 07 Oa 07 07 0; 07 My, My, mW)
1 m? m%
= —= —1], (A34b
4(m? —m3,) [m% — m%,v m, ( )
and hence
O 0 ’ Zee fo'
( )= 16 1672 ms
OrL
* 1672 L
4 f t —
toa for Ly=+7 (f=veu)
X ‘l’V , (A.35a)
_ 1 -
T, for Iip=—5 (f=4¢,d)
1 23
B{f,0,0)=— ‘gf“gf{f —, (A.35b)
’ 1672 m?,
for f #by, and
Zeeg be 2
9f " 3
Beb 0 I -
L,L(Ov ) 167!'2 mZZ
2
B |gI‘iveVgIV,Vbtl [
1672 m? —mi,
2 2
x[ UL PR (A.36)
mi —my, My

for f =by.
Appendix B Renormalization group improvement and

hadronic contributions

The effective charges of the SU(2) x U(1) theory are ex-
pressed in terms of the MS couplings by

1 1 2
qu) ,\2( )+RCHT'7(q ), (Bl)
1
———— = —— +Rell 3, B.2)
3@ 9w o) (
where the SU(2) effective charge
) 20>
=D (B.3)

52(g%)

1s introduced for convenience. The expressions (B.1) and
(B.2) are explicit solutions of the renormalization group
(RG) equation in the MS scheme:

D [effective charges] =0, (B4)
with the RG operator
, d
b= [ dp? :|Bare ,
= ’”25?15 +B€(1§7r2) 8(é2/8167r2)
+hs 16g72r2) a(g27167r2)' (B-5)

The MS j-functions in the minimal SM read at one-loop
order

ﬁe(l672r2) =|-7+3 ZCfo] (16;2>2: (B-6)
'69(167r2) [_ﬁ+2ch Wfo](m z)z’ (B7)

where Cy = 1(3) for f = #(g). The two-loop O(axs) con-
tributions are accounted for by replacing C, — C,(1 + 9;—)
in (B.6) and (B.7). Note that the effective charges &2(¢?)
and §%(¢%) behave similarly to the MS couplings at asymp-
totically high energies, |g?| > mi,, since the functions
ﬁ?i(qz) and ﬁ;?v(qz) do not have large logarithms at
p* ~ |g*| > mi, [2]. This is enabled by adding the pinch
terms [2, 34] in the seif energy 11(¢%), and our é*(¢°) and
5%(q?) are equivalent to the corresponding x-charges [2] up
to the imaginary parts and the two-loop corrections.

Although the MS couplings é and § could be adopted
directly in our analysis, we prefer the effective charges of
(B.1) and (B.2) as quantities to be used when confronting
theory with experiment. We give two reasons, one being
associated with the non-decoupling of heavy particles in the
MS scheme, the other being related with the treatment of
non-perturbative hadronic contributions to the electroweak
parameters.

Traditionally, the appearance of large logarithms of
heavy particle masses (non-decoupling) in the MS scheme
is avoided by adopting the eftective field theory [114, 115],
where the heavy particle fields are integrated out in the ac-
tion. The couplings of the effective theories are then related
to each others by matching conditions ensuring that all effec-
tive theories give identical results at zero momentum trans-
fer, since the effects of heavy particles in the effective light
field theory must be proportional to qz/mﬁc“vy.

In general, the two MS couplings éz(u)eff and §7(1)es s
of the effective light particle theory can be obtained by the
matching conditions

1
&) E2(Wes f
UL
G20)  G2(Wess

where only the light particles at the scale j contribute to the
two-point functions at the right-hand side. In the minimal

+ [Reﬁgf‘j(oﬂ " (B.8)

+ [ReTT 72, (0)] o (B.9)



SM, one may, for instance, employ an effective theory of
particles of mass up to the scale u:

;—f—(’;—; - %+§;Q§ln—£—9(u—mﬁ
—(71n% + %)0@ ~ ), (B.10)

;—26(102) = % +§;I3fcgf1n:—;9(p—mf)
—(%mrfl‘—;%)a(u—mw). (B.11)

w

Such a scheme is often adopted in quantum chromodynam-
ics (QCD), but leads to a discontinuity at p = my, of the
effective MS coupling constants. The appearance of the dis-
continuity in the unphysical MS couplings is not really a
problem’, but the appearance of many quark and lepton
mass scales renders the use of these effective couplings im-
practical at the scale ;+ < mj. Furthermore, direct use of
the effective MS couplings at lower energies leads to ex-
pressions with light-quark masses suffering from large non-
perturbative QCD corrections.

These two problems of the MS scheme can be overcome
simultaneously by adopting the effective charges (B.1) and
(B.2) as expansion parameters at

0 < |¢°| < O(m%) (B.12)

when confronting with experiments. The connection with
a high energy theory, e.g. at ¢ = mk, can then be made
free from light quark mass ambiguities by the use of the
manifestly RG invariant expressions (B.1) and (B.2). In the
region (B.12) the effective charges at two different > are
related by dispersion relations.

The light hadron (first 5-quark, or ”5¢’’) contributions to

the differences
1 1 4 a7

C @) @(0)
4 [ReTT7a(q) - TT7q(0)]

Mg  «

(B.13)
52(¢%) _ 5%(0) _ 4w _ 4n
a(g?) a  gH¢)  gHO)

=4n [Re—ﬁg«%(qZ) - ﬁﬁ(O)] . (B.14)

have been parametrized in the region 0 < |¢| < m% as
follows. For the photon vacuum polarization function, we
use

_Q —
4r [ReHTfj(qz) — H?fj«))]
i) for

_ —QQ —=QQ
= @) 447 e o [ReT25(@) ~ Ty (V)]
for 0<g*<my.

5q

-m% <¢® <0, (B.15a)

q
(B.15b)

Here the results of the dispersion integral analyses [27, 28]
are parametrized by

7 In fact the discontinuity can be evaded by using yet _another unphysical
effective coupling, the so called dimensional reduction DR scheme [116]
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1.096 In(1 + |¢?])
for 0.0 < 1/]¢%|(GeV) < 0.3
0.3261In(1 +3.927|¢%))

for 0.3 < 1/]¢%|(GeV) <3
0.2486 + 0.4009 In(1 + |¢?|)

for 3.0 < 1/]¢?|(GeV) < 50

2 2
3.878 + 0.4084{1n 7l 0.005696(§—g—} - 1) }
S0

S0
for50 < +/|¢*|(GeV) < m,
(B.16)

with so = (91.176 GeV)?. The parametrization (B.16) is
copied from [27] for 0GeV < +/|¢?| < 50GeV and
smoothly connected to the most recent estimates of [28]
at > = m%; f(m%) = (0.0283 + 0.0007)/ca. In the time-
like region (0 < ¢° < mZZ), the second term in (B.15b) is
added in order to account approximately for the threshold
contributions of the charm and bottom quarks.

Hadronic contributions to the photon-Z mixing two-
point function can then be estimated as [29]

f@* =

4 [ReTlyo, (@) ~ Ty O)]

5q
= 2 [ReTT 25 ) ~ T750)]
+Aup(@%) + Acld®) + Ap(gD), (B.17)
where
Aoy~ 2L [ Hw—ete)  T@—ere)
weld ) = 402 | mo,(m2 +|q?]) m¢(m%¢+|qz|) ’

(B.18)

is an estimate [29] for the extra contribution from the u, d,
s quarks, and

1
Aq(qz) = —6;0‘1 QQ{B3(O; Mg, mq) - BS(qz; My, mq)

6

for ¢ = ¢ and b, are calculated perturbatively. Note that in

+ 2 [B{/(O;mq, mg) — Bl (% mq,mq)} } _(B.19)

‘the m, = mq = m, limit, the identity A, + Ay + A, =0

holds. Thus, the term A, gives an estimate [29] of the
flavor SU(3) violation effect. Contributions of leptons, the
top quark and any other new particles, as well as the light
5-quark contributions at 1/|¢%| > m, are treated perturba-
tively.

The light quark masses to be used in the region |¢?| >
m% are determined by requiring continuity of the two ef-
fective charges at q*> = m%. The left-hand sides of (B.15)
and (B.17) are evaluated perturbatively, and equated with
the estimate at g% = m%:

4r [Rellzom) —T73O)] = —f(m}), (B.20)

5q

=3 —=3Q
4 [ReTT s (m) — T (0] .

= 23+ Bugmy) + Acm) + By, (B21)
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where the mean value of the estimate [28]

—0.02 .0007
—f(m%) = 0283 + 0.00 = —3.88 + Spad

a
Ohad =0 £ 0.1 (B.22)

is taken at m, = 91.187 GeV. Note that the additional term
at the right-hand side of (B.15b) is less than 0.001 and the
discontinuity at g>=m?% is negligibly small. With the use of
the expressions (A.9a) and (A.9b), the two matching condi-
tions can be approximated by:

1. m% 5 7 O
Y [_ a2 _} +o(:—2;, &) = Zson), 23)
q

5 6 18
2

In 29 4 0%, ey - 181 Aug(my) = 0152, (B.24)
m2 T my

Taking the charm and bottom quark masses

me = 1.4GeV, (B.25a)

my = 4.7GeV, (B.25b)

and inclading O(a;s) corrections one finds for p,g = 0:
as(my) 0 0.11 | 0.12 | 0.13

m, = mgq(GeV) | 0.055]0.089 | 0.093 | 0.097 (B.26)
ms(GeV) 0.064 {0.104 | 0.108 | 0.113

Our program finds appropriate light quark masses for arbi-
trary as(m), Snad, M and my input values by solving the
continuity conditions (B.20) and (B.21). It should be pointed
out here that these light quark masses are fixed merely to
ensure the continuity of the effective charges at ¢*> = m%
and that they do not have a direct physical significance. At
lg?| > m%, where those quark masses are used, the mass
effects are suppressed by mg /m?% and never become signifi-
cant. Whenever the light quark mass values play a physically
significant role, their values must be chosen independent of
those of (B.26) by appropriate physics arguments.

In Fig. 2 the SM predictions for the effective charge
47 /&%(¢%) and the effective weak mixing angle 3%(¢%) are
shown in the region 1 MeV < +/|¢?| < 1 TeV for m; = 100,
150, 200GeV and my = 100, 1000 GeV with éy,q = 0. The
solid lines show the space-like (¢> < 0) effective charge,
whereas the dashed lines the time-like (¢ > 0) effective
charge. The top-quark effect at g*> = m% can be parametrized

by

1
j = 12871 + 6had
a(my) gm

1 2
+0.024(1+59-‘i) (——OOGCV> . (B27)
i

. my
[EZ(mZZ) _ _EZ(ﬁ

a(m) o

Ohad

] =-3.09+
SM

100GeV \*
+o.oo9(1+5%)(Te> . (B.28)
s t

for m; > 100GeV representing typical contributions of a
heavy particle to the running of the effective charge form
factor a(g®) and 5%(g%) between ¢ = 0 and m%.

When constraining new physics contributions the value
of o‘z(m:’z) is required, but only a = &(0), that is, the fine

structure constant, is precisely measured. When new physics
is contributing significantly to the running of the effective
charge form factors between ¢g> = 0 and ¢> = m%, its value
can deviate from the SM prediction (B.27). In order to ac-
count for both such new physics contributions and future
improvements in the measurement of dp,g, the parameter

1

bq
d(mzz)

— 128.72

(B.29)

is introduced. For instance, in the SM one finds from (B.27)

100GeV \*
[6(1]SM = 6had + 0024(1 +5%ri) (Te) —0.01.
t
(B.30)

The last two terms are close to zero for m; = 150-200GeV,
such that within the SM:

[6alsm &2 Ohad - (B.31)

In general, new physics contributions can be accounted for
by

bec = [8alom + 47 [RelIRS(mY) ~ MRS (0)] (B32)

New Physics

An example of the extra term is found in [11], where conse-
quences of the gauge-invariant dimension six operators [10]
have been studied in detail.

The MS couping constants é%(u) and §*(u) are deter-
mined from the identities (B.1) and (B.2) evaluated at large
I¢%|, say at ¢*> = m%. The magnitude of é%(m ) depends
on my and the assumed a,(m ) value, and that of §2(mZ)
depends also on the 52(m%) value as observed at LEP/SLC.
For oz = 0.12 one obtains

1 . 4
almylsm  E2(mydsm

—0.12 for m; = 100 GeV
+0.00 for m; = 150 GeV

=128.00+8ha+ 1008 for m, =200Gev @ B33
+0.15 for my = 250 GeV
and
§4(my)sm
0.0007 for m; = 100GeV
) «a 0.0009 for m; = 150GeV
=5(mz) + 5+ 0010 for m, = 200Gev * B3

0.0011 for m; = 250GeV

The relatively large m; dependences above, as opposed to
those of (B.27) and (B.28), result from the non-decoupling of
the heavy top quark due to the logarithmic m; dependence
of the MS renormalized two-point functions in (B.1) and
(B.2), as explained earlier. In the presence of many new
particles at the TeV scale, such as in the supersymmetric
standard model, all new particle contributions are suppressed
by their inverse mass-squared as demonstrated for a heavy
top quark in (B.27) and (B.28) for the effective charges,
while the magnitudes of éz(mZ) and §2(mz) are affected
strongly. One should then either adopt the effective light
particle theory for the MS couplings [5, 9, 17, 23] or use
the above effective charges below TeV scale.



Finally, it is worth mentioning that the expressions for
the running of the remaining two charge form factors:

1
ACOIN )
—28°Relly () + §'Rellz 7@, (B.35)

—33
+Rell 1 7(¢%)

1
—_—= +
Iw(@® G
are not the exact solution of the one-loop RG equations of
the MS couplings, but that the O(1) terms at the right-hand

sides remain small at all ¢°, provided the renormalization
condition

——=11
Rell; (g, (B.36)

& = 4@, (B.37a)
§(p) = 5@, (B.37b)
is chosen with
m% if |¢*| < O(m3),
@P={ 7 7 z (B.38)
¢ if |q2| > mzz.

Therefore, §%(q*) and gy, (¢%) can be safely calculated from
47 FHQHEED + 1
95(a)

oy 3 5@, (B.39)
47 Q% 1
ZP) W@ 4 Sw(@),

where the two guantities

(B.40)

Sz(¢») = 167 Re{‘ﬁ?f;’w@z) ~ Tl (@)
25 [Trn(@) - Trz(@)
Q) T 7a@) ~ T 3] } ,(B41a)

—3 —
Sw(@®) = 167 Re[I1y(@) — Ty w(@)si=sa(n | BALD)

remain small (free of large logarithm) at all g2, 0<|g?|<oo.
In principle, the parametrization (B.16) can be used to

. I —33
account for the hadronic contributions to the ITr ,(g?) and

ﬁ;}W(QZ) terms at |¢?| < m? with the help of the CVC and
PCAC hypotheses. However, we find that the contribution
of light hadrons are negligible at low momentum transfers
¢ < mZZ, and hence the perturbative expressions (A.9)
with the light quark masses as obtained by the matching
conditions (B.20) and (B.21) are used when evaluating these
functions.

It is important to note that the expressions (B.39) and
(B.40) are valid in the sense of a perturbative expressions,
and therefore the scale Q2 has been chosen such that the
Sz(¢%) and Sy (¢?) terms remain small. The typical scale
of the charge form factors §%(q?) and g%, (¢%) are Q* = m?
rather than Q? = ¢? for |¢?| < m%. Our definitions of the S
and U parameters then follow

—3 —33
S = 87(0) = 167 Re [HT%(mZZ) - HT,Z(O)] ,
S+U=5Sw0O)
—167rRe[ﬁ3Q( 2y T (0 B4
- Ty mZ) T,W( )§2:§2(mzz) . (B43)

(B.42)
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Appendix C SM contributions to S, T, U and Sb(mzz)

This Appendix deals with the SM contributions to the univer-
sal electroweak parameters S, T, U and the Zby by, vertex
form factor é5(m%) used as free fit parameters. The com-
plete analytic formulae are given at one-loop level and the
two-loop corrections are also included as far as they are
known. We adopt the perturbative order aa, [46, 52, 54—
56] corrections at o = as(n z )55 in evaluating the S, T, U
and Sb(mzz) parameters, since it allows the readers to repro-
duce our results unambiguously and straightforwardly. The
effects due to non-perturbative threshold corrections [60-62]
should be evaluated carefully, and one can obtain more pre-
cise predictions of the SM from our formulae by adjusting
the effective top-quark mass to produce the same S, T', U
and &5(m%) values.

C.l1 SSM

The S parameter in the SM can be expressed as a sum of
three pieces:

SSM=Se+Sq+SB,

where the indices denote contributions from the leptonic,

hadronic and the bosonic (that is, W, Z, H) sectors of the

SM, respectively. Each term is separately finite. Sy and Sp

are given at one-loop order, whereas the hadronic contribu-

tion S, with the two-loop O(aas;) correction [52, 55, 56].
The leptonic contribution is a sum of three terms

(C.1)

3 2
1 myg.
Se==> G4 =), C2
14 T Z]: S<m2Z> ( )
where each generation (v4, ¢;) contributes
1
Ges(ac)z—g{lnx+(l+5m)A(x)—IOx}. (C3)
The real function A is
V1— 1
2v/1 -4z In 1—+——4§ forO0<a< -,
_ 2T 4
A(x) = 1 ]
Vazr —1 tan~! ——— -
2v4z an Vi1 for z > y
(C4)

For the case of charged lepton masses much smaller than
the Z mass one finds

Gh(z) = (2 + % In z) z+ 0. (C.5)

The (v, , 7) doublet contribution is hence Sy =~ —0.0002.
The hadronic contribution calculated up to O(aa,) two-
loop level is [52, 55, 56]:

Sg=8D+ 350 (C.6)

The one-loop contribution is again a sum of the three terms

3 2 2
C m my.
) _ q q Ui d;
Sq = E 1 Gs( 22 ) ), (C.7)
1=

4

with Cy = 3, where each quark generation contributes
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Gz, y) = 18 { Y — 1+ 112)A@)

+(1 = Ty)A(y) + 222 + 14y} . (C.8)

When both quarks are light as compared to Z, one finds

Gl(z,y) = (§+% lnx)x+(—?:

1 2.2
3 +§ lny)y+0(:v ,UT).

(C.9)
When only the down-type quark is light (y < 1), one finds

GY(z,y) = i{ 222 —Inz — (1 + 112)A(z)

18

+3y(4 +31Iny) + O(y2)} , (C.10)
LI SERTORR A
18 Y6 20z

+3y(4+31ny)+0( 2,y>} (C.11)

For large m;, the quark contribution S, becomes negative
and its magnitude grows logarithmically.

The two-loop O(axs) correction [52, 55, 56] can be ex-
pressed in terms of the B, and B/, functions (A.12) of
appendix A:

3

« 5
S0 =0 % 2{36 By (m; iy ) + 3¢ Bv(mz,d,,d)

1
Bly(mbs s, ) — 75 Bamyidi, d) }C.12)

12

where the quark label stands for its mass as in appendix A. It
is easily seen that the right-hand side of the above equation
is independent of the unit-of-mass p for each generatlon
and that they are in fact a function of the ratios m?2 /mZ
and mdi/mz. The contributions from the first two quark
generations are again negligible. The two-loop term S is
hence dominated by the (¢, b) doublet contribution, which
can be approximated by

W Qs [ 1 5Ty
& ”C‘Mﬂ{ gt g ‘/'(4%)

() -40])

a1 2] I
_(quz{—§1n1t+543+§+0(a)}, (C.13)

with z; = m?/m%. The expression (C.13) agrees with [52].
The following table shows the full hadronic contribution S,
for several values of m; in lowest order (g = () and with
the O(axs) corrections for as = 0.12:

me (GeV) Sy
as =0la; =0.12
00 [=0.008] 0.010
120 [-0.033] —0.017
140 |-0052| —0.038 (C.14)
160 |—0.069| —0.055
180 |—0083| —0.070
200 |-0.095| —0.082

using for the bottom mass my;, = 4.7GeV. The two-loop
correction is important for relatively small m, values.
The bosonic contribution is expressed as

m2 m2
SB {FS +HS }, (CIS)
s G) + s ()
where
1 7 14 7 1
F 2__‘___1 2_ L _ -t 2 S22 AZ
s(€)=-33 g 3C+<3C 12) )
(C.16a)
80.24 \?
=—1.451 f o
: or e (91.187) ’
3 1 , [3-z 2?2
=7 — —_—+ — |zl
Hs(m)=gz— 137 {4 +24+4(1—z)]$”
. 2
l1--+—1|B .16b
+{ 3+12] (2). (C.16b)
Here A(x) is given by (C.4), and
4
(4 — 1) tan™! —_—1 for 0<xz<4,
B(z) = -
VT yIn ——————— for z > 4.
Vi+vT 4
(C.17)
For large my; one has
Hs(m%{)— L, ﬂ—£@+o<ﬂ%—>.
mZ 12 my 36 487nH my
(C.18)

The total bosonic contribution Sg is tabulated below for
several my values:

my (GeV)| Sa
50 —0.234
100 —0.166
200 -0.107 (C.19)
400 —-0.061
1000 |—0.008
C.2 Tsm

The T' parameter in the SM can be expressed as a sum of
three individually finite pieces:

Tsm=T,+T,+ T8, (C.20)
where the indices denote the leptonic, the hadronic and the
bosonic (that is, v, W, Z, H) contributions, respectively. Ty
and T'p are evaluated at one-loop order, whereas T, contains
irreducible two-loop contributions in aq, order [52, 54-
56] and in the mn} order [47, 57, 58]. Reducible higher-
oder contributions [63] are taken account of by the identity
(2.36a).
The leptonic contribution is a sum of three terms

2 2 m3
=—£72 N"gr(o0, &), C.21
2V2ma Z T( m22) (€21



where

z+y Ty Y

Gr(z,y) = y +2($—y)lnx'
The leptonic contribution of the first three generations is
hence negligible; even the (v, , 7) doublet contributes to 7}
only about 0.00005.

The hadronic contribution is calculated including the
O(aas) [52, 54-56] and the irreducible O(m‘t‘) [47, 57, 58]
two-loop corrections:

- 7O (1) (2)
T, =T, +T,’ +1,”.

(C22)

(C.23)

The one-loop contribution is a sum of the nine terms

GF m2 3 mi méj
TP = L Coy Vs, P Gr( 5, —5 ), (C24)
i,9=1

a 2V2712a 2

Mz z
with Cy = 3. The function Gr(z,y) is found in (C.22). In
the limit of the diagonal KM matrix elements V;; = §;;, the
contributions from the light quarks of the first and second
generations can be neglected.
The two-loop contributions are only important for the ¢-b
doublet:

T(l):—C%-3+7r2 m_% Gpm¥
a 4 T 18 mZZ 2\/57['2(1 ’

70 = 0o [ Y Grmy Y’ p@(my /my), (C.26)
q q 4m2Z 2\/27_(2& H ’

where terms of order m2/m? are neglected. The function
PP (my/my) gives [47]: pP(my/my) = —0.74,-4.72,
—6.95, —11.70, —10.74, for my; /m; = 0, 3, 1,5, 10. The nu-
merical value of the ‘expansion parameter’ in the above ex-
pressions is Grpm%/2v/2r%a = 0.4761.

The following table shows the contributions from each
term in (C.23) for several values of my, the lowest or-
der contribution T and the O(aa,) contribution TV
with o, = 0.12, and O(m}) contribution Tf) with my =
100, 1000 GeV:

(C.25)

m, (GeV)| TO T T
as =0.12imy = 100my = 1000

100 0.419 —0.047 | —0.003 —0.005

120 0.607 —0.068 | —0.006 -0.011

140 0.830 —0.092 | —0.010 —0.020

160 1.087 —0.120 | —-0.016 —0.035

180 1.379 —0.152 | —0.024 —0.055

200 1.705 —0.188 | —0.034 —0.084

(C.27)
using for the bottom mass mj, = 4.7 GeV in T{?.
The bosonic contribution is
Grp mzz m%,v qu
Ty= L FT(mZZ)+HT(;g) , (C.28)
where
1 2lneg2 3

Fr(c®) = (Z + 2@2) Cl _"C"; — 218 (C.29)
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= —0.4371
80.24 \°
for &= (W) and §2=0.2312,
3 [Inz In(z/c?) . miy
Hyp(x)= - — ; 0= — .
(@) 4x[1ﬂx 1 —z/c? )
(C.30)
For a heavy Higgs boson (m%; > m%) one finds
2
()
mz
3 2
=2 la-AHn L L 2
4 m¥
2 2 4
+{(1 —cHn -m—zfi +c4]ncz}ﬁzz_ + O(m—f)] .
my my My
(C.3D)

The total bosonic contribution T’z is tabulated below for
several my values:

i (GeV)] T3
50 [=0.227
100 |-0257
200 |-0314 (€32)
400 |-0.396
1000 |—0.529
C.3 Ugy

The U parameter in the SM can be expressed as a sum of
three pieces:

Ugm = Ue+Uq+UB, (C.33)

where the indices denote the leptonig, the hadronic and the
bosonic (that is, v, W, Z, H) contributions. Each term is
separately finite. Uy and Up are given at one-loop order,
whereas the hadronic contribution Uy is given with the two-
loop O(aas) correction [52, 54-56].

The leptonic contribution is a sum of three terms

[ 2 m%
Ug=— Gyl0, —* C.34
£ T ’LZ:]: U( ) mQZ) ) ( )
where the contribution of each generation (v, ¢;) is
r+y |l—zx
G = —— — A
v(Z,y) 3 3 ()
| —
——6—yA(y) + fu(@/, y)d) . (C.35)

Here A(x) is given in (C.4), and
— )2 Nt 2,2
zty @-y° -y -3@ Y)Y

fo@ v =—3 6 12—y T
(x—y’+z+y—2
+ - Bz, y)Lz.y),  (C36)
with
B,y =/l — 2z +y?+ @y, (C.37)
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and
(1,1 —z—y+px,y)
2 1-z-y— B,y
L for |- yl>1lorz+,/y<l,
T,y) =
@) tan_11—x+y gql+z—y
Bz, y) Bz, y)
{ for |vz— .yl <1<z+./y.
(C.38)
In the limit of vanishing lepton mass one has
Gy(0,0) = ]nc (C.39)
for ¢? = mW /mZZ, and hence the contribution of the first

three lepton generations is

80.24

1 24\?
Uy~ — Inc®* = —0.0814 for 02=<———) . (C.40)

} 91.187
The hadronic contribution is calculated up to two-loop

O(aw) level [52, 55, 56]:

Ug=UP+UP. (C41)

The one-loop contribution is again a sum of the three terms
in the limit of diagonal KM matrix elements V;; = é;;:

m2
-G S (2 ),
Z

with Cy = 3, where Gy (z, y) has been given above in (C.35).
For the first two quark generations the approximation (C.39)
holds. For the contribution of the (¢, b) doublet the following
approximation is useful:

(C.42)

11n+111
Trp ¥y

1 1, 2
+<E-§ +3y>—+0( Z,y) (C.43)

The two-loop O(aas) correction [52, 55, 56] can be ex-
pressed by

Guy(z,y) =

3
a 1
v = ¢, F > GPmu, ma,),

1=1

(C.44)

where the two-loop function GY) is given in terms of the
By and B4 functions (A.11) of appendix A:

1
G (my,my) = Re{ [By, + BL](m%;my, my)

12
1
12 [BV + BA] (mZ»mdv md)
1
-2 [BY, + By (miy s ma, md)} . (C.45)
It is readily seen that the function G([}) is independent of

the unit-of-mass u. The contribution of the first two quark
generations can be approximated by

G(0,0) = lnc (C.46)

just like in (C.39) for the one-loop contribution. The top-
bottom contribution can be approximated by

G (my,0)

1 m% m? m2 m%
6ln my +3m2Z [‘/1(4 2)+A]<4m%) _Al(o)]
4m? mby,
— Fl|—%) - F( C.47
3m%[1(m%) 1(0) (C.47a)
1 m? 2 4 1 m%
—g nm—ZZ'—§<3+‘2‘,7<2+E+O(?%). (C47b)

The expressions (C.46) and (C.47) agree with [52]. The fol-
lowing table shows the total hadronic contribution U, for
several values of m; in lowest order (o, = 0) and with
O(aa,) corrections for ag = 0.12:

e (GeV) A
2. =0, =012
100 [=0.118] —0.148
120 |-0.034] —0.057
140 | 0029 0009 (C.48)
160 | 0079 0.063
180 | 0.122| 0.108
200 | 0159 0.147

using for the bottom mass mp = 4.7 GeV in evaluating the
lowest order G([(])), while the O(aay) correction G(Ll,) is cal-
culated in the limit of vanishing bottom quark mass.

The bosonic contributions are given as

s = (o () oo ()

my
where the constant term Fy(m¥,/m%) is found to be

1 1 1
e 1 .
FU(C)—{ 2(——1—02+c4 ——606)5
3 2
55)}MC

Lot 9.7
4\3 1—-¢c2 ¢ ¢
4 1\ 242 2 3 1
*{G*z‘y)i‘—0+z'zzﬂﬁﬁﬂ

2
+(c2 + —9>A(cz)
4
32 §—2— 221 13 (C.50)
32 © T8 82 4 '

(C.49)

80.24 \°
= 1. Y Pt d §=0.2312
1.043 for ¢ (91.187) and § ,
and the my dependence is given by
2
x m
HU(.’EH):—HS(IL’H)+H5(—C%> ;zHEm—g. (C51)

The function Hg(zy) is defined in (C.16b). In the large
mass limit (my > m,) the leading logarithm (Inmg) of
the function Hg (see (C.18)) cancels in Hy; of (C.51), and
hence one has

m2 4
H mH —ilnc+1—(1—c) Mz yo(lz) .
v 12 m2 mi

my, jig H (C.5)



Note, however, that the m dependence is very small as
seen from the table below showing the total bosonic contri-
bution U, for several my values:

my (GeV)| Up
50 0345
100 |0.344
200 [0.341 (€.53)
400 0.340
1000 [0.339
C4 5b(mZZ)SM

The Zb; b, vertex form factor d5(m%)sm in the SM is ex-
pressed by:

5p(m%) = 60(m%) + 8P (m%) + 6P (m%) . (C.54)
The one-loop contribution
§O(m%) = It (mk) + ET5" (m%) + I (md) (C.55)

is calculated using the vertex functions of appendix A, which
can be approximated by

2
mt+36> ’ (C56)

100
for 100GeV < m; < 250 GeV. The second term at the right-

hand side of (C.54) is the O(a;m?) two-loop contribution
[46]:

69 ~ —0.00076 — 0.00217(

72 )Gpm%

FD2y X 5 (T
5 (my) = = 2(3 v

The last term is the O(m$) two-loop contribution [47, 48]:

(C.57)

GF mf
8v/2 12
where the function 7@ (my/m;) is given in [47]. For
my/me =0,1,1,5,10, it gives 7(my /my) = 5.71, 2.46,
1.47, 3.69, 7.92.

The following table shows the contributions from each

term in (C.54), §y°(m%), 2<6{"(m%) with a; = 0.12, and
522)(77122) with m; = 100, 1000 GeV, for several m; values:

2
5P (i) = -2( ) TO(my /my), (C.58)

mg (GeV)| 6 (m3%) | 8 (m%) 6P (m%)

as = 0.12|m gy = 100lm 4 = 1000
100 [—0.00481] 0.00018 |—0.00000] —0.00002
120 |—0.00603| 0.00026 | —0.00001| —0.00003
140 [—0.00746| 0.00036 | —0.00002| —0.00005
160  |—0.00908| 0.00047 | —0.00003| —0.00007
180 |-0.01089| 0.00059 | —0.00005| —0.00010
200 |—0.01285| 0.00073 |—0.00009| —0.00013

(C.59)

Appendix D One loop scalar functions

In this appendix explicit analytic expressions for the B func-
tions are given, as well as the reduction of higher C and D
functions to Cy and Dy functions.
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D.1 A, B, C and D functions

Following Passarino and Veltman [32] the A, B, C and D
functions are defined by:

dPk 1
Ama= [ 55 (®.1)
dDk [1, kH, k*kY]
H j2% 5 = ’
[BO7 B ) B ] ('L]) / z'7r2 ]\71’]\[.7 3 (Dz)
dPk [1, k*, k*k]
v (k) = 1 7
[Co, C*, C*] (ijk) / i NN, N, (D.3)
, dDk [1, k*, kFEY]
Do, D*, D] (i5k€) = D4
[ 0y D 7D ] (’L]kg) / ) NrL‘N]’NkNe ) ( )
where D =4 — 2¢,
dPk = I'(1 — €) (mu?)¢ dPk (D.5)

is the MS regularization {70, 117], and the propagator factors
are

Ny = k* —m? +ie, (D.6a)
Ny = (k+p)? —ml +ie, (D.6b)
Ny =(k+p +p2)* —m3 +ie, (D.6c)
Ny=(k+p +p2+ps)’ —mj +ie. (D.6d)

The vector/tensor functions are reduced to scalar functions
as

B*(12) = p!By(12), (D.7a)
B*(12) = pl'pY B (12) + g"¥ By(12), (D.7b)
for the two-point functions,

CH(123) = p{'C11(123) + p5 C15(123), (D.8a)
CH*(123) = pi'p{ C»1(123) + p§ py C2(123)

+pHps} O (123) + 9" Cra(123) (D.8b)

for the three-point functions, and
D*(1234) = pi' Dy,(1234) + py D1,(1234) + p§ D5(1234) ,
(D.9a)

D*¥(1234) = pip{ D»1(1234) + phph D, (1234)
+pipY Dy3(1234) + ppY? Dya(1234)
+ppY? Dys(1234) + pl¥pt} Dyg(1234)
+g"" D7(1234),

for the four-point functions. Higher rank tensor functions

do not appear in our applications in the ’t Hooft-Feynman

gauge.
The scalar functions B;, C;, D;, are defined by

(D.9b)

Bi(12) = Bi(p};mi, ma) (D.10)
fori=0,1,21 and 22,
Ci(123) = Cu(pi, 15, (B + p2)’s M, g, ma) (D.11)

for =0, 11,12 and 21-24, and
D;(1234) = Dy(p}, p3, 13, (1 + p2 + p3)°,

(p1 +p2)%, (P2 + p3)*s my, Mo, M3, M)
(D.12)
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for 1 = 0,11-13 and 21-27. The basic scalar functions By,
Cy and Dy were obtained by 't Hooft and Veltman [118].
The Fortran code FF [119] is used for the general form of Cy
and Dy functions. Reductions of higher B, C, D functions
are given in the following subsections.

D.2 B functions

It is convenient to introduce the following four scalar B
functions in addition to By and B; above:

By(¢*;mi,ma) = Byy (g5 mi, my), (D.13a)
Bs(g*;mi,mg) = —Bi(q*; mi, my)

—Ba(¢%;mi, ma), (D.13b)
By(q%my, ma) = —miBi(¢*; ma, my)

—m3Bi(g*; mi, my), (D.13c)
Bs(g*;mi, mp) = A(my) + A(my)

—4 By (g% my, my). (D.13d)

All two-point functions of the standard model and its su-

persymmetric extension [120] are expressed compactly in

terms of the above six B, functions (n = 0,1,..,5) being

only logarithmically divergent. The ultra-violet singular fac-

tor is parametrized by:
1

A== +1Inp? (D.14)
€

In the MS (modified minimal subtraction) renormalization

scheme the singular piece A in these functions is simply

replaced by a logarithm of the unit of mass p:

A n 2. (D.15)
The six B, functions are then expressed by
Bo(g*;my,mp) = A — Fo(g*;my, my), (D.16a)
1
Bi(g*;my,ma) = —§A+F1(qz;m1,m2)7 (D.16b)
1
By(¢%my,ma) = 34~ F(g*mi, my), (D.16¢)
1 .
Bi(g*;my,ma) = EA — By(g%my, my), (D.16d)
2.2
By(g*;mi,ma) = El—;ﬂA — Ey(¢*;my, my), (D.16e)
2
Bs(@smi,ma) = LA — Fy(@imi,ma), (D.16f)

where the finite parts F}, have the following Feynman para-
metrizations:

1
FO(QZthmz):/ dz In H, (D.17a)
0
1
Fl(qz;ml,mz):/ dz x InH, (D.17b)
0
i
B (g% my,my) =/ dr 2* InH, (D.17c)
0
1
Fg(qz;ml,mz):/ dr z(1 —z) InH, (D.17d)
0

1
Fi(g®my,my) = / dz [(1 — )m} +zm}] InH, (D.17¢)
0

1
Fs(g*;mi,mg) = / dz[(1 — 2z)(m} — m3)+ (1 — 22)*¢*]
0
X InH, (D.17f)
with
H=[(1-ymi+zm)—z(1—z)¢ —ic]. (D.18)

Among the six F, functions four (n = 0, 3, 4, 5) are sym-
metric under the exchange of the two masses. It is useful to
introduce the antisymmetric F' function

Fa(g%mi, ma) = Fi(g*; ma, m1) — Fi(¢%my, mp). (D.19)

In terms of the two symmetric functions Fp and £3 and the
antisymmetric function F4 all the remaining F; functions
can be expressed compactly:

1
Fi(g*;m,mp) = 2 [Fo - FA} (g% mu, my), (D.20a)

1
Fy(g% i, mo) = [5(Fy = Fa) = B3| (@ my, ma), (D:20b)

Fy(q*my, mp)

2

m
2FA}(qz;ml,mz),

2 2 2
- [m‘ Ty 4 T (D.20¢)

- 2
Fs(g*;my, my)
- [qz (Fo— 4F3) +(m? — mg)FA} (@%my,my).  (D.20d)

Therefore it is convenient to give closed analytic expressions
for the three functions, Fy, Fy and Fs:

Fo(q®my, ma) = In(mymy) — §1n % —2+p8L, (D2la)
1

1 30 — 262 m
Fy(g*my,ma) = ¢ In(mimy) — ———61n H?
-85 1 — 252
S o8 14072 ar (Dot

183 T 6
Fa(g®;mi,mp) = —(c — §%)In % +8(1 - BL), (D2lc)
1

where
2,2
o=l (D.22)
q
2.2
s=1 "M 2m2, (D.23)
q
(1—20+6%):
= for q2 < (my — mz)2 or q2 > (my + mz)2 ,
20 — 6% — 1)1
for (my — m2)* < ¢* < (my +ma)*,
(D.24)
and the function L is defined as
L(g*;my,my)
iIn lli%:ff —im  for ¢* > (m1 + my)?,
D 2=e for ¢* < (my — ma)?,

1 - —1 146
~(tan B + tan W)

for (m; — ma)® < ¢* < (mq +mo)*.
(D.25)



Also the derivatives Fy, F3 and F; are needed for certain
applications. One finds

1
Fi(g*my,my) = —{1+6ln— — (8% - 0)=
q my g

}, (D.26a)
Fj(¢*;m1,mp)
= l{ ! 4+ 50— sHm ™

2 my

16
o486 L, L
+( S+ 6% —20))5},

(D.26b)
Fli(g* mi,my)

ql {(0—262)ln —26+5(1—3a+252)—}

my B
(D.26¢)

The phase factors in § and L in (D.24, D.25) are required to
obtain correctly the ratio L/g. In terms of the above three
functions all the other F,, functions are expressed compactly:

F(g* mu,ma) = _[ FA] (&% mi, ma), (D.272)
E - F
Fy(g*;mi,mp) = {_0_2__A _ Fz’] (Psmi,my),  (D27b)
Fy(g%; ma, my)
miemi_, mi-mi_,1. .
- [ 2 Fo+ 2 FA} (g°;my,mp), (D.27c)

Fi(g*m1,m2)
= [Fo— 4P + ¢*(Ff - 4F)

+mi - m3)F) ] (g% m1,my),

(D.274d)
The derivative of the B, functions is found to be:
Brl)(qz;mhmZ) = _F[:(qz;mlamZ) for n 207 273a49
(D.28a)
Bi(g* m1,ma) = Fi(¢*ma, ma), (D.28b)
1
Bi(g*smi,ma) = 3 A = Fi(¢*smi,m3). (D.28¢)
D.3 C functions
The higher C' functions
Ci = Ci(0}, p3, (01 + p2)*s M1, ma, ma) (D.29)

for 1 = 11, 12, and 21-24 are given in terms of the Cy, By
and B, functions as

Cn) 1 (B(13) _ B(23)+f,CO)
=X gy _ g , (D.30a)
(CIZ B — B+ 1,C,
1 2
Cuw =7* 43(23) Pig- 1 2 On— f— Cia, (D.30b)
G, _t (B + B + 10y _2024
(02;) =X (B(IZ) B(13) + £y : ,  (D.30c)
3 -1 Bm) B(23)+f1012
=X D.30d
(CZZ) B(13) + fZCIZ _ 2C24 3 ( )
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where
2

- (27.22).
and
fi=mj—mi—pj, (D.32a)
fa=m}—mj— (o1 +p2) +p}. (D.32b)
Here the shorthand notations
BY? = By(phimi, ma), (D.33a)
B = Bi((p: + p2)* mu, m3), (D.33b)
B® = By(ph;ma, ms), (D.33c)

are used for By and B; functions.

D.4 D functions

The higher D functions
D; = Dy}, p3, P3, (01 +p2 + p3), (01 +12), (1 + pa)s
my, My, M3, My) (D.34)

for ¢ = 0,11-13 and 21-27 are expressed in terms of the
Dy, Cy and By functions as follows:

Dy, Ci3 _ 0@ 4 1 py
Dp|=x"" C(”“’ C(”“) +£Dy |, (D.35a)
Dis C(m) (124)+f Do
1 1
Dy; =miDg + 506234) -5 [fl D+ frDi+f3 D13] ,
(D.35b)
Dy, 0(134) + 0(234) +fiDn —2Dy
Dy | = X! C,(124) 0(134)+f2 Dis ’
Dos 0(123) 0(124)+f3 Du,
(D.35¢)
Dy C _ @9, ¢ p,
D22 = X_l 0(124) C(134) + f2 D]z -2 D27 y
Dos C(123) 0(124)+f3 Dy
(D.35d)
Dos i — Cf?j) + f1 D3
D26 =)(_1 0(124) 01(123 )+f2 D13 s
Dy 051224) + f3Dy3 — 2Dy
(D.35e)
where
2p} 2pip2 2p1ps
X =|2pip2 205 2pops | (D.36)
2pip3 2p2ps 2p3
and
fi =m3 —m?} —p?, (D.37a)
fr=mi—m]— (o +p2) +p7, (D.37b)
fr=ml—mi— (1 +p2+p3) + (1 +p2) . (D.37¢)

The higher C' functions in (D.35) are written in terms of the
Cp and By functions in analogy to the previous subsection:



618

C{lZS) 2p? 2p1p2 B(()IB) BV 4 1C(m)
i gy 293 BU» _ B(13)+f C(123)
(D.38a)
—1
<C(m)> ( 2p} 2p; (p2 + p3)
(ol 2p; (p2 + p3) 2pa + ps)?
B(I4) B(24) + f C(124)
<B(12) (14) +(f2+f3)C(124)> (D.38b)
(051134)> _ ( 2pi +p2)* 2pr +p)p3
C§1234) 2(p1 + p2) p3 2p3
BUY — BOY 1 (f, + f) CI9
(B(n) BEM) + ff'cééci? 0 ) ,  (D.38¢c)
C(234) 2p% 21)2 p3> -
0(234) 2paps 2p3
B — BV + (f, + 21?1:02)0(234))
X ¢ 0 , (D.38d)
( B® — B 4 (f, 4 2p1py)C
with
B(()m = Bo(p};mi, ma), (D.39a)
B{'¥ = By((pi +p2)%my,ma), (D.39b)
B{™ = Bo((p1 + p2 + p3)%m1,ma), (D.39¢)
B = Bo(p3; ma, ms3) (D.39d)
B(()24) = By((p2 + p3)*; ma, ma), (D.39)
BS™ = Bo(pima, ma) . (D.39f)
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