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Abstract. A novel approach to study electroweak physics 
at one-loop level in generic SU(2)L • U(1)y theories is in- 
troduced. It separates the I-loop corrections into two pieces: 
process specific ones from vertex and box contributions, and 
universal ones from contributions to the gauge boson prop- 
agators. The latter are parametrized in terms of four effec- 
tive form factors ~2(qZ), ge(q2), ~ ( q 2 )  and ~ v ( q  2) corre- 
sponding to the 77, "yZ, Z Z  and W W  propagators. Under 
the assumption that only the Standard Model contributes to 
the process specific corrections, the magnitudes of the four 
form factors are determined at q2 = 0 and at q2 = r ~  
by fitting to all available precision experiments. These val- 
ues are then compared systematically with predictions of 
SU(2)L • U(1)y theories. In all fits c~s(mz) and c~(rn~) are 
treated as external parameters in order to keep the interpreta- 
tion as flexible as possible. The treatment of the electroweak 
data is presented in detail together with the relevant theoreti- 
cal formulae used to interpret the data. No deviation from the 
Standard Model has been identified. Ranges of the top quark 
and Higgs boson masses are derived as functions of c~(mz)  
and ~(m2).  Also discussed are consequences of the recent 
precision measurement of the left-right asymmetry at SLC 
as well as the impact of a top quark mass and an improved 
W mass measurement. 

1 Introduction 

The Standard Model (SM) of the electroweak interactions 
has been with us for nearly two decades. Despite the gen- 
eral belief that it should be an effective theory valid at ener- 
gies below the Fermi scale, so far no unambiguous sign of 
physics beyond the SM has been found nor any clue to the 
origin of the underlying gauge symmetry breaking mecha- 
nism. On the other hand, the accuracy of the experiments 
testing the electroweak theory has improved significantly in 
the past decade both in low energy neutral current exper- 
iments and in high energy collider experiments on the W 
and Z boson properties. The precision of these experiments 
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has reached the level, where meaningful searches for new 
physics through the investigation of quantum effects can be 
carried out. 

The effects may be significant, if there are new particles 
with masses as light as weak bosons, or if many new par- 
ticles contribute constructively, or if there exist new strong 
interactions among them. Even in the absence of such a sig- 
nal, constraints on certain new physics possibilities can be 
derived and tightened in future precision experiments. With 
this motivation to study electroweak radiative corrections 
several groups have made efforts towards comprehensive 
and systematic analyses [ 1-18]. 

In this report a novel approach to confront electroweak 
data and theory is presented with the aim of a systematic 
look for new physics effects. In the following, the conditions 
imposed on the electroweak analysis scheme are outlined. 

Since it is the aim to search for new physics effects in the 
electroweak precision data, a model-independent framework 
to analyse the data is required. As both the experimental ac- 
curacy and the new physics effects looked for are of similar 
size as the SM radiative effects, it is essential to take ac- 
count of the SM radiative effects as accurately as possible. 
For testing grand unification of the three gauge couplings 
[19-23] the fits should be studied quantitatively as a func- 
tion of o~s. Furthermore, the level of precision accessible in 
the near future is such that the present uncertainty in the 
hadronic vacuum polarization contribution to the running of 
the effective QED coupling constant c~(q 2) severely limits 
the ability to study new physics through quantum effects. In 
order to assess the effects of possible future improvements in 
the e+e - hadroproduction experiments at low and interme- 
diate energies, the consequences of varying c~(Tr~) should 
be examined quantitatively. During the course of this study, 
sometimes the published results of earlier theoretical analysis 
could not be reproduced easily. This happened in most cases 
because not all the details of the assumptions and approxi- 
mations underlying the analysis have been clearly stated in 
the literature. The quantum effects studied are so sensitive 
to details of the exact treatment of higher order effects and 
to uncertainties in the analysis that equally sensible looking 
assumptions often lead to a significant numerical difference. 
We therefore make every effort to render the report self- 
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contained so that all our results can be reproduced unam- 
biguously. 

In order to comply with all the above requirements, 
our comprehensive analysis of electroweak precision exper- 
iments is performed according to the following steps, by 
systematically strengthening the underlying theoretical as- 
sumptions. 

1. All electroweak data are expressed in terms of model- 
independent parameters. 

For the choice of model-independent parameters, we basi- 
cally follow the strategy of [24] for low energy neutral cur- 
rent experiments, and that of the LEP electroweak working 
group [3] for the Z parameters. In addition, the W boson 
mass, the fine structure constant c~ and the Fermi coupling 
constant GF are used as inputs of the analysis. Some of 
these parameters are directly related to experimental observ- 
ables up to corrections due to known physics, such as the 
external QED bremsstrahlung effects and the quark-parton 
model, and uncertainties in these correction factors are in- 
cluded as part of the errors of the experimentally measured 
parameters. 

2. The model-independent parameters are then expressed in 
terms of the pole positions of the W and Z propaga- 
tors, and the S-matrix elements of four external fermions, 
quarks or leptons, which are approximated as products of 
two external standard V • A currents and the scalar tran- 
sition form factors. 

Observables in all electroweak precision measurements per- 
formed so far can be expressed in terms of S-matrix elements 
for which the external quark and lepton masses are negli- 
gible compared to the weak boson masses. To an excellent 
approximation, chirality-flip terms in the loop amplitudes 
can be neglected and the relevant S-matrix elements can 
be expressed in terms of the scalar product of the standard 
V i A currents multiplied by transition form factors depend- 
ing on the flavors and chiralities of the currents as well as 
the momentum transfer of the process under consideration. 
External QCD and QED corrections can hence be applied 
exactly as in the SM, and electroweak models can be con- 
fronted with experiment, once the transition form factors are 
determined in a particular model. The dependence of the fit 
on the QCD parameter c~s and quark masses is taken into ac- 
count by introducing appropriate external parameters. Up to 
this stage, our analysis is quite general, as the formulae are 
valid for any electroweak model respecting the flavor and 
chirality conservation laws of the SM, that is, for all new 
physics contributions which can interfere with the leading 
SM amplitudes. 

Although one may attempt to constrain these model- 
independent transition form factors directly by experiment, 
we find it impractical, since the number of independent tran- 
sition form factors exceeds by far the effective number of 
degrees of freedom provided by precision measurements. 
Hence, we perform the quantitative comparison of data with 
theory in a more restricted class of models which are mini- 
mal extensions from the SM, i.e. those models which respect 
the SU(2)L x U(1)y gauge symmetry broken spontaneously 
down to U(1)EM. 

3. The transition form factors are expanded perturbatively 
in SU(2)L x U(1)y gauge couplings, and radiative effects 
are classified either as the universal gauge boson prop- 
agator corrections or as the process specific vertex and 
box corrections. The universal propagator correction fac- 
tors are then parameterized by four charge form factors, 
~2(q2), g~(q2), 92(q2) and 92v(q2), corresponding tO the 
"~7, 7 Z, Z Z  and W W  propagator degrees of freedom. 

The restriction to the electroweak gauge group~J(2)L~U(1)V 
implies at the tree level that all fermions, quarks and lep- 
tons, couple to the electroweak gauge bosons universally 
with the same coupling constant as long as they have com- 
mon SU(2)L X U(1)y quantum numbers. This universality 
of the gauge boson coupling to quarks and leptons can in 
general be violated at the quantum level, because the gauge 
symmetry breaks spontaneously down to U(1)EM. It has been 
widely recognized, however, that this universality of the cou- 
plings holds true even at one-loop level in a wider class of 
models where new particles affect the precision experiments 
only via their effects on the electroweak gauge boson prop- 
agators [1-10]. This class of new physics effects is often 
called oblique [1, 4] or propagator [7] corrections, or those 
satisfying generalized universality [10]. This concept of uni- 
versality can be generalized to certain vertex corrections with 
non-standard weak boson interactions [11]. It is also often 
useful in theories with non-standard vertex and box correc- 
tions, such as the supersymmetric SM (SUSY-SM), since 
the propagator corrections can be larger than the vertex/box 
ones: propagator corrections can be significant either be- 
cause of a large multiplicity of contributing particles or by 
the presence of a relatively light new particle. 

When confronting the electroweak theory with experi- 
ment, we adopt this distinction between new physics con- 
tributions to the gauge boson propagators and those to the 
rest, where we allow the most general contributions in the 
former, whereas we consider only the SM contributions to 
the latter (vertex and box corrections).' 

4. By assuming that the well-known SM contributions domi- 
nate the process specific vertex and box corrections, apart 
from the ZbLbL vertex for which new physics contribu- 
tions are allowed, we determine from precision experi- 
ments the four universal charge form factors at the typical 
momentum transfer scales, q2 = 0 and m~.  

The new physics contributions may either prevent our ability 
to fit the experimental data within our approach, or lead to 
non-standard values of the fitted four charge form factors and 
the ZbLbz, vertex form factor, Sb(q2). At this stage, the whole 
body of electroweak precision data can be expressed in terms 
of the two weak boson masses m W and m z, and these five 
form factors, that is, the four universal charge form factors 
and Sb(q2). Although the form factors could be determined 
at any point on the momentum scale q2, they are actually 
measured with adequate precision only at two specific q2 
ranges, namely all four charge form factors at q2 = 0 or 
q2 << m~,  while g2(q2), ~0~(q2) and 6b(q 2) at q2 = rn~. 
Hence, there are just 9 electroweak parameters measured 
accurately enough to be used for testing theories: m W and 
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Table 1. Universal electroweak parameters of the spontaneously broken generic SU(2)L X U(1)v theory. Column 2 lists the 10 universal parameters, the 
masses of the weak bosons and the 4 charge form factors at two q2 scales, 0 and m 2. Column 3 contains three precisely measured quantities (the fine 
structure constant a ,  the Fermi coupling constant G F  and the Z boson mass m z )  together with their relation to the universal charge form factors. The 
factor 6G is explained in the text: see (2.27). The last column lists those parameters which are used in fits. The 'star' marks parameters for which no direct 
experimental information is available. 

Electroweak Universal Precisely known Fit 
propagators parameters parameters parameters 

7 ~ 1 ~ , 7  ~(0) ~ ( , ~ )  ~ = ~(01/4~ * 

~ z  afro) ~(~}) ~(0) ~ ( ~ )  

z ~ z  ,~  ~(o) g~(m~) .~  ~(0) ~(m~) 

W ~ w  4 V ~ G F  ~ (o) = ~ ( 1  + 6 c )  g~(0) �9 

Table 2, Three types of fits are considered. For each sector the free parameters are listed. External parameters in the fits in addition to the precisely known fine 
structure constant c~, the Fermi coupling constant G F  and the Z boson mass m z are listed separately. The quantity 6c~ is defined as ~Sa ~ 1/6~(m2) - 128.72 

(2.31). The parameters S, T, U are defined in (2.33) and 6b in (2.22). 

Experimental inputs 6-parameter fit 4-parameter fit 2-parameter fit 

(input) (input) (input) OG G F ,  77~ Z 

low energy neutral currents ~2(o) 0~(0) i S T I 6~ 
Z parameters g2(m2 ) ,52 (,m2 ~z"oz ,  ~b(m~)l ~ s T A(m2) l G ~ 

m W 0 2 ( 0 )  I S T U I 6o~ rn,  m H  I 6a 

number of fit parameters 6 I 4 I 2 I 
number of external parameters I 1 I 2 I 2 

m t  m H I 6~ 
m t 77~ H I 6c~ OLs 

m z, ~2(0), g2(0), ~02(0) and 02(0) ,  g2(m2), -z 2 9z(mz) and 

Apart from the vertex form factor ~b(m~) the remain- 
ing 8 parameters characterise the universal propagator cor- 
rections. On the experimental side, the three quantities a,  
GF and m z are measured so accurately that it is justifi- 
able to treat them as constants: a = 1/137.0359895 and 
GF = 1.16639 x 10-SGeV -2  from the PDG listing [25], 
and m z = 91.187 GeV from the LEP results [26]. Among 
the 8 universal parameters above, ~2(0) = 4rra and m z are 

gw(O)/mw, fixed immediately, while G F  fixes the ratio -2 2 
once we assume the SM dominance of the vertex and box 
corrections (~a) to the muon decay lifetime. Since the gauge 
boson properties are fixed at tree level by only three param- 
eters in general models with the SU(2)x  U(1) symmetry 
broken by a vacuum expectation value, the remaining 5 uni- 
versal parameters serve to test the theory at the quantum 
level (see Table 1). We therefore first determine from pre- 
cision experiments the 5 parameters, g2(0), 92(0), 02(0) ,  

7,2 ( m  2 g2(m}) and ~z t  z J, together with ~b(m}), and then con- 
front their values with various theoretical predictions. 

In the fit to the Z boson parameters the strong coupling 
constant as(mz) is treated as external parameter which can 
be varied within certain limits. In this way the analysis re- 
mains transparent and easy to update. The fitted electroweak 
parameters ~2(m~), -2 2 -2 2 6b(mz) are gz(mz)  and thus presented 
as parametrizations in as  (see Table 2). 

When the new physics scale is significantly higher than 
the scale (~<m~) of precision measurements, new physics 
contributions to the running of the charge form factors can 
be neglected. 

. By assuming further that the running of  the charge form 
factors between q2 = 0 and q2 = m~ are governed only 
by SM physics, three universal parameters sensitive to 

radiative effects can be determined. We adopt a modified 
version of the S, T, U parameters of [4[ by including the 
SM radiative effects as well as new physics contributions. 

Among the 5 universal parameters, the values o f  .52(0)/O-t 
and .02(0) can then be calculated from g2(m~) /&(m})  and 
.02(m~), respectively, using SM physics only. There are then 
3 remaining universal free parameters which correspond to 
the parameters S, T and U of  [4], el, (~2 and e3 of  [7], or the 
other related triplets of parameters in [5]. When the scale of  
new physics that couples to gauge boson propagators is near 
to the weak boson masses, its signal can be identified as an 
anomalous running of the charge form factors. This point 
has been stressed in [12] in connection with the possible 
existence of light SUSY particles. It has also been pointed 
out that when new physics effects to the electroweak gauge 
boson sector are parametrized by the four dimension-six op- 
erators of [10], there occurs anomalous running of  the charge 
form factors [11]. The triplet parametrizations are then no 
longer sufficient to account for new physics degrees of  free- 
dom, and all 5 parameters in Table 1 should be regarded 
as free. Several alternative approaches to the same problem 
have been proposed in [12, 14, 18]. 

Note that in order to obtain the charge form factors from 
the three known parameters c~, GF,  r az  and the radiative 
parameters S, T and U that are calculable in a given model, 
the effective QED coupling at the Z mass scale, &(m 2)  is 
needed. Its value is calculable from a in the SM but suffers 
from uncertainty in the hadronic vacuum polarization con- 
tribution [27-29]. The effect of this uncertainty on the final 
results turns out to be non-negligible. In order to gauge the 
effects due to this uncertainty quantitatively, we introduce 
6~ = 1/&(m2z) - 128.72 as external parameter and allow 
it to vary in the fit (see Table 2). It is then straightforward 
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to examine the effects of shifts in the &(m~) value and the 
impact of future improvements in its measurement. 

In the minimal SM, the three universal parameters S, T, 
U and the Zbrbz,  vertex form factor 8b(m 2) depend on just 
two parameters: mt and rn H. 

6. Finally, by assuming that no new physics contributes sig- 
nificantly to electroweak precision experiments, we can 
express all the rad{ative effects in terms of the two pa- 
rameters of the minimal SM, mt and m H. The X 2 curves 
of the global fit are shown as a function of these two 
parameters, for several values of c~s(rnz) and ~(m~). 

The preferred range of ~ t  is presented as a function of m~,  
o~s, ~5c~, that of m H as a function of mr, c~s, ~ ,  that of o~ 
as a function of mr, m H, ~c~, and that of ,5,~ as a function 
of rnt, m H, c~s. The chosen value for the parameter 6~ 
is essential, since it is not well constrained by the present 
precision measurements alone. 

A clear advantage of this approach is that we can test 
the electroweak theory at three qualitatively distinct levels. 
If we cannot fit all the data at a given q2 with common form 
factor values, we should either look for new physics affect- 
ing the relevant vertex/box corrections significantly or else 
we should introduce new tree level interactions such as those 
induced by an exchange of a new heavy bosom or from new 
strong interactions that bind common constituents of quarks 
and leptons. If the 'universality' in terms of the above four 
charge form factors holds, but their q2-dependence does not 
agree with the expectations of the Standard Model, we may 
anticipate a new physics scale very near to the present ex- 
perimental limit [12], or effective higher dimensional in- 
teractions among the gauge bosons [10, 11]. New physics 
contributions which decouple at low energies can thus be 
identified by their anomalous running of the charge form 
factors. If the running of the form factors is found to be 
consistent with the SM, then our approach reduces to the 
standard three parameter analyses [4, 5, 7], or those with 
three plus one parameter [12, 14] when including the ZbLb c 
vertex parameter ~b(m 2) as well. Deviation from the SM is 
still possible, since the SM has only two relevant free pa- 
rameters, mt and m H. In this case sensitivity to those new 
physics contributions which do not decouple at low energies 
remains. 

As emphasized at the beginning of this section, we 
present at all stages of our quantitative analysis the best- 
fit values of the model parameters, including a parametriza- 
tion of the X 2 goodness of the fit around its minimum as 
functions of the external parameters c~, = c~(mz)~-g and 

ga -- 1/d~(m~) -- 128.72 ~-- (1/&(rn~) -- 1/Ct)hadrons + 3.88. 
One can examine consequences of possible future improve- 
ments in the measurement of Ors [30] and those of hadronic 
contribution to ~5c~ by adding to the quoted X 2 function terms 
of the form [ ( o ~ -  (o~))/(Ac~s)] 2 and [(~c~- ( ~ ) ) / ( A ~ ) ]  2. 

The paper is organized as follows. In Sect. 2, we present 
our formalism in detail. The helicity amplitudes are stated 
for general four-fermion processes in terms of the univer- 
sal charge form factors and process-dependent vertex and 
box corrections. Definitions of the form factors and the S, 
T, U parameters are given and their SM values are shown. 
Section 3 contains theoretical formulae for the electroweak 

observables expressed in terms of the helicity amplitudes of 
Sect. 2, with QCD/QED corrections. Numerical predictions 
are also given for wide ranges of the form factor values, and 
also in the minimal SM. In Sect. 4, we present our model- 
independent parametrizations of all experimental data and, 
confront them with our theoretical predictions. The universal 
charge form factors and ~b(m~) are determined by assum- 
ing SM dominance in the remaining vertex and box correc- 
tions. Section 5 presents a systematic analysis of the elec- 
troweak data by gradually tightening the theoretical assump- 
tions. First the running of the charge form factors 02z(q 2) and 
g2(q2) is tested, then the 4-parameter (S, T, U and Sb(m})) 
fit to all electroweak data is performed by assuming SM run- 
ning of the charge form factors. Finally, constraints on mt 
and m H are discussed in the SM fit. The total X 2 of the SM 
is parametrized in terms of mr, mfr, ~ and 6~. In Sect. 6, 
consequences of the new precision measurement of the left- 
right asymmetry [31] and the impact of a top quark mass 
measurement are considered. Section 7 summarizes our ob- 
servations. Details of the theoretical formulae used are col- 
lected in the appendices. In appendix A, we give all the SM 
radiative correction terms completely at one-loop level, and 
partly at two-loop level for O(c~c~s) terms. They are classi- 
fied into three parts, the propagator corrections, the vertex 
corrections and the box corrections. In appendix B, we dis- 
cuss the renormalization group improvement of the charge 
form factors and hadronic contributions to the gauge boson 
propagators. Appendix C gives the complete analytical for- 
mulae for the S, T, U parameters and the ZbLbL vertex form 
factor ~b(m 2) in the SM. Here all the known two-loop level 
corrections are included. We also give convenient approxi 
mations to the exact formulae. Appendix D provides explicit 
expressions for the A, B, C, D functions [32] that are used 
to express all the one-loop correction factors. 

2 Basic formalism 

2.1 S-matrix elements, weak boson masses, and charge form 
factors 

All the precision experiments sensitive to electroweak physics 
at one-loop level so far are concerned with processes involv- 
ing external fermions, that is, leptons or quarks (excluding 
top quarks), whose masses can safely be neglected in the cor- 
rection terms as compared to the weak boson masses. There 
are the Z boson properties as measured at LEP and SLC, the 
neutral current ( N C )  processes at low energies (<< raz) ,  the 
measurements of charged current (CC)  processes at low en- 
ergies and those of the W mass at pt5 colliders. The relevant 
observables in these processes are then expressed in terms 
of the S-matrix elements of four external fermions which 
form a scalar product of two chirality conserving currents. 
All the information on electroweak physics is contained in 
the scalar amplitudes which multiply these current-current 
products. 

For example, consider the S-matrix element responsible 
for the generic 4-fermion N C  process i j  --~ i j  (orany one 
of its crossed channels). This includes e+e - --+ f f  as well 
as uuq ~ uuq. The matrix element has the form 

Tij = M i j J i .  J j ,  (2.1) 
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where Jr  and JJr denote currents without coupling factors, 

that is, J~' = ~ f T u P ~ y  for i = f~, where P~ = (1 +a75)/2 
with a = ~1 are the chiral projectors, t All radiative effects 
interfering with the tree-level SM amplitudes can be cast 
into the above form as long as terms of order 2 2 m f / m  z in the 
one-loop amplitudes are neglected (my denoting ~ the external 
fermion mass). The one-loop corrections then appear in the 
scalar amplitudes Mij which depend on flavor and chirality 
of the currents and on the invariant momentum transfers s 
and t of the process. 

In neutral current amplitudes, the photonic corrections 
attached only to the external fermion lines are U(1) gauge 
invariant by themselves [3]. Therefore, finite and gauge in- 
variant amplitudes can be obtained by excluding all the ex- 
ternal photonic corrections. We find the following closed 
form for the generic neutral current amplitude Mij of (2.1) 
at one-loop order (see details in Appendix A): 

- - i  

+ ~ 2 [ ( ( ~ i 1 3 j )  r ~ ( ' ) + S  ( i 3 i ( ~ j ) ~ 2 ( 8 8 ) ]  

1 
+ 

s - rn2z +iseZO(s) 
m Z 

• I - - Q 9  

+ ( I 3 , -  @~2)0~ [ I3j(f~-F j + F~3 )(s) + FJ(,) 

_ %  _ + 

5')(,)+ 

+ BNC(s, t). (2.2) 

Here , is the momentum transfer of the current Jr and 
t is the momentum transfer between the fermions i and j.  
The hatted couplings ~ =- ~ _= .0z~fi and all the ultraviolet 
singular loop functions are renormalized in the MS scheme, 
and hence they depend either implicitly or explicitly on the 
unit-of-mass #. Three of the four charge form factors of Ta- 
ble 1, ~2(s), g2(s) and O~z(s), appear in the N C  amplitudes: 

--3''3' 2 82(q2) : 82[ 1 - Re IIT.y( q )], (2.3a) 

8 - -3"Z  2 g2(q2) = g2[1 + _~ReHT,~(q )], (2.3b) 

~2(q2) = 0 ~ [ 1 -  ReHz~(q2) ] .  (2.3c) 

Imaginary parts of the propagator correction factors denoted 
by A.y.y(s), ATz(s ) and A z z ( s )  are defined as follows: 

I We use the chirality index a = +1 for right-handedness and ct = I 
for left-handedness throughout the paper; e.g., P+l = P+ = /DR and P_ 1 = 
P -  = PL for the chiral projectors, f+ = fR  and f _  = f L  for chiral 
fermions 

--"~ "/ 2 A.~.y(q 2) = Im IIT,~( q ), (2.4a) 

Z]~z(q 2) = .~g: Im ~ z y  (q2), (2.4b) 

2 Im H r Z ( m } )  ~ (2.4c) z~zz(q 2) = Im--ZZHT,z(q ) m 2 

The vertex functions F~ '~ (s) and the box functions B / ,  fie (s,t) 
are process specific. The SM contributions to all the two-, 
three-, and four-point functions in (2.2) are calculated in the 
't Hooft-Feynman gauge. Their explicit forms are found in 
appendix A. 

The residues of the 7- and Z-poles are separately p- 
independent and gauge invariant, and therefore physical ob- 
servables. For q2 = 0, the vanishing of the vertex functions 

r["(O) = 0, F ~ ( 0 )  = 0, (2.5) 

is ensured for all f,~ by the Abelian and non-Abelian parts 
of the Ward identities, respectively. The universal residue of 
the photon pole gives the square of the unit electric charge 
52(0) = 47ra. 

Likewise, the charged current (CC) process i j  --* i ' f  
can be expressed by 

1 

""W 

C C  +B~j (s, t), (2.6) 

with an appropriate CKM factor V~eVfy accounting for 
quark family mixing. The W propagator corrections appear 
in the charge form factor ~0~v(S) and in the imaginary part 
Aww(S):  

-2 2 = ~2 - RelIT, W (q )] , (2.7) gw(q ) [ 1 - - w w  2 

- - W W  2 
- - w w  2 ImHT (row) (2.8) 

A w w ( q  2) = ImHT, w(  q ) -- rn 2 

Factorization of the external photonic corrections does not 
hold for the charged current processes, and hence all the one- 
loop correction terms are included in (2.6). Explicit fbrms of 

the SM contributions to the propagator function 11T I.q-) 
are found in Appendix A. 

The gauge boson two-point functions appearing in (2.3), 
(2.4), (2.7) and (2.8) are defined as follows: 

- - A B  2 ~ A B ( q 2 )  
~ A  B 

_ H T  (my)2. (2 .9)  
H T , V  ( q )  = q2 _ m~ ' 

where m v is the physical mass of the gauge boson V (that 
is, m w, m z and m-~ with m~ = 0) and the subscript T 
stands for the transverse part of the vacuum polarization 
tensor Hw,(q ), 

A B  2 tl q A B  2 A B  (--9#u + qUq~" ~ ~u " Hw, (q)= q2 ]H~ (q ) + ~ - H  L (q).(2.10) 

Contributions from the longitudinal part of the gauge boson 
propagators are consistently neglected in the one-loop cor- 
rections, because they give terms of order m } / m  2 (V = Z 
or W) in the weak amplitudes. 
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The gauge boson propagators are calculated in the 
' t  Hooft-Feynman gauge and the so-called pinch terms 
[2, 33, 34] of  the vertex functions arising from diagrams with 
the weak boson self-couplings are included in the overlined 

functions HAB(q2): 

~2 
~ 'Y(q2 )  = H~'~(q2) _ ~_~2q2Bo(q2;rnw,rnw), (2.11a) 

m 2 
e`0zC21 2 2_~)Bo(q2;rnw,rnw),  H~,Z(q 2) = H~Z(q 2) - ~ [q - 

(2.1 lb) 
~_2 54 ~ZZ(q2)  = H Z Z ( q 2 ) _  9z  / 2 tq - m~)Bo(q 2; row, row), 

(2.11c) 
__   W(q2) 

-0 2 2 

4-;2 (q 
x [ ~2Bo(q2; row, mz) + ~2Bo(q2; row, m-0]. 

(2.11d) 

Here B0 is a Passarino-Veltman function [32] in the notation 
- - f l ,  

of appendix D. The overlines on the vertex functions F 2 (s) 

in (2.2) and (2.6) and Fi i ' (s)  in (2.6) indicate the subtraction 
of the pinch term associated with this prescription (note, the 
pinch terms in (2.11) have a negative sign in our convention). 

The absorption of the above q2 dependent propagator- 
like parts of  the vertex functions into the effective charges 
[2] improves over the usual method of absorbing the rele- 
vant vertex term at zero momentum transfer [3] in two ways. 
One is that the remaining vertex parts do no longer give rise 
to large logarithms of the type ln(-qZ/m~v)  at ]q2[ >2, m~v, 
and hence the effective charges are useful in making the im- 
proved Born approximation [2] even at very high energies. 
The second is that the effective charges are now gauge in- 
variant [2, 34], and hence their properties can be discussed 
independently of  the other process specific corrections of 
the same order. Most importantly, we can obtain explicitly 
renormalization group invariant relations between the MS 
couplings and the effective charges 

1 _ 1 [ 1 +  ReH.~.~ (q2) ] (2.12a) 
~2(q2)  ~ 2 ( # )  

g2(q2) = ~2(~) -k- ~2(q2) R e ~ Z r ( q 2 )  ' (2.12b) 
~(~)9z(~) 

in an arbitrary gauge of the electroweak theory. This enables 
us to discuss the renormalization group improvement of the 
above two effective charges as a whole, that is, without sep- 
arating the contributions from the SM fermions and the rest. 
The trajectories of  all the MS couplings (~ = `0g = `0zgO) 
are completely fixed by the above two equations at the one- 
loop level, which can be used to study quantitatively the 
heavy particle threshold corrections in Grand Unified Theo- 
ries (GUTs)[21]. 

In the analysis presented here the MS couplings act as 
the expansion parameters of  the perturbation series, since we 
find them the most convenient when studying consequences 
of various theoretical models beyond the SM. Their useful- 
ness in the SM analysis has been emphasized in [35], and 

they are often used in the analysis of new physics contri- 
butions to the precision experiments [5]. However,  it is not 
convenient to use the MS couplings at a specific unit-of- 
mass (#) scale, such as # = m z,  when dealing with a theory 
with particles much heavier than the weak bosons because of 
the appearance of large logarithms of their masses. Hence, 
we adopt the following renormalization conditions 

~2 = ~2(rn2), g2 = g2(rn2), (2.13) 

consistently for all processes studied. The above condi- 
tions renormalize all the logarithms of large masses with 
the help of the renormalization group identities (2.12) at 
[q2] < O(m2z). Note that the running of ~2(q2) and gZ(q2) at 
low energies arises from the QED x QCD interactions [36], 
and hence the ratio g2(q2)/gZ(q2) is not an appropriate expan- 
sion parameter of  the weak corrections at ]q2[ << m 2. Note 
further that, apart from details concerning the higher order 
terms, the effective charges ~2(q2) and g2(q2) (2.12) are the 
same as the real parts of the corresponding star-scheme [2] 
charges, eZ(q 2) and s2.(q2), respectively. More details on the 
treatment of the renormalization group improvement and the 
hadronic contributions to the charge form factors are given 
in appendix B. 

Since we adopt the LEP convention [3] regarding mass 
and width ( m v  and Fv)  for both Z and W, the Breit-Wigner 
propagator factors in (2.2) and (2.6) have the running width 
factor, and the imaginary parts (2.4c) and (2.8) have the as- 
sociated subtraction terms. These masses and widths can also 
be defined in terms of the more conventional pole masses 
and widths [37], denoted by mV, p and FV, p, as follows [38]: 

~rt~ = rn 2 /.2 (2.14a) 
V,p  + V ,p  

Fv = Fv, p VII + (Fv, p/rnv, p) 2 . (2.14b) 

The Breit-Wigner propagator function v)ith the fixed width 
and that with the running width are then related by the exact 
relation [38] 

1 1 + i F v / m  v 
= (2.15) 

s - m  2 +imvpVvp s - m ~  +isVv/m v" V , p  , , 

The imaginary part of the numerator z~zz(q 2) (2.4c) and 
A w w ( q  2) (2.8) are arranged such that the imaginary parts of  
the full amplitudes vanish exactly at zero momentum trans- 
fer: Avv(O)  = 0. The theta function O(s) (O(s) = 1 for s > 0 
and O(s) = 0 for s _< 0) in the running width factor of  (2.2) 
and (2.6) then ensures the reality of  the amplitudes at s < 0. 
It should be noted that the imaginary part A v v ( q  2) vanishes 
at q2 = m 2  at one-loop level, if all the contributing particle 
masses can be neglected. As long as the relations (2.14) and 
(2.15) are respected, physical consequences for observables 
near the W- or Z-poles remain unchanged. When constrain- 
ing the electroweak parameters, however, we often refer to 
the weak currents at zero momentum transfer. The masses in 
the LEP convention are more appropriate to use in this case 
[38], since they absorb reducible higher order contributions 
from the W and Z widths. 
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2.2 Vertex and box corrections 

In this subsection, the vertex and box corrections are nu- 
merically estimated in the SM, while their explicit forms 
are given in appendix A. First the neutral current (NC) am- 
plitudes near the Z-pole and at low energies (Iq21 << m~) 
are discussed, then the charged current (CC) amplitudes in 
the zero momentum transfer limit. Except for the ZbLb L 
vertex, all the vertex and box corrections are assumed to 
be dominated by these SM contributions in the following 
analysis. 

Four types of vertex form factors appear in the NC am- 

plitudes (2.2). F ( and T f appear both in the 7 f f  and Z f f  
vertices, wh i l e / ' f  a n d / ' f  appear only in the Z f f  vertices: 

F'rff(q 2) = - ~  { Q I [ 1  + F/(q2)] + I3ITY2(q2)}, (2.16a) 

vzss(q 2) = -Oz{ (I3f - -  [1 + _p/(q2) ] 

+I3y[ c2r2Y(q2)+Ff(q2)] + F4Y(q2)} - (2.16b) 

The SM contribution to the vertex form factors that are 
non-vanishing at one-loop order are F[ ~ (q2), - - I t  2 F 2 (q )  and 

FrO(q2). They can be expressed by 

F/'~(q 2) = \ ~ - - ]  lP(z(q2), (2.17a) 

( g Z L f f ~ 2  9 W f f '  2 , 
/n/C(q2)---- ~, ~ J _Flfz(q2 ) "1- ~ ~ /llf~V(q2) , 

d 
(2.17b) 

W f f '  L2 , 
--fL 2 gL --f 2 I' 2 (q )=--2 Z - -  F2w(q ) (2.17C) 

f '  47r 

~f' W f f~' 2 F f L  (q2) f '  2 = FJmw(q ), (2.17d) 

with the gauge-boson-fermion coupling convention 

g~ff = gRff = e Q f ,  ff~ff = gZ ( - - O f  ,~2), 

(2.18) 
vf 0 (hl Qsa ) 0 

= - , Y L  - = V ,  X / 2  _ _ I ,  . 

- - f '  2 Explicit forms of the functions Flu (q2), F2w( q ) and 
f '  2 FJmw(q ) are given in (A.18)-(A.20) in appendix A.2. Ex- 

ternal fermion self-energy corrections are included in the 

functions F[z(q 2) and F[(v(q2). For right-handed fermions 

TzYR(q 2) = 0 holds, since only those diagrams with W ex- 
change contribute to the vertex function F2 at one-loop or- 
der. The vertex functions Ff" (s) are found to be propor- 
tional to the square of the fermion mass inside the loop, 
and are non-vanishing only for f~ -- bL in the SM, within 
our approximation of using diagonal KM matrix elements 
and neglecting terms of order (mb/mz)2C~. For large mt 

>> Isl), the SM contribution to F3bL(s) is proportional 
2 2 to m t /m W [39, 40]. The functions/~4 y~ (s) can, in general, 

be present, but happen to vanish for all f~ in the SM; they 
are, however, found to be non-vanishing in some extended 
models such as the minimal SUSY-SM. These analytic ex- 
pressions agree with the known results of [40-44] 2 . 

The numerical values of the vertex form factors FlY(q2), 
F2f(q 2) and  Ff (q  2) at q2 = m 2 are given in Table 3. All 
the numerical results presented in this section and in the 
following sections are obtained by setting 

47r/~ 2 = 128.72, (2.19a) 

~2 = 0.2312, (2.19b) 

with ~ = 0~ = Oz~e in the one-loop correction terms. They 
are fixed by using the renormalization conditions (2.13) and 
the SM predictions for &(m}) and g2(m2) at m t =  150 GeV, 
mH = I00 GeV, OZs(mz) = 0.120 and 6,  = 0. We empha- 
size that we do not change the numerical values of (2.19) 
when discussing experimental constraints on the charge form 
factors e2(rr~2) and g 2 ( m 2 ) .  All our predictions for the Z 
parameters can be reproduced simply by using the numer- 
ical values listed in Table 3 and (2.19), together with the 
imaginary parts of the gauge boson propagator corrections 

c~,(raz)~-g 0 0.11 0.12 0.13 
A.y.~(ra 2) 0.01726 0.01760 0.01763 0.01766 
A~z(m2z) 0.00248 0.00257 0.00257 0.00258 
Azz(m2z) 0.00005 0.00003 0.00003 0.00003 

(2.20) 

which are obtained by using the perturbative order c~c~s ap- 

proximations of appendix A with the effective quark masses 
of (B.25) and (B.26). It is worth noting that the real part 
of the vertex corrections (Table 3) and the imaginary part 
A.r-r(m 2) interfere with the leading Z-pole amplitude: the 
latter contribution has been subtracted in the Z parameters 
[26], whereas the former contributions modify the scatter- 
ing amplitudes by as much as 0.5%, and hence they can 
contribute to the cross sections at the 1% level. 

Note further that the vertex correction without the pinch 

term subtraction [3, 41] /-fL(q2) is related to t h e  FfC(q 2) 
function by 

0 2 T2fL (q2): pfc (q2) _ ~_~5~2 Re [Bo(q2; W, W) - Bo(0; W, W) 1 

(2.21) 

in the 't Hooft-Feynman gauge. The difference is univer- 

sal (f-independent) and we find 1"2 (mz) = 
0.00134. The vertex corrections are slightly larger in mag- 
nitude after subtraction of the pinch term. 

It is convenient to introduce the following special form 
factor 

2 We note the following misprints in [40]. In the last line of (2.7), 
the factor 1/(ra 2 - M2) 2 should read 1/ (m 2 - M2). In the first line 
of (2.8), the term 4q4M 2 should read 4q2M 4, and in the last line 
of (2.9), the term m / 2 M  2 should read ra2 /2M 2. Our vertex func- 

- -y '  y, 
tions F(w, P2w and P~, W are then related to their functions p, A 

t __f! 
and ~ by the identities: Flf#(q 2) = p ( - q 2 , m 2 , m ~ , ) ,  Pew(q 2) = 

[p+A] (_q2, m 2 ' m~,)  +2 [ Bo(q2; row, r o w )  - Bo(0; m w , raw)] ,  and 

ft 2 -- 2 2 2 
F ~ w (  q ) = - 2 ~ ( - q  , r a w , r a f ' )  
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Tab le  3. 
forms in appendix  A.2. 

Vertex fo rm f a c t o r s / . [ ( q 2 ) ,  T2Y(q2) and Ff(q 2) in the SM at q2 = m2z ' The definitions of  the form factors are given in (2.17) and their explicit  

d 
0 .00252  + 0 .00431 i 
0 .00185  + 0 .00325  i 
0 .00020  + 0 .00032  i 
0 .00203  + 0 .00354  i 

0 .00009  + 0 .00014  i 
0 .00225  + 0 .00389  i 

0 . 00002  + 0 .00004  i 
0 . 00176  + 0 .00107  i 
0 .00141 + 0 .00107  i 
0 .00126  + 0 .00107  i 

//L 
gL 
gR 
UL 
UR 
dL 
dR 

bL (me = lO0) 
bL (mr = 150) 
bL (mr = 200) 

- 0 . 0 0 6 8 0  - 0 . 0 0 5 6 5 i  
- 0 . 0 0 6 8 0  - 0 . 0 0 5 6 5 i  

- 0 . 0 0 6 8 0  - 0 . 0 0 5 6 5 i  

- 0 . 0 0 6 8 0  - 0 . 0 0 5 6 5 i  

- -0 .00402  + 0 . 0 0 0 0 0 i  
- 0 . 0 0 2 6 1  + 0 . 0 0 0 0 0 i  
- 0 . 0 0 1 7 9  + 0 . 0 0 0 0 0 i  

d 

- 0 . 0 0 3 4 7  + 0 .00000  i 
- 0 . 0 0 7 6 3  + 0 .00000  i 
- 0 . 0 1 2 7 0  + 0 .00000  i 

6b(S) = F bL (S) + ~2T~c (S) + F bc (S) + higher order terms, 
(2.22) 

which is treated also as a free parameter in our fit at s = m~ 
to deal with the strong mt dependence of the Zbzb L vertex 
(see also [12, 14]). In this way, the importance of the ZbLb L 
vertex correction [45] can be assessed independently of the 
specific SM mechanism and also the data analysis is kept 
separate from the evaluation of Sb in a specific model. In 
the SM, the parameter 6b can be evaluated by including 
O(asmt 2) [46] and O(m 4) [47, 48] two-loop corrections of 
the SM, which are given explicitly in appendix C.4: see 
(C.54). 

At low energies, light fermion masses may not be ne- 
glected compared to the momentum transfer q2. In the limit 
of Iq2[/m2 z << 1 and m}/m2z << 1 but at fixed m}/q 2, the 
vertex functions reduce to 

- -  +o( P?z(q 2) : mezq2 [ jz(q2; f) \ ~zz j j , (2.23a) 

P?w(q 2) = m---~w Jw(q2; f') + 0 , (2.23b) 

--f'P2w(q2) : m~-q2 [jw(q2; f') + o (  qm@z ) ] . (2.23c) 

The functions Jz(q2; f), Jw(q2; f) and Jw(q2; f) have the 
same form as the fermionic contribution to the neutral gauge 
boson vacuum polarization functions: see (A.27). The form 
factor ~ L  (q2) is often called the neutrino charge radius term 
[49]. The subtraction of the pinch term makes it gauge in- 
variant [34]. 

For the NO process f~(Pl)f~(P2) -~ f~(P3)f~(P4), as 
well as for its crossed channels, the box correction terms in 
(2.2) can be expressed as 

f,f, 1 ~Zff~Zf,f, 2 B ( s , t ) = ~  ~ ,  ~ 

x [Ii(u,s;mz,O ) I2(t,S;mz,O)] (2.24a) 

+ ~o~L W f f "  W f ' f ' "  2 
9L gL 

(+I~(u, s; m w ,  ~bf,,,) f o r  13fI3f ,  < 0 

x t .-I2(t ,s;mw,mf'") f o r  I3f13f ,  > 0 ' 
(2.24b) 

1 gZffgZf, f, 2 

X [ h ( u ,  s ;  m z ,  O) -- I i ( t ,  s; m z ,  0) ]  , ( 2 . 2 4 c )  

ef Table  4. Box form factors B(ea, f~) =_ Bc~,(s, t) for  the process ec~g'-d - ~  

f , f ~  in the SM at s = - 2 t  = mZz . The definitions o f  the form factors are 
given in (2.24) and their explicit  forms in appendix  A.3. 

f sB(eL, f~) sB(eR, f~) 
//L 
gL 
gR 

UL 
UR 

dL 
dR 

bE ( m r  = 100) 
b c  ( m r  = 150) 
bL ( ro t  = 200) 

0 .00109  + 0 .00000  i 

- 0 . 0 0 0 0 5  + 0 . 0 0 0 0 0 i  
- 0 . 0 0 0 0 2  + 0 .00000  i 

0 .00104  + 0 .00000  i 
- -0 .00001 + 0 . 0 0 0 0 0 i  
- -0 .00001 + 0 . 0 0 0 0 0 i  

0 .00000  + 0 .00000  i 
- 0 . 0 0 0 0 2  + 0 .00000  i 
- 0 . 0 0 0 0 1  + 0 . 0 0 0 0 0 i  

0.00001 + 0 . 0 0 0 0 0 i  

- 0 . 0 0 0 0 6  + 0 .00000  i 
- 0 . 0 0 0 0 2  + 0 .00000  i 

0 .00001 + 0 . 0 0 0 0 0 i  
- 0 . 0 0 0 0 3  + 0 .00000  i 

0 .00001 + 0 . 0 0 0 0 0 i  
- 0 . 0 0 0 0 5  + 0 .00000  i 

0 .00000  + 0 .00000  i 
- 0 . 0 0 0 0 5  + 0 .00000  i 
- 0 . 0 0 0 0 5  + 0 . 0 0 0 0 0 i  
- 0 . 0 0 0 0 5  + 0 .00000  i 

where s = (t91 - - p 3 )  2, t = (/)1 - - t 3 4 )  2 and u = (Pl + P 2 )  2 a r e  the 
Mandelstam variables satisfying s + t + u = 0. In the second 
term of (2.24b), f "  and f ' "  are the weak isospin partners 
of f and f ' ,  respectively, where all external and internal 
fermion masses except /'or my,,, are neglected: the upper 
term (hSI3s, < 0) should be taken for (f,  f ' )  = (g, u), (u, g), 
and (u, d), whereas the lower term (hshI '  > 0) for (f, f') = 
(g, d), and (u, u). The explicit form of the box /unctions I1 
and I2 are given in (A.30) of appendix A.3. These analytic 
expressions agree with the known results of  [40-44]. It is 
worth noting here that the box contributions to the helicity 
amplitudes have the above simple current product form only 
when the external fermion masses can be neglected. 

The numerical values of the box functions Bij(s, t) for 
the process e+e - -+ f f  are given in Table 4 for s = - 2  t = 
m~.  They contribute negligibly to the Z parameters, because 
they do not interfere with the dominant Z-pole amplitudes 
being almost purely imaginary near the pole. The imaginary 
parts appear in the box functions only above the W-pair 
production threshold. 

The box contributions are found to be non-negligible in 
some low energy NC processes. In the s = t = u = 0 limit, 
one finds 

4 
ll(0, 0; m y ,  0) - m~z ' (2.25a) 

1 
/2(0, 0; my, 0) - m ~  " (2.25b) 

The W W  box contributions to the processes with the I1 
function, that is, the low energy u-g, u-d and e-u scattering 
processes are found to be significant. 
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Precise values of the charged current matrix elements 
are needed only at low energies. The muon decay constant 
is given by 

a F - 0~V(0) + 02~G (2.26) 
4v mb ' 

where the factor ~c 

) l  1 ~a = ~ 2  1+ ~ - f i -  1 l n ~  ~0.0055 (2.27) 

denotes the sum of the vertex and the box contributions in the 
SM. Its numerical value above is obtained for the couplings 
of (2.19). The identity (2.26) gives the physical W mass in 
terms of ~2(0),  once the ~a value is known for a given 
model. The overline here again indicates the removal of the 
pinch terms with the consequence that the numerical value 
is significantly (about 20%) smaller than the standard factor 
[50] 

~c_; = ~ 3 ~-~  - 1 In ~5 ~ 0.0068, (2.28) 

which was obtained simply by subtracting the singular vertex 
function at zero momentum transfer. The difference 

~ 2  
~c - ~a = ~ [ B0(0; W, W) - ~2 B0(0; W, Z) 

_~2/3o(0; W, 3')] (2.29) 

is the pinch term contribution [34]. Note that the sum of 
the propagator and the vertex/box corrections is scheme- 
independent and that the correction term ~a of (2.27) should 
be used together with the charge form factor .0~v(0) which 
contains the associated pinch term. 

2.3 Constraints due to c~, GF and m z 

Among the electroweak observables the three quantities a, 
GF and ra z have been measured with outstanding precision, 
namely A a / a  ~ 5 x 10 -8, AGF/GF ~ 2 x 10 -s  [25], 
and Arr t z /m z ~ 8 x 10 -5 [26]. For this reason oe, GF 
and m z are chosen as our basic electroweak parameters and 
treated as constants in the analysis (see Tables 1 and 2). 

On the other hand, the tree-level properties of the gauge 
boson propagators are fixed completely by three parame- 
ters, the two gauge couplings 9 and 9 ~ for the SU(2)L and 
U(1)y gauge groups, respectively, and one vacuum expecta- 
tion value v ~ (x/~GF) -1/2 ~ 246 GeV, in models where 
the electroweak symmetry breaking sector has the custodial 
SU(2) symmetry [5l]. Consequently, the four charge form 
factors ~2(q2), g2(qZ), ~(q2), and O~v(q 2) are completely 
determined by finite quantum corrections in this class of 
models when expressed in terms of the three constants a,  
GF and m z. 

In this subsection, the prescription for calculating all 
charge form factors in terms of (a, GF, ~r~ Z) is given explic- 
itly in an arbitrary model with the broken SU(2)L • U(I)y 
gauge symmetry. Their numerical predictions are given in 
the SM. 

The form factor ~2(q2) ~ 47r&(q~) is fixed by the follow- 
ing identity 

1 1 
- - Q Q  2) _ HT,. . / (0)]  , (2.30) = 47rRe L[HT"r(q --QQ &(q2) a 

which gives the renormalization group improved running 

&(q2) as explained in appendix B. Here HTQQ(q 2) is the 3'3' 
propagator function without the overall coupling factor ~2 
[2]: see (A. 1). 

In principle, the effective coupling &(m~) can be calcu- 
lated from the observed a value by using the above iden- 
tity. In practice, however, the right-hand side suffers from 
non-perturbative QCD corrections to the light quark contri- 
butions. We make use of the dispersion analyses [27-29] to 
estimate the hadronic contributions to the running of &(q2) 
and g2(q2) form factors at 0 < Iq2[ < m~. Details can be 
found in appendix B. 

In order to take account of uncertainty in the hadronic 
contribution and also possible new physics contributions, the 
parameter 6c~ is introduced as an external parameter in the 
analysis: 

1 
- 128.72 + 6~, (2.31) a(.~}) - 

which can be expressed by 

- -OQ 2 - - 0 0  , (2.32) 
~c~ ~ ~had + 47rRe [HT,.~(rrZz) -- -]]'T,-,/(0)] NewPhysics 

for mt = 150-200 GeV as stated in (B.32) and (B.30) of 
Appendix B. Here 6had = 0-F 0.10 (B.22) is the present 
estimate [28] for the uncertainty in the hadronic contribution. 
The parameter 6, being treated as an external parameter 
serves also to assess future improvements in low energy 
e+e - hadroproduction experiments as well as possible new 
physics contributions. 

The remaining three charge form factors can be fixed by 
introducing the three radiative parameters S, T and U that 
are defined by the following identities: 

9~v(0) m~ ~ 1 - a T ,  (2.33a) 
IT~ V -2 .%(0) 

471" .S207L2)C2(In~) S 
0~(0) &(m~) - 4 ' (2.33b) 

47r g2(m~) _ S +  U 
(2.33c) 

0~(o) c~(-~2z ) 4 
The parameters S, T and U can be calculated perturbatively 
in any models from the gauge boson propagator functions 
of (A. 1) by 

S =  167r Re [H~Qcy(m~)- H~:'z(0)] , (2.34a) 

T -  4V/2GF Re [ U ~ ( 0 ) -  e ~ ( 0 ) ]  , (2.34b) 
Oz 

U = 16"/r Re [ H ~ , z ( 0 ) -  H~,w(0)] . (2.34c) 

For models without custodial SU(2) symmetry, the T pa- 
rameter is sensitive to the ultraviolet cut-off, and hence is 
un-calculable from ((~, GF, m. z) alone. In this case it should 
be regarded as the tburth basic parameter of the theory. 
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Our definitions (2.33) of  the three parameters 5", T, U 
are inspired by the pioneering work of Peskin and Takeuchi 
[4]. Our definition, in contrast to theirs, includes all radia- 
tive effects from both SM and new physics contributions. 
The original parameters, denoted below by the index PT, are 
approximately related to ours by subtracting the SM contri- 
butions evaluated at m t =  150 GeV and m H = 1000 GeV: 

5"PT '~  5" --  5'SM('D'bt ---- 150 GeV, m H = 1000 GeV),  (2.35a) 

r p T  ,~ T - TSM(17~, t = 150 GeV, rr~H = 1000 GeV),  (2.35b) 

UpT ~ U - UsM(mt = 150 GeV, m ~  = 1000 GeV),  (2.35c) 

provided the scale of new physics is much larger than m z.  
The expressions (2.34) agree with the modified S, T, U 
parameters of [34]. The same form of the definitions without 
the pinch terms (in the ' t  Hooft-Feynman gauge) have been 
used in some earlier works [11, 52, 53]. 

Explicit forms of the SM contributions to the 5', T, U pa- 
rameters are given in appendix C, together with the SM con- 
tribution to the ZbLb L form factor S b ( m 2 ) .  All the known 
two-loop corrections of order aces [46, 54-56] and order ra 4 
[47, 48, 57, 58] are included. The recently found [56, 59[ 
small two-loop corrections of order m 2 are neglected. For 
practical reasons we adopt the perturbative order ceces [46, 
54-56] corrections at ce, = % ( m z  M)fi-g in calculating all the 
parameters 5", T, U and 6v(m2). The reader can therefore 
unambiguously reproduce our results. The effects due to non- 
perturbative threshold corrections [60~52] should be evalu- 
ated separately, and one can obtain more precise predictions 
of the SM from our formulae by adjusting the effective top- 
quark mass to produce the same 5', T, U, and 6b(m 2) val- 
ues. It should be noted that at present the uncertainty in 
the SM contribution to the T parameter is such that mt  
can be predicted with a few GeV uncertainty for a given T 
value [62]. Fig. 1 shows the SM contributions to the S, T, 
U and ~b(m~) parameters as functions of mt  for m H =1-  
1000 GeV at ces(mz)=0.12. It is worth noting that the T 
and 6b(m 2) parameters are proportional to m 2 for large rnt 
(mr 2 >> m~) ,  the parameters U and Sb(m}) are almost inde- 
pendent of  m H, the T parameter decreases with increasing 
m H, and the 5" parameter becomes negative for small m H. 

Once the 5", T,  U parameters are calculated in a given 
model, the three charge form factors can be predicted as 
follows: 

1 _ 1 + ~a - ce T (2.36a) 
02(0) 4 v/2 GF m2z ' 

1 1 _~arm 2~{ 1...~+ (2.36b) 
a ' ' 

1 _ g2(m2) 1 (5' + g ) .  (2.36c) 
0~v (0) 82(m2) 16 7r 

The expression (2.36a) follows from (2.33a) and (2.26) up 

to terms of order ce2. Its explicit form takes account of  the 
reducible order m 4 corrections [63], and it makes clear that 
the combination 

Sa -- ceT (2.37) 

determines the neutral current charge form factor 02(q 2) in 
terms of GFm 2. In fact, the pinch term contribution to T 
in (2.34b) and the one removed from the vertex contribution 
in ~c (2.27) cancel in the combination Sa - ceT. 

It is clear from (2.36) that ~0}(0) is fixed by SG - ceT, 
g 2 ( m 2 )  by ~2(0), &(m 2) and S, and O~v(0) by g2(m2), 
&(m2) and S+  U. It is instructive to express these form fac- 
tors approximately as linear combinations of the parameters 
S, T, U and ~ :  

02(0) = 0.5456 + 0 .0040T,  (2.38a) 
-2 2 s ( m z )  = 0.2334 + 0.00365' - 0.0024T 

- 0 . 0 0 2 6 6 a ,  (2.38b) 

02 (0 )  = 0.4183 - 0.00305" + 0.0044T + 0.0035U 

+0.00146,~. (2.38c) 

Expressed in this form, it becomes obvious that essentially 
02(0) measures T,  g2(m~) measures 5' - 0.7T, and ~ ( 0 )  
measures T + 0.8U - 0.7,9, if the SM values of Sc and 6 ,  
are assumed. Here the coefficients are obtained by setting 
SG -- 0.0055. Results for arbitrary Sc are obtained by the 
replacement: 

0.0055 - S a 
T ~ T + (2.39) 

ce 

Note that the combination S c - c e T  vanishes in the SM (Sa ~ 
0.0055) for T ,~ 0.75. Fig. 1 shows that this cancellation 
occurs at around mt  ~ 175 GeV. The SM predictions for 
the neutral current experiments can then be reproduced rather 
accurately by using the ' tree-level '  predictions with Sc - 
ceT = 5" = 0 in (2.36), since the SM contribution to S is 
rather small. This should not, however, be interpreted as 
absence of any quantum corrections [64] (that is, 6a  = T = 
0), but rather as evidence for the large quantum correction 
ceT ~ 0.0055 within the SM (see also Sect. 5.3). 

Finally, the running of the remaining three charge form 
factors is calculated by 

gZ(q2) g2(m2 ) 

~2(q2) ~2(m~) 

1 1 
.02(q 2 ) .0} (0) 

- -  - - 3 Q  2 - R e  [H3,O.~(q 2) - HT,.v(mz)], (2.40a) 

- Re[-H3T3,z(q2)- H3T3,z(O)] 

- 2  ~2 Re [~3Qz(q2 ) - H~,Oz(0)] 

HT,z(O)] , (2.40b) +g4 Re [HTQ~(q2) -- - c 2 o  

Equation (2.40a) is the solution of the RG equation (see ap- 
pendix B), and hence is valid at arbitrary q2. At ]q21 < 
m~ ,  the parametrizations of the dispersive analysis [27-  
29] are used for the light quark contribution. Equations 
(2.40b) and (2.40c) are valid perturbative expressions pro- 
vided Iq2l<~O(m2z). At very high energies (Iq21 >> m~) ,  the 
more elaborate expressions (B.38)-(B.41) should be used 
to estimate accurately the charge form factors 02(q 2) and 
02(q2).  
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Fig. 1. The SM predictions for the (,5', T,  U, 6b) parameters defined in (2.34) and (2.22) are shown as functions of m t  for selected m H values. Their 

closed analytic expressions are given in appendix C. c ~ ( m  z )  is set to 0.12 in the two-loop O(c~c~s) corrections for S, T,  U[54] and 6b(m~)[46].  
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Fig. 2. The four charge form factors in the minimal SM as functions of the momentum transfer scale. The SM predictions are given for 7nt = 

100, 150, 200GeV and rn H = 100, 1000GeV. The parametrization[27] of  the hadronic vacuum polarization contribution is used in the space-like re- 

gion ( - m ~  < qZ < 0). In the time-like region (0 < q~ < m~z ) only the heavy quark (c, b) threshold corrections are taken into account. The light quark 

contributions at Iq21 > m~ are calculated in perturbative QCD by requiring continuity at q2 = rn~ .  See appendix B for details. 
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Fig. 2 displays the four charge form factors 1/c~(q2), 
g2(q2), 02(q2) and O2(q 2) as functions of x / ~  for both 
time-like (q2 > 0) and space-like (q2 < 0) momenta. They 
are obtained in the SM for several mt and m H values, 
namely mt= 100, 150, 200 GeV, and m H = 100, 1000 GeV. 
The trajectories are fixed such that the known values of the 
three basic parameters (a, GF, and mz)  are reproduced for 
5a = 0.0055, 5~ = 0 and o~s(mz) = 0.12. The running of 
the form factors c~(q 2) and g2(q2) at Iq2[ << m } is due to the 
QED x QCD quantum effects [36], and its detailed treatment 
is given in appendix B. The threshold effects are clearly seen 
in the time-like trajectories. Light hadron threshold effects 
do not show up since we adopt the dispersion integral fit 
of the hadronic contributions to the vacuum polarizations in 
the space-like region [27-29] also for their contribution in 
the time-like region. The running of the g2(q 2) and 0~v(q 2) 
form factors freezes at Iq21 << m~. It is clearly seen that 
the weak boson threshold effects are significant for all the 
charge form factors in the time-like region 3. 

In Sect.4, the charge form factors (2.3) and (2.7) are 
determined from the three sectors of the electroweak pre- 
cision experiments under the assumption that there are no 
new physics contributions to the vertex and box corrections, 
except for allowing the ZbLb L vertex to take on arbitrary 
values. 

3 Predictions of electroweak observables 

In this section, all electroweak observables are expressed 
in terms of the helicity amplitudes of (2.2) and (2.6), to- 
gether with the external QED and QCD correction fac- 
tors. The predictions are restricted to the models respecting 
SU(2)L X U(1)u gauge symmetry with spontaneous break- 
down to U(1)EM and presented as functions of the charge 

2 2 2 2 2 2 2 form factors g (0), Oz(O), Ow(O), g (mz), Oz(mz), and the 
vertex form factor ~b(m2). It is assumed that the remaining 
vertex and box correction are dominated by the SM contri- 
butions. 

3.1 Z boson parameters 

The following observables on the Z-pole (s = m~) are used 
in the fit: 

AO'e r r ,  ALR, A~ A~ ~, Rb (3.1) rz, ~o, 1~, ~-F~, 

Since the Z mass m z is measured very accurately, the value 
m z = 91.187GeV is treated as a constant in the fits. The 
contributions from the SM box corrections are very small 
on the Z-pole (see Table 4), thus the cos 0-dependence of 
the box correction factors is neglected. 

The total cross section for the process e+e - ~ f f  is 
given by 

3 Note that the charge form factor 02(q 2) suffers from an infrared sin- 
gularity at q2 = m 2 due to the opening of the W+3' threshold on the pole 
[65]. The charged current cross section near the W-pole may be expressed 
more conveniently in terms of 02(0), or GFm~v. 

cr I =_ a(e+e - ~ f f )  

487r "'*LL . . . .  LR "'~RR ] 2 

+ ( M;Lf--  m ; f  2+ M/~ f -  M/~ f 2 )  C f A  T} 
x 1 + ~ Q} , (3.2) 

for unpolarized beams, where the last term proportional to 
(~(s)/Tr accounts for the final state QED correction. Here and 
in the following 

M J _ M N ~ , ( s = ( p e _  +pe+)2,t = (pC - _ py)Z) (3.3) 

denote the NC amplitudes of (2.2). The factors Cqv and 
CqA for quarks contain the final state QCD corrections for 
the vector [66] and axial vector current [67, 68] contribu- 
tions, respectively, together with the finite mass corrections 
of the final state fermions [69]: 

Cqv = 3 { ~q (32-/~q2) + a + 1.409 a 2 - 12.767 a 3 

+12r?z2~)(a+8.736a2+45.14643)},(3.4a) 

= 3 {/3~ + a + 1.409 a 2 -- 12.767 a 3 CoA 

- 6  rh2q(V~)s ~,~-a / 11 + 14.286a2 ). 

qza 2 [ f(mt)+ 6 rh2q(VG)s ,(3 + In m} ]]  ' (3.4b) 

with 

a - a(5)(v~) - c~s (v~ )~ ,  
71" 

/3q = i 1 4r~Zq(v~) ' s  

(3.5) 

(3.6) 

where rhq(v/s) denotes the MS running quark mass at 
# = v/s. The masses of the three lightest quarks (u, d, s) 
are neglected, while the bottom and charm quark running 
masses, ~b(vG) and rhc(v~), are obtained from rhb(mb) 
and ~c(m~) by the two-loop renormalization group equa- 
tions: 

~b(V~) ~ ( v / ~ )  

C 
= [a(5)(v~)] ~ [ b(5_~ ) + b] 5)a(5)(v/s) ] \ ,,r b~')J 

[a(5)(mb)J [b~ 5) + b]5)a(5)(mb)J 
(3.7a) 

f~'tc(Zrtb) [a(4)(mb)] ~ [b(o 4) + b] 4)a(4)(mb)] \b(, 4) -,,14~ ] 

rAnc(mc) = [ a(4)(mc) J [ b (4) ~ J  
(3.7b) 

where [70, 71] 

b(nDo - 33 - 2 h i  b(nD-I 153 - 19hi  
6 ' 12 ' 

(3.8a) 
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(nr) 303 -- lOnf 
7~ nf) = 2, 71 - 36 ' (3.8b) 

are the coefficients of the/3-function and the anomalous mass 
dimension in the effective nf-flavor QCD. The running cou- 
pling a(4)(#) of the effective ny -- 4 theory is calculated 
from a given a(S)(mz) = as(mz)~g/rc by solving the three- 
loop QCD renormalization group equation with the two-loop 
matching condition [72]: ]3 
a(4)(mb) = a(5)(mb) + a(5)(mb) , (3.9) 

at # = rob. The relation between the MS quark mass mq(mq) 
and the physical mass mq is given in [73] as 

with Kb ~ 12.4 (nf  = 5) and Kc ~ 13.3 (nf = 4), for bot- 
tom and charm quarks. The following table summarizes the 
running quark masses, fnb(#) and the(p), for a~(mz)Ms - 
0.11, 0.12, 0.13, m b =  4.7 4- 0.2GeV, me = 1.4 4- 0.2GeV 
and m z = 91.187 GeV (the difference mb -- mc is fixed to 
3.3 GeV [74] in evaluating rhc(#)): 

a~(mz)~g 0.11 0.12 0.13 
lm~ (GeV) 1.40-1- 0.20 1.40 + 0.20 1.40 4- 0.20 
the(me) 1.134-0.18 1.034-0.19 0.864-0.20 
rhc(mb) 0 .90~0 .17  0.764-0.17 0.564-0.17 
~c(mz)  0.654-0.13 0.534-0.12 0.374-0.12 
mb (GeV) 4.70 + 0.20 4.70 4- 0.20 4.70 4- 0.20 
rhb(mb) 4.17s 4.064-0.18 3.924-0.18 
~b(mz) 3.054-0.16 2.834-0.15 2.594-0.15 

(3.11) 

The function f (mt)  in the O(a  2) axial part of (3.4b) is given 
by [56, 68]: 

f (mt)  = 2 In mz 37 + 28 { m z ,]2 
mt 12 8-f \ 2 m r /  

-0.5767 ~ +0.7873 , (3.12) 
\ 2 m r /  

The minus sign should be taken in front of f (mt )  in (3.4b) 
for u, c quarks, and the plus sign for d, s, b quarks. These 
formulae are sufficient to calculate the factors CqV and CqA 
as functions of a~(mz) ,  mb and rn~. For charged leptons, 
the corresponding factors are 

Cev - /3e(3 -/3 2) (3.13a) 
2 

Cg A = /3~. ( 3 . 1 3 b )  

with 

/3e : ~/1 4m2 (3.14) 
V 8 

The effect of the charged lepton masses is negligible except 
for the 7- lepton. 

Near the Z-pole, s ~ m 2, the cross sections are sensitive 
to the total Z width, Fz, and hence it should be evaluated 
at two-loop level [41, 44, 75]. The Z width is calculated in 
a similar way as the total cross section case (3.2): 

= O ,  (3.15) 
f 

• 1 + ~ Q}  , (3.16) 

by using the Z ~ f ~ f ,  decay amplitudes 

T(Z -+ f.~) = M~ ez" Jr.. (3.17) 

Here e~ is the normalized Z wave function, J~,~ are the 

currents of (2.1), and the scalar amplitudes M~ can be ex- 
pressed by 

Md 

~f ~$2~ - ~)] (3.18) 

It is straightforward to evaluate the partial and total widths 
from the above formulae,once the three form factors02(m~), 
g2(m2), 6b(m 2) and as(mz) are given. Fig. 3 shows the 

-2 2 predicted -Pz(GeV) in the plane of g2(m2) and 9z(mz) for 
a~(rnz) = 0.11, 0.12, 0.13 and Sb(m~)=0 (a), -0 .01 (b) and 
-0 .02  (c). In the SM, 6b(m~)<--0.003 holds for all mt (see 
Fig. 1), Sb(m 2) = -0.01 ( -0 .02)  for mt ,-~ 175 (270) GeV. 4 
It is clearly seen from the figure that Pz increases with grow- 
ing a ,  and 6b, and that it remains roughly constant when as 
increases by 0.01 and, simultaneously, 6b decreases by about 
0.006. The net effect is a strong anti-correlation between the 
fitted as and 6b values (see Sect. 4.1). 

In the SM, all the form factors are calculable in terms 
of mt and m H. In Table 5 the SM predictions are shown 
for the partial and the total Z widths for several mt and 
m n values, for as(mz) : 0.12, 6,  : 0, S6, " : 0.0055 and 
(rob, me) -= (4.7, 1.4) GeV. The numerical values turn out 
to be larger by about 1/5000 than those quoted in [44]. 
Uncertainties in our predictions are estimated as follows: 
(i) Change of mb and me by 0.2 GeV affects Pb by less 
than 0.2 MeV (<1/2000 of 1"5) and Pc by about 0.03 MeV; 

- ' )  9 (ii) Setting 9z = {lz(m2) and g2 = s_(m-z) in the amplitudes 
(3.18) affects the total width by about 0.2 MeV tbr the mt 
and m H values of Table 5; (iii) If  the imaginary parts in 
the amplitudes (3.18) are also included, the total width in- 
creases by about 0.01 MeV; (iv) QCD higher order effects 

4 The mr-dependences of the electroweak Z boson observables ~tre not 
completely absorbed into the three form factors, 9~(rn~.), s - ( m ~ )  and 

/~b(m2). Mild mr-dependences remain in the two-loop QCD correction 

factor f(mt) of (3.12) and in the ZbLb L vertex function F ib l ' (mz ) (Ta- 
ble 3). When 6b(m z )  is allowed to vary in the fit, these residual mr -  
dependent terms are determined by using the SM mr-dependence of the 
6b(m 2)  form factor (see Fig, 1), which can be inverted approximately 

as mt(GeV) = 2 1 . 7 7 4 - - 1 0 4 6 b ( m z ) -  9.9 -- 31.2 valid in the region 

75 G e V < m t  <400 GeV. We set m t  =75 GeV for 6b(mz) > --0.0036 
and mt =400 GeV for 6b(m 2)  < --0.0405. With this prescription the 

parameter 6b(rn~) covers the full mr-dependences of the vertex correc- 
tions within the SM, while it still allows 6b(m 2)  to measure large new 
physics contributions to the ZbLb L vertex because of the relatively mild 

mr-dependences of the font) and PbL(m2 z )  factors 



572 

Table 5. Partial and total Z widths in MeV units in the minimal SM for m z = 91.197GeV, C~s(raz) = 0.12, 6~ = 0, t~ G = 0.0055, rab = 4.7GeV and 
rac = 1.4GeV. See (3.15)-(3.18) in Sect. 3.1 for details. 

rat (GeV) 
m ~ (GeV) 

~b(raT,) 
F, 

r~=r. 
r. 
F~ 

Fa= F~ 
F~ 
& 

150 150 175 175 200 200 
100 1000 100 1000 100 1000 

0.55516 0 . 5 5 4 0 5  0 . 5 5 6 4 1  0 . 5 5 5 2 3  0 . 5 5 7 8 4  0.55656 
0.23119 0 . 2 3 2 4 5  0.23040 0 . 2 3 1 7 0  0 . 2 2 9 5 2  0.23086 

-0.00789 -0.00792 -0.00994 -0.00999 -0.01226 -0.01230 
166.95 166.61 167.32 166.97 167.75 167.37 
83.81 83.59 84.04 83,80 84.30 84.04 
83.62 83.40 83.85 83,61 84.11 83.85 

299.20 297.94 300.41 299.09 301.76 300.35 
299.14 297.88 300.35 299.03 301.70 300.30 
382.65 381.28 383.77 382.34 385.09 383.56 
376.90 375.51 376.25 374.79 375.55 374.01 

1740.54 1 7 3 3 . 8 7  1744 .55  1 7 37 . 59  1749 .18  1741.78 
FZ 2492.63 2 4 8 4 . 2 7  2498.44 2489.70 2505 .15  2495.82 

(0) {Sb(rn~) = 0 . 0  
% =0.11 a =0 .12  % =0 .13  

qcn 
0.556 ' " " 

0.554 

0.552 

0 . 5 5  
0.225 0.23 0.255 0.225 0.23 0 2 3 5  0 2 2 5  0.23 0.235 

(b) 6b(m~) :--0.01 
~ = 0 . 1 1  a =0.12 % =0 .13  
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9~ (m~) ~ (r,nl) ~2 (m~) 

Fig. 3. The Z total width F z as function of the universal charge form 
factors 9~(ra~) and g2(ra~) for ~b(ra 2) = 0 (a), ~b(m 2) = --0.01 (b) 
and Sb(ra2z ) = -0.02 (c). Three cases of a~(ra z) (0.11,0.12,0.13) are 
shown for each ~b(ra 2) 

4 l / 4 0 0 0 ;  may affect the hadronic widths at the level of a s 
(v) The present  uncertainty in l / & ( m 2 ) ,  6c~ = •  affects 
g2(m~)  by T0 .00026  (2.38b), and hence the Z width by 
about  t 0 . 6 5  MeV (,-~ 1 /3000  of Fz) .  These uncertainties 
are still an order of magni tude  smaller  than the actual experi- 
mental  error of  A ( F z )  = 7 MeV [26] ( A ( F z ) / F z  ,-~ 0.003). 

Note that we adopt the perturbative order c~as [46, 5 4 -  
56] corrections at a8 = % ( m z ) ~ - g  in calculating all the SM 
predictions,  since it al lows the reader to reproduce our results 

straightforwardly. The effects of non-per turbat ive  threshold 
corrections [60-62] may be accounted for by adjust ing the 
effective top-quark mass to produce the same T parameter  
value. 

Once the Z width, F z ,  is determined the formula (3.2) 
gives the total cross section for the process e+e - -~ f f  at 
all energies, up to the cos 0-dependence of  the box form fac- 
tors which can be safely neglected near the Z-pole .  At LEP, 
the on-pole cross sections @ are obtained after subtracting 
the "/-exchange contr ibut ion to the amplitudes.  Because of 
this subtraction, we cannot  s imply compare c r f (m~)  of (3.2) 
with the corresponding published measurement .  In fact, the 
subtraction procedure is not completely model - independent  
and the fol lowing two cases are examined:  (i) In the ampli-  
tudes (2.2) only those terms mul t ip ly ing  the Z propagator 
factor are retained; (ii) From the full ampli tude (2.2) the 
"y-exchange ampli tude Q ~ Q j [ ~ 2 ( m ~ ) -  i~2A.~(mZz)] /s  is 
subtracted. The above two prescriptions differ by contr ibu- 
tions from the "7 vertex corrections and the box corrections, 
but the numerical  predictions for cr ~ a re ' found  to differ by 
at most 0.0003 nb and are thus negl igibly small  compared 
to the actual experimental  error of A(cr ~  =0 .14  nb. The 
pole ampli tudes (i), the term with the Z propagator factor 
in (2.2), are used below when confront ing the theoretical 
predictions with the LEP/SLC experiments.  

It must  be pointed out here that the quanti t ies quoted 
as or} by the LEP electroweak working group [261 are not 
the peak cross sections as obtained above, but that they are 
rather defined by the fol lowing identitiesS: 

127r r ~ F f  (3.19) 
o ~ ( L E P ) ~  rn~  F z  2 

This quantity does not agree with the pole cross section cr~ 
as calculated above, but  agrees rather accurately with the 
modified expression: 

5 We thank T. Mori for pointing out our misunderstanding of ,r ~ af- 
fecting the earlier version of the present work. The notation of the LEP 
electroweak working group is misleading, since [26] does not explicitly 
state that their cr~ value is not the peak cross section. In order to avoid 
any ambiguity it would be better to call this quantity (12 7r/m2z)I'eFh/F~ 
and explain precisely from which experimental quantities it is calculated. 
It is also desirable to publish the total hadronic cross sections at ~ = rag 
without subtracting the ,),-exchange contributions, since the full total cross 
sections can be calculated unambiguously. 
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~7}(LEP) ~ or} - 1 + ~ . (3.20) 

For example, the SM predictions for mt =175 GeV, m H = 
100 GeV, c~s(mz) = 0.12 and c5c~ = 0 give: 

3 - 
f or} o-~- (1  + - ~ )  4 ~r~ (LEP) 

g = e, # 1.995 nb 1.998 nb 1.997 n b .  
h 41.399 nb 41.476 nb 41.463 nb 
b 8.928 nb 8.945 nb 8.942 nb 

(3.21) 

The right-hand side of  (3.20) reproduces the LEP definition 

(3.19) with an accuracy of 1/3000, while the peak cross 
sections @ as obtained from (3.2) with the Z-pole  part of  
the amplitudes are off by about 1/1000 to 1/600. The for- 
mer uncertainty of  about 1/3000 is typically on the order 
of  the higher order corrections, while the latter difference, 
especially the difference between c~ ~ and a~ shows 
up clearly in the fit as a significant shift in the fitted ~b(m 2)  
and as values. 

Figs. 4, 5, 6 show 

a~(LEP) = Z cr}(LEP), (3.22) 
f =u,d,s,c,b 

Re = ~7~ / cre~ = -rh / -re, (3.23) 

RD = ab~ / ~7~ = -rb / -rh, (3.24) 

respectively, in the plane of g2(m~) and ~b(m 2) 
out to be almost completely independent of yzk=2 rm2z),., as 

- 2  2 the predictions at g z ( m z )  = 0.55 (solid lines) and 9z(mz)-2 2 _- 

0.57 (dashed lines) are almost degenerate. Fig. 4 shows that 
ao is sensitive to both c~= and 5b, but an increase of  c ~ ( m z )  
by 0.01 can be compensated by a simultaneous decrease of 
5b by about 0.006, just as for Fz.  Fig. 5 shows that the 
ratio R~ is only sensitive to a linear combination of g2(m~) 
and ~_b(m2z). At fixed gZ(m~), the correlated change of c~= 
and 6b leaving Fz  and ~ unchanged, keeps also the Re 
value roughly unchanged. The reason for this behaviour is 
in the fact that the C~s-dependences of  the three Z-resonance 
observables, -rz, a ~ and Re, are solely contained in just the 
quantity -rh which depends on c~s and &b approximately in 
the combination 

~b(m2z) + 0.60~s(mz).  (3.25) 

Hence, in order to get a= independently of ~b, the mea- 
surement sensitive to another combination is required. For 
instance, Fig. 6 shows that the ratio -Rb does measure ~b(m 2)  
rather independently of  a= and g2(m2). An accurate mea- 
surement of Rb offers the key to disentangle as  and ~b (see 
also Sect. 4.1). 

The asymmetries on the Z-pole  provide the measurement 
of  the universal parameter g2(m~) almost independently of 
9z(mz)-2 2 and ~b(m2z) and with little or no dependence on the 
QCD coupling as-  

The forward-backward (FB) asymmetry is given by 

AO,e 3 M[er2+ M ~ 2 _  M [ e 2 _  M ~ 2  

F= =a 2+ 2+ 2+ 

for leptons, and 

Ao,q 3 
FB = 4  

X 

(3.26) 

eq eq Meq+ eq 2 eq eq eq ]vleq 
r Mis + nCM~n +"q 

(3.27) 

for quarks (q = b, c). Here, the physical heavy quark masses 

used in the factor/3q = V / 1 -  4m~/m2z . The QCD m q  a r e  
V 

corrections for the FB asymmetries [76] have not been 
included in (3.27). The reported asymmetries from LEP 

0 , b  0 , c  AFB (LEP) and AFB (LEP) have been corrected for these ef- 
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fects assuming a linear as-dependence and as = 0.12. There- 
fore, we estimate the LEP asymmetries for a given value o f  
as(mz)  by using the following simple formula: 

1 +kA as 
AO~(LEP) = ~AO'q.FB 7r (3.28) 

1 +kA 0"12 
71" 

with kA = 0.75 [26]. The uncertainty in the coefficient 
AkA = +0.25 affects the above as dependence by less than 
1/1000 in the range 0.11 < as(mz)  < 0.13. The QCD 
correction depends on details of the final charm and bottom 
quark tagging procedure, and hence it is desirable to have 
the as-dependence of the corrected asymmetry value from 
each experiment. 

The r polarization asymmetry is defined by the ratio of 
the left- and right-handed r pair cross sections: 

Pr - crrR -- arL (3.29) 
G r t t +  CrrL 

By neglecting the r mass one finds 

(3.30) 

Likewise, the left-right beam polarization asymmetry is 
defined by 

f (3.31) 
ALR = E (0"~ +cr~) 

Y 

where the cross sections for completely polarized beam are 
expressed in terms of the helicity amplitudes by 

a~ -= cr(e L e~ ~ I f )  

= + ,* } 
24re M~IL+ LR 2 M ~ s  2 

3 - 
x (1 + ~ Q ~ - ~ )  , (3.32a) 

_ s { + ZCsv + M~f  M , I  z C y A } _  
24rr M~s M~;  ~ R-~ 2 

+ 3  

The cross section for the electron beam polarization Pe is 
then 

1 P~ I+P~ 
cr/,(P~)- ~ or} ~ + ~ - ~ r f .  (3.33) 

We comment here that the factorization identities 

ALR = -P~-, (3.34) 

A~ = ~ (P~)~, (3.35) 

do not hold exactly even in our Z-pole approximation to the 
amplitudes (2.2), since they do not factorize into Z produc- 
tion and Z decay amplitudes at s = m~. We find for instance 

for the SM predictions at mt = 175 GeV, m H = 100 GeV, 
as(m z)  = 0.12 and ~ = 0: 

g2(mZz) 0.23040 
ALR 0.14801 
- P r  0.14802 
A~ 0.01667 

�88 2 i0.01643 

(3.36) 

The identity (3.34) holds rather accurately, but the iden- 
tity (3.35) receives a correction of 1.4%. This is mainly 
because of the subtle cancellation among the squared ampli- 
tudes of (3.26) rendering the asymmetry AeB sensitive to our 
detailed treatment of the order a 2 effects such as the treat- 
ment of the imaginary part and the choice of the couplings 
~ and g2. 

In Fig. 7, all asymmetry parameters on the Z-pole are 
plotted as functions of g2(m~). For each asymmetry, the 
contributions from both the 7-pole and Z-pole terms are ex- 
amined using the following helicity amplitudes: (i) The full 
helicity amplitudes (2.2) including the 3' and Z exchange 
as well as the box contributions. (ii) The helicity ampli- 
tudes obtained from the full amplitudes (2.2) by subtracting 
the real and imaginary parts of the "7 exchange contribution 
Q~Qj [~2(m2)-  i~2Av.r(m2)]/s. (iii) The helicity ampli- 
tude retaining only the Z-pole term, the term multiplying the 
Z propagator factor in (2.2). (iv) The helicity amplitude in 
the improved Born approximation (IBA) of the Z-exchange 
amplitudes: 

g2(m 2) [I3~. - Q~ gZ(m~)] [ I 3 f , -  QI g2(maz)] 

s - m 2 + is ~ -  
m Z 

(3.37) 

on the Z-pole s = m 2. In Fig. 7, the predictions of (i) 
are denoted by 'Full', (ii) by 'Full - 7', (iii) by 'Z only', 
and (iv) by 'IBA'. The prescriptions (ii) and (iii) give al- 
most identical predictions, and we adopt (iii) in the fit. It 
is worth noting that the subtraction of the 3'-exchange am- 
plitudes affects the asymmetry AeB significantly, but not the 
other asymmetries. Note particularly that the IBA gives con- 
sistently larger asymmetries by as much as 10% for AeFB, and 
by about 5% for the rest. Hence, the 'process-dependent' ef- 
fective sin 20w factor determined from each asymmetry by 
making use of the IBA-like formula (3.37) differs signifi- 
cantly from the process-independent universal form factor 
g2(m~). We find approximately, 

sin 2 0 e~fra~ g2(m2z) + 0.0009, (3.38a) 
W t~'aFB ] ~ 

s in  2 ,0efft-A 0 ,~ -2  2 ~WW~CRJ ~ s (m z) + 0.0010, (3.38b) 

sin 2 geff/a~ gZ(m2) + 0.0010, (3.38c) 
~WkZ~-FB ] 

�9 2 eft 0,c -2  2 sm Ow(AFn) ~ s (m z) + 0.0009. (3.38d) 

A related study is found in [77]. 
=2 rm2, g2(m2 ) and In the SM, all the form factors 9z~ z), 

Sb(m2z) are calculable as functions of mt and m H ( s ee  ap- 
pendix C for details). The main uncertainty in these calcula- 
tions appears in the parameter ~ (2.31) which parametrizes 
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Fig. 7. The asymmetries on the Z-pole as functions of the effective charge g2(m2): the leptonic forward-backward asymmetry ~'FBA0't (a), the left-right beam 

polarization asymmetry AOg (b), the b-quark forward-backward asymmetry A ~ FB (C), the forward-backward asymmetry of the c-quark A ~ FB (d). The solid 
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the uncertainty in the hadronic vacuum polarization contribu- 
tion to 1/&(m2). Hence, all Z parameters can be predicted 
accurately in the SM as functions of four parameters: mr, 
m H ,  Ol s and 5~. 

Figs. 8 shows the mr-dependence of all Z parameters 
for three m H values 60 GeV (dashed lines), 300 GeV (solid 
lines) and 1000 GeV (dash-dotted lines), at as (mz)  = O. 11, 
0.12, 0.13 and 6~ = 0 ( l /&(m~)  = 128.72). Shown by 
horizontal lines are the experimental data from LEP [26] 
and SLC [31] (see sections 4 and 6). The mr-dependence 
is sizeable for all the observables. In Rb and a ~ the mr- 
dependence comes mainly from the Zbcb L form factor 
~b(m~), and hence these parameters have little sensitivity 
to m H (see Fig. 1). The mr-dependences of all asymmetry 
parameters including P~ come from the form factor g2(m}). 
Re receives mr-dependences from both 6b(m~) and g2(m~). 
Finally, the total Z width is the only quantity sensitive to 
the form factor -2 2 9z (mz ) .  In conclusion, the mr-dependence 
of Fz is a combined effect of all three form factors 9z(mz),-2 2 
gZ(m~) and ~b(Trl,2Z). 

Likewise, Fig. 9 shows the as dependences of the 
hadronic Z parameters for the three mt values 100 GeV 

(dashed lines), 150 GeV (solid lines) and 200 GeV (dash- 
dotted lines), all at m H -- 100 GeV and ~, = 0. It can be 

seen that the ratio Rb and the asymmetries A~163 ~ and A~ c are 
almost independent of as. Fz and Re grow linearly with cts 
because of the final state QCD correction factor (3.4). cr~ de- 
creases with increasing as, since it is proportional to the fac- 
tor Fh/F~. The ratio Re exhibits the strongest dependence to 
as. As emphasized above, however, the C~s-dependences of 
all Z observables are approximately proportional to a com- 
mon factor Sb(m2z)+O.6as(mz), and hence either an accurate 
determination of Sb(m 2) (via Rb) or else the assumption of 
SM dominance to the form factor Sb(m~) is crucial for the 
extraction of as (mz)  from these experiments. 

3.2 Low energy neutral current experiments 

The data of four types of low energy neutral current ex- 
periments are analysed: neutrino-nucleon scattering (ul,~t), 
neutrino-electron scattering (u~,-e), atomic parity violation 
(APV), and polarized electron-deuteron scattering (e-D). 
Theoretical predictions are given for all model-independent 
parameters [24, 78, 79] characterizing the electroweak low 
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energy neutral current experiments. They are the effective 
u~,-q coupling factors [78] 

g ~  2 (3.39) , g R ,  6 2  6 2  

for the uu- q scattering experiments, the effective neutral 
current parameters [79] 

2 (3.40) Pue , Sue 

for the u•-e scattering experiments, the weak charge of nu- 
clei [80] 

Q w ( A ,  Z) ,  (3.41) 

for parity violation in atoms, and the effective neutral current 
couplings [24] 

2 C l u  - -  C l d  , 2C2u - C2d , (3.42) 

for the e -D  polarization asymmetry. Definitions of these 
model-independent parameters are given below and re-ex- 
pressed in terms of the helicity amplitudes of (2.2). 

In this subsection terms of order a �9 (q2/m~v) are ne- 
glected, while keeping terms of order q2/m~v and c~. 

2 2 (m-y/q ). The generic amplitude for the process i j  --~ ij  
follows then from (2.2): 

M~NC = 1 q-5 { (Qi Oj)  [~2(q2) + ~2 F~(q'2) + ~2 Dj (q2)] 

" ^2 - - i  2 +(Qi/3j )  ~2 ~ ( q 2 )  + (Qj 13i) e _F2( q )} 

1 

- ( h ~  - Q~2) % ~ [~(q~) _ ~] 

+ B~C(o,o)+o(~2 q~-). 
\ m W 

(3.43) 

All electroweak observables of  the low energy neutral cur- 
rent sector are calculated by using the above approximation. 
Contributions from the neglected terms are completely neg- 
ligible. The numerical predictions for all observables (3.39)- 
(3.42) depend on just the two universal charge form factors 
g2(0) and .02(0), since the running of the charge form factors 
1/&(q 2) -- 1/c~ and g2(qZ)/&(q2) - g2(0)/c~ at low energies 
Iq21 << m ~  are governed completely by known physics only 
and are hence accurately calculable (see appendix B). Al- 
though the expression (3.43) with the MS coupling normal- 
ization (2.19) is used in all numerical calculations presented 
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below, we often quote below a slightly more compact ex- 
pression that is obtained from (3.43) by dropping the terms 
proportional to [g2(q2) _ ~2] and replacing 32 by g2(q2) in 
the term multiplying the Z propagator factor. This is a valid 
approximation to (3.43) differing only by terms of order 
02[,~2(q2) __ ~212. 

3.2.1 Neutral currents in u~, - q scattering. The neutral cur- 
rent data from the v-q  scattering experiments can be conve- 
niently parametrized by the four model-independent param- 
eters [78] 

92 = 2 2 u~ ~- d~ ,  (3.44a) 
2 2 62 _ uc ~ _ d~,  (3.44b) 

for c~ = L or R. The effective chiral couplings q~(= 
UL, d r ,  ~*R, dR) can be directly expressed in terms of the 
helicity amplitudes of (3.43) by 

mLut q 
( q = % d ; c~ = L, R) ,  (3.45) 

q ~ -  2.v/~G .... 

M N c  The amplitudes (3.43) can with the notation M2~ - i , j~- 
then be written in compact form: 

ML•, 
q 1 @2 -F~(t) 

+-21 [[3q~ - Qqg2(t)] ~Oez(O) + BC;q(o, O) , (3.46) 

and the charged current factor is approximated by 

[1 + 6~.~.] 1/2 
Gc.c. = GF (-t)c.c. (3.47) 

l + - -  m~v 
The QED correction factor 6 .... is accounted for (following 
SMin and Marciano [81]) by, 

6cc = ~ [ I n - m ~ + 2 1  (3.48a) 
" 7r 2 ( - t )  .... 

0.017 for {-t)c.c. = 20GeV 2. (3.48b) 

Note that the leading logarithm approach of [36] gives 

6o.~. = ~ In r n ~  (3.49a) 

0.013 for (-t)c.~. = 20GeV e , (3.49b) 

for the above correction factor. In our numerical calculation 
we adopt the factor (3.48b). The u u charge radius factor 

F 2 ( t ) / t  and the box form factors B2~q(0, 0) in the amplitude 
(3.46) can easily be read off from the generic expressions in 
appendix A: 

T~(t) 1 0 2 - -  

with 

2 
J w ( t ;  m , )  = 4F3(t; m u, m u) - ~ In m~v - 1 

2 -~ 
-- In - -  

3 

from (A.27b) and 

04 
B 'L u (0 ,  0)  - 

64  71"2 T/Z~V 

0 )  = 

Bz~d(O, O) - 

BL ~'*~m 0)= 

0 4 

16 rc2m 2 

(3.50) 

304  1 3 2 
+ 6 4 7 r 2 m ~ ( 2  - g2) , (3.52a) 

304  ( 2~2")2 
64rc2m~ \ 3 / , (3.52b) 

( 1 lg2~2 
30} 3 / 

+ 647r2m~ + , (3.52c) 

3~}  ( ! ~ 2 ~  2 ( 3 . 5 2 d )  
64  71-2Ttz 2 \ 3 ) ' 

from (A.35). These expressions are sufficient to evaluate 
the helicity amplitudes (3.46) as functions of  g2(0) and 
02(0), for the MS coupling normalization of (2.19). We set 
m w -- 80.24 GeV and m z = 91.187 GeV in all numerical 
calculations. 

At (-t)n.c. = 20 GeV 2, 

@2 
16rr 2 7 w ( t  = - 2 0  GeV2; m~,) .-~ 0.0037, (3.53) 

and the qc/s are approximated as 

(3.51 a) 

19 + O m• (3.51b) 
9 ' t ' 
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+0.0031 (q~ = ur) 
[ ] +0'0026 (q~ = uR) 

q~ ~ 0.9923 ~ I3q, - Qq  g2(t) + --0.0074 (q~ = dz) ' 

-0.0012 (q,~ = dR) 

(3.54) 

for the MS coupling normalization of (2.19). Here the uni- 
versal 15 parameter is defined by 

O2(0) 1 03(0) 
- ~ - - .  (3.55) 

~ 4 v ~  GF m 2 1 + 6~ -- a T  0.54864 

The relation between the form factor 02(0) and the T pa- 
rameter is seen in (2.36a). The running of g2(t) is estimated 
as 

&(t = - 2 0 G e V  2)[~2(0) 0.0097] gz(t = - 2 0  GeV 2) ~ 

1.0295 g2(0) - 0.0100. (3.56) 

The approximations (3.54)-(3.56) are found to give excel- 
lent numerical predictions for all q~ as functions of the two 
charge form factors, g2(0) and 02(0). 

The major effects of radiative corrections can be made 
transparent by parametrizing the model-independent cou- 
pling factors of (3.45) in terms of the effective couplings 

2 of [82]: Puq and Stj q 

(, 2<) 
ltL = Puq 2 -- 3 + A ~  , (3.57a) 

1 2 dL = p u q ( - - l  +-~Suq) + Z~d, , (3.57b) 

UR = puq( - -3S2q)  + A~,, , (3.57c) 

d R : p , q (  ~s~q) +Bd,~. (3.576) 

The extra terms Aq, are fixed such that they do not inter- 
fere with the leading terms in the most accurately measured 
quantities, that is, 92 and 92 n. One finds 

0 3  % + ) (3586) 
. =  8 7 r 2 \  3 -  , 

0 2  ( e 2  a 2 
AdL = 8 rc 2 \ -- ~ ) al3L , (3.58b) 

Zld R = 2 ~ , ~  03 g4 
- 87r 2 5 ' (3.58c) 

with 

1 ( 9  3g  2 8 ) 
a~ c = - ~ - ~  8 - - 2  + ~ g 4  . (3.59) 

The radiatively corrected amplitudes can then be expressed 
approximately in terms of the effective strengths 'Puq' of the 
neutral current and the effective weak mixing factor ,su q2 , in 
the uu- q scattering process. In terms of the two universal 
charge form factors 02(0) and g2(t) they are given by 

- 0 3  
Puq -- [1 + c.c,] 1/2 1 + ~ + ~ 2  a Z '  (3.60a) 

rrz Z 
~2 __ ~2 

S~q(t) = g2(t)+ l - -~2Jw(t ;  m~) 87r2~2 a-~. (3.60b) 

The box factors in (3.60) are obtained from (3.52): 

~2 g2 ( 5  15~2 1^ 4 I4 6"~ 
~-~2az - 16-~fi 2 \ 2 - ~ -  - - ~ s  + ~ - ~ )  

0.0074, (3.61a) 

87r2--~ 2 ~23' - 16~-'2~ 4 2 - 20  ~4 -k- ~6 

0.0018, (3.61b) 

where 2 . 2 ~2 m w / m  z is replaced by in order to reproduce the 
expressions in [82]. With the estimates (3.53) and (3.56), we 
find 

p~q ~ 0.9923 t5 + 0.0074, (3.62a) 

Svq2 ~ 1.0295 g2(0) - 0.0155 . (3.62b) 

These equations are useful in understanding qualitatively the 
effect of the u~,-q scattering experiments off isoscalar tar- 
gets, but we find that they give slightly inaccurate approxi- 
mations to the quantities q~ (3.45). 

In the following table, we compare the numerical predic- 
tions for the basic quantities q,~ and the model-independent 
parameters of (3.44) by using the exact matrix elements 
(3.45) and by using the approximation (3.57), for 0}(0) = 
0.5492 and g2(-20 GeV 2) = 0.2359 (the SM predictions for 
m t =  175 GeV and m H = 100 GeV): 

(3.45) (3.57) 
exact approx. 

u c 0.3435 0.3343 
u R -0.1537 -0.1537 
d c -0.4260 -0.4336 
d e 0.0769 0.0769 
9~ 0.2995 0.2998 
9~ 0.0295 0.0295 
~ -0.0634 -0.0763 
6~ 0.0177 0.0177 

(3.63) 

It is clearly seen that the formulae (3.57), although reproduc- 
ing u L and d L rather poorly, give, as expected, an excellent 
approximation for the most precisely measured parameter 
92. They give, however, a rather poor approximation for the 
parameter 62 being off by 20%, which is unsatisfactory in 
view of the experimental uncertainty (see Sect. 4.2.1). 

Fig. 10 illustrates the relation between the model-indepen- 
dent parameters (9~, 9~) and the two universal form factors 
(g2(0), .03(0)). The present data [78] (see Sect. 4) constrain 
the 2-dimensional parameter space to the ellipse drawn in 
the same figure. The dashed line is the/5 = 1 (6 G - a T  = 0) 
curve: .03(0) = 4v/2GFm 2 = 0.5486. The thinness of the 
ellipse in the (92, 92) plane implies a strong correlation be- 
tween g2(0) and 02(0). It is worth noting that the effective 
charge g2(0) derived from uu- q scattering experiments at 
q2 ~ - 2 0  GeV 2 is larger than the process-dependent effec- 

2 by as much as 0.01" see (3.62b). tive mixing factor Svq 

3.2.2 Neutral currents in uu - e scattering. The total cross 
section for the processes u~e -+ u~e and #ue -~ D~e in 
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Fig. 10. Relation between the model-independent parameters of the u~,-q 
scattering experiments (92, 9 2)  and the two universal form factors (82(0), 
0~ (0)). The 1-o- contour of the present data [78] is also shown: see (4.15) in 
Sect. 4.2.1. The/5 = 1 line corresponds to ~2(0) = 4 ~ GF  m 2 = 0.5486. 

terms of the helicity amplitudes ML~ e and M2~ e are given 
by 

true_ fn'eEu LI  d z {  aLu~e 2 + ( 1 _  z)2 M2~e 2 } 
4"lr 

(3.64a) 

~~ - m~t~ /o" dz {(,-z) 2 Ms e 2+ ~i~jke 2 } 
4rr 

(3.64b) 

where the variable z is related to the momentum transfer t 
by 

(S -- m 2 )  2 
z = - - t / t m a x ,  /:max - ~ 2meE~, ( 3 . 6 5 )  

s 

with the approximation s -= (p~ +pe)  2 ~ 2meE~. The am- 
plitudes in (3.64) are obtained from (3.43) 

'I; 1 Ms e = - l ~  2y2( t )  + - +s2(t)  - - + B ; L C 0 , 0 ) ,  

(3.66a) 

1 _2. . .  g~(O)  u,.e Ms e = - - ~  2 ~ ( t )  + =s t t ) ~  (3.66b) 
2 t 2 t - m~ + B~R (0, 0), 

where the ul, charge radius factor-F2(t) / t  is given by (3.5 l) 

and the box form factors B[~ e, B['~ e by 

04 30~ 1 2 
B~e(o ,o )  - 167r2rn---------~w + 16rr2m----~z ( ~ ) 2 ( - ~  + g 2) ,(3.67a) 

u,,e 30~ /' 1 "~ 2/^2"~ 2 
B [ R ( 0 , 0  ) = 16rr2m 2 ~,~) ks ) , (3.67b) 

see (A.35). It is then straightforward to express the cross 
sections (3.64) in terms of the universal charge form factors 
82(0) and 02(0). Our results (3.66) and (3.67) agree with 
[831. 

As in the case of the uu-q scattering analysis it is useful 
to introduce the process-dependent effective couplings Pue 
and S~e2 [24]: 

[' ] M[,~'L e = 2 v ~ G F  Pue -~ -- S2,e(t) , (3.68a) 

Ms = 2 v ~  G F p~e [-- S2e ( t ) ] . (3.68b) 

From (3.66) and (3.68) one finds 

-- 7~ 2 + 6~ 4 , ( 3 . 6 9 a )  

g,2 _ 
s2~(t) = ge(t) + l--~7~2 Jw( t ;  m , )  

0282[  1 9 1 6 7 r  2 4 1 7 8 2 + 6 8 4 ]  , (3.69b) 

2 2 by neglecting higher order terms and by setting m w / m  z = 
&2. Here /3 and 7 w ( t ; m u )  are given by (3.55) and (3.51), 
respectively. The cross sections can then be expressed in 
terms of the model-independent parameters P,e and s,, e2 by 

a ve 2me  G 2 2 
__  -- _ _  iOMe F--, u rr 

/o 1 ldz{ [2  S 2 e ( t ) ] 2 +  (1 z)  2 [82e(t)] 2 } ,  (3 .70a)  

a ~  2me  G 2 2 
- -  -- - -  Pve Eu rr 

~01 { 1 2 2 2 2 x dz ( 1 -  z) 2 [2 - s,,~(t)] + [s,,~(t)] } , (3 .70b)  

where t = - 2  me E , z  (3.65). For E~ = 25.7 GeV (CHARM- 
II [84]), we find 

2 (3.71) tma x = 2 me E,, ,-~ 2 m u . 

In this momentum region the running of ~2(t) is negligible: 

1.0072 g2(0) - 0.0018 (t = - m  2) (3.72) 
g2(t) = 1.008082(0) - 0.0020 (t - 2m~, )  " 

Also the u-charge radius factor 7w(t ;m~, )  has little f,- 
dependence: 

~2 ~ -0.0061 (t = O) 
16---7 Jw( t ;m~, )  = [ -0 .0060  (t = - m ~ )  . (3.73) 

-0 .0059  (t = - 2  m2,) 

Thus, the t-dependence of the effective mixing factor s],e(~,) 
(3.69b) is negligibly small. From (3.69), (3.72) and (3.73) 
follows 

P,,e "~ /3 + 0.0121, (3.74a) 
2 2 s2~(0) ~ s,,e(-m~, ) ~ 1.007282(0) - 0.0103. (3.74b) 

In the limit of negligible t-dependence of sT, e,~ (3.70) be- 
comes: 

flue 27 ,~eG~.  9 [ (  ' .~ ) 2  I / 2 ,~21 
E,7 - ~ PT,~ ~ - sT,, + -3 k s ' e )  ] '  (3.75a) 

E~, - ~ P,,e ~ ( ~ - S , , e ) + ( s  . . . .  (3.75b) 

with 2 2 s,, e = s~e(0 ). This is the form entering the analysis 
of [79]: they combined the three experiments [84] and ex- 
pressed the result in terms of the model-independent pa- 
rameters P*,e and 2 Sue (3.40). In our analysis the above 
parametrization (3.75) is used to reproduce the combined 
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Fig. ll. Relation between the v(O)-e scattering cross sections per neu- 
trino energy (o(ue)/E,., o-(Oe)/E.) and the two universal parameters 
(g2(0), 0~(0)). The l-or contour shows the experimental constraint: see 
(4.19) [84] and (4.20) in Sect. 4.2.2. The ~ = 1 line corresponds to 
02(0) = 4 V/2 G F m~ = 0.5486. 

measured cross sections from the fit [79] in terms of p.e and 
2 . These cross sections are then analysed in our framework St,,, e 

by using the defining equation (3.64). 
Fig. 11 illustrates the constraint by the data similarly 

to Fig. 10. The approximation (3.74) is found to reproduce 
our results accurately. The dashed line denotes the curve 

= 1 (~a - aT  = 0). The ratio of the rue and P~,e cross 
sections is measured accurately, and hence the form factor 
g2(0) is constrained fairly independently of 92(0) from the 
uu-e scattering experiments. 

3.2.3 Neutral currents in e-q interactions. The effective La- 
grangian of the parity-violating e-q  interaction [24] 

_ GF [Clq 
q 

+C2q ~e"y/xl/Je - ~q"[#75~)q] , (3.76) 

can be rewritten in terms of left- and right-handed currents 
as follows: 

_ GFv/~ [Clq c,,v J )(4 + 
q 

+C2q ( J R  + J ~ ) .  ( 4  -- J q ) ]  . 

(3.77) 

The effective couplings C~q, C2q expressed in terms of the 
helicity amplitudes read: 

(7(7) Clq : CiMqq +Via 

_ 1 [M/q  eq eq eq] ~ ( ' r ) ( 3 . 7 8 a )  
2 V ~ G F  - M a c  + M~R - M a n  + =J~ ' 

(7,("/) C2q -~ C2 M + ~2q 

1 -- M ;  q -t- M~qL M~ q "F ~2q 2V'2GF -- . (3.78b) 

(7) (7) Here Clq and C~q denote the sum of the contributions from 
the photonic correction to the axial vector Zee vertex and 
the Z 7 box correction [85], which are not included in our 
helicity amplitudes (3.43). They are found in [85, 86]: 

(4x/2CF m2z) ~('~) ~ l q  

~2q 

- 167r 2 {-213qQZq (1 - 4 ~2) 
Tr~ 2 

+6 Qq (I3q - 2 Qq ~2) (In ~ 5  + ~ ) } .  (3.79b) 
3 

M 2 ~ ( - t )  ~ 1.5 GeV 2 is used in the analysis of the SLAC 
eD scattering experiments [87]. By inserting (3.43) into C1Mq 

and G'2Mqq defined above, one finds 

~2 

+ .02(o) 1 
t - -  7}2~ (---2 ) (I3q -- 2QqS2(t)) 

+Bs - B ~  + Bs - B ~ ,  (3.80a) 

M ~2 [(_Qq)2( i~q, ._F~, , )_213qr~, . ] ( t )  2v'2GF " C~q = T 

+ 02(0) 1 + 
+Bs - Bs + / ~  - B ~ .  (3.80b) 

By adopting the SM predictions for the vertex and box form 
factors of appendix A, the model-independent parameters 
Ciq of the low energy effective Lagrangian (3.76) are readily 
evaluated as functions of g2(t) and .02(0). More explicitly, 
one finds 

03(0) [ I3q - 2Qqa2(t) c, M _ 1:71   ] 

+~]2~2Qq [ ( 1 -  4,S2)JZ + 2(Jw - J w ) ]  
1671- 2 

+0~ {3 aI3q(I3q - 2 Q q a 2 ) [ 1  +(1 - -  4,S2) 2 ] 

+2~2(q = u) - -~(q = d) , (3.81a) 

M 1 - - - - t ~  2 ~ } ( 0 )  492(t) ] 4x/2GFm2 C~q - 1 3 q  [1 -- 

^2 ^2 
+9Z  e- [2 /3q  ~q(213q -- 4Qq .s2)J Z 

16rr 2 

+2 Qq Jw - 4 I3q 7 w ] 

+ 0 4 { 3 .~2)2 ~ ( l _ 4 a 2 ) [ ( [ 3 q _ Q q  + (Qq g2)2] 

} +2~2(q = u) - T ( q  = d) , (3.81b) 

where the factors Jz  = Jz(t; me), Jw =- Jw(t; m,,,,) and 
J w  - 7w(t;m~,,) are given in appendix A. The sum of 
(3.81) and (3.79) agrees with [85]. 
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Fig. 12. Relation between the model-independent parameters (2Ctu  - Cld ,  
2C2u - C'~a) [24] of the e - D  polarization asymmetry experiments and the 
two universal form factors (g2(0), 0~(0)). The 1-o- contour of the present 
data [87] is also shown: see (4.33) in Sect. 4.2.4. The ,6 = 1 line corresponds 
to 0~(0)- = 4 V~GF rn~,~ = 0.5486. 

At t = - 1.5 GeV 2, g2(t) is calculated from g2(0) as 

g2(t) ~ 1.0183 g2(0) - 0.0058, (3.82) 

and the numerical values for Jz,  Jw and J w  are Jz  
-6 .97 ,  J w ~ - 6 . 8 0 ,  J w ~ - 7 . 6 9 .  The non-universal (vertex 
and box) corrections for Ciq are estimated numerically as 

M Clu ~-~ [ C l u ] I B A  + 0 . 0 0 6 1  + 0.0007, (3.83a) 
M Cld ~ [ Cld ]IBA --  0 . 0 0 1  1 + 0.0009, (3.83b) 

C2u ~ [C M] mA + 0.0082 + 0.0048, (3.83C) 

C2d ~ [cM],BA 0.0070+0.0043,  (3.83d) 

where the second terms in the r.h.s, denote the electroweak 
vertex/box corrections for C M, and the last terms denote 

the external photonic corrections, C ~  ). The improved Born 

expressions [C~]IBA'S can be expressed by 

[ClMqq ] _ /5 ['3q - 2  Qq gz(t)] (3.84a) 
IBA 1 - t/m2z 

[C2Mq ] _ /5 [ 1 -  4 g2(t)] (3.84b) 
mA 1 - t/mZz I3q 

with r _--.0~(0)/(4x/~ GF m~)  as in (3.55). 
In the polarized eD experiment only the combinations 

2Clu - Cld and 2C2u - C2d [24] are well measured. A 
model-independent determination of these two combinations 
is performed in Sect. 4. Fig. 12 shows the relation between 
the model-independent parameters (2C1~ - CI d, 2C2~ - C2d) 
and the two universal parameters (g2(0), ~ ( 0 ) ) ,  together 
with the l-or contour of the result of the analysis obtained in 
Sect. 4 from the experimental data [87]. Note that the vertex 
and box corrections (especially the W W  box contributions) 
in (3.80) are important in these combinations yielding: 

M 2Cl~ - Cjd ,-~ [2C1M - Cld ]IBA + 0.0134 + 0.0005, (3.85a) 

2C2u - C2d ~ [ 2 C ~  - C2~]mA + 0.0234 + 0.0052. (3.85b) 

As before, the second terms denote the vertex/box correc- 
tions in C ~ ,  while the last terms denote contributions from 
C~q. The majority o f  the non-universal contributions above 
come from the W W  box diagram. Since the typical contribu- 
tion of the improved Born approximation to these factors are 

M M M M 
C2d ]IBA ~ [2Cl~ - C I d ] I B A  ~ 0.7089 and [2C2u - 0.0751 

for 02(0) = 0.5492 and g2(-1.5GeV2) = 0.2375 (the SM 
predictions for mt  = 175 GeV and m H = 100 GeV), the 
non-propagator correction terms are appreciable in these ob- 
servables. 

In the case of atomic parity violation the momentum 
transfer is so small that the matrix elements for nucleons 
should be calculated. Marciano and Sirlin [85] introduced 
effective couplings Clp and Cln for nucleons, which may 
be separated as in (3.78) 

. ,~(7) (3.86a) Clp = vIM -r tJlp , 

' '~(~) (3.86b) Cln  = vIM -r tJln . 

Here Cl M and C1M are the contributions from the neutral 
current amplitudes (3.43), which can be expressed in terms 
of C1M and C ~  by 

C, M = 2 C, M + C M , (3.87a) 

C l  M = v I M  + 2 C M , (3.87b) 

or more explicitly, 

(4x/~GF rn~ ) C1M : 05(0)[  1 _ 292(0) ] 

^2 ^2 
+ 97ze- { ( 1 - 4 ~ 2 ) J z  + 2 ( J w  - - f f W ) }  

167r 2 
^4 7 } 

+ 9z ~ 6 ( 1  - ~_Q~2)[1+(1 - 4ga)2]+ ~ 2  (3.88a) [ 

+167r2[ 1 6 ~ 4  ~ 9 ( 1 _ ~ _ 6  2 },  ) [1 +(1 - 4~2)2] +~ 2 (3.88b) 

with 

2 2 1 
Jz  = ~ In me (3.89a) 

rn~ 9 ' 

8 (3.89b) Jw - -Jw 9 ' 

which can be obtained from (A.27) by taking the q2 _~ 0 
limit, c7('~) and c7(7) ~lp ~ ln  are the contributions from the photonic 
correction to the axial vector Zee vertex and the Z3' box 
correction [85]: 

4-,/SGF ~ l p  

03 F - 167r 2 t , - ( 1 - 4 9 2 ) 2 + 5 ( 1 - 4 s 2 )  K + 4  

(3.90a) 

4 v/2G F rnzz ~(~) 

-167r2  {--(1 -- 4g?)2 + 4 (1 -- 4g;) [K + (~1)~] } .  (3.90b) 

The last terms on the right-hand sides of (3.90) denote the 
7Z-box corrections which are sensitive to the nucleon struc- 
ture. The constants K ,  (~1)~ and (~1)~ have been estimated 
in [85] to be 

K = 9.6 4- 1, (~)~ = 2.55, (~)3 = 1.74. (3.91) 
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By estimating numerically the vertex/box corrections in 
(3.88) and (3.90), we find 

[ ] +0 .0107+0 .0027 ,  (3.92a) Cap ~ ClMp IBA 

[ ] + 0.0038 + 0.0023, (3.92b) Cln ~ OlMn IBA 

where the second terms denote the weak vertex/box correc- 
tions for C ~  and Cl M, and the last terms denote the photonic 

corrections, rT('Y) and rT('r) The improved Born approxima- ~lp ~ln  " 
M M tions [Ctp ]InA and [C ln]InA are given simply by 

[ <  [1  1 mA =/5 ~ -- 292(0) , (3.93a) 

[c1Mn ] [ ~ ] '  mA = P -- (3.93b) 

M Their typical numerical values are found to be [Clp]m A 
M 0.0223 and [CIn]IBA ~ --0.5005, for 92(0) = 0.5492 and 

g2(0) = 0.2389 (the SM predictions for mt= 175 GeV and 
m H = 100 GeV). Note that the non-universal corrections are 
important especially for C~p, where the effect comes mainly 
from the W W  box contribution, or the term with the factor 
~C7 ^2 in (3.88a). 

The weak charge Qw(A, Z) of an atom is given in terms 
of Clp an C in by 

Qw(A, Z) = 2(A - Z)Cl~ + 2ZCIp, (3.94) 

which in the case of  cesium is 

Qw(l~3Cs) = 156 C1,~ + 110 Cjp. (3.95) 

Numerically they are estimated as 
-2 Qw(Cs)  ~-, 9z(O) [ - 4 1 . 9 2  - 400.9992(0) ] + 1.77 + 0.65, 

(3.96) 

where the first term comes from the IBA approximation to 
C1M and Cl M (3.93), the second term comes from the elec- 
troweak vertex/box contributions to them, and the last term 
from the external photonic corrections of (3.90). It is clear 
from the above result that the vertex and box corrections 
should be carefully taken account of  in extracting the elec- 
troweak parameters from the Qw measurements. 

In Fig. 13, the parameter Qw(Cs)  of  (3.95) is shown as 
a function of the two universal parameters (g2(0), 92(0)) in 
the range 0.20 < g2(0) < 0.26 and 0.52 < 9~(0) < 0.57 
together with the l<r  contour of the data [80] (dashed lines). 
The horizontal straight dashed line denotes the line /5 = 1 
(SG - a T  = 0). It is worth noting that the correlation in 
the g2(0) and 02(0) form factors obtained from the cesium 
weak charge Qw(133 ,  55) in the figure is opposite to that 
obtained from the uu-q scattering experiments (see Fig. 10). 
The cesium Qw measurement implies an anti-correlation 

-2 0 between g2(0) and 9 z ( ) ,  or r This is opposite to the trend 
observed for the constraints from the v,-q experiments. For 
further discussion, see Sect. 4. 

3.3 Charged current experiments 

In the charged current sector we consider two precision ex- 
periments: the muon lifetime [25] and the W boson mass 
measurements [25, 88]. 

0.56 ~ 

~. 0.55 ~=1 

0.53 

0.52 , , ' 1 , , ,  I \ ,  , ,~, lNk, 
0.20 0.21 0.22 0.23 0.24 0.25 0.26 

~2 (0) 
Fig. 13. The weak charge (Qw) of the cesium atom ~3Cs in the atomic 
parity violation experiments as function of the two universal parameters 
(g2(0), 0~(0)). The l-a contour of the present data [80l is shown by dashed 
lines: see (4.22) in Sect.4.2.3. The p = 1 line corresponds to 0~(0) = 
4 x/2GF m 2 = 0.5486. 

From the matrix element (2.6) one finds for the muon 
decay constant 

GF -- gb(0)  + ~2~G (3.97) 
4 v ~ m  2 ' 

where the factor 6G denotes the sum of the vertex and the 
box contributions. It has been calculated within the SM in 
[50]: )1] 

I +  , (3.98a) 

0.0055, (3.98b) 

where the pinch term [34] has been subtracted as explained 
in Sect. 2: see (2.27) and (2.28). 

The expression (3.97) enables one to predict the physical 
W mass in terms of the charge form factor .02(0). Numeri- 
cally, one finds: 

m 2  _ 9 2 ( 0 )  + f S c  (3.99a) 
4v/2Gv 

[ 15155"99~v(0) + 46"7 ~G - 0"0055c~ + 35.2] GeV 2 . 

(3.99b) 

Once the numerical value of ~G factor is known, the mea- 
surement of the m W mass determines directly the charge 
form factor ~0~v(0). 

The form factor 0 2 ( 0 )  can be calculated in terms of 
the S, T and U parameters in the SU(2)L x U(1)v models. 
Insertion of the expansion (2.38c) leads to 

m w ( G e V  ) = 79.840 - 0.291 S + 0.417 T + 0.332 U 

- 0 .  136 6~, (3.100) 

in excellent agreement with (3.99) for ~G = 0.0055. The 
prediction for a different SG value follows from the above 
expression by simply making the substitution (2.39). 

Fig. 14 shows the SM predictions for m w in the plane 
of me and m H, for as = 0 and ~G = 0.0055. In the O(c~oes) 
corrections to the SM contributions to the S, T,  U param- 
eters o~s(mz) is set to 0.12. Changing o~s(mz) by -+-0.01 
affects the prediction of m W by about =t=0.004 GeV. The 
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Fig.  14. The SM predict ions for  ra W as functions o f  rat  and  r a i l  for  

6c~ = 0, 6G = 0 .0055 and O~s = 0.12.  The 1-o- a l lowed range o f  the present 
data  [88] is shown by  thick dashed lines: see (4.38) in Sect. 4.3. 

mean and standard deviation of the present m W measure- 
ment (see Sect. 4.3) are indicated by dashed lines. 

Note that among the electroweak observables examined 
in this paper, only m W is sensitive to the U parameter. 
Hence, when performing a general fit to the S, T,  U param- 
eters, the mean ((U)) and standard deviation (AU) of the U 
parameter are determined solely by the mean ((row)) and 
standard deviation ( A m w )  of row:  

(U) = [ (mw(GeV))  - 79.840 

+0.291 (S) - 0.417 (T) + 0.136 6 ,  ] /0 .332 ,  (3.101a) 

AU ..~ Amw(GeV) /0 .332 .  (3.101b) 

Here (S) and (T) denote the best-fit values from other exper- 
iments. The present experimental error of A m  W = 0.16 GeV 
induces AU = 0.48, while A m  W = 0.05 GeV, the preci- 
sion anticipated in future LEP200 experiments, would give 
A U  = 0.15. The full error A U  should be slightly larger than 
the above estimate, since S and T were fixed and set at their 
best values in deriving (3.101b). 

4 Experimental data and the electroweak parameters 

Based on the formalism introduced in the previous sec- 
tions the values for the form factors are inferred from fits 
to the data of  electroweak precision experiments: 9Z(971,Z),-2 2 

2 2 2 g (rnz), ~b(mz) from the LEP/SLC experiments on the Z-  
pole, 02(0), g2(0) from the low energy neutral current exper- 
iments at q2 ~ 0, and 0~v(0) from the W mass measurements 
at pp colliders. 

4.1 Z boson parameters 

The analysis is based on the data from the LEP and SLC 
experiments published up to the year 1993 [89, 26, 90]. 
Discussions of  the recent update from LEP [91] and the 
precision measurement of  the left-right asymmetry at SLC 
[31] are postponed to Sect. 6. 

The Z line-shape parameters resulting from a combined 
fit performed by the LEP electroweak group [26] are: 

m z(GeV) = 91.187 + 0.007 

Fz(GeV)  =2.489 • 0.007 

cr~(nb) =41.56 + 0.14 

Re = o~162 ~ =20.763 • 0.049 

A~ =0.0158 + 0.0018 

1 -0 .157  0.007 0.012 0.075 ) 

1 - 0 . 0 7 0  0.003 0.006 

Pcorr = 1 0.137 0.003 . (4.1) 

1 0.008 

1 

The other electroweak data used in our fit are [89, 26]: 

P~ = -0 .139  • 0.014, (4.2a) 

A~ = 0.10 • 0.044 (SLD[90]), (4.2b) 

A~ = 0.099 • 0.006, (4.2c) 

A~ c = 0.075 • 0.015, (4.2d) 
0 0 Rb = ab/ah = 0.2203 • 0.0027 (LEP + SLD). (4.2e) 

Definitions of all the above observables and their theoretical 
expressions have been given in Sect. 3.1. 

The Z mass, m z = 9 1 . 1 8 7  GeV, is treated as an input pa- 
rameter neglecting its error. This is justified because of the 
smallness of  the experimental uncertainty and correlations. 
For the fits to be described below a few general conditions 
are anticipated: (a) only three neutrinos (N~, = 3) contribute 
to the invisible width of Z, (b) the perturbative QCD cor- 
rections with the finite quark mass effects are taken as given 
explicitly in Sect. 3.1, (c) the vertex and box corrections are 
calculated in the SM and given in Table 3 and 4, (d) the 
ZbLb L vertex is taken into account by the quantity 6b(m2Z), 
which is treated in the fit as a free parameter just as the 
universal parameters 9z(mz)-2 2 and g2(m2). 

Various methods to determine the QCD coupling con- 
stant have led to consistent results with a typical uncertainty 
of  Ac~s(mz) ~ 0.01. However, this is far from making it 
precise enough to be used as a fixed input parameter, since 
the fitted electroweak parameters are found to be rather sen- 
sitive to the assumed value of c~s(mz): see, for instance, 
(4.3) below. For this reason, and also for the convenience of 
GUT studies, Cts = Cts(mz M)~-g s is treated throughout our fits 
as an external input parameter and, consequently, the best-fit 
values of  the fit parameters and the minimum X 2 are always 
presented as functions of c~s. Once a precise determination of 
c~s from independent data is available, it is straightlbrward 
to get the correspondingly adjusted best-fit values without 
repeating the fit. It is also easy to infer from our results the 
quantitative consequences of  a particular GUT model pre- 
dicting the relationship between c~s and sin 20w(mz~Ms.  

The overall fit to all Z parameters listed above gives the 
following result: 

- 2  2 _ 9 z ( m z )  - 0.5542 - 0.00030 , ~ . 1 2  • 0.0017 

g2(rn 2) = 0.2313 + 0.00008 , ~ . 1 2  • 0.0007 

6b(rn 2) = --0.0061 -- 0.00430 ~ • 0.0034 
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1 0.14 - -0 .36 )  
P~o~r = 1 0.20 , (4.3a) 

1 

2 ( a s  -- 0"1029) 2 
Xmin = 1.53+ \ 0 - . 0 ~  _ ' (4.3b) 

where the errors and correlations are nearly independent of 
as.  The above parametrization for the as  dependences of the 
mean values and 2 Xmin are accurate interpolations of our fit re- 
sults (at the level of  1%) in the range 0.09 < as  < 0.15. The 
bottom and charm quark masses were set to m b =  4.7 GeV 
and me = 1.4 GeV. A shift of the bottom mass by -t-0.2 GeV 
implies only the fitted Sb(m 2) value to be displaced by 
+0.0002, which is negligibly small compared to its error 
(+0.0034). Similarly, shifting the charm quark mass by 
-I-0.2GeV does not affect the above results, as expected. 
In particular, in the favored range O.11<as(mz)<O.13 the 
quality of the fit is good, e.g. 2 ~min = 4.6 at as  = 0.12 for 
9 - 3 = 6 degrees of freedom. 

Results of  the fit (4.3) are displayed in Fig. 15 by the 1-~r 
allowed contours in the three projections, (g2(m~), O~(m~)), 
(s2(m2), ~b(m~)), and (~b(m2), 02(m2)) .  The contours are 
shown for three representative as-values: as=0.11 (dashed), 
0.12(solid) and 0.13 (dash-dotted). Also shown by the lat- 
tices are the SM predictions for mt=(100-200)GeV and 
mH=(50-1000)GeV.  In these SM predictions, all known 
two-loop corrections of  the O(m 4) and O(ac%) level [46, 
47, 54-58, 63] are included, as explained in detail in ap- 
pendix C. Hence, the predictions depend weakly on as due 
to the O(aas) corrections, as well as on SG and ~c~ which are 
needed to predict the charge form factors from the known 
(a,GF,mz) values. The SM predictions in Fig. 15 are cal- 
culated for as=0.12, 6c=0.0055 and ~,~=0. Changing a ,  by 
4-0.01 has little effect, but changing 6~ by 4-0.10 leads to a 
shift in the SM predictions for g2(m2) by qz0.00026, which 
is as large as 40% of its uncertainty: see (4.3). 

It is clearly seen from the figure and (4.3) that the weak 
mixing form factor g2(m~) is determined almost indepen- 
dently of  as,  while the Z coupling strength -2 2 9z(mz) is anti- 
correlated with the assumed as  value as a reflection of its 
sensitivity to the total Z width. This anti-correlation leads 
in the SM to a preference of  larger mt for smaller as,  since 
-2 2 (see Fig. 2). Furthermore, the fitted 9_z(mz) grows with mt 
6b(m2z) value depends strongly on the as  value assumed. 
The minimum of X 2 is reached at as  = 0.1029 in (4.3b), 
a value slightly outside the range 0.1 l < a s ( m z ) < 0 . 1 3  ex- 
pected from various QCD analyses [30]. 

It is instructive to elucidate the properties of the fit to 
the Z parameters in three steps. First, the relatively small 
sensitivity of  the parameter g2(m~) to as  can be under- 
stood easily, since it is derived essentially from the asym- 
metry parameters being either completely or nearly insensi- 
tive to QCD corrections. Indeed, the fitted values of g2(m2) 
as determined from each asymmetry measurement (see also 
Fig. 7) turn out to be: 

-2 2 = AFB), (4.4a) s (mz) 0.2309 4- 0.0010 (from 0,e 

g2(m~) = 0.2316 4- 0.0018 (from P,) ,  (4.4b) 

g2(m2) 0.2365 4- 0.0055 (from 0 = ALR), (4.4C) 

-2 2 0 . 0 0 0 0 4 ~  •  (from O,b s (mz)  = 0.2313 + AFB ), 
(4.4d) 

-2 2 0 . 0 0 0 0 4 ~  •  (from o,c s (mz)  = 0.2302 + AFB ), 

(4.4e) 

almost independent of -2 2 9z(mz) and Sb(m~). Note that al- 
though the quark (q -- b, c) forward-backward asymmetries 
have mild as-dependences due to the perturbative QCD cor- 
rections [76], they still can be neglected compared to the 
experimental uncertainties. From the above asymmetry data 
alone one finds 

g2(m2) = 0.2312 4- 0.0009 
0g ALR), (4.5a) (from AF~ , Pr ,  0 

g2(m2) = 0.2312 + 0.00002~0_~ + 0.0007 

0g A o zl0,b ~0,% (4.5b) (from A6~, P~-, LR,~FB, ~'FBJ" 

The precision of the above determination of ge(m~) from 
the asymmetry data alone is almost as good as that of  the 
global fit to all the Z parameters. These asymmetry measure- 
ments are particularly important for GUT studies, since the 
parameter g2(m~) is directly related to the unifying coupling 
g2(#) - sin 20w(#).~_g via (2.12). 

Next, the best-fit value g2(m~) ~ 0.2313 is taken to 
probe the sensitivity of  the remaining four observables to the 

gz(mz) and ~b(m~). As explained in Sect. 3.1, parameters -2 2 

three of the remaining four observables, _F'z, cr ~ and Re, 
are sensitive to the as  value assumed, but only through the 
combination S6(m 2) + 0.6as (3.25), or equivalently a~ + 

-2 2 1.6~b(m~). Fz is also sensitive to 9z(mz). Hence, a 2- 
parameter fit to the above three observables for gz(m~) = 
0.2313 leads to: 

-2 2 } 9z(mz) = 0.5547 • 0.0017 
a~ + 1.6Sb(m2)= 0.106 • 0.007 Pco, r = - 0 . 4 6 .  (4.6) 

The above result is found to be insensitive to the as  value in 
the range 0.10 < as < 0.14. The above result for 9z(mz)-2 2 
is consistent with the global fit (4.3), as may be verified by 
evaluating -2 2 9z(mz) at the minimum of X 2 (a~ = 0.1029). 
The anti-correlation above reflects the fact that _Fz re- 
mains unaltered, while increasing -2 2 9z(mz) and decreasing 
a~ + 1.66b(m~) simultaneously. 

Only one Z observable is now left, namely R b. In 
Sect. 3.1 Rb was found to be sensitive to the parameter 
Sb(m~) alone. A 1-parameter fit to Rb yields: 

Sb(m 2) = 0.0012 4- 0.0068, (4.7) 

keeping the other parameters fixed at g2(m~) = 0.2313, 
-2 2 9z(mz) = 0.5542 and a~ = 0.12. However, this fit is in- 
sensitive to variations around the values of the fixed param- 
eters. Note, the SM predicts a negative value of Sb(m 2) for 
large mt (see Fig. 1). Thus, there is poor agreement with the 
expected large mt behavior of the Zbcb L vertex correction 
from the present Rb measurement alone. Since the parame- 
ter as enters the fit only in the combination as + 1.6~b(m~), 
the fitted ~b(mZz) can be interpreted as a constraint of  a~. 
From (4.6) and (4.7) follows 

c~ = 0.104 5: 0.013. (4.8) 
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Fig. 15. 3-parameter fit to the Z boson parameters: the ZbLbL vertex form factor ~b(ra~) is introduced as the third parameter of the fit in addition to 
the two universal charge form factors g2(m2)  and 0 ~ ( m ~ ) :  see (4.3). The 1-~ contours are shown for three representative c~s(mz)  values, 0.11 (dashed 
lines), 0.12 (solid lines), 0.13 (dot-dashed lines). Also shown are the SM predictions in the range 100 GeV< mt  <200 GeV and 50 GeV< r a g  <1000 
GeV, which are calculated assuming (A1)hadron s = --3.88 (6,~ = 0)[27] for the hadronic vacuum polarization contribution to 1/&(m~). 

The fit to the Z shape parameters with both Sb and c~s left 
free yields: 

Sb(ra2Z) = 0.0014 =E 0.0070 } 
O~s(raZ) 0.103 ~- 0.013 Pcor~ = --0.85.  

(4.9) 

The large errors and the strong anti-correlation among them 
show that it makes little sense to extract c~s model-indepen- 
dently from the electroweak experiments on the Z-pole, as 
also noted in [92]. The low best-fit value of c~s reflects es- 
sentially the actual value of  Rb, which is larger than the SM 
prediction in the range 150 GeV < rat < 200 GeV (see 
Fig. 8). It is therefore necessary to assume the SM contri- 

=2 ~ra2 butions to 6b(m2z), and to a lesser extent those to y z t  z), 
in order to extract c~, from the electroweak Z parameters. 
The result of such an analysis is given in Sect. 5.4, where 
consequences of the minimal SM are studied. 

Finally, we present the result of 1-parameter fits to four 
observables, ['z, (7~ Re and -Rb, respectively, in terms of 

2 the parameter (Sb(raZ), for various values of .02(m~),  g2(ra~)  
and C~s. Here, we neglect correlations in the errors and find: 

Sb(m~)  = - 0 . 0 0 6 8  - 0 .0084 0z(rrtz)--0'5542 
0.0017 

~2('~a)-~ - 0 . 0 0 6 1 ~  • 0.0077 
U.UULU 0.0007 

(from Fz), (4.10a) 

~b(m~)  = - -0 .0210  + 0.0000 0~(m~)-~ 
0.0017 

. . . . . .  g2(m~)-0"2313 -- 0 . 0 0 6 3 ~  • 0.0168 
u.uuuq 0.0007 

(from (7 o ) ,  (4.10b) 

~b(Trt 2 )  = - - 0 . 0 0 7 8  4- 0 . 0 0 0 0  0~(m~)-0'5542 
0.0017 

+0.0011 ~(r~})--0.2313 _ 0.0061 ~0--~001 ' 1  2 + 0.0044 
0.0007 

(from -Re ) ,  (4.10c) 

05 (rrt~)-- 0 5542 ~b(m 2) = 0.0012 + 0.0000 0.0017 

- 0 . 0 0 0 1  g2(m~)--0'2313 0.ooo7 - 0.0001 ~ �9 0.0068 

(from Rb ). (4.10d) 

The above fits clearly confirm quantitatively our observa- 
tions that Fz, (7 ~ and Re measure the combination ~b+0.6 c~s 

-2 2 (3.25), that Fz is also sensitive to 9z(raz),  and that Rb is 
sensitive only to ~b(m2). At present the data Fz, cr ~ and Re 
favor a negative (Sb(m~) value consistent with the SM pre- 
diction for 150GeV < mt < 200GeV,  while Rb data gives 
a ~b(m 2)  value consistent with zero, at c~s ~ 0.12. The com- 
bination of all the above measurements together with all the 
asymmetry data, and properly accounting for the correlations 
in the errors, yields 

~b(m2z) = - -0 .0062 -- 0.0014 0~(m~)--0"5542 
0.0017 

4-0.0009 g2(m~)--0"2313 --  0 . 0 0 4 6  ~ z[: 0 .0031  
0.0007 0.01 

(4.11) 
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in accordance with the result (4.3). Note that the coefficient 
in front of  a~ in (4.11) is smaller than 0.6 in the combi- 
nation (3.25) as a consequence of including the additional 
information due to Rb. 

4.2 Low energy neutral current experiments 

The two universal parameters g2(0) and ~2(0) can be ex- 
tracted from four types of  low energy neutral current exper- 
iments: the neutrino-nucleon scattering (uu--q), the neutrino- 
electron scattering (u,-e),  atomic parity violation (APV) and 
the polarized electron-deuteron scattering experiments (e -  
D). Effects due to small, but finite, momentum transfer in 
these processes are accounted for by assuming the running 
of these form factors to be governed by the SM particles 
only (see Fig. 2), which, at low energies, is an excellent ap- 
proximation. Vertex and box corrections are calculated by 
assuming that they are dominated by the SM contributions. 
For details of  the theoretical predictions, see Sect. 3.2. For 
each sector, first a model-independent parametrization of the 
data is given, and then the fit result in the (g2(0), .01(0)) 
plane. 

4.2.1 Neutral currents in u~,-q scattering. For the uu-q data, 
the results of  the analysis of [78] are adopted. In terms of the 
model-independent parameters 2 2 2 2 (gL,gR,6C,6n), the following 
fit has been obtained: 

92 = [ 0.2982 - 0.0058(mc - 1.5) ] i 0.0028 • 0.0029, 
92 R = [ 0.0309 - 0.0053(m~ - 1.5) ] • 0.0034 • 0.0028, 
t52 = [ -0 .0588  - 0.0025(m~ - 1.5) ] • 0.0233 • 0.0042, 
~2 = [ 0.0206 + 0.0010(m~ - 1.5) ] • 0.0155 • 0.0039, 

(4.12) 

where the former and the latter errors denote the experimen- 
tal and the parametrization errors. The correlation matrices 
for the two types of  uncertainties also quoted in [78] are 
respectively 

1 - 0 . 7 5 1 - 0 . 1 0 0  0 .1 t8 '~  
r~(exp ) 1 0.064 0.097 | 

- - - -  

1 - 0 . 9 1 4  -0 .975  0.606'~ 
o(par) 1 0.945 - 0 . 6 7 7 1  (4.13) 

, 

The fitted parameters depend on the assumed value of the 
charm quark mass (rn~ in GeV units) [93] entering the slow- 
rescaling formula [94] for the charged current cross sections. 
The data [78] constrain the charm quark mass to 

rn~ = 1.54 �9 0.33 GeV. (4.14) 

After summing the experimental and the parametrization er- 
rors in quadrature, and integrating out the mc dependence 
of the above parametrization under the constraint (4.14), the 
new model-independent parametrization of the uu-q data 
gives: 

92 = 0.2980 + 0.0044 
92 = 0.0307 + 0.0047 
6 2 = -0 .0589  + 0.0237 
6~ = 0.0206 • 0.0160 

1 -0 .559  -0 .163  0.162"~ 

1 0.156 (4.15) - 0 . 037  | 
pc~ = 1 - -0 .447J  ' 

which prope.rly accounts for the uncertainty in me. The 
parametrization (4.15) serves as input to our analysis. 

By using the theoretical formulae (3.44) and (3.45) of  
Sect. 3.2.1 the data (4.15) can be confronted with the predic- 
tions in terms of g2(0) and 01(0). Corrections due to small, 
but finite, momentum transfer are evaluated at 

( - t )n.c .  = (-t)c.~. = 20 GeV 2, (4.16) 

in (3.47) and (3.51) and in the running of gz(t): see (3.56). 
The fit result is: 

01(0) = n ~an+0.0o77 ] 
. . . . . .  - 0 . 0083  

g2(0 ) n ,)AOO+0.0130 ~ Pcorr = 0.916, (4.17a) 
. . . . . . .  0.0142 

2 Xmin = 0.13, (4.17b) 

Asymmetric errors are quoted. The non-gaussian behaviour 
of the X 2 function reflects the non-linear transformation be- 
tween the charge form factors (0~(0), g2(0)) and the model- 
independent parameters (92, 2 2 tS~), as 9R,6L, seen in Fig. 10. 
The strong positive correlation between the fitted values of 
g2(0) and 02(0) is a consequence of (4.15): the precisely 
measured combination 2 2 9L + 9R in (4.15) dominates the total 
neutral current cross section off isoscalar targets. The l<r 
contour of the above fit is shown in Fig. 16. It can be re- 
produced rather accurately by the following parametrization: 

01(0) = 0.5497 • 0.0080 } 
g2(0) = 0.2413 + 0.0136 ) Pcorr = 0.916, (4.18a) 

2 
Xmin = 0.13, (4.18b) 

which serves merely for estimating the constraints from the 
uu-q experiments. We stress that all the quantitative analyses 
in the following sections are performed by fitting directly to 
the original parametrization of the data (4.15). 

4.2.2 Neutral currents in uu-e scattering. Theuu-e  data from 
the three experiments: CHARM, BNL E374 and CHARM-II  
[84], have been summarized in [79] in terms of the model- 
independent parameters sueZ and Pue: 

Pue -= (P)eU?~ e = 1.007 • 0.028 
2 (sin 20W)e~'f e 0.233 + 0.008 J Pcor~ = 0.09. (4.19) 

S u e  =- = 

As explained in detail in Sect. 3.2.2, first the total cross 
section a ue and a ~ is reconstructed by using the formula 
(3.75), and then the fit is performed by using the theoreti- 
cal expressions (3.64). The reconstructed cross sections are 
found to be 

oUe/Ev(lO-42cm2/GeV) = 1.56 • 0.10 
cr~  1.36 • 0.09 ) pcorr = 0.51, 

(4.20) 
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Fig. 16. Fit to the low energy neutral current data in terms of the two univer- 
sal charge form factors g2(0) and 0~(0). l-~r contours are shown separately 
for the u~,-q data[78], the uu-e data[84], the atomic parity violation (APV) 
data[80], and the SLAC e-D polarization asymmetry data[87]: see (4.17a), 
(4.21), (4.23) and (4.34), respectively. The l-~r contour of the combined fit, 
(4.35), is shown by the thick contour. The straight dashed line shows the 
'tree' level prediction of the minimal SM: /5 -- O2(O)/(4x/2GF m2) = 1, 
or 0~(0) = 4 X/2GF m 2 = 0.5486. 

and the 2-parameter fit to the above data gives 

03(0) = 0.5459 4- 0.0154 } 
g2(0) 0.2416 + 0.0079 Pco~r = 0.09. (4.21) 

, /  

The same result follows if we use the approximation (3.74) 
directly to fit the parametrization (4.19). H e r e  X2in = 0, since 
the number of degrees is 2 - 2 = 0. The result is shown in 
Fig. 16 by the l-or contour. The weak mixing form factor 
g2(0) is measured more accurately in the uu-e  experiments 
than in the uu-q experiments, whereas for 02(0) it is the 
other way around. 

4.2.3 Atomic parity violation. As for the APV experiments 
the result of  the analysis [80] on the parity violating transi- 
tions in the cesium atom (A, Z)  --- (133,55) are used: 

Qw(135,  55) = - 7 1 . 0 4  :t: 1.81. (4.22) 

The quoted uncertainty is the quadratic sum of experimental 
and theoretical errors. After correcting for the vertex and 
box corrections [85] as explained in detail in Sect. 3.2.3, 
one finds 

g2(0) = 0.2294 - 0.6178 [ .02(0) - 0.5486 ] 4- 0.0082. (4.23) 

Here the value .0~(0)=0.5486 stands for the prediction at IS= 1 
or T = 6 c / a .  The result is shown in Fig. 16 by 1-~r con- 
tours. As anticipated in the previous section, the correlation 
between the fitted g2(0) and 02(0) values is opposite to that 
from u~c/fit. As a consequence, the constraints on both g2(0) 
and .02(0) are improved significantly by combining the two 
types of experiments. 

4.2.4 Polarization asymmetry in e - D  scattering. Finally, for 
the SLAC eD polarization asymmetry experiment [87] a 
model-independent fit is performed to the original data by 
using the two combinations, 2Cl,~ - Cla and 2C2~, - C2a 

of the coefficients of the effective parity violating e-q  neu- 
tral current operators [24]: see (3.76). In the quark parton 
model with the valence quark approximation the observed 
polarization asymmetry is expressed in terms of the above 
parameters by 

A 6 G F  
Q2 5 v/g 2(-Q 2) 

x {  (2C'u-C'd)+(2C2~-Czd)l-(1-y)2}l+(i y)2 '(4"24) 

which depends on the scaling variable y, but not on x. The 
mild Q2 dependence due to the running of the effective QED 
charge ~2(_Q2) is accounted for. There have been extensive 
studies [95, 96], which show that the above approximation 
is in fact valid on more general grounds, but that it may 
suffer from higher-twist contributions. We therefore perform 
a new model-independent fit to the original data [87], and 
obtain quantitatively the theoretical uncertainty in the fitted 
parameters. 

By taking account of  the sea-quark contributions and 
finite R = aL/CrT [95], as welt as possible higher twist 
contributions [96, 97], the above simple expression for the 
asymmetry (4.24) is modified as follows: 

A _ 6GF {(2C1~, - C l d ) ( l  - 3  
Q2 5 V/26'2 ( - -  O 2) ~ C )  

(4.25) 

with 

b =  1 - ( I - p ) 2  ( ~s) 
l + ( 1  p~-Zy-~ l_~  n 1 + 8 . 3 5 6 - e ~ , - ~ -  , (4.26) 

c = 1.346 - e s /5 .  (4.27) 

Here the z-dependent parameters eu and es denote the rel- 
ative contribution of the sea u-quark and that of s and g 
quarks, respectively, which are parametrized by 

(1 - 35.) 4 (4.28) 

( l  --  35') 4 
es = - (4.29) 

3 

The uncertainty in the factor e above is estimated to be 

e = 0. l + 0.03. (4.30) 

The effects of  introducing sea-quark contributions in the fit is 
shown in Fig. 17(a). As found in [951, the effect is very small 
along the tree level SM prediction as shown by the straight 
line in the figure. Some representative values of  sin 2 0 w in 
the SM are denoted by blobs. The longitudinal to transverse 
cross section ratio R = ~rL/CrT is allowed to vary within the 
rather conservative limits 

R = 0.2 4- 0.2.  (4.31) 

The effect of introducing the R parameter alone is shown 
in Fig. 17(b) and the result turns out to be insensitive to 
its uncertainty, especially along the tree-level SM trajectory, 
confirming the earlier observation of [95]. Finally, the pa- 
rameter 6 in the factors b and c parametrizes the higher twist 



588 

1.0 

(3 
i 

-1 .o 
0 

' : A . >  i . . . .  i . . . .  I . . . .  I ' ' ' ' 1 2 ~ _ - ~ - '  ' 

~ 1 ~ 5 

- -  - E:+AE 
-2.0 -.. \ 

-2.5 - , , , , I  . . . .  I . . . .  I , , , , I  . . . .  I . . . .  I , >  
0.6 0.7 0.8 0.9 1.0 1.1 1.2 

2 C l u  - C l d  

(3 
I 

g,  - 1 . o  
0 

1.0 ' " 1  . . . .  I ' "  I . . . .  1''"l~2J,~'" 

0.0 _ ~ 2 .  (aM) 
-0.5 

- - - -  R+AR 
-2.0 

-2.5 , , , I  . . . .  I . . . .  I . . . .  I . . . .  I . . . .  1 ~ ,  
0.6 0.7 0.8 0.9 1.0 1.1 1.2 

2 C l u  - O ld  

1.0 ' " l  . . . .  I . . . .  I ' ' '  1 ' ' " 1 2 2 - ~ '  ' '  

0 5  

0.0 ~ s  2 (SM) 

O, -0.5 

, o  

r -1.5 ,5 ~ 
---- 6+A8 

-2.0 

-2 .5  , , , I  . . . .  I . . . .  I , , , , I  . . . .  I . . . .  I ,  , ,  
1.3 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 

2 C lu  - C l d  

/ 

0.5 ~ - - ~ , ~ ~ ~ / ~ 0 0 . 1 5  

o.o 

0 -0.5 
J 

# - 1 . o  
(.9 ~- 

-1.5 (d) e+5+R  

-2.0 I 
-2.5 , , , I L , J ~ I , , , , I  . . . .  I . . . .  I . . . .  I ,  

1.3 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 
2 Clu - Cld 

Fig, 17, Fit to the SLAC e - D  polarization asymmetry data[87] in terms of the model-independent parameters 2C1~ - G'qd and 2C2~ - C2d [24] of the 
effective weak Hamiltonian (3.76). Uncertainties due to the sea-quark contributions (a), the longitudinal to transverse virtual photon cross section ratio 
1~ = a L / ~ T T  (b), and the higher twist effects (e) have been examined, and the fit (d) is obtained after taking account of all the uncertainties. Shown by the 
solid lines are the tree-level predictions of the SM, and the blobs show the predictions at selected sin 2 0 W values. 

effects as expected in the MIT bag model [97]. Taking as the 
magnitude of the uncertainty the largest value of the MIT 
bag model estimate of [97] yields 

5 = (1.58 + 1.58) x 10 -3, (4.32) 

The effects of introducing the ~ parameter alone are shown 
in Fig. 17(c). As in the case of  the sea-quark contribu- 
tions (Fig. 17(a)), the effect is negligibly small along the 
line representing the tree-level SM prediction. Note that the 
higher-twist effects are found to be rather model dependent 
[98]. The MIT-Bag model estimates [97] adopted here lead 
to quite small corrections, as in the neutrino scattering off 
isoscalar targets [99]. Further study on the higher twist ef- 
fects may be needed to achieve precision measurements of 
the electroweak parameters in these reactions. 

After allowing for all of the above uncertainties, one 
finds 

2 C I ~  - -  C l d  = +0.94 + 0.26 } 
2 C2~ - C2d = - 0 . 6 6  + 1.23 Pco~r = -0 .975  (4.33) 

/ 

with 2 Xmi, = 9.95 for 11 data points, that is, a good fit. The 
above result is shown in Fig. 17(d). Because of the strong 
correlation, only a linear combination of the two coupling 
factors is measured well. 

By using the theoretical formulae (3.78), a fit is made 
to the data (4.33) in terms of the two parameters g2(0) 
and 05(0). In order to fix the q%dependent factors (Qz = 
_q2) FI(_Q2), T2(_Q2)  and <~2(__Q2) in the amplitudes 

we choose (Q2) = 1.5GeV 2. Note, howeverl that Q2_ 
dependence of each data point [87] and that of the QED 
running coupling ~2(_Q2) in (4.25) have been respected in 
the model-independent fit (4.33). The result is: 

g2(0) = 0.2273 + 0.3067 [ 9~(0) - 0.5486 ] • 0.0092,(4.34a) 
2 0 (0) Xmin = 0.46 - 1.77 [ 0.5486 ],  (4.34b) 

and shown in Fig. 16. Note that the parametrization (4.34b) 
is valid only in the vicinity of the SM predictions -2 9z(O) 
0.55 (but is valid in the whole region of Fig. 16), and that the 
global 2 Xmin is zero, since the two parameter parametrization 
(4.33) is adopted as the original data of  our fit. 

4.2.5 Summary of low energy neutral current experiments. In 
this section the fits to the electroweak observables in the four 
low energy neutral current experiments are summarized. The 
fit results are illustrated in Fig. 16 by l-or allowed regions 
in the (g2(0), .02(0)) plane. Since all four pieces of  informa- 
tion are consistent with each other, a combined fit can been 
performed: 

0~(0) = 0.5462 • 0.0036 / 
g2(0) = 0.2353 -4- 0.0044 ) pcorr = 0.53, (4.35a) 

2 
~min -= 2 . 2 2 .  (4.35b) 

The fit with 7 = 9 - 2 degrees of freedom is good and its 
result is shown in Fig. 16 by the ellipse with the thick 1<7 
contour. 
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It is sometimes useful to analyse the neutral current sec- 
tor with and without inclusion of the neutrino data, since 
in some models they receive different new physics contri- 
butions. To this end the fit is done separately for uu-q and 
ut,-e experiments: 

O~(0) = 0.5496 + 0.0068 
g2(0) 0.2414 4- 0.0047 ) Pcorr = 0.75, (4.36a) 

2 
~rnin = 0 . 1 9 .  (4.36b) 

The fit for the APV and eD experiments gives: 

02z(0) = 0.5510 4- 0.0165 / 
g2(0) 0.2280 4- 0.0088 ) Pcorr = -0.62,  (4.37a) 

2 
Xmin = 0 . 4 6 .  (4.37b) 

These two fits are again consistent and their combination 
reproduces, of course, the above global fit (4.35). 

4.3 Charged current experiments 

The W mass measurements have been updated recently by 
the CDF and DO collaborations. By combining the most re- 
cent measurements [88] and the previous result of PDG [25] 
one obtains 

m w = 80.24 + 0.16GeV. (4.38) 

Note that in this analysis the W mass definition follows the 
LEP convention [3], as opposed to the pole mass defini- 
tion: see (2.14). The pole mass should be smaller by about 
0.03 GeV. The difference is still negligibly small as com- 
pared to the error of 0.16 GeV. It is worth noting that the W 
propagator with running width factor gives a more accurate 
description of the scattering amplitudes when no imaginary 
parts are introduced outside the propagator factor. 

The electroweak parameter 02(0)  is now obtained by 
combining the m W measurement with the # life-time pa- 
rameter GF (3.99): we find 

02(0)  -- 0.4225 - 0.0031 6c - 0.0055 • 0.0017, (4.39) 
Oz 

where 6a = 0.0055 is the SM estimate for the process spe- 
cific correction to the # life-time: see (3.98). No other ex- 
periment in the charged current sector is accurate enough 
to provide adequate information for our electroweak analy- 
sis. Precise measurements of the W shape parameters [100] 
would improve our knowledge in this sector considerably. 

5 Systematic analysis 

In this section, first the q2-dependence of the two charge 
form factors 02(q 2) and 82(q2) is examined between q2 = 0 
and q2 = m2.  Next a combined fit in terms of the S, T and 
U parameters is made assuming the qZ-dependence of these 
charge form factors to be governed by the SM. Finally, only 
the SM particles are assumed to contribute to the radiative 
effects and the preferred range of the two mass parameters 
mt and m H is searched for. Also the c~s and 6~ dependences 
of the fits are discussed in detail. 

5.1 Summary of all experimental constraints 
on the electroweak parameters 

The information on all electroweak precision data has been 
represented in the previous sections in terms of the charge 
form factor values (see (4.3), (4.35) and (4.39)) and is, 
for convenience, collected in Table 6. In addition, the fine 
structure constant o~ determining the charge form factor 
~2(0) = 47rc~ (see Tables 1 and 2) has been used as an 
input parameter. In calculating X 2 the model-independent 
parametrizations of the original data are used as inputs for 
the fit: (4.1)-(4.2) for the Z parameters (Sect. 4.1), (4.15) 
for the uu-q scattering experiments (Sect. 4.2.1), (4.19) for 
the uu-e scattering experiments (Sect. 4.2.2), (4.22) for the 
atomic parity violation experiments (Sect. 4.2.3), (4.33) for 
the e-D polarization asymmetry measurements (Sect. 4.2.3), 
and (4.38) for the W mass measurements (Sect. 4.3). The 
X 2 fits in each of the various sectors look all fine and it is 
concluded that the whole body of data is consistent with the 
assumption of the SU(2)L x U(1)y universality and the SM 
dominance of the vertex and box corrections. 

5.2 Testing the running of the charge form factors 

If there are new particles coupled to the weak gauge bosons 
with masses near or below m W and m z, their signal can be 
identified as an anomalous running of the charge form factors 
[ 12, 11]. In principle, the running of all four charge form fac- 
tors provides us with information on new physics contribu- 
tions via (2.30) for 1/&(q2), (2.40a) for g2(qZ)/&(q2), (2.40b) 

2 2 2 2 for 1/gz(  q ) and via (2.40c) for 1/Ow( q ). At present, only 
two of the four form factors, 82(q2) and 02(q2), have been 
determined with sufficient accuracy at two different energy 
scales, q2 = 0 and m}.  

The results collected in Table 6 yield: 

47r 47r _ _ ] 
-2  2 9 z ( m z )  92(0 ) -0 .33  + 1.2(C~s 0.12) + 0.17 

@2(m2) 82(0) 2.47 + 1. l(c~s 0.12) 4- 0.62 J 
~(m2)sM 

Pcorr = -0.49.  (5.1) 

In the absence of a precise value for &(m~) the SM pre- 
diction &(mZ)sr~ = 1/128.72 (or, more generally, 6,~ = 
1/&(m 2) - 128.72 = 0) is used above. 

Fig. 18 illustrates SM running of the charge form factor 
02(q2), 

47r 4"rr _ l [Sz (m2z)_  Sz(O) J (5.2) 
-2 2 9 z ( m z )  922(0) 4 

as a function of m~r, together with the experimental con- 
straint (5.1). The q<dependent S z  function is defined in 
terms of the gauge boson two-point functions in (B.41a) 
of appendix B. The difference (5.2) takes the form (2.40b) 
of Sect. 2. The mt dependence of the SM prediction is very 
small compared to the experimental error for m t >  100 GeV. 
The SM is consistent with the data as long as the Higgs 
boson mass is not too small. Note that the l-or constraint 
on m H, m H > 2.9 GeV (67%CL), is obtained merely by 
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Table 6. Summary of all the electroweak data used in the fit, and the fit results. The Z boson parameters are studied in Sect. 4.1, the low energy neutral 
current experiments are studied in Sect. 4.2, and the charged current experiments are studied in Sect. 4.3. In addition, we use the fine structure constant a 
datum which fixes the charge form factor ~2(0). X 2 has been calculated by taking the model-independent parametrizations of the original data as the inputs of 
our analysis: (4.1)-(4.2) for the Z parameters (Sect. 4.1), (4.15) for the uu- q scattering experiments (Sect. 4.2.1), (4.19) for the uu-e scattering experiments 
(Sect. 4.2.2), (4.22) for the atomic parity violation experiments (Sect. 4.2.3), (4.33) for the e-D polarization asymmetry measurements (Sect. 4.2.3), and 
(4.38) for the W mass measurements (Sect. 4.3). 

Z 

data 

parameters measurements (Sect. 4.1) 

m Z, f'g, a~ Re, A ~ , P,r, ALR, "'FBA0'b' ~FBA0'C' Rb 

s (mz) ,  gz (mz) ,  6b(ra2z) d.o.f. = 10-4 fit parameters m z (input), -2 2 -2 2 

external parameter as 22 o.ooo3o  o,2io.oo,7 ( ) g z ( m z )  = 0.5542-- 'o.m 1 0.14 --0.36 

g2(m2) = 0.2313 + 0.00008 c~,,O.ol-o.12 4- 0.0007 pcorr = 1 0.20 

5b(rn 2) = -0.0061 - 0.00430 ~ 0 . m  4- 0.0034 1 

a , - 0 . 1 0 1 7 ]  2] / 6  
X2min/(d.o.f.) = [2.48+ ( 0.0127 ] J  

Low energy neutral current experiments (Sect. 4.2) 

data (9~L, 9~ ,  62,  6~), (P,,e, S~e), Qw,  (2Ct~- C~d, 2C2u- Czd) 

fit parameters g2(O), 02(0) d.o.f. = 9 -2  

02(0)=0.5462 4- 0.0036 
g2(0) =0.2353 4- 0.0044 ) Pcorr = 0.53 

X2min/(d.o.f.) = 2.22/7 

Charged current experiments (Sect. 4.3) 

data GF , m w 

fit parameters Gp (input), 0~v(0) d.o.f. = 2 - 2  

02(0) = 0.4225 - 0.0031 ~:-0~(x~55 4- 0.0017 

Z2min/(d.o.f . )  = 070 
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rig. 18. The running of the charge form factor 02(q2), 47r/02(ra 2) - 
47r/02(0), as functions of rnu -- calculated in the SM for 100 GeV < m t  < 
200 GeV. The 1-o- allowed range from the neutral current experiments on 
the Z-pole and at low energies, (5.1), is also shown for comparison. 

comparing the Z boson coupling strengths at q2--0 and 
q2=m~. These values are, however, obtained by neglecting 
the Z ~ H f f  contribution to Fz, and are anyway excluded 
by direct searches at LEP (m H > 63GeV) [101]. 

The Higgs boson does not contribute to the running of the 
other neutral current form factors, 1/&(q2) and g2(q2)/dL(q2). 
They are affected by loops of charged particles only, and, 
for instance, the top quark contributions to the running of 
these form factors are parametrized in appendix B, in (B.27) 
and (B.28): 

1 2 

~('/71,2) S M ?Tit ,] ' 

(5.3a) 

s M 

 -+o.oo90 = -3.09 + --~- m---t / 

The mt dependences of these runnings are very small for 
mt  ~> 100 GeV.  

The running may be appreciable,  i f  there is a charged 
fermion with mass near to half  the Z mass [12]. The  case o f  
a light wino, the fermionic  partner of  the W in the supersym- 
metric SM, is shown in Fig. 19: ( a ) 4 7 r / ~ ( m 2 ) - 4 7 r / ~ ( 0 ) ,  

(b) g ( m z ) / & ( m  z )  - g (0)/o~, and (c) 6~ =- 1/6~(m z )  - 
128.72. The  singularity at mwino = m z / 2  of  the charge 
form factor 47r /O}(ra~)  in (a) reflects [65] the deviat ion of  
the Z l ine-shape f rom the Bre i t -Wigner  form assumed both 
in the exper imental  fit and the corresponding theoretical  for- 
mulae, and is unphysical.  The  1-(7 bound on the wino mass, 
7T~wino > 4 6 , 1 G e V ,  as read of f  from Fig.  19 is unrealistic, 
since the threshold 2mwino = 9 2 . 2 G e V  is less than a half  
width away f rom the Z-pole .  In order to der ive  constraints 
on particles very near to the threshold, one should look for 
deviat ions o f  the Z line shape f rom the s imple  Bre i t -Wigner  
form [37, 65]. When  calculat ing the predict ions for (b) and 
(c) the hadronic vacuum polarizat ion contr ibution to the run- 
ning of  these form factors is set to (~had = 0, while  the present 
est imate [28] is 6had = 0 i 0 . 1  (B.22). Wino of  masses around 
5 0 G e V  may shift 6~ = 1 / ~ ( m ~ )  - 128.72 f rom its canon- 
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Fig. 19. The running of the charge form factor 02(q2), g2(q2) and ~2(q2) 
as expected from the one-loop contribution of the wino (fermionic partner 
of the W in the supersymmetric SM) to the three neutral current prop- 
agators. (a) 47r/O2(m2z ) - 47r/02z(0); (b) g 2 ( m 2 ) / C ~ ( m 2 )  - -  g2(0)/c~ ; 

(e) 8c~ ~ 1 / ~ ( m ~ )  -- 128.72. The SM contributions are shown for m t =  
100, 200 GeV and m H = 60, 1000 GeV. The singularity at mwino = m Z / 2  
in (a) reflects[65] the deviation of the Z line-shape from the standard Breit- 
Wigner form that has been assumed both in the experimental fit and in our 
theoretical formula. The l-or allowed ranges from the neutral current ex- 
periments on the Z-pole and at low energies, (5.1), are also shown for 
comparison. There is no direct measurement of 64. 

ical value 6,  = 0 by about 0.1, which is of the same order 
as the present uncertainty in the SM prediction. 

It is clearly seen from Fig. 18 and from (5.3) that the re- 
suits (5.1) are consistent with the SM predictions in the range 
m H > 60GeV and m t >  100GeV. The study of the two 
examples, a very light Higgs boson and a supersymmetric 
wino, demonstrates that more accurate values of g2(0) and 
02(0) are needed to detect effects of new physics through the 
running of the charge form factors. Accurate measurements 
of the charge form factor 1/&(q z) at Iq2l ~ m 2 should also 
provide independent information. 

Fig. 20 shows the above results in the (g2(m2), 0}(m~))  
plane, where the Z parameter fit ( 'LEP+SLC') is taken from 
Fig. 15 for c~ = 0.12, and the combined low energy fit of 
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Fig. 20. fi-parameter fit to the combined low energy neutral current data 
and the Z parameters. The latter fit ( 'LEP+SLC') is copied from Fig. 15 for 
a s ( r a z )  = 0.12. The low energy combined fit of Fig. 16 has been rescaled 
to the m z scale by assuming the SM running of the two charge form 
factors, g2(q2) and 02(q2), which depend on m t  and m H. Uncertainties 
due to m t  and m H in the SM predictions for the running of the form 
factors are illustrated by drawing the results for m t =  100, 200GeV an d  
m H = 60, 1000 GeV in the same figure. The 1-o- contour of  the combined 
fit, (5.5), is given by the thick contour, for which the above uncertainties 
give negligible effects. 

Fig. 16 has been rescaled to the m z scale by assuming SM 
running of the two charge form factors, g2(q2) and ~2(q2). 
The combined low energy neutral current data (see Table 6 
and Fig. 16) are displayed for various choices of mt  and m H 
in order to put in evidence their small, but finite, effects on 
the running of these form factors. The four contours are 
obtained for mt=100, 200GeV and m~=60,  1000GeV. At 
m t =  175GeV and m H = 100GeV, the fit (4.35a) for the 
low energy neutral current data can be re-parametrized as 

-2 2 } 9 z ( m z )  = 0.5533 • 0.0037 
~2(m~) 0.2266 i 0.0047 Pcorr = 0.53. (5.4) 

It is seen from the figure that the low energy neutral current 
fit and the Z parameter fit in terms of the charge form factors 
g2(q2) and O~(q2) are in accordance with the running of these 
form factors as predicted by the SM. 

The thick solid contour marks the result of the fit to 
all neutral current experiments as summarized in Table 6 
assuming the SM for the running of ~ ( q 2 )  and g2(q2): 

9z(mz)-2 2 = 0 . 5 5 4 4 -  0 . 0 0 0 2 3 ~  • 0.0015 
g2(m~) 0.2312 + 0 . 0 0 0 0 8 ~  • 0.0007 
6b(m}) --0.0064 -- 0 . 0 0 4 3 7 ~  • 0.0034 (,016 0) -0.32"~ 

Pco~ = 1 0.2 , (5.5a) 

2 (C~s -  0.1024"~ 2 
~min ---- 4.67 + \ 6-.0-~ff } " (5.5b) 

In the global fit the uncertainty due to mt and m H in the run- 
ning of the form factors is negligible in the range mt=100-  
200GeV and mH=60-1000GeV. The 2 Xmin value of 6.6 for 
c~ = 0.12 is acceptable for 15 ( = 1 8 -  3) degrees of freedom. 
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In conclusion, there is no indication of new particles with 
mass <raz in the running of the charge form factors. 

Note that the errors in (5.1) are dominated by those of 
the low energy experiments. Further improvements in the 
low energy precision experiments are required to detect a 
signal of relatively light new particles, should they exist, 
through anomalous running of the charge form factors. In 
comparing the global fit of  Fig. 20 with the individual fit to 
the low energy N C  data in Fig. 16, the fit from the ut,- q 
and uu-e experiments (4.36) are remarkably consistent with 
the Z parameter fit of Table 6, whereas the fit of the e -  
q sector (4.37) based on the APV and the e -D  asymmetry 
measurements are about 1.5 standard deviations away. For 
m t =  175GeV and ra i l  = 100GeV, the fit (4.36a) for utz- q 
and u,-e scattering is re-parametrized as 

-2 2 / 9z(raz) = 0.5568 • 0.0048 
g 2 ( r a 2 )  = 0.2331 • 0.0072 Pcorr = 0.75, (5.6) 

while the fit (4.37a) for the APV and polarized e -D  experi- 
ments gives 

9z(raz)-2 2 = 0.5583 • 0.0170"1 
,~2(ra2) = 0.2188 • 0.0093 ~ J pr = -0 .62 .  (5.7) 

Further studies of polarization asymmetries in the e-q sector 
as well as studies of  the neutral current processes at TRIS- 
TAN energies might be potentially rewarding. 

5.3 Testing the 3 parameter universality 

Once the q2-dependence of the charge form factors is as- 
sumed to be governed by SM physics alone, all radiative 
effects to the gauge bosons depend on three universal pa- 
rameters: S, T, U. They include the SM radiative effects as 
well as new physics contributions, as opposed to the origi- 

=2 rra2 hal definitions of [41. While the charge form factors y z t  z),  
-2 2 -2 s (mz) ,  9w(0) can be directly confronted with experiments, 
the 5", T, U parameter fit suffers from uncertainty in the QED 
effective coupling &(ra}), the reason being the fact that the 
charge form factors are determined by the 5", T, U param- 
eters under the (c~, G~,  m z )  constraints (see discussion in 
Sect. 2.3). The magnitude of &(m 2) is controlled by the ex- 
ternal parameter 6~, - l / & ( m ~ )  - 128.72. 

A 4-parameter fit yields: 

S =  - 0 . 3 5  - 0 . 0 1 6 ~  +0.067 & • 

T = 0.39 - 0 . 0 5 8  ,~-o.  12o.m - 0 . 0 0 4  ~ •  

U = 0.41 +0.058 c~.~. 2 +0.024 ~ •  

~b = --0.0064 --0.0043 ,~,-0.12 •  0.01 (1o8  o8 o2 / 
1 - 0 . 4 0  - 0 . 3 2  

Pcorr = 1 0.20 ' (5.8a) 

1 

from the result of  the global fit summarized in Table 6. The 
best-fit values of  S, T, U and ~b are weakly dependent upon 
c~ and 6 ,  as quoted explicitly in (5.8a). The minimum of ~2 
turns out to be practically independent of  ~, .  We therefore 

add to the fit the independent knowledge 6c~ = 0.0 • 0.1 [28] 
leading then to: 

2 ( ~  0 .1024)  2 ( 0 @ 0 )  2 
~min ---- 4.67 + 0---.0~ + (5.8b) 

The correlation between 5' and T is strong, since they are 
constrained by the precisely measured weak mixing form 
factor g2(ra2) via (2.38b). 

The above results are shown in Fig. 21 by 1-o- contours 
as projections onto the (5', T),  (S, U), and (U, T)  planes. 
The contours are drawn for three c~s values, C~s=0.11 (dashed 
lines), 0.12 (solid lines) and 0.13 (dash-dotted lines), and for 
mt  = 150,200GeV and ra i l  = 100, 1000 GeV in the running 
of the charge form factors g2(q2) and 02(q 2) between q2 = 0 
and q2 = m 2 .  The fit results depend slightly on mt  and 
ra N in the above range. The numerical values of  (5.8) are 
obtained for rat = 175GeV and r a g  = 100GeV. The SM 
predictions of appendix C are drawn in Fig. 21 by lattices 
in the region ra t=100-200GeV and ra/~r=50-1000GeV. 

The fitted T parameter depends only slightly on c~s, when 
the parameter ~b is allowed to vary freely within the experi- 
mental constraints. If  we fix Sb by a theoretical model, then 
the T parameter should have stronger c~s dependence due to 
the correlation -0 .31  between the errors of  T and Sb (see 
Sect. 6.3 for more discussions). The S parameter depends on 
(5c,. The fitted 5" value is shifted by about 0.07 (that is, 20% of 
its present uncertainty of 0.33) for [(5,~]SM ~ 6had = 0 •  

The parameters S, T and U measure electroweak radia- 
tive effects in the gauge boson propagators. The fit (5.8) 
shows that the data favor negative S and positive T at 
c~s = 0.12 and 6c, = 0. The point S = T = U = ~b = 0, 
which represents the case of no electroweak radiative ef- 
fects in the gauge boson propagators and none in the ZbLb L 
vertex, is about 4.5 standard deviations away from the min- 
imum for cts = 0.12 and rS, = 0. However, if in addition 
the electroweak radiative effects are dropped in the muon 
decay by setting 6c, = 0 in (2.26), then according to the sub- 
stitution rule (2.39) the 'no-radiative effects' point becomes 
T = 0.0055/c~ = 0.75, 5" = U = 6b = 0 in the fit (5.8), which 
is only 2.6 standard deviations away from the minimum. Al- 
though this result still assumes the SM radiative corrections 
for the remaining vertex/box corrections, it is essentially the 
mechanism that led the authors of  [64] to state that there 
had not yet been an evidence for genuine electroweak ra- 
diative effects. Our analysis makes it clear that it is more 
natural to interpret significant radiative effects in the T pa- 
rameter which are approximately cancelled by the effect of  
the radiative effect 6c. in the prediction of the electroweak 
observables. 

The resulting 2 )('min of (5 .8b)  agrees nearly with that of 
(5.5b). The effective number of degrees of freedom is in both 
cases 15, namely 19 - 4 respectively 18 - 3. The fit to the 
NC data contains actually only three parameters, S, T and 
6b(ra2Z), corresponding to the charge form factors g2(ra2), 
0~(ra~)  and 6b(ra~) in the global fit. The present fit depends 
in addition upon U, when the charged current data (and thus 
the forth form factor, 02 (0 ) )  are included. 
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Fig.  21. Global  fit to the (S,  T ,  U)  parameters  for  three c~s values and ~5~ - -  l / 6~(m 2 )  - 128.72 = 0 and SG = 0.0055.  Four  l - a  contours  are obta ined for 

each  o~s, by  us ing ra~ = 150, 200 GeV and m H = 100, 1000 GeV in evaluat ing the running o f  the charge  form factors: see (5.8) for a parametr iza t ion o f  the 

fit for m t =  175 GeV and m H = 100 GeV. The fourth parameter  o f  the fit, the ZbLb L vertex form factor  6 b ( m 2 ) ,  is a l lowed to take an arbi t rary value,  free 

f rom SM constraints .  The SM predict ions with 6,~ = 0 and 6G = 0 .0055 are also given for  1 0 0 G e V  < m t  < 2 0 0 G e V  and 5 0 G e V  < m H < 1000GeV.  

5.4 Testing the Minimal Standard Model 

In the minimal SM, all the parameters 9z(mz),-2 2 g2(m~) ' 
`0~(0), g2(0), .02(0) and Sb(m2z) depend uniquely upon the 
two mass parameters mt  and m H. Consequently, the results 
of the fits summarized in Table 6 are constraining mt and 
m H. We should repeat here that the SM contributions from 
the top-bottom doublet to the form factors are calculated by 
using the simple O(ac~)  two-loop formula [54-56]. Non- 
perturbative t{ threshold effects [60-62] will affect these 
corrections and the predicted mt  value will shift upwards 
by as much as a few GeV [62] from the effect in the T 
parameter. Our approach separates clearly the data analy- 
sis in terms of the generic form factors and the analysis of 
the SM contributions to these form factors. Uncertainties in 
the latter process can hence be studied separately. In fact 
if the SM mr-dependence of the fit is dictated by the mr- 
dependence of the T parameter alone, then the sole effect of 
the non-perturbative threshold corrections can be expressed 
as a rescaling of the mt  parameter in the following analysis. 

Fig. 22 shows the result of the global SM fit to all elec- 
troweak data in the (mH, rat) plane [102, 103] for three rep- 
resentative c~s values. The " z "  indicate the minimum of X 2 ; 
7.4, 6.6, 10.3 for c~s = 0.11, 0.12, 0.13, respectively, the in- 
ner contours correspond to I-a,  the outer to X 2 = X2in+4.61 
(that is, 90% CL). Dashed lines show the best mt  values 
for a given ran.  Note the positive correlation between the 
preferred values of rat and ms_s, which is found to be in- 
dependent of the assumed c~s value. On the other hand, the 
preferred range of m H depends rather sensitively on c~s. 
For the cases Cis(mz) = 0.11 and 0.12 smaller m n val- 
ues are preferred, whereas for c~s(raz)= 0.13 larger rail is 
slightly favored. If the lower bound for ran ,  ran > 63 GeV 

at 95% CL measured by the LEP experiments [101], is im- 
posed, mt below 100 GeV is clearly disfavored for all c~s, 
in agreement with the directly established lower top mass 
limit [104, 105]. 

The X 2 function in the global fit to all electroweak data 
can be represented in terms of the four parameters mr, mH,  
c ~ ( m z )  and ~ together with the constraint ~ = 0.0 �9 0.1 
[28] by: 

= \ z:~mt + X 2 H ( m H '  

(5.9a) 

where 
Tr~ H m H 

(mr) = 145.2 + 12.5 In ~ + 0.9 In 2 100 

,9(o  
Am\ = 14.6 - 0.23 In mH 

100 

r a i l  m t  70150 - ( 0 . 3 8 - 0 . 0 5  In 1 - ~ )  , (5.9c) 

and 

(e :o.31) 2 
x 2 ( m H ,  o l s ,~c~)  = 6.11 + \ 0.43 

( c~s - 0.1173 + 0.005 6~'~ 2 

+ 0.0060 J 

( c~s - 0.1244 + 0.025 g~ "~ m H 
- 0~--.......01 36- ] In 

0.0700 .] In2 ~ + \ 0 . 1 0 )  ' (5.9d) 
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given m H ,  and the solid contours are for X 2 = Xmin2 + 1 and X 2 = X2in + 4.61. The minimum point of X 2 is marked by " x " .  The region m H < 63 GeV is 
excluded by LEP experiments l l01] .  

Here rat and ra H are measured in GeV. This parametrization 
reproduces the exact X 2 within a few % accuracy in the range 
IOOGeV < rat < 250GeV, 60GeV < ra H < IO00GeV 
and 0.10 < ces(raz) < 0.13. The best-fit value of rat for a 
given set of ra H, c~ and {5~ is readily obtained from (5.9b) 
with its approximate error of  (5.9c), mutatis mutandis for 
ra/~ r. Due to the quadratic form it is easy to get the c~s or 
(5c~ independent results. Also additional constraints on the 
external parameters c~s and {5c,, such as those from their 
improved measurements, can be discussed without difficulty. 
As explained in Sect. 4.1, the SM does not fit well the ratio 
Rb. If  we remove from our global fit the data on Rb, we find 
that the best-fit rat value above becomes larger by 3.9 GeV, 
almost independent of ra H and c~s, and the 2 Xmin decreases 
by 2.4. 

Fig. 23 displays the overall X 2 of the SM fit, 2 XSM, 
as function of  rat for ra H = 60, 300, 1000 GeV and 
c~s(mz) = 0.11, 0.12, 0.13. Also the uncertainty due to 6c, is 
shown for three cases, 6~ = - 0 . 1  (a), 0 (b), +0.1 (c). The re- 
suits of  the parametrization (5.9) is shown by the dotted line. 
It is remarkable to see that the present knowledge of 6c~ to 
+0.10 affects the best-fit value of  rat by about 5 GeV, while 
the uncertainty in c~ of  •  affects it by about 2 GeV. 
This observation emphasizes the importance of the asymme- 
try measurements for the prediction of rat through g2(ra~), 
where the dependence on 6~ in the SM is not negligible: see 
(2.38b). On the other hand, the c~-dependence of  the fitted 
rat comes from the constraint due to the Z total width, r z ,  
which in turn is sensitive to rat mainly through -2 2 9z ( raz ) .  We 
come back to this point in the next section when discussing 
the new left-right asymmetry measurement [31]. 

In Fig. 24 the overall X 2 is plotted as functions of ra H 
for rat =120, 140, 160, 180, 200 GeV and c~(raz )  = 0.11, 
0.12, 0.13 setting 6 ,  = 0. The dotted lines indicate our ap- 
proximation 2 XSM of (5.9). Obviously, the best-fit value of  
r a g  depends very sensitively on the rat and c~s values. A 
small value of  the Higgs mass is favored for rat < 140 GeV, 
values of  a few hundred GeV for rat around 160GeV and 
large values for rat > 180GeV. The preference of lighter 
m/~ is more pronounced for small c~, while heavier ra H for 
larger c~. However, the rai l  dependence of X 2 is very mild 
and meaningful upper bounds on ra H can only be obtained 

for small c~, and small rat. The upper and lower bounds 
o n  r a  H will be discussed more quantitatively in Sect. 6 after 
inclusion of  the new left-right asymmetry data [31]. 

For given rat and ra H the QCD coupling c~,(raz) may 
be extracted within the SM from the electroweak data alone 
with the result: 

c~ = (~s) i 0.0060, 

(as) = 0.1165 - 0.00085 ( rat ,]2 
\ 1001 

+00oo , 0. ooo0 & 

(5.10a) 

, ( 5 . 1 0 b )  

where rat and ra u are measured in GeV. The above paramet- 
rization reproduces well the c~s dependence of the X 2 func- 
tion (5.9) in the range 100GeV < rat < 200GeV and 
60GeV < ra H < IO00GeV. The error on c~s determined 
from the electroweak data is found to be approximately 
0.0060, almost independently of the assumed rat, ra H and 
6{~, while the mean value (c~) is slightly sensitive to them; 

( 0.1159 for 
| 0.1153 for 
J 0.1145 for 

(oes) = ] 0.1220 for 
] 0.1214 for 
[, 0.1206 for 

(rat, ra/r) = (150, 60)GeV 
(rat, rait)  (175, 60)GeV 
(rat, ra H) (200, 60)GeV 
(rat, m H) (150, 1000)GeV ' (5.11) 
(rat, ra//)  (175, 1000)GeV 
(rat, ra H) (200, 1000) GeV 

for 6,~ = 0. There is a tendency in the SM fit to prefer larger 
c~s for larger m H. 

Furthermore, if all radiative effects are assumed to be 
dominated by the SM contributions, the present electroweak 
data have some sensitivity to the parameter 6,~ ~ 1 /~( ra2)  - 
128.72. By excluding the last term in (5.9d), (6c~/0.1) 2 [28], 
the electroweak data alone provide the constraint: 

6,~ = (6~) • 0.24, (5.12a) 

m t -  150 
(5~) = 0.010 - 0.139 

10 

ra H c~s - 0.12 (5.12b) 
+0.246 In ~ - 0.112 0.01 ' 

where rat and ra H are measured in GeV. The above para- 
metrization is valid in the range 120 GeV < rat < 200 GeV, 
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Fig. 24. Total X 2 of the SM fit to all the electroweak data as func- 
tions of m H for rat = 120, 140, 160, 180,200GeV and o~s ( raz )  = 
0 11, 0 12, 0 13 The hadronic vacuum polarization contribution to the ef- 
fective charge l /&(ra 2 )  is fixed by setting 6,~ = 0. The dotted lines show 
our approximation (5.9). The degree of freedom is 19. 

Considering the 2 Xmi, per degree of freedom (see paramet- 
rization (5.9) and Figs. 22-24) the SM predictions provide 
a good description of the data over a still wide range of 
mt and rail for the values of as and 5~ in the ranges: 
0.11 <a~ <0.13 and -0.1 <5~ <~0.1. In conclusion, the anal- 
ysis of the present precision experiments does not show a 
signal of new physics beyond the SM. 

6 D i s c u s s i o n  

In this section, the consequences of the update of LEP data, 
the new precision measurement of the left-right asymmetry 
at SLC [31] and the impact of a direct top mass measurement 
are considered. Finally, the predictions of all electroweak 
observables within the SM are discussed. 

60GeV < rail < 1000GeV and 0.11 < c~s < 0.13. For 
some representative rat and rail values the exact evaluation 
of the X 2 function leads to: 

(6~) = { 
-0 .09 for (rat, rail) = (150, 60) GeV 
-0.45 for (mr, rail) = (175, 60) GeV 
-0.87 for (rat, rail) = (200, 60) GeV 

0.59 for (rnt, ra i l )  = (150 ,  1000)  GeV ' (5.13) 
0.25 for (rat, rail) = (175, 1000) GeV 

-0 .12 for (rat, rail) = (200, 1000) GeV 

for as=0.12. The above fit is consistent with the direct mea- 
surement [5~]SM ~ 5had = 0 •  when rat and ran are in 
the preferred range in Fig. 22. This confirms the importance 
of the direct 6had measurement in constraining the model 
parameters from the electroweak precision measurements. 

6.1 Update of LEP data 

Recently the LEP Electroweak Working Group has published 
a report [91] summarizing the combination of preliminary 
LEP data for the 1994 La Thuile and Moriond conferences. 
During 1993 the four LEP experiments have performed a 
high precision scan roughly 1.8 GeV above and below the 
Z resonance and within 200 MeV of m z. The new Z shape 
parameters agree with the ones quoted in Sect. 4.1 within 
one standard deviation. The Z mass moved to 91.1895 • 
0.0044 GeV with improved uncertainty. Changing of the 
'constant' raz from 91.187GeV to 91.1895GeV does not 
lead to noticeable effects in the analysis. The total Z width 
increased to 2.4969 • 0.0038 GeV with considerably re- 
duced uncertainty, also the forward-backward lepton asym- 
metry increased to 0.0170 • 0.0016. Other parameters, ~r ~ 
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Re, Rb, have changed very little. The correlations in the Z 
line-shape parameter fit have become slightly smaller. 

For the time being no attempt has been made to incorpo- 
rate the updated values, since the analyses of the 1993 data 
are still preliminary. 

6.2 The new left-right asymmetry data at SLC 

As emphasized in Sects. 3 and 4, the left-right asymmetry as 
well as the other asymmetry measurements at LEP have the 
advantage of determining the universal parameter g2(m~) 
almost independently of the other form factors, -2 2 9z(mz)  and 
6b(m~), and almost unaffected by uncertainty in c~. Since 
the parameter g2(ra2) is directly related to the MS coupling 
~2(#), these asymmetry measurements are particularly im- 
portant for the GUT studies. 

The new measurement of the left-right asymmetry [31], 

AOR = 0.1656 + 0.0076, (6.1) 

implies 

gz(m2z) = 0.2282 + 0.0010. (6.2) 

This value is 2.5 standard deviations smaller than (4.5b). Ex- 
cluding the possibility of a shift caused by a systematic effect 
this measurement may be considered as a statistical fluctu- 
ation and then be combined with the other asymmetry data 
on the Z-pole, that is, the lepton (e,/~, r )  forward-backward 
asymmetry [26], the r polarization asymmetry [26], the left- 
right asymmetry [31] and the quark (b,c) forward-backward 
asymmetries [26], as well as with the old left-right asymme- 
try data from SLD [90]. The result is 

g z ( m 2 )  = 0.2302 + 0.0005. (6.3) 

The new average (denoted by "'ALL") is shown in Fig. 25 
together with the individual contributions. 6 Note that g2(m~) 
derived from the r forward-backward asymmetry is as small 
as (6.2) from the new left-right asymmetry. Although the 
inclusion of the new left-right asymmetry lowers the g2(m2) 
fit value by about 1.5 standard deviations, the quality of the 
fit (X 2 = 6.6 for 5 degrees of freedom) does not indicate an 
inconsistency with the other data, as may be seen also from 
the histogram of the distribution in the figure. 

With the proviso of excluding a shift due to systematic 
error sources we include the data (6.1) into our global analy- 
sis, and discuss its effect by comparing the results with those 
obtained in Sect. 4. The 3 parameter fit to the Z parameters 
only gives 

-2  2 9z(mz)  = 0.5538 - 0.00031 c~ -o.12 4- 0.0017 0.0i 

g2(m2) -- 0.2303 + 0.00006 ~o-.~@ 2 4- 0.0005 

66(m 2) = -0.0071 - 0.00432 a ~ . ~ 2  • 0.0035 

1 0.11 - 0 . 3 7 )  

Pcorr = 1 0.16 (6.4a) 

1 

2 ( C t s -  0. 1000"~ 2 
Xmin = 5.78 + \ ~-.0-]-2ff J " (6.4b) 

In Fig. 25 and in the following analysis, we use the combined result of 
2 2 [90] and [31] Ks the data for A~ A~R = 0.1637 • 0.0075 gives g ( m z )  = 

0.2284 • 0.0010 
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Fig. 25. The universal weak mixing form factor g2(m2z) as determined 
from various asymmetry measurements on the Z-pole: the lepton (e, #, "r) 
forward-backward asymmetries [26], the ~- polarization asymmetry [26t, the 
left-right asymmetry [31] and the quark (b,c) forward-backward asymme- 
tries [26]: see (4.4), (6.2) and the footnote 6. Also shown is the deviation 'X' 
(that is, X = ((g2(m2)) - 0-2302)/a(gZ(ra2z))) for each fit individually, 
where (~2(rrt~)} and cr(g2(m~)) denote mean and standard deviation of 
each fit, respectively. At the bottom the above x-values are bistogrammed. 

The result is shown in the (g2(m2), 02(m2))  plane by the 
thick lines of Fig. 26(a) for three values c~s = 0.11,0.12, 0.13 
along with the old fits (thin lines) copied from Fig. 15. 
The SM prediction for 6,  = 0 is also shown in the range 
100GeV < m t  < 240GeV and l GeV < m g  < 1000GeV. 
It can be seen that the new ALR measurement by itself im- 
plies large rr~t (mt>200 GeV) for m H > 50 GeV. The com- 
bined fit, however, favors 7r~t,,-,180 GeV for mH,--,100GeV. 
The remaining two parameters 9z(mz)-2 2 and 6b(m~) are 
less affected. The 2 ~min per degree of freedom is 8.4/6 for 
c~s = 0.12, which is fine. 

Next, the 4-parameter fit in terms of S, T, U and 6b is 
performed analogously to the one in Sect. 5.3. Combining 
the above result with (4.35) from the low energy neutral 
current experiments and (4.39) from the W mass measure- 
ments leads to 

S = -0.67 -0.024 ~,-o.12 
0.01 

T = 0.30 -0 .060"~-~  0.01 

U--  0.24 +0.053 ~-0.12 
0.01 

6b = --0.0074 0.0044 c~-0.12 
O.Ol 

l 0.87 -0.25 

1 -0 .42  
Pco~ = 1 

+0.066 ~ -t-0.30 

-0 .004 ~ +0.36 

+0.024 ~ -t-0.54 

t0 .0034 

-0 .19  / 

-0 .33 

0.19 ' 

1 

2 2 ( c ~  - 0.0998) 2 
Xmin = 8.60 + 0~-012-6- + 

(6.5a) 

(6.5b) 

where m t =  175GeV and m/_/ -- 100GeV are used to cal- 
culate SM running of the form factors between q2 = 0 and 
q2 = m~. Fig. 26(b) shows the l-or contours in the (S, T) 
plane for the three values c~s = 0.11,0,12, 0.13 for ~5, = 0. 
The old fits (5.8) are also shown by thin lines. The results are 
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Fig. 26. Impact of the left-right asymmetry data [31] by the SLD collaboration. The band (mean(dashed line) and the l<r (solid lines)) represents the 
constraint from the new left-right asymmetry data alone. The constraints from the fits with and without (see Figs. 15 and 21) the new asymmetry data are 
shown by thick and thin lines, respectively, for c~s ( m  Z)  = 0.11,0.12, 0.13. The Z b  L b L vertex form factor 6b(m~) is allowed to take an arbitrary value, 
free from SM constraints. (a) The fits are shown in the g2(Tt-~2)-g2(m2) plane: see (6.5), The SM predictions are obtained by assuming 6,~ = 0 in the 

range 100GeV < m t  < 260GeV and 1GeV < m H < 1000GeV. (b) The fits are shown in the S - T  plane, where 6c, = 0 and 6G = 0.0055 are assumed, 
and rat  = 174GeV and m/./ = 100GeV are used to calculate the SM running of the charge form factors between q2 = 0 and q2 = ra~ :  see (6.5) for 
parametrization of the result. The results are insensitive to the actual (rat, r a i l )  values in the region rat  > 100 GeV and ra i l  > 50 GeV (see Figs. 18 and 
19). The SM predictions are given in the range 100GeV < rat < 260GeV and 50GeV < m H < 1000GeV. 

insensitive to the above (rat, rail) values assumed in the run- 
ning of the charge form factors in the region rat > 100GeV 
and rail  > 50 GeV, although they are considerably modified 
for raB,,~<50 GeV (see Fig. 18). It is worth noting this quali- 
tative difference between the fit to g2(m2) and -2 2 9z(raz) and 
that to S and T. As a matter of fact, the experiments on the 
Z resonance are far more precise than those from the low 
energy neutral current experiments implying that the global 
fit to all the electroweak measurements in the neutral current 
sector measures essentially g2(ra2) and .0~(m~). In the SM 
the two charge form factors can be calculated for arbitrary 
mt and rail, as shown in the figure for rat=100-240GeV 
and raB=l-1000GeV. On the other hand, in our defini- 
tion, the T parameter determines 0}(0) rather than 92z(ra2). 
Hence, only if the running of the 0~(q 2) between q2 = 0 and 
q2 = ra~ is small, can we make the global fit to the S, T 
parameters. For this reason we restrict the SM predictions 
to the region ra n =50-1000GeV in the (5',T) figure. It is 
remarkable that the electroweak data including the new left- 
right asymmetry measurement clearly favor negative S, thus 
putting severe constraints on technicolor models [4]. Note 
that in the (S, T) plane only the S parameter is strongly 
affected by the new ALR data, while the T parameter is con- 
strained, independent of the S parameter, by -2 2 9z(raz) from 
Vz. 

Next, the impact of the left-right asymmetry measure- 
ment on the SM fit is discussed using all electroweak data. 
Fig. 27 shows the results of the SM fit in the (rat, raB) 
plane for c~s(raz)=O.11,0.12,0.13, and for 6~ = -0.1 (a), 
0 (b), and +0.1 (c). The contours of X 2 2 --- Xmin + 1 and 
X2 2 = Xmi, + 4.61 are shown by thick lines. The minima 
of X 2 in the figure are marked by crosses: 12.1, 11.4, 15.7 
for c~ = 0.11, 0.12, 0.13, respectively, for 6,~ = 0. The 
l<r contour for each o~ value is now clearly outside the 
physical region allowed by the direct Higgs searches at LEP 

(ra H > 63GeV, denoted by "LEP limit" in the figures), 
although the rail dependence of the X 2 is very mild for 
c%~>0.12. The result favoring a light Higgs boson reflects 
the fact that the new left-right asymmetry measurement shifts 
the S parameter to negative values. 

Finally, the status of the SM fit is studied in detail as in 
Sect. 5. To this end the representation of the X 2 of the SM 
fit including the new left-right asymmetry data is obtained 
(analogous to Sect. 5.4): 

\ Arat +X2n(mz,o~,,6~), 
(6.6a) 

where 
m H Tl~ H 

(rot) = 162.2 + 12.6 In ~ + 0.8 In 2 100 

Amt = 12.0 - 0.09 In rail  
100 

mH rat - 175 
- ( 0 . 3 1 - 0 . 0 5  ln - i -~ )  10 ' (6.6c) 

and 
2 

X~q(mH, c~, 6,~) = 9.56 + \ ff39 J 

(c% - 0.1164 + 0.005 ' c , )  2 

+ 0.0060 

- (c% - 0"1365 + 0"030 6'~) m / - t O - ~ 4 - 4 -  In 

( ~  - 0.1255"~ m/ t  ( 0 ~ 0 )  2 (6.6d) 
O. 0--63--9 J ln2 ~ + 
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Fig. 27. Electroweak constraints on (mr, rail) in the minimal SM, including the new left-right asymmetry data [31], for three selected c~s values 
o~(m z) = 0.11, 0.12, 0.13, and for (a) 6c~ = -O1, (b) 6,~ = 0, and (e) 6c~ = 0.1. Dashed lines show the best rat values for a given m H, and the solid 
contours are for X 2 2 X 2 2 Xmin + 1 and = + 4.61. The minimum point of X 2 is marked by "x". The region rail < 63 GeV is excluded by LEP = X m i  n 
experiments [101]. 

Fig. 28 (in analogy to the previous results of  Fig. 23) 
shows the total )(~2 of  the SM fit as functions of  me for 
m H =60, 300,  1000 GeV and c~s(mz) = 0.11,  0.12,  0.13. 
The uncertainty 6~ is shown for three cases: 6~ -- - 0 . 1  (a), 
0 (b), +0.1 (c). The dotted l ines are obtained by the approx- 
imate formulae (6.6). It is obvious  from Fig. 28 and Fig. 23, 
or from (6.6b) and (5.9b), that the best-fit value of mt  is 
shifted by about +17 G e V  for g iven m H, c~ and 6~ values. 
Here again the uncertainty of  6~ is important for the top mass 
prediction, as observed from (6.6b) and Fig. 28: 6c~ = 4-0.1 

causes a shift qz5 GeV in the best-fit value (mr) .  The c~s- 
dependence of  the <mr) values is considerably weakened.  

Fig. 29 (in correspondence to Fig. 24 in the previous fit) 
shows the total X 2 of the SM fit including the new left-right 
asymmetry data [31], as functions of  m H for m t  = 1 0 0 -  
200  GeV. Three c~s cases are displayed; o ~ ( m z )  = 0.11 (a), 
0 .12 (b), and 0.13 (c), all for 6 ,  = 0. The dotted lines show 
our approximation (6.6),  valid only  in the 'physical'  region 
6 3 G e V  < m H < 1 0 0 0 G e V .  As  seen, the best-fit value of  
m H is as low as 10 GeV for m t < 1 5 0  GeV,  whi le  it increases 



599 

2 

X 

2 

z 

2 

z 

22 

20 

19 

18 

17 

16 

14 
13 

12 
80 

~'"1 .... I .... I . . . . . .  x '~ . . . .  ~"ll'"~'l'~'x"'"~r~"~'"u"'~l" 

~.,.,, \ \ ,, . ~ , . . x q  711ooo ~ _ J - ~ " , 4 . J  

"x"~'(j~ # 300 

. . . .  ~., = o . ~ -  
~ s = O 1 2 -  

(a) 5 c ~ = - 0 . 1  ~=o . ,a  : 
. . . . . . . . . . .  F i t  - -  

;~,,I . . . .  I . . . .  I . . . .  I . . . .  I . . . .  ~ . . . .  I . . . .  I . . . .  t . . . .  ~ . . . .  I . . . .  I . . . .  ~,,,i 
100 120 140 160 180 200 220 

m t (GeV)  

~ . . . .  I . . . .  I . . . .  I ' ~ ' " \ "  
21 -- '",~ \ 
2O 

19 -- ~ . , ~  

16 - -  
15 -- m R(GeV) = 6~ 

14 -- 

13 - -  

12 ~ 
80 100 120 140 

m t ( G e V )  

22 

"I '~' '~'x!' I ' ' '  ~' ~.ff''' '~' ,/, i ,M, ~.~ \ \ \  Vr 
,. ~ \ ~, A ' , _ l ~ , . J q /  , 

:, ? ,  _~o...,,. =o, _ 

= . . . . .  ~Xs = 0"13 - (b) 6c~ 0 " ~  ~t = 
,,1 .... I .... I .... I .... I .... I .... I .... [ .... I .... I .... I .... I .... I,,, 

160 180 200 220 

. . . . . . . . .  ~ . . . .  ~,~, l , , , , , I ,~, , ] ,  . . . .  ~ . . . .  ~,,,,II,,~,, ' ' " '  ' - " '  " '  ' ' / / / ' /  

20  , ,~  % \ ~ X,, ~ " il," I 
~, -,. .-x_v - \ "  a f t  / 

1819 ~X X ~  ) r  

1,  ), \'E ,ooo 
15 - -  a o~ 

300 . . . .  s = �9 _: 
14 ~ as = ~ 
13 (C) 5 . . . . .  =0.13 i 

. . . . .  Fit 

12 III . . . .  I . . . .  I . . . .  I,,~,1 . . . .  I . . . .  I . . . .  I,,,~1 . . . .  I . . . .  I . . . .  I , , , , I , , ~  
80 100 120 140 160 180 200 220 

m t ( G e V )  

Fig. 28. Total X 2 of the SM fit to all the electroweak data including the new 
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by the approximate formula (6.6). The degree of freedom is 19. 
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1000GeV. The degree of freedom is 19. 

with m t  for m t > 1 5 0  GeV. This trend can also be appreciated 

from the global  fit of  Fig. 26(a) in the (g2(m2z) ' gz(mz)  ) - 2  2 
plane. 

6.3 The impact of the top mass measurement 

The top quark searches of the two collaborations CDF and 
DO at the Tevatron entered in their decisive phase [105, 106]. 
The range of values for the top quark mass coming out of 
the fits to the electroweak precision data is within reach for 
direct observation in the detectors at the Tevatron. In view 
of the recent publication by the CDF collaboration [106] it 
is instructive to examine the impact of the constraint 

m t =  174 • 16 GeV. (6.7) 

First, the ro t -dependence  of the global fit to the elec- 
troweak data in terms of the charge form factors ~2(ra~) 

2 2 and {Tz(mz) is considered,  now assuming  SM dominance  to 
the 6b(m 2 )  form factor. Using the Z parameters  inc luding  
the new ALR measurement  [31] one obtains 

22  00 / 
9z(mz)  = 0.55430 - 0.00109 ~ ~r"r'161740.01 

•  

O~s--O.l 2--0.0021 "r"t 16174 
g2(m2)  0.23023 + 0.00016 

+0 .00054  

Pcorr = 0.19, (6.8a) 

2 ( m r - 9 0 " )  2 
X~n = 6 - 8 6 +  \ .  ~ j 



6 0 0  

( c~ - 0.1187 - 0 . 0 0 2 2 ~  ) 2  
+ -0 ~0--~ , (6.8b) 

which is a good approximation in the region 150GeV < 
rat < 200 GeV. Here the errors and the correlations are al- 
most independent of  the rat value. The fit to all electroweak 
data gives 

oz~ - - 0 . 1 2 - - 0 . 0 0 2 2  " r  -174 
S = - 0 . 6 2  -0 .097  0.01 ~ +0.066 0-~ +0.30 

0 ~ - 0 . 1 2 - - 0 . 0 0 2 2 ,  . . . .  Ir 174 -0 .004  ~ +0.34 T = 0.39 --0.214 O.Ol 
~ _ 0 . 1 2 _ 0 . 0 0 2 2 m t  174 

U = 0.17 +0.182 " o.01 1~ +0.023 o@6 -t-0.53 

( 1  0 . 8 7 - 0 . 2 i )  
Pcorr = 1 - 0 . 3  , (6.9a) 

2 (rat_6~3 84 ) 2 Xmi, = 9.58 + 

( C t s - 0 ' 1 1 8 5 - 0 " 0 0 2 2 ~ )  2 (0_~0)2 .  (6.9b) + + 

The appearance of  essentially the same combination 

mt  - 174 
c~s - 0.12 - 0.0022 (6.10) 

16 
in (6.8) and (6.9) is the expected consequence of the strong 
correlation between Sb(ra 2)  and c~ as discussed in detail in 
Sect. 4. 

Next, the above constraint on the top quark mass (6.7) 
is imposed on the X 2 function of the SM fit in the previous 
subsection. The result displayed in Fig. 31 shows the im- 
provement over Fig. 27. Now, light Higgs boson masses are 
moderately favored, as a consequence of the constraint (6.7) 
being somewhat larger than the best-fit value of rat obtained 
by freely fitting the two parameters, rat and rail  without the 
m H constraint from LEP. 

It is instructive to anticipate the impact a precise mea- 
surement of  the top mass would have in the context of  the 
present electroweak data. The top quark mass is expected to 
be measured eventually with an uncertainty of  about 5 GeV 
at Tevatron by the end of this decade [107], which may be 
improved to about 3 GeV at an upgraded Tevatron [108]. 
The uncertainty is expected to be reduced by an order of 
magnitude to a few hundred MeV at next linear e+e - col- 
liders [109]. The top mass acts then like an external pa- 
rameter and the only remaining free parameter is the Higgs 
mass. Fig. 32 shows the 95% CL constraints for three val- 
ues of ces(raz) = 0.11,0.12, 0.13, and for ~5, = 0. For small 
rat values, rather strict upper bounds on r a g  are found. 
On the other hand no strict upper bound is obtained for 
rat,,~>180GeV. In the region 160GeV < rat < 190GeV, 
the upper bound on r a g  at the 95% CL is approximately 
expressed as 

r a g  / 1 .20+ 1 . 1 2 ~  forct  8 =0.11 

ln~6- d < 1 . 5 5 + 1 . 2 5 ~  f o r o ~ , = 0 . 1 2  , (6.11) 

t 1 . 9 5 + 1 . 4 5 m ' ~  1 7 4 ~  f o r ~ s  = 0.13 

where rat and r a n  are measured in GeV. The upper bound 
is lower for smaller mr. Since these bounds are very sensi- 
tive to the rat value as well as the assumed c~s value, more 

accurate constraints on mt are needed to obtain more strin- 
gent limits on m H. Nevertheless, it is remarkable that the 
constraint on the top quark mass (6.7) would favor a rel- 
atively light Higgs boson, m~q = O(100GeV),  which may 
exist in the minimal SUSY-SM.The electroweak data to- 
gether with the direct m H bound from LEP [101] rail  > 
63 GeV (95%CL) imply that the top quark should be heavier 
than about 145 GeV. This lower rat bound changes by about 
q:5 GeV for 6~ = • 

One comment is in order. Though our approximate for- 
mulae of the X 2 for the SM fit, (6.6), reproduce the exact 
result within about 1% accuracy in the Higgs mass range 
63 GeV < m H < 1000 GeV as seen Figs. 28-29, one should 
not use them in finding the confidence levels of  r a g  for 
small rat, since the neighborhood of the minimum of the X 2 
is outside the above range, where the exact X 2 and the ap- 
proximate formulae are fairly different as seen from Fig. 29. 

6.4 Summary of  the data and the SM fit 

Table 7 collects the complete list of all input data (except 
for c~, GF and raz)  and the corresponding minimal SM pre- 
dictions for several sets of  (rot, m H, c~s) values. The total 
X 2 of each sector is also given in the table. The correlations 
between the errors (given in the text) are properly taken 
into account. The numbers demonstrate that the present elec- 
troweak experiments are well described by the SM, perhaps 
except for a combination of a light top and a heavy Higgs, 
see the case (mr , roB)  = (150, 1000)GeV in the last col- 
umn of the table. Its total X 2 at c~, = 0.12 is 30.22 for 19 
data points, whose X2-probability corresponds to 95%. In Ta- 
ble 7 also the results of two approximations are listed. The 
'no-EW'  column is obtained by dropping all electroweak 
corrections to the two-point functions (S = T = U = 0) as 
well as vertex/box corrections (~6' = ~b = F~ = B~j = 0), 
while retaining the QED running of  the charge form factors 
&(q2) and g2(q2)/g~(q2) due to light particles (excluding the 
W and t contributions). The ' IBA'  column shows the result 
of the improved Born approximation, where all the gauge 
boson propagator corrections are retained and hence all the 
four charge form factors are kept exact, but all vertex/box 
corrections (6b = _F~ = Bij  = 0) dropped, except for 6c in 
the l* decay. 

It is amazing to note that the 'no-EW'  hypothesis is, from 
a statistical point of view, not completely unacceptable. The 
comparison between the 'no-EW' and the ' IBA'  hypothe- 
sis is surprising, since in the ' IBA'  prediction all the most 
important electroweak corrections are supposed to be con- 
tained, including the dominant ra2 corrections in the T pa- 
rameter. It is even more striking, if 6c in IBA is set to 0 (this 
may be called a genuine IBA), to obtain s-(ra~) -~ ~ = 0.2286 
for m t =  175 GeV and the total X 2 jumps nearly to 100. The 
measurement of the Z parameters are equally well described 
by the 'no-EW' and the full calculation for rat = 175 GeV. 
This confirms the observation of [64, 110] that there is 
no evidence of the genuine electroweak correction in the 
present electroweak precision experiments. As explained in 
sections 2.3 and 5.3, this is because of the accidental cancel- 
lation between the propagator corrections and the remaining 
vertex/box corrections. The no-EW calculation for all the 
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Fig. 30. 2-parameter fits to the Z boson parameters, where in (a) g2 (m2)  and 02(ra2z) are free parameters, and in (b) S and T are free parameters. In 
both cases the Z b L b  L vertex correction is assumed to be dominated by the SM contribution, and the m t  value in the vertex correction is treated as external 
parameter in the fit. The 1-o" contours are shown for three representative a s ( m z )  values, 0 . l l  (dashed lines), 0.12 (solid lines), 0.13 (dot-dashed lines). 
Also shown are the SM predictions in the range 100GeV < m t  < 200GeV for 1GeV < m n < 1000GeV (a), and for 50GeV < m H < 1000GeV (b). 

The SM predictions in (a) and the l - a  contours in (b) are obtained by assuming 6c, -- l / & ( m ~ )  - 128.72 = 0. 
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Fig. 31. Electroweak constraints on (mr ,  m H) in the minimal SM, including the new left-right asymmetry data [31] and the constraint m t =  174 • 16 

[106], for three selected a8  values at 5c, = 0. Dashed lines show the best m t  values for a given m H, and the solid contours are for X 2 = •min2 + 1 and 
X 2 2 + = X m i n  4.61. The minimum point of X 2 is marked by " x " .  The region m H < 63 GeV is excluded by LEP experiments [101]. 

asymmetries on the Z-pole give almost the same values with 
the predictions of the exact calculation for rat = 175 GeV 
and m H = 100 GeV. As discussed in Sect. 4.1, Rb also gives 
a large contribution to X 2 in the full calculation. For a large 
top quark mass, the ZbLb  L vertex from factor 5b(ra2z) de- 
creases (see Fig. 1), and hence it gives smaller Rb. For this 
reason the present data of Rb agree better with the no-EW 
and the IBA calculations, where $b(ra~) is set to 0. 

The most significant differences between the no-EW pre- 
diction and the full SM predictions in (rat = 175 GeV, m H = 
100GeV) column appear actually in the predictions for the 
low energy u~-q  scattering and the atomic parity violation 
experiments. When evaluating the no-EW and IBA predic- 
tions, all the external photonic corrections and the tree-level 
propagator effects are retained, as explained in Sect. 3.2. The 
difference between the full SM predictions and the no-EW 
or IBA predictions is mainly caused by the absence of the 
W W  box contribution in the latter. 

Another significant difference appears in the predictions 
for r a w ,  where the no-EW prediction (79.95 GeV) is much 
smaller than the observed value, 80.24 + 0.16 GeV. This ob- 

servation has also been made in [110-12]. In contrast to the 
low energy neutral current experiments above, the difference 
here is due to S and U contributing to ra W proportional to 
-0.294S+0.332U (c.f. (3.100)). For instance, the full SM for 
rat = 175 GeV and rail  = 100 GeV predicts 5' = -0 .232 
and U = 0.358, which implies for r a w  a shift by 0.19 GeV 
corresponding to more than one standard deviation. 

Finally, Fig. 33 shows separately for each sector the X 2 
of the SM fit as functions of ran  for rat = 100-200  GeV. In 
all sectors, the preferred Higgs mass range is strongly cor- 
related with the assumed top mass. For rat--170-180GeV, 
a light Higgs boson is favored by the Z parameter measure- 
ments and by the low energy neutral current experiments, 
while the data of raw alone prefer a rather heavy Higgs 
boson. Although the overall trend of the total X 2 shown in 
Fig. 29 is dominated by the contribution from the Z pa- 
rameter measurements, also the W mass measurement plays 
an important role for some rat, rai l  ranges. For instance, 
a relatively light Higgs boson (ran~<100GeV) appears in- 
compatible with a heavy top quark (mr ~ 200 GeV) by the 
rn W measurement alone. 
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Table 7. The SM predictions for the electroweak parameters. The column 'no-EW' is obtained by dropping all radiative corrections except in the running 
of &(q2) and g2(q2) due to light quarks and leptons. The column 'IBA' is obtained by dropping all vertex and box corrections except 6G" In both 'no-EW' 
and 'IBA' cases, corrections due to the tree-level propagator effects and the external QED/QCD corrections are kept. When the predictions depend on 
c~8(mz), we show three representative cases for czs(mz) =0.11, 0.12 and 0.13 from top to bottom. The X z values are obtained by taking account of the 
correlations among the errors that are presented in the text (see Sect. 4). The total number of the data is 22 by counting also (cx, GF, rnz), while the above 
three parameters are used as inputs of the SM analysis. The degree of freedom of the fit is hence 22 - 3 = 19. 

data 
mt  (GeV) 
m n (GeV) 
S 
T 
U 
SG 
1/a(m~) 
g2(mZ) 

A(m~) 
~2(0) 
0~(o) 
o~(o) 
F'z(GeV) 

o-~ 

Re 

AO,e 
FB 

Pr  
ALR 
Rb 

AO,b 
FB 

A 0 ,  r 
FB 

X 2 

2.489-t-0.007 

41.56 -t- 0.14 

20.763 •  

0.0158 • 0.0018 
-0.139 i 0.014 

0 .1637•  
0 .2203•  

0.099 + 0.006 

0.075 -4- 0.015 

(Ors = 0.11) 
(as  = 0.12) 
(as  = 0.13) 

2 0.2980 -4- 0.0044 
0.0307 4- 0.0047 

6 ~ -0.0589 + 0.0237 L 
6[~ 0.0206 q'- 0.0160 
X- 

s z 0.233 -t- 0.008 

Pesf 1.007 + 0.028 
X 2 
Q w  -71.04 4- 1.81 
X z 
2G'I~ - Old 0.938 4- 0.264 
2C2u - C z d  -0.659 4- 1.228 
X 2 
m w  80.24 q- 0.16 
X 2 
X 2 (cz8 = 0.11) tot 

(as  = 0.12) 
(c~s = 0.13) 

no-EW IBA Exact SM 
175 175 175 175 150 150 
100 100 60 1000 60 1000 
-0.232 -0.232 -0.283 -0.075 -0.264 -0.056 
0.887 0.887 0.917 0.587 0.614 0.300 
0.358 0.358 0.359 0.353 0.299 0.293 
0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 

128.85 128.71 128.71 128.71 128.71 128.72 128.72 
0.2312 0.2304 0.2304 0.2301 0.2317 0.2309 0.2325 
0.5486 0.5564 0.5564 0.5564 0.5552 0.5552 0.5540 

-0.0099 -0.0100 -0.0100 -0.0079 -0.0079 
0.2388 0.2389 0.2389 0.2386 0.2401 0.2394 0.2408 
0.5486 0.5492 0.5492 0.5493 0.5480 0.5481 0.5468 
0.4218 0.4242 0.4242 0.4245 0.4224 0.4229 0.4208 
2.481 2.519 2.493 2.494 2.484 2.488 2.479 
2.487 2.524 2.498 2.499 2.490 2.493 2.484 
2.493 2.530 2.504 2.505 2.495 2.499 2.490 
41.53 41.53 41.52 41.52 41.52 41.50 41.51 
41.47 41.47 41.46 41.46 41.47 41.45 41.46 
41.42 41.42 41.41 41.41 41.42 41.39 41.40 
20.734 20.747 20.689 20.693 20.665 20.701 20.673 
20.801 20.814 20.756 20.760 20.732 20.769 20.741 
20.869 20.880 20.823 20.827 20.799 20.836 20.808 

0.0167 0.0182 0.0167 0.0171 0.0144 0.0157 0.0132 
-0.149 -0.156 -0.148 -0.150 -0.138 -0.144 -0.132 
0.1494 0.1557 0.1480 0.1500 0.1378 0.1438 0.1318 
0.2183 0.2182 0.2157 0.2156 0.2157 0.2165 0.2165 
0.2183 0.2182 0.2157 0.2157 0.2157 0.2165 0.2166 
0.2183 0.2182 0.2157 0.2157 0.2157 0.2165 0.2166 

0.105 0.109 0.104 0.105 0.096 0.101 0.092 
0.105 0.109 0.104 0.105 0.096 0.101 0.092 
0.105 0.109 0.104 0.105 0.097 0.101 0.092 

0.075 0.078 0.074 0.075 0.069 0.072 0.065 
0.075 0.078 0.074 0.075 0.069 0.072 0.065 
0.075 0.078 0.074 0.075 0.069 0.072 0.066 
7.65 26.38 11.16 11.00 19.88 10.78 29.21 
7.40 35.10 10.71 10.94 16.35 10.15 25.10 
12.87 49.38 15.76 16.39 18.31 15.09 26.55 
0.2887 0.2893 0.2995 0.2998 0.2973 0.2979 0.2955 
0.0302 0.0303 0.0295 0.0295 0.0297 0.0295 0.0298 
-0.0588 -0.0589 -0.0634 -0.0634 -0.0634 -0.0633 -0.0632 
0.0181 0.0182 0.0177 0.0177 0.0178 0.0177 0.0178 
6.91 6.09 0.24 0.29 0.25 0.19 0.78 
0.239 0.239 0.230 0.230 0.231 0.231 0.232 

1.000 1.001 1.013 1.013 1.011 1.011 1.009 
0.61 0.60 0.18 0.21 0.06 0.11 0.02 
-74.89 -74.98 -73.21 -73.17 -73.31 -73.17 -73.30 
4.52 4.74 1.43 1.39 1.57 1.38 1.57 
0.709 0.709 0.723 0.724 0.717 0.720 0.713 
0.081 0.080 0.104 0.105 0.096 0.101 0.092 
1.96 1.94 1.27 1.23 1.51 1.40 1.69 
79.95 80.39 80.39 80.42 80.22 80.27 80.08 
3.23 0.91 0.91 1.28 0.02 0.03 1.06 
24.87 40.66 15.20 15.40 23.29 13.88 34.33 
24.62 49.38 14.74 15.34 19.76 13.26 30.22 
30.10 63.65 19.79 20.78 21.72 18.20 31.66 

7 C o n c l u s i o n s  

A n o v e l  m e t h o d  to c o n f r o n t  e l e c t r o w e a k  d a t a  w i t h  t h e o r y  a t  

t h e  q u a n t u m  l eve l  h a s  b e e n  p r o p o s e d  a n d  a c o m p r e h e n s i v e  

a n a l y s i s  h a s  b e e n  c a r r i e d  ou t .  T h e  e l e c t r o w e a k  o b s e r v a b l e s  

w e r e  f i rs t  e x p r e s s e d  in  t e r m s  o f  m o d e l - i n d e p e n d e n t  p a r a m -  

e te r s ,  w h i c h  in t u r n  w e r e  e x p r e s s e d  in  t e r m s  o f  S - m a t r i x  

e l e m e n t s  o f  p r o c e s s e s  w i t h  f o u r  l i g h t  f e r m i o n s  a n d  f ac to r -  
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Fig. 32. Constraints on the Higgs mass in the SM from all the electroweak 
data including the new left-right asymmetry data [31]. Here the top mass 
m t  is considered as external parameter with negligible uncertainty. Upper 
(solid lines) and lower (dashed lines) bound of the Higgs mass at 95% CL 
are shown as functions of m t  for c~s ( m  z )  = O. 11, O, 12, 0.13. The hadronic 

vacuum polarization contribution to the effective charge 1/6~(m~) is set 

by 60, ---- l / & ( m ~ )  -- 128.72 = 0. 

ized into the short-distance part and the part related with the 
external QED/QCD corrections for neutral current processes. 
Only two quantities, the Fermi coupling constant GF and the 
W mass are considered for charged current processes. Since 
all electroweak observables were expressed in terms of he- 
licity amplitudes, they can be evaluated in an arbitrary model 
on and off the Z resonance. Our formalism is hence useful 
to study effects of tree-level deviations from the SM, arising, 
for instance, from an additional Z boson. After careful eval- 
uation of the external QED/QCD corrections, the theoretical 
predictions were confronted with experiment in three steps of 
increasing theoretical stringency. First, in the class of theo- 
ries respecting the electroweak gauge group SU(2)L • U(1)v 
broken spontaneously to U(1)EM the radiative effects were 
classified into process-independent and process-dependent 
ones. Apart from the ZbLb c vertex, all vertex and box cor- 
rections were assumed to be given by the SM, while new 
physics contributions were studied in the most general way 
by four universal charge form factors. Next, by assuming the 
running of the charge form factors to be governed by SM 
physics alone, the electroweak parameters S, T, U were 
determined. Finally, the SM itself was confronted with ex- 
periments. 

It was our aim to render this analysis as transparent as 
possible by developing the theoretical formalism in full de- 
tail and by presenting the results in figures and parametriza- 
tions in a form useful for appreciating consequences of future 
improvements in the experimental data. 

The analysis proceeded in two steps. First, the informa- 
tion in the whole body of electroweak precision data has 
been condensed in the 9 electroweak parameters: m W and 
mE, ,  ~2(0),  .~2(0), 0 2 ( 0 )  -2  -2 2 -2  2 and 9w(O), s ( m z ) ,  9 z ( m z )  and 
-2 2 6h(rag). At the present time no direct information exists for 
~ ( r r~ ) .  In order to keep the analysis flexible ~2(m~) and 
also the QCD coupling constant c~s have been treated as 
external parameters in the fit procedure. Second, this uni- 

30 

25 

Z2 20 

15 

10 

5 

6 

5 

4 

3 

2 

5 

4 

Z2 3 

2 

1 

I I I l l l l l  I I I I l l l l l / t / l / I y l l ~ / I / l y i l u ~  

_ ( a )  Z , . ~  ,~ 

, l i , ~ , I I l  l i ~ I L , i l  i i 1 1 1 1 1 1  , , , , , , r r  

10 100 1000 10000 
m H (GeV) 

' ' " ' " ' l  ' " ' " ' l  ' " / / / / ' ~ '  

I t l l l l l l l  i l l L l l i , l  i l l i r  I I I I I I I ]  

10 1 O0 1000 10000 
m (GeV) 

, , ,  , 

10 

'k"XV '/'7'"I 

I O0 1000 10000 
m. (GeV) 

Fig. 33. The contributions to X 2 from each sector of the analysis in the 
SM: (a) from the Z parameters including the new left-right asymmetry data 
[31], (b) from the low energy neutral current experiments and (c) the m W 

measurements. They are calculated as functions of m H for m t =  100- 
200GeV, at c ~ s ( m z )  = 0.12 and 6c~ = 0. The number of degrees of 
freedom is 9 for the Z parameters (a), 9 for the low energy neutral current 
experiments (b), and 1 for m W (c). 

versal set of quantities with the complete covariance matrix 
has been interpreted within the electroweak theory at three 
qualitatively distinct levels. 

The main result is that the data can be consistently in- 
terpreted at all levels, in particular there is nowhere evi- 
dence against the SM. This conclusion is not affected, when 
the new precision measurements of the left-right asymme- 
try from SLD [31] is included. The fits to the universal 
charge form factors or that to the universal S, T, U pa- 
rameters work well and do not hint at a violation of the 
SU(2)L • U(1)y universality, nor at an anomalously large 
non-standard vertex/box corrections. Generally speaking, the 
inclusion of the SM vertex/box corrections improves the fit 
to the data, while the improved Born approximation gives 

0 0 a poor fit to experiments. The ratio Rb = crb/cr h measured 
by the LEP experiments turned out to be in poor agreement 
with the large ZbLb L vertex correction predicted by the SM. 
The fit to the S, T, U parameters gives us information on 
spontaneous symmetry breaking. The T parameter is essen- 
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tially determined by the charge form factor 9z t  z) ,  and 
a positive value is favored. The S parameter is then fixed 
mainly via g2(m2), and hence its best-fit value is affected 
by the asymmetry data. A negative S value is favored by 
the new left-right asymmetry from SLD, and the naive tech- 
nicolor models are disfavored [4]. Due to the strong corre- 
lation between the fitted S and T values, the region of the 
(S, T) plane with relatively large S and T ( - 0 . 3 < S ~ < -  0.1 
and 0 . 5 ~ T < l )  is consistent with the SM prediction for 
!50 GeV<mt  <200 GeV and 50 GeV~<m H<200 GeV (see 
Figs. 26(b) and 30(b)). The U parameter is measured only 
via 9~v(0), and it is consistent with zero. 

The analysis showed that the experimental precision re- 
quired to detect a deviation from the SM is still insuffi- 
cient. For instance, the running of the charge form fac- 
tors can be tested presently only for gZ(q2) and O2(q 2) and 
is limited by the precision of the low energy neutral cur- 
rent experiments. Nevertheless, the data are precise enough 
to show that their consistent description within the SM 
is only guarantied, if the top quark mass exceeds about 
145 GeV. This low mass bound of mt  is nearly indepen- 
dent of as,  but changes by about T5 GeV due to the uncer- 
tainty • in the hadronic vacuum polarization contribution 
to 6a = 1 /~(m~)  - 128.72. Note that the SM top-bottom 
contribution to the form factors have been calculated by us- 
ing the O(o~as) two-loop formula [54-56]. Perturbative t{ 
threshold effects [60~2]  will affect these corrections, and 
the predicted mt value may shift upwards by as much as a 
few GeV [62]. 

The near future promises a clarification of the value of 
the left-right asymmetry published by the SLD group and the 
ratio Rb from LEP experiments. The precision scan around 
the Z resonance performed 1993 by the four LEP exper- 
iments will further improve substantially the Z resonance 
parameters. It would be advantageous to publish the data 
without the subtraction of the Z-"/ interference contribu- 
tion. Eagerly awaited is the definitive observation of the 
top quark. If  its mass turns out to be compatible with the 
electroweak analysis of the l-loop effects there is hope to 
constrain for the first time the elusive Higgs sector. 

By introducing the QCD coupling strength a s (mz)~g  
and the shift 6~ - 1 /c~(m~)-  128.72 as external parameters 
in the fit, we have made clear the significance of their pre- 
cise measurements. Unless these parameters are accurately 
measured, the search for effects beyond the SM through the 
electroweak radiative effects gets increasingly limited. 
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Appendix A SM radiative corrections at one-loop order  

In this appendix the propagator, vertex and box corrections 
of the standard model (SM) are presented, all at one-loop 
level and partly at two-loop level for the O(aa s )  terms of 
the gauge boson propagators. All the Green's functions are 
calculated in the 't Hooft Feynman gauge in the dimensional 
regularization and renormalized in the MS scheme. Defini- 
tions of the scalar one-loop integrals, A, B, C, D functions, 
are given in Appendix D. Vector boson propagators are given 
in A.1, the vector boson fermion vertex functions and the 
fermion wave function corrections follow in A.2, while the 
box corrections are listed in A.3. All the one-loop calcula- 
tions are done independently and we reproduce the known 
results of [2, 32, 113] for two-point functions and those of 
[41-44] for the three- and four-point functions. 

A. 1 Propagator corrections 

There are four vector boson two-point functions contributing 
to processes with external light quarks and leptons at one- 
loop order. They can be parametrized by [2] 

~ 'Y(q2) = ~2 ~TQQ(q2), (A. la) 

f--~a 2 } 
= gz 

(A. 1 c) 

H W W ( q  2) = 9 2 H T  (q2), (1 .  ld) 

with the coupling factors 

9 
,qz . . . .  (A.2) 

c sc 
and the use of the compact notation 

g2 = 1 - ~2 = sin 20w , (A.3) 

throughout the appendix. These two-point functions and the 
coupling factors are renormalized in the MS (the modified 
minimal subtraction) scheme, and hence they depend on the 
't Hooft unit of mass # which appears explicitly in the B 
functions as defined in appendix D. The coupling factors of 
(A.2) and (A.3) also depend implicitly on the unit of mass 
#. The subscripts T in (A.1) denote the transverse part of 
the polarization tensor 

F[/Lrj(q)= ( gczu+ (J~--2~)IIT(q2)-t- ~ I I L ( q 2 ) .  (1 .4)  

The longitudinal parts Hr (q  2) do not contribute to processes 
with light external fermions. 

With the help of the four /3 functions, /3o,/33,/34 and 
/35 (see appendix D), all SM contributions to the above two- 

point functions are expressed compactly. HAU(q2)'s is de- 
composed into the bosonic and the fermionic contributions, 

--AB 2 --AB 2 H T  (q ) = H T  (q )B + HAB(q2)F , (A.5) 

and the expressions are given separately. 



A.I.1 Bosonic contributions. The bosonic contributions with 
pinch terms are given by [34] 

1 q2 B0(qZ; W, W),  (A.6a) HTQQ(q2)B = H?Q(q2)B - 

1 ,(q2 _ ~mw)l 2 Bo(q2", W, W), (A.6b) 
4 7r 2 

g~(q2)B = H33(q2)B 
1 

4 ~r 2 (q2 _ m~v)Bo(q2; W, W), (A.6c) 

--11 2 H r  (q)B = H)fl (qi)B 
1 -- rob)  [02B0(q2; Z) 47r 2 (q2 W~ 

W,'y)] , (A.6d) +~2B0(q2; 

where the short-hand notation 

Bn(q2; A, B) = Bn(q2; rrtA, mB) , (A.7) 

is introduced for the B functions. Each HT(q 2) function 
without overline is calculated in the 't Hooft-Feynman gauge, 
whereas the g T ( q  2) functions with pinch terms are gauge 
invariant [34]. The explicit expressions are 

._~QTQ (q2) B _ q2 16rc2 {[5Bo+12B3](q2;W,W)+~}, 

(A.8a) 

.~3Q (q2) B _ q2 167r2 {[I@Bo+IOB31(q2;W,W)+2}, 

(A.8b) 

[ ' ]  = 1 + ~B5 (q2; Z, H)  

l [(2---~qZ-2m~v)Bo+9qZB3](qZ;W,W) 
167r 2 

q2 

24 71-2 ' (A.8c) 

1 B g ~  (q2)B = ~ l [ m ~ v B 0 + ~ 5 ] ( q ; W , H )  

'[( 167r 2 8~2q 2 - (1 - 4~2)m 2 - m2)Bo 

8 rr 2 
q2 

(A.8d) 
24 rr 2 ' 

At one-loop order of the minimal SM, the first terms in 
(A.8c) and (A.8d) are the only ones in the transverse com- 
ponent of the vector boson propagators being dependent on 
the Higgs boson mass (mH). 

A.1.2 Fermionic contributions. The fermionic contributions 
to the gauge boson propagators are known to O(aas) two- 
loop level: 
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_ q2 
H~Q(q2)F 167r 2 Z Q28B3(q2;gi,gi)e 

i 
q2 

{ 4cts B~(q2; f , f )} ,  (A.9a) x 8B3(q2;f,f)+~ ~- 

q2 E Qe/3e 4 B3(q2; gi, gi), H~Q(q2)F- 167r 2 
i 

q2 

f =u~ ,d~ 

{ 2c~s B{z(q2 ; f , f ) } ,  (m.9b) x 4B3(q2;f,f)+g-7 - 

1 [4q2B3 2m}Bo](qe; -VZ33(q2)F-- 167r2 ~ (/3Y) 2 - f , f )  
f =gl, ui 

+l~-~Cqf=~dfI3Y'2{[4q2B3-2m}Bo](q2;f,f) 

+ 3  r 
(A.9c) 

H~1(q2)F - 1167r 2 E [ 2q2B3 - B4] (q2; ui, gi) 

d-l~--~Cq ~ Vuld.4 2{[2q2B3 - B4](q2;ui,dj) 
z,3 

(A.9d) 

The summation over i, j extends over the three genera- 
tions of lepton and quark flavors, (ul, u2, u3) = (u~, u~,, Ur), 
(gl, g2, g3) = (e, #, r), (ul, u2, u3) = (u, c, t) and (dl, d2, d3) = 
(d, s, b). Cq = 3 is the color factor, Qf the electric charge 
of the fermion f in units of the proton charge, I3y the weak 
isospin 

+i  for f = ui or UiL, 
I3f = - g  for f g,L or diL, (A.10) 

0 f o r f  g~R, UiRordiR,  

while Vu~d, are the Kobayashi-Maskawa quark mixing ma- 
trix elements. The O(c~c~,) corrections in perturbative QCD 
[52, 55, 56] are given by the functions Bv and BA: 

Bv(q2; rn, m) = q2 B~.(q2; m, rn) , (A. 1 la) 

BA(q2;m, rn) = q2B'A(q2;rn, rn)+ BA(O;rn, rn), (A.1 lb) 

Bv(q2;rn, O) = q2B{/(q2;rn,O)+ Bv(O;m,O), (A.l lc) 

BA(q2;rn, O) = q2B~(q2;rn, O)+ BA(O;m,O), (A.1 ld) 

where 

~2 55 4m2 ( q  2 ) 
Btv(qZ;rn, m)= l n ~  +-~ -4~3 + ~ - Vt ~m2 ' 

(A. 12a) 
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B~t(q2; m, m) 

= 1 n ~ - - ~ + ~ - 4 ( 3 + - ~ - -  A1 -AI(O) , 

(A.12b) 

B~(q2; m, 0) = B~(q2; ra, 0) 

= 1 n ~ - ~ + i ~ - 4 ( 3 + - -  ~ -  Fi - F I ( 0 )  , 

(A.12c) 

and 

BA(O;m,m)=m 2 121n2~--~+221n~--7+ - , (A.13a) 

By(0; m, 0) = BA(0; m, 0) 
. 2 +  .2  _~] 

: m ' [ 3 l n 2 ~  ~ ln~--~+ff2+ �9 (A.13b> 

Here (2 = 7r2/6, ~3 = 1.2020569, and the complex functions 
1/1, A1 and Fa are given in [55, 56]. The following limits 
are useful: 

B{z(M2; 0, 0) = BPA(M2; O, O) 
~2 55 

= In ~ 5  + -i2 - 4~3 + i0v, (A.14a) 

/ 2 2 1 5  ( M2 ) 
B{z(M2; m, m) = l n ~ z  +-~- +O ~ -  , (A.14b) 

/22 67 M 2 
B'A(MZ;m,m) = l n - ~  +-~ + O ( ~ T ) ,  (A.14c) 

B{/(M2; m, 0) = B'A(M2; m, O) 

/22 115 9 4r ~ 
= ln~-~ + 36 \m21" (A.14d) 

A.2 Vertex correction 

The vertex form factors FlI(q2), F2/(q2), Ff(q 2) and _P4I (q 2) 
appearing in the helicity amplitudes (2.2) contribute to the 
~/ff and Z f f  vertices as follows: 

FTff(q2)=-~{Q.f[I + F/(q2)] + 13f-f~(q2)}, (A.15a) 

Pz::(q 2) = -Oz{ (I3f -- Qfg2) [1 + F/(q2)] 

+I3:[ c2r~(q 2) + F:(q2) ] + r4I(q')}-(A.15b) 

It should be noted that the functions T':(q 2) and FzI(q 2) 
are common to the "Yff and Z f f  vertices, and that T'f(q 2) 
and T'aI(q 2) are additional contributions to the Z f f  vertex. 
These vertex functions depend on the chirality of f and their 
explicit forms at the one-loop level of the SM are 

Ptn(q:)  = (9zf'f'~2Fyz(q2) (A.16a) 

T2/n(q 2) = F:n(q 2) = F4/n (q 2) = 0, (A.16b) 

/ ' ,~Zff \ 2 WII '  2 , 

(A.16c) 

V Wf f f  h2 , 

I gWf f f  12 , 
L f 2 F:L(q 2) = ~f, ~ F~w(q ), 

rIL(q 2) = o,  

with the gauge boson coupling convention 

gZ:: =.~:: = ~ Q : ,  

9 zss = Oz ( h :  - Q: : ) ,  

where 

gZ f f ~-- --ON Q f .~2 , 

w r Y ' =  - ~  vs:,  , 

(A.16d) 

(A. 16e) 

(A. 16f) 

(A.17) 

F[z(q 2) = 1-'l(q2;f,Z,f) - S'(m2f;f,Z),  (A.18a) 

' 2 F:C.<q ): w,:,)- w>, 
(A.lSb) 

+2Re Bo(q2; W, W),  (A. 18c) 
' 2 l'fmw(q ) = l'lm(q2; f', IV, f') + F2m(q2; W, f', W).(A.lSd) 

Here 

~ ' (qZ;m,M)=-  2 + ~  Bl(qZ;m,M) - 1, (A.19) 

is the external light fermion self energy correction, and the 

last term in (A.18c) --: '  of Fzw is the pinch term [2, 34] which 
is subtracted from the vertex functions as calculated in the 
't Hooft-Feynman gauge. The remaining vertex functions in 
(A. 18) are 

1"1 (q2; m, M, m) 

= 2q2(Cll +C23)+4C24 - ~ '~Co (q2 ;m ,M,m) -2 ,  

(A.20a) 

Fire(q2; m, M, m) 

= M2 q2(Cl2 + C23) + 2C24 - 2M2Co (qa; m, M, m) 

1 } (A.20b) 
2 ' 

-F2(q2; M, m, M) 

2 Iq2(Cll + C23) 
L 

~ )  C24 + (q2 _ (q2; _ 
(A.20c) 

F2m(q2; M, m, M) 

m2 [2M2C0 - C24](q2;M, m, M), (A.Z0d) =2~-~ 

with the shorthand notation for the C functions of ap- 
pendix D: 

Ci(q2;ml,m2, m3) ~ Ci(0,0, q2;ml,m2, m3). (A.21) 



F(w(q  2) = 

- - f  
/ ~ 2 w ( q  2) = 

where 

In the limit of the diagonal KM matrix elements Vuidj = 
5<~, which is assumed in all our numerical results, the in- 
ternal fermion mass m = my, is non-negligible only for 
f = bL(f '  = t). Otherwise we can set m = 0 at high energies 
(m2/q 2 ,-~ 0) and find 

#2 M 2 
Fl(q2; 0, M, 0) = In ~-~ - 4 - 2 q---g- 

_q2 _ ie 
+ ( 3 +  2 - ~ ) I n  M2 

+ q2 + i e ) - S p ( l ) ] ,  (A.22a) +20+'  2[sp(1 w q2 ] 

#2 M 2 
F2(q2; M, 0, M)  = 3 In ~-~ + 2 - 2 --q2 

+(1  M2 M2 
+ 2 - -~ - ) f lL  + 2 7 ( 2 +  7]M2~L2 , (A.22b) 

/-'Ira(q2; 0, M, 0) = F2m(q2; M, 0, M)  = 0,  (A.22c) 

and 

s 0, M)  = In #2 1 M 2 2 ' (A.23) 
#2 

ReBo(q2; M, M)  = In ~-5 + 2 - / 3  L .  (A.24) 

Here Sp(z) = - f o  !@ dt is the complex Spence (diloga- 
rithm) function, and 

fl = V/1 - 4 ( M  2 - ie)/q 2 , (A.25a) 

L = In fl + 1 (A.25b) 
f l - l  

At low energies, light fermion masses may not be ne- 
glected as compared to the momentum transfer q2. In the 
limit of Iq21/m 2<< 1 and 2 2 m}/q2,  m y / m  z << 1, but at fixed 
the vertex functions reduce to 

F[z(q 2) = m--~z Jz(q2; f )  + 0 ~ , (A.26a) 

-q~2 [ J w ( q 2 ; f ' ) + o (  qm@z) ] (A.26b) 
? n 2  

--q-~2 [ T w ( q 2 ; f ' ) + O (  qm@z) ] (A.26c) 
m 2 

2 In m 2 1 (A.27a) Jv(q2; f )  = 4F3(q2; f '  f )  - 3 9 '  

2 In m 2 2 1 -Jw(q2; f )  = 4F3(q2; f '  f )  - 3 3 3" (A.27b) 

The function F3 is defined in appendix D. The last 1/3 factor 
is the pinch term. 

A.3 Box correction 

m 

Box corrections for the process e;~g; ~ f~ fo  are expressed 
by B~[,  where )% a = - !  is used for left-handed fermions 
and A, cr = +1 for right-handed fermions. 
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eI l gZeegZH a B~,~(s ,  t) = 

X [Ii(u, 8; m z ,  mr )  -- I2(t , s; m z ,  my)] 

(SAL Weu Wf f '  2 
+1--~2 gL gL 

f + I i ( u , s ; m w , m y )  for I3i = +�89 ( f  = ue,ui) 

• ~ [ . - I 2 ( t , s ; m w , m f ,  ) for I3y _ l  ( f = g ,  dO ' 

(A.28a) 
1 gZeegZ_;$ a 

• [/2(u, s; m z ,  my) - I1 (t, s; m z ,  my)] , (A.28b) 

with 

s = (Pc + p~)2 = (py + p f)2, (A.29a) 

t = (Pe - p f)2 = (Pc - pf)2, (A.29b) 

u = (Pe - pf)2 = (Pc - py)2, (A.29c) 

and Pi being the 4-momentum of particle i .  The internal 
fermion mass my, is non-negligible only for f = b L, for 
which the top quark contributes in the limit of the diagonal 
KM matrix elements. The functions I i(u,  s ; m y ,  my)  and 
I2(u, s ; m v ,  my) are expressed in terms of the D functions 
of appendix D: 

I i (u ,  s; m y ,  mr)= - 2 u ( D l j  + D12 - D13 + 2D24) 

-4tD25 - 4sD26 - 16D27, (A.30a) 

I2(u, s ; m  V, m f )= - 2 U ( D l l  + D24 - D25) 

-4D27,  (A.30b) 

where 

D~ - D,(O, O, O, O, u, s; O, m v ,  mr ,  m v ) ,  
/ -- 0, 1 1 -  13, 2 1 - 2 7 .  (A.31) 

After reduction of the higher D functions 

I , ( u , s ; M , m ) = - 2 C  ('24) - 2 C  (234, + 2 ( u -  m2)D(o'234), 
(A.32a) 

/z(u, s; M, m) = - -  t30 (13) - B0(24) 
8+U 

U + ~ ( 8 + 2 u + 2 M 2 - m 2 ) [ C ~ ' 2 3 ) + C  (`34)] 

l { s ( s + 2 u - 2 M 2 + m 2 ) + e u 2 }  
(8 + U) 2 

1 + - -  
(s + u) 2 

• { (u - 

- -  ( 2  M 4 - 2 M 2 m 2 + m 4 + m 2 u - 2 u 2 )  s 

/-1(1234) + 2 ( M 2 + u ) ( M 2 - m 2 + u )  u ~0 ' 

(A.32b) 

is obtained. For the case f =J b L the limit m -+ 0 can be 
carried out: 

I, (u, s; M, 0) = - 4  CO {'24) + 2 u DO('234) , (A.33a) 
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8 + U  

2 2 M 2) C00 23) + ~ 7 - ~ ( ~  + 2u + 

2 {s (s+2u-2M2)+2u2}C~'24)  
(s + u) 2 

1 2 (M 2 + u) 2/D(1234) +(s. + u)""""'~ { s u -  2 s ( M  4 -  u 2) + 2u  @ 

(A.33b) 

Eqs. (A.33) agree exactly with [41]. 
In the low energy limit, only D27 survives: 

1 
D27(0 , 0, 0, 0, 0, 0; 0, m y ,  0, m v )  - 4 m 2 ' (A.34a) 

D27(0, 0, 0, 0, 0, 0; 0,/7~w, rot, ~ w )  

_ 1 [ m2 in mr2 _ 1 ]  (A.34b) 
4(mr 2 m 2 )  rnt 2 - m  2 m ~  ' 

and hence 

1 3 
B;~,~(O,O) = ~ 9z~9 Z'f'f 2m2 

+ ~AL ~ W e u ~ W f f '  2 
167r2 ~,L ,VL {4 

+ 7 2 -  for I3 f=+ �89  ( f = u e , u i )  
x m~ v , (A.35a) 

_ _ - -  1 ( f  = g, di) r r ~  for I3 f --'~ 

1 3 (A.35b) B;,f-A(0, 0) - 16-71. 2 g f e e g Z ~ f 2  

for f 5/bL, and 

~Zee ~Zbbl 2 
B ~ b ( o , o ) =  YI~ Yf, I 3 

, 16rr2 m 2 

9 W e u  ~Wbt 12 
L YL I l 

167r 2 m 2 - m~v 

x mt 2 7 m  2 m---~w - 1 , (A.36) 

for f = bL. 

Appendix B Renormalization group improvement and 
hadronic contributions 

The effective charges of the SU(2) x U(I) theory are ex- 
pressed in terms of the MS couplings by 

1 1 --QQ 2 - -  + ReHT.r( q ),  (B.I) ~2(q2) ~2(/~) 

1 I 
- -  + ReH;r77(q2), (B.2) 02(q 2) 02(/Z) 

where the SU(2) effective charge 

~2(q2) (B.3) 02(q2)= g2(q2) 

is introduced for convenience. The expressions (B.1) and 
(B.2) are explicit solutions of the renormalization group 
(RG) equation in the MS scheme: 

D [effective charges] = 0, (B.4) 

with the RG operator 

E 51 D -  #2 
Bare 

2 0  ( ~ 2 ,  O 
= /.t ~ 2  +/3r k 167r 2 / 0(42 / 161r 2) 

02 o 
0(02/1671.2). (B.5) 

The MS fl-functions in the minimal SM read at one-loop 
order 

~2 4 CfQ2 ] . ~2 .9  B6) 
y 

Y 

where Cy = 1(3) for f = g(q). The two-loop O(aas)  con- 
tributions are accounted for by replacing Cq --+ Cq(1 + -7-) 
in (B.6) and (B.7). Note that the effective charges ~2(q2) 
and `02(q2) behave similarly to the MS couplings at asymp- 
totically high energies, ]q2] >> m~v, since the functions 
--QQ 2 Hr,.r( q ) and H3,QT(q2 ) do not have large logarithms at 

i, 2 ~ lq2l >> m~v [2]. This is enabled by adding the pinch 
terms [2, 34] in the self energy ~(q2), and our ~2(q2) and 
g2(q2) are equivalent to the corresponding .-charges [2] up 
to the imaginary parts and the two-loop corrections. 

Although the MS couplings ~ and 0 could be adopted 
directly in our analysis, we prefer the effective charges of 
(B.1) and (B.2) as quantities to be used when confronting 
theory with experiment. We give two reasons, one being 
associated with the non-decoupling of heavy particles in the 
MS scheme, the other being related with the treatment of 
non-perturbative hadronic contributions to the electroweak 
parameters. 

Traditionally, the appearance of large logarithms of 
heavy particle masses (non-decoupling) in the MS scheme 
is avoided by adopting the effective field theory [114, I15], 
where the heavy particle fields are integrated out in the ac- 
tion. The couplings of the effective theories are then related 
to each others by matching conditions ensuring that all effec- 
tive theories give identical results at zero momentum trans- 
fer, since the effects of heavy particles in the effective light 
field theory must be proportional to q2/?n~eavy. 

In general, the two MS couplings ~.2(i,)~fi and 02(IZ)eff 
of the effective light particle theory can be obtained by the 
matching conditions 

1 l [ --QQ ] 
- - -  + ReHT.~(0) (B.8) 

(.2(0) ~2(/L)eff eff' 

, , [-,,] 
- - -  + ReHT.~(0) (B.9) 

.02(0) 020&H eli '  
where only the light particles at the scale # contribute to the 
two-point functions at the right-hand side. In the minimal 



SM, one may, for instance, employ an effective theory of 
particles of mass up to the scale #: 

167r 2 167r 2 4 #2 
~2(0 ) -- ~2(~t)ef-"" ~ + 3 E O~ In ~ f f  O(~t -- Tgtf) 

f 
#2 

- (7  In m ~  + ~)O(p  - row)  , (B.10) 

167r 2 167r 2 2 ~ #2 
- ~q2(p)ef'~"--: + 5 ~.jI3j:P.f In ~f-f 0(/z -- ms) 02(0) 

2 
_ (43__ In mT]22 + -~)O(#-mw) . (B.11)  

Such a scheme is often adopted in quantum chromodynam- 
ics (QCD), but leads to a discontinuity at # = m W of the 
effective MS coupling constants. The appearance of the dis- 
continuity in the unphysical MS couplings is not really a 
problem 7, but the appearance of many quark and lepton 
mass scales renders the use of these effective couplings im- 
practical at the scale # < m Z. Furthermore, direct use of 
the effective MS couplings at lower energies leads to ex- 
pressions with light-quark masses suffering from large non- 
perturbative QCD corrections. 

These two problems of the MS scheme can be overcome 
simultaneously by adopting the effective charges (B.1) and 
(B.2) as expansion parameters at 

0 < Iq2[ < O(m2z) (B.12) 

when confronting with experiments. The connection with 
a high energy theory, e.g. at q2 = m 2, can then be made 
free from light quark mass ambiguities by the use of the 
manifestly RG invariant expressions (B.1) and (B.2). In the 
region (B.12) the effective charges at two different q2 are 
related by dispersion relations. 

The light hadron (first 5-quark, or "5q") contributions to 
the differences 

1 1 47r 4rr 
&(q2) ct g,2(q2) ~2(0 ) 

--QQ 2 --QQ = 4 rr[ReHT,.y(q ) -  HT,.y(0)] , (B.13) 

~2(q2) ~2(0 ) 471" 471" 
&(q2) O~ 02(q 2) 02(0) 

--3Q 
=47r [ReH~,%(q 2) - HT,.r(0)] , (B.14) 

have been parametrized in the region 0 < Iq21 < m 2 as 
follows. For the photon vacuum polarization function, we 
use 

--QQ 2 --QQ 47r[ReHT,../(q ) -  HT,.r(O)]sq 

_f(q2) for _ m } < q2 < 0, (B.15a) 

[ 
Re--QQHT.r( q 2 -HQQ 2 

] 
= _f(q2) + 4rr ~q=c,b _l ) -- T,q,(--q )/q_ 

for 0 < q2 < m 2. (B.15b) 

Here the results of the dispersion integral analyses [27, 28] 
are parametrized by 

7 tn fact the discontinuity can be evaded by using yet another unphysical 
effective coupling, the so called dimensional reduction DR scheme [116] 
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f(q2) = 

1.0961n(1 + Iq21) 

for 0.0 _< v/Iq21(GeW) _< 0.3 

0.3261 ln(1 + 3.9271q21) 

for 0.3 _< v / ~ ( G e V )  < 3 

0.2486 + 0.4009 ln(1 + [q21) 

for 3.0 < ~/~TT(GeV) _< 50 

3.878 + 0.4084{1n ,q2~s0 + ~176176 so 1)} 

for 50 _< X / ~ ( G e V )  <_ m z 

(B.16) 

with so = (91.176GeV) 2. The parametrization (B.16) is 
copied from [27] for 0GeV < X / ~  < 50GeV and 
smoothly connected to the most recent estimates of [28] 
at q2 = m2; f (m~)  = (0.0283 + 0.0007)/ee. In the time- 
like region (0 < q2 < m}), the second term in (B.15b) is 
added in order to account approximately for the threshold 
contributions of the charm and bottom quarks. 

Hadronic contributions to the photon-Z mixing two- 
point function can then be estimated as [29] 

47r [ReH~%(q 2) - H3,%(0)] 5q 

--QQ 2 --QQ = 2rc[ReHT,.u q ) -  HT,.r(0)] 5 q 

+z~wr 2) + Ac(q2 ) + Ab(q2), (B.17) 

where 

3q 2 ( 2F(w --+ e+ e - )  
A~or 2) = ~ ~, m~o(m 2 + Iq21) 

F(r  ~ e+e - )  "[ 

m ~ ( . ~  + Iq21) f ' 
(B.18) 

is an estimate [29] for the extra contribution from the u, d, 
s quarks, and 

{ z~q(q2) = 67r q Qq B3(0; mq, mq) - B3(q2; mq, mq) 

O~s [B{/(O; mq, mq) -- B{z(q2; mq, mq)] } (B.19) + ~  

for q = C and b, are calculated perturbatively. Note that in 
the mu = ma = ms  limit, the identity Au + Ad + As = 0 
holds. Thus, the term Aw6 gives an estimate [29] of the 
flavor SU(3) violation effect. Contributions of leptons, the 
top quark and any other new particles, as well as the light 
5-quark contributions at X / ~  > m z  are treated perturba- 
tively. 

The light quark masses to be used in the region lq21 > 
rn~ are determined by requiring continuity of the two ef- 
fective charges at q2 = m 2. The left-hand sides of (B.15) 
and (B.17) are evaluated perturbatively, and equated with 
the estimate at q2 = rn2z . 

--QQ 2 HT"r(0)] 5q = - - f ( m 2 ) '  (B.20) 4re [ReHT, . r (mz)  - --OO 

47r [ReH3%(m~)-  ~T,%(0)] 5 q 

= - - l f ( m ~ )  + A~r 2) + Ac(m~) + Ab(rn2z), (B.21) 
Z 
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where the mean value of the estimate [28] 

_f(ra2z) -0.0283 +0.0007 
= - -3 .88  + 6ha d ; 

oz 
6had = 0 4- 0.1 (B.22) 

is taken at raz = 91.187 GeV. Note that the additional term 
at the right-hand side of (B.15b) is less than 0.001 and the 
discontinuity at q2= ra} is negligibly small. With the use of 
the expressions (A.9a) and (A.9b), the two matching condi- 
tions can be approximated by: 

,n + o  -~ f(mz), (B.23) 
5q m2 

2 
m" -Tg--mdm*mu + 0 ( - ~ ,  ra---Tz ) ms = 18rrAw~(ra2) = 0.152. (B.24) 

Taking the charm and bottom quark masses 

me = 1.4 GeV, (B.25a) 

rab = 4.7 GeV, (B.25b) 

and including O(c~,) corrections one finds for 6h~d = 0: 

c~s(raz) 0 0.11 0.12 0.13 
rn,, = raa (GeV)  0.055 0.089 0.093 0.097 (B.26) 

ras(GeV) 0.064 0.104 0.10810.113 

Our program finds appropriate light quark masses for arbi- 
trary c~,(raz), (~had, rac and ~/,b input values by solving the 
continuity conditions (B.20) and (B.21). It should be pointed 
out here that these light quark masses are fixed merely to 
ensure the continuity of the effective charges at q2 = ra2 
and that they do not have a direct physical significance. At 
iq21 > ra2, where those quark masses are used, the mass 
effects are suppressed by 2 2 m q / m  z and never become signifi- 
cant. Whenever the light quark mass values play a physically 
significant role, their values must be chosen independent of 
those of (B.26) by appropriate physics arguments. 

In Fig. 2 the SM predictions for the effective charge 
47r/e2(q 2) and the effective weak mixing angle g2(q2) are 

shown in the region 1 MeV < V / ~  < 1 TeV for rat = 100, 
150, 200GeV and rail  = 100, 1000GeV with 6had = 0. The 
solid lines show the space-like (q2 < 0) effective charge, 
whereas the dashed lines the time-like (q2 > 0) effective 
charge. The top-quark effect at q2 = m 2 can be parametrized 
by 

1 
128.71 + ~Shad 

& ( r a 2 )  SM 

+0"024(1 + 5 ~ t ) (  100 G--eV'~ 2' mt / (B.27) 

[ g2(ra2z______)s2(0)] = _3.09 + 6had 
& ( m  2 )  OL' J SM 2 

+0"009(1 + 5 - ~ )  ( 100 GeV']  2 ' m t  / (B.28) 

for rat > 100GeV representing typical contributions of a 
heavy particle to the running of the effective charge form 
factor &(q2) and g2(q2) between q2 = 0 and ra}. 

When constraining new physics contributions the value 
of &(ra2) is required, but only c~ = &(0), that is, the fine 

structure constant, is precisely measured. When new physics 
is contributing significantly to the running of the effective 
charge form factors between q2 = 0 and q2 __ ra2, its value 
can deviate from the SM prediction (B.27). In order to ac- 
count for both such new physics contributions and future 
improvements in the measurement of 6had, the parameter 

1 
6,~ = &(ra2) 128.72 (B.29) 

is introduced. For instance, in the SM one finds from (B.27) 

[ 6 ~ ] S M = 6 h a d + 0 ' 0 2 4 ( l + 5 ~ ) (  100GeV']2-0"01"mt / 

(B.30) 

The last two terms are close to zero for rat = 150-200GeV, 
such that within the SM: 

[6c~]SM ~ 6had. (B.31)  

In general, new physics contributions can be accounted for 
by 

[Re,~QQ. 2.  H~,~(O)] .(B.32) 6~ = [6o~]SM +4rr[  11T,,rtmz) -- QQ 
-- '"  J New Physics 

An example of the extra term is found in [1 1], where conse- 
quences of the gauge-invariant dimension six operators [10] 
have been studied in detail. 

The MS couping constants g~2(#) and ~2(#) are deter- 
mined from the identities (B.1) and (B.2) evaluated at large 
Iq21, say at q2 = ra2. The magnitude of ~2(raz) depends 
on rat and the assumed ~s(raz) value, and that of ~2(rag) 
depends also on the g2(ra~) value as observed at LEP/SLC. 
For c~, = 0.12 one obtains 

1 47r 

&(raz)SM e2(raz)SM 

--0.12 for m t =  100GeV 
+0.00 for rat = 150GeV 

= 128.00 + 6had + +0.08 for rat = 200 GeV ' (B.33) 

+0.15 for rat = 250GeV 

and 

a2(raz)sM 

c~ 6 
0.0007 for rat = 100GeV 
0.0009 for rat = 150GeV (B.34) 

+ 0.0010 for rat = 200GeV ' 
0.0011 for rat = 250GeV 

The relatively large rat dependences above, as opposed to 
those of (B.27) and (B.28), result from the non-decoupling of 
the heavy top quark due to the logarithmic rnt dependence 
of the MS renormalized two-point functions in (B.1) and 
(B.2), as explained earlier. In the presence of many new 
particles at the TeV scale, such as in the supersymmetric 
standard model, all new particle contributions are suppressed 
by their inverse mass-squared as demonstrated for a heavy 
top quark in (B.27) and (B.28) for the effective charges, 
while the magnitudes of ~2(raz) and ~2(raz) are affected 
strongly. One should then either adopt the effective light 
particle theory for the MS couplings [5, 9, 17, 23] or use 
the above effective charges below TeV scale. 
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Finally, it is worth mentioning that the expressions for 
the running of the remaining two charge form factors: 

1 1 
- _ _  + Re-~T,Z(q 2) 

33 

fz(q fz(tO 
-2g2ReH3?z(q 2) + ~4ReHTQ,Qz(q2), (B.35) 

1 _ 1 --11 2 
02(q2) 02(#) + ReHT, w(q )' (B.36) 

are not the exact solution of the one-loop RG equations of 
the MS couplings, but that the O(1) terms at the right-hand 
sides remain small at all q2, provided the renormalization 
condition 

~2(FZ) = ~2(Q2), (B.37a) 

~2(/z) = g2(Q2), (B.37b) 

is chosen with 

j" m}  if Iv21 < O(m~), Q2 (B.38) 
[ q2 if [q21 > m2z . 

Therefore, 02(q2) and .0~v(q 2) can be safely calculated from 

4 rr _ g2(Q2)O.2(Q2) 1 
.02(q2 ) &(O2 ) + ~ Sz(q2) ,  (B.39) 

47r _ gZ(Q2) 1 
O~v(q2) &(Q2~ + 4 Sw(q2)' (B.40) 

where the two quantities 

--3Q _ , 
S z ( q  2) =-- 167rRe H T , . r ( Q 2 )  ~ , ~ z ( q 2 )  

HT, Z(q )] 

+S )[11T,.r ~ ) , ' 

--11 2 Sw(q 2) ~ 167r Re [H~Q,.r(Q 2) - HT, W( q )g2=g2(Q2)],(B.41b) 

remain small (free of large logarithm) at all q2, 0<lq21<~. 
In principle, the parametrization (B.16) can be used to 

account for the hadronic contributions to the HT;Z(q 2) and 
--11 2 HT, W( q ) terms at IqZl < m 2 with the help of the CVC and 
PCAC hypotheses. However, we find that the contribution 
of light hadrons are negligible at low momentum transfers 
[q21 << m~, and hence the perturbative expressions (A.9) 
with the light quark masses as obtained by the matching 
conditions (B.20) and (B.21) are used when evaluating these 
functions. 

It is important to note that the expressions (B.39) and 
(B.40) are valid in the sense of a perturbative expressions, 
and therefore the scale Q2 has been chosen such that the 
Sz(q 2) and Sw(q 2) terms remain small. The typical scale 
of the charge form factors .0~(q 2) and 0~v(q 2) are Q2 = m2 
rather than Q2 = q2 for Iq21 << m~. Our definitions of the S 
and U parameters then follow 

- -3Q 2 T,Z (0)] , (B.42) S = Sz(O) = 167r Re [HT,.y(mz) -- ~33 1 

S + U = Sw (0) 

: 167rRe[H~O.r(m2) - HT'W(0),2:~2(m~)]. (B.43) 

Appendix  C SM contributions to S ,  T ,  U and ~b(m2z) 

This Appendix deals with the SM contributions to the univer- 
sal electroweak parameters S, T, U and the Zbrbz vertex 
form factor 6b(mZz) used as free fit parameters. The com- 
plete analytic formulae are given at one-loop level and the 
two-loop corrections are also included as far as they are 
known. We adopt the perturbative order ac~, [46, 52, 54- 
56] corrections at a ,  = o~s(mz)-ffg in evaluating the S, T, U 
and 5b(mZZ) parameters, since it allows the readers to repro- 
duce our results unambiguously and straightforwardly. The 
effects due to non-perturbative threshold corrections [60-62] 
should be evaluated carefully, and one can obtain more pre- 
cise predictions of the SM from our formulae by adjusting 
the effective top-quark mass to produce the same S, T, U 
and 5b(m~Z) values. 

C.1 5;SM 

The S parameter in the SM can be expressed as a sum of 
three pieces: 

SSM = S~ + Sq + S B  , (C.1) 

where the indices denote contributions from the leptonic, 
hadronic and the bosonic (that is, W, Z, H)  sectors of the 
SM, respectively. Each term is separately finite. Se and SB 
are given at one-loop order, whereas the hadronic contribu- 
tion Sq with the two-loop O(aoes) correction [52, 55, 56]. 

The leptonic contribution is a sum of three terms 

- E G~ e, , (C.2) 
Sg : 7r i=l 

where each generation (u~, gJ  contributes 

Ges(x) = - - ~ l { l n x + ( l + 5 x ) A ( x ) - l O x } .  (C.3) 

The real function A is 

2 v / 1 - 4 x  In l + ~ - 4 x  1 
A(x)= 2 v ~  f o r 0 < x <  ~ ,  

1 
1 f o r x  > - .  2-v/4X- 1 tan -1 v/4x _ 1 4 

(C.4) 

For the case of charged lepton masses much smaller than 
the Z mass one finds 

Ges(x) = (2 + l l n x )  x + O(x2). (C.5) 

The (u~, 7-) doublet contribution is hence Se ~ -0.0002. 
The hadronic contribution calculated up to O(aa~) two- 

loop level is [52, 55, 56]: 

sq = (c.6) 

The oneqoop contribution is again a sum of the three terms 

7"f i=l m2z 

with Cq = 3, where each quark generation contributes 
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cqs(x, y)=  1 {In -yx - ( l + l  lx)A(x) 

+(1 - 7y)A(y) + 22x + 14y}. 

When both 

( c .8 )  

quarks are light as compared to Z, one finds 

4 21 l n x ) x + ( 2 3  21 y)y+ y2). Gqs(x, y) = ( + + In O(x 2, 

(C.9) 

When only the down-type quark is light (y << 1), one finds 

Gqs(x,y) = 1 {  22x - l n x - ( l + l l x ) A ( x )  

+3y(4 + 3 In y) + O(#2) }, (C. 10) 

,{ l ,  
- l n x -  - + - -  

1 6 20x 

(' )} +3y(4+31ny)+O .~,y2 . (C.l 1) 

For large mr, the quark contribution Sq becomes negative 
and its magnitude grows logarithmically. 

The two-loop O(c~c~s) correction [52, 55, 56] can be ex- 
pressed in terms of the B{I and B~ functions (A.12) of 
appendix A: 

Ozs t 2 ?/,i) + t 2 . �9 Bv(m Z, d,, di) 

1 B' tin2" 1 BIA(m2a;di,di)}[.C.12) 12 Al" Z '  U'i, Ui)  - -  "i2 

where the quark label stands for its mass as in appendix A. It 
is easily seen that the right-hand side of the above equation 
is independent of the unit-of-mass # for each generation, 
and that they are in fact a function of the ratios m 2 / m  2 ui / Z 
a n d  2 2 m < / m  z. The contributions from the first two quark 
generations are again negligible. The two-loop term S(q I) is 
hence dominated by the (t, b) doublet contribution, which 
can be approximated by 

c t s{  1 5xt ( 1 )  
S~ ') ~ Cq 7s - l n x t + T V l  

i '  [A' (4-~vt) - AI(0)] } 

% {  1 2 + 1 + 0 ( 1 " ) }  (C.13) 
= c ~ 7  ~ - l n x , + ~ r  9 , . ~ ,  ' 

m 2 / - 2  The expression (C.13) agrees with [52]. with xt =- t/ 'mz. 
The following table shows the lull hadronic contribution Sq 
for several values of mt in lowest order (% = 0) and with 
the O(cwes) corrections for C~s = 0.12: 

mt(GeV) Sq 
~ 8  = 0 a s  = 0.12 

100 -0.008 0.010 
120 -0.033 -0.017 
140 -0.052 -0.038 
160 -0.069 -0.055 
180 -0.083 -0.070 
200 -0.095 -0.082 

(C.14) 

using for the bottom mass mb = 4.7GeV. The two-loop 
correction is important for relatively small mt values. 

The bosonic contribution is expressed as 

_{ SB=rel V s k m 2  ] 

where 

1 lnc2 7 1 4 c 2 + ( ~ c 2 _ 1 )  A(c2) 
Fs(c2) = - 1-2 8 3 

(C. 16a) 

=-1 .451 for c2= (80"24 ~2 
\ 91~5-~ / ' 

, 

Hs(x)= ~ x - ~  + - - + 2 - 4 + 4 ( 1 - - z )  x lnx  

[ x,j + 1 - ~ +-f~ B(x). (C.16b) 

Here A(x) is given by (C.4), and 

x / x ( 4 - x )  tan- '  "U 4 -  1 for 0 < x < 4 ,  

B(x)= v :~2 for x > 4 .  
x/x(x 4) In x/~ + x/:c - 4 

(C.17) 

+ HSkm2 ] , (C. 15) 

For large ~ ' H  o n e  has 

H t 'm~ "~ 1 m~/ 37 17 m~ { m ~  "~ 
s~,77zJ = ~ lnm--  T + 3 6  48 m.~4 + O k m ~ j  ' 

(C.18) 

The total bosonic contribution SB is tabulated below for 
several m H v a ] u e s :  

m H (GeV) SB 
50 -0.234 
I00 -0.166 
200 -0.107 
400 -0.061 
1000 -0.008 

(C.19) 

C.2 TSM 

The T parameter in the SM can be expressed as a sum of 
three individually finite pieces: 

TsM = Te + Tq + TB, (C.20) 

where the indices denote the leptonic, the hadronic and the 
bosonic (that is, % I/V, Z, H) contributions, respectively. Te 
and TB are evaluated at one-loop order, whereas Tq contains 
irreducible two-loop contributions in CW~s order [52, 54- 
561 and in the m, 4 order [47, 57, 58]. Reducible higher- 
oder contributions [63] are taken account of by the identity 
(2.36a). 

The leptonic contribution is a sum of three terms 

CF,?t2  3 ( ?r~,~, "~ 
f,-2A 2  Z ] ' (c.21) 

i=l 
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where 
xy  y 

GT(x , y )=  x + Y + _ _ l n  . (C.22) 
4 2 ( x  - y )  x 

The leptonic contribution of the first three generations is 
hence negligible; even the (u~, r )  doublet contributes to T~ 
only about 0.00005. 

The hadronic contribution is calculated including the 
O(aa~) [52, 54-56] and the irreducible O(m 4) [47, 57, 58] 
two-loop corrections: 

T v = Tq(~ + T~l)+ Tq (2) . (C.23) 

The one-loop contribution is a sum of the nine terms 

u~ dj (C.24) 
~ 7 ;  i,j=l 

with Cq = 3. The function Gm(x, y) is found in (C.22). In 
the limit of the diagonal KM matrix elements V~j = 5ij, the 
contributions from the light quarks of the first and second 
generations can be neglected. 

The two-loop contributions are only important for the t-b 
doublet: 

T~I)= - C q  a-A . 3  + re 2 (' m 2 "~ ( G F m 2 "~ 
rr 18 \ ~ z z / /  \ 2 x/'2 rr2 a ,/ ' (C.25) 

( m2t ~2(_GFm2z_ ) 2 
T~ 2) -- Cqa t 4 , m 2  ) \ 2 v / ~ r r 2  a p(2)(mH/mt) , (C.26) 

where terms of order 2 2 m b / m  t are neglected. The function 
p ( i ) (mH/m t  ) gives [47]: (2)," p tmH/mt )  = - - 0 . 7 4 , - - 4 . 7 2 ,  

-6 .95 ,  -11 .70 ,  -10 .74 ,  for m u / m t  = 0, 1 l, 5, 10. The nu- 
merical value of the 'expansion parameter' in the above ex- 
pressions is GFm2z/2v/-27r2a = 0.4761. 

The following table shows the contributions from each 
term in (C.23) for several values of mr, the lowest or- 
der contribution Tq (~ and the O(aa~)  contribution Tq 0) 
with a~ = 0.12, and O(m 4) contribution Tq (2) with m H = 
100, 1000 GeV: 

m t ( G e V )  

100 
120 
140 
160 
180 
200 

Tq(o) 

0.419 
0.607 
0.830 
1.087 
1.379 
1.705 

Tq(l) 

a~ = 0.12 
-0 .047  
-0 .068  
-0 .092  
-0 .120  
-0 .152  
-0 .188  

rq(2) 

m H = 100ira H = 1000 
-0 .003  --0.005 
-0 .006  --0.011 
-0 .010  --0.020 
-0 .016  --0.035 
-0 .024  -0 .055  
--0.034 -0 .084  

(C.27) 

using for the bottom mass m b =  4.7 GeV in Tq (~ 
The bosonic contribution is 

aFm2z [ F T ( m 2 " ~  + H (m2"~] 
TB - 2V/~Tr2a  i \m2z ) T ~ z ] j  , (C.28) 

where 

FT(e2) = ( 1  + 2D2) c2 In c2 3 g2 
]- - - 7  4 c2 + 1 - (C.29) 

= -0.4371 
( 80.24 )2 

for c 2=  and D 2 = 0 . 2 3 1 2  
\ 9 1 . 1 8 7 J  

3 [ l n x  !n(x/c2)]  ; c2 m 2 
HT(x)= a x  1 - - x  l - - x / c 2 J  ~ m 2 " 

(c.30) 

For a heavy Higgs boson (m 2 >> m 2) one finds 

H T ( m 2 ~  
t,,@ ) 

3 I rn}/ +c21nc 2 = - a  _(1 - & i n  

_ _  +c41nc2"~ "~z  + +{(1 _ c4)ln m2  •2 0(7~14~] 

(C.31) 

The total bosonic contribution TB is tabulated below for 
several m H values: 

(C.32) 

m H (GeV) TB 
50 --0.227 
100 --0.257 
200 --0.314 
400 --0.396 
1000 --0.529 

C.3 USM 

The U parameter in the SM can be expressed as a sum of 
three pieces: 

USM = Ue + Uq + UB , (C.33) 

where the indices denote the leptonir the hadronic and the 
bosonic (that is, 7, W, Z, H) contributions. Each term is 
separately finite. Ue and UB are given at one-loop order, 
whereas the hadronic contribution Uq is given with the two- 
loop O ( a a s )  correction [52, 54-56]. 

The leptonic contribution is a sum of three terms 

- E Gu 0, e, (C.34) 
U g =  71- i=1 

where the contribution of each generation (ui, gi) is 

x + y  1 - 
Gu(x , y )  - 3 6 X A(x) 

1 - y A(y) + f u ( x / c  2, y/c2). (C.35) 

Here A(x) is given in (C.4), and 

fu (x ,  Y) = - -  
(X -- y)2 (X -- y)4 _ 3 (X 2 + y2) In y x + y  + _ _  + 

12 6 12(x - y) x 
(x - y)2 + x + y - 2  

/3(x, y)L(x, y) ,  (C.36) 
6 

with 

~(z,  y) = x/ l l  - 2(x + y)2 + (z -- y)2i, 
u 

(C.37) 
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and 

L(x, y) = 

1 1 - x - y + r  y)  
In 1 - x - y - /3(x,  y) 

for I v ' 7 -  v/-~l > 1 or v ~ +  v ~  < 1, 

1 - x + y  l + x - y  
tan- ~ - -  + t a n -  

fl(x, y) fl(x, y) 
for Iv"~ - v"-~l < 1 < v"~ + v '~ -  

(c.38) 

In the limit of vanishing lepton mass one has 

1 Gu(O, 0) = ~ lnc 2 , (C.39) 

2 2 for c 2 = mw/ra z, and hence the contribution of the first 
three lepton generations is 

1 ( 80 .24  ~ 2  
Ue,~-  lnc 2=-0 .0814  for c 2= \ ~ j  . (C.40) 

The hadronic contribution is calculated up to two-loop 
O(oLO~s) level [52, 55, 56]: 

gq = V~ O) + g (1) . (C.41) 

The one-loop contribution is again a sum of the three terms 
in the limit of diagonal KM matrix elements Vii = 6ij: 

_ _  d, (C .42)  
u(o) = Cq ~ o u t  m2z ' v q 71" i=l 

with Cq = 3, where Gu(x, Y) has been given above in (C.35). 
For the first two quark generations the approximation (C.39) 
holds. For the contribution of the (t,  b) doublet the following 
approximation is useful: 

1 1 1 
Gu(x,y) = ~ lnx + -i~ - ~ y  lny 

(4-~ 1c2 2 )  1 ( ~ 2 )  - - + O , y2 (C .43)  
+ g + ~ v  x 

The two-loop O(c~c~s) correction [52, 55, 56] can be ex- 
pressed by 

3 
Oz s U~ ') = Cq ~ Z ~u~(l)t--'"<u,, raa,), (C.44) 

i=1 

where the two-loop function G{J ) is given in terms of the 
Bv and BA functions (A.11) of appendix A: 

G ( I ) .  { ~ 2  t 2 .  u tra~, me) = Re [B) + BA] (mz, m~,, ra~) 

1 
+ (ra ; rad, ra,,) 

1 "B' rod)} ~[ v + BA](m~v ;ra~, (C.45) 

It is readily seen that the function G~ ) is independent of 
the unit-of-mass #. The contribution of the first two quark 
generations can be approximated by 

1 
g{~)(O, O) = -~ In c 2 , (C.46) 

just like in (C.39) for the one-loop contribution. The top- 
bottom contribution can be approximated by 

C~)(ra~, o) 

1 ln~-+  rat Iv, f ra~" "~ (ra~' h ] 
=-6 raz ~m2z[ '\4-~tm~ ) + A ' \ 4 m z l -  AI(O) 

4m2 [F1 (raCy "~ ] 
3ra~,, \ ra2t ) -N(O)j (C.47a) 

l l n ~  @ 2 4 1 O(m2"~ (C.47b) 
= g  raZ - 5~3+ f f2+g+  \rat2 ) �9 

The expressions (C.46) and (C.47) agree with [52]. The fol- 
lowing table shows the total hadronic contribution Uq for 
several values of rat in lowest order (c~, = 0) and with 
O(c~c~,) corrections for c~, = 0.12: 

rat (GeV) Uq 
c~s = 0 o~s = 0.12 

100 -0.118 -0.148 
120 -0.034 -0.057 
140 0.029 0.009 (C.48) 
160 0.079 0.063 
180 0.122 0.108 
200 0.159 0.147 

using for the bottom mass rab = 4.7 GeV in evaluating the 
G~ ), while the O(c~c~s) correction G~ ) is cal- lowest order 

culated in the limit of vanishing bottom quark mass. 
The bosonic contributions are given as 

/ (C.49) 

2 2 where the constant term Fv(mw/ra z) is found to be 

{ ( 1 1 1 )82  
FU(C 2) = --2 ~ + c4 6c 6 

1 ( ~  1 9 7 3 ) }  
+4 1 - c ~ + ~-7 + c 4 2c 6 lnc2 

+(c2 + 2-~-~ )A(c 2) 

4 1 - { ' 7 +  2 
+ { (  6+c2 c4) 2~2-3- t c2 4 3 4 ) }  B(e@2) 

( ( 1 19 3) 
- 3 - 3 c 2 )  c 2 - 2 c 2 ~ 8 ~  + ~ c 4  ( C . 5 0 )  

_-1.043 for c2= ( 80.24 )2 \ ~ j  and 82 ---- 0.2312, 

and the ra n dependence is given by 

HU(XH)=--HS(XH)+ Hs ~ ;XH -- ra2 " 

The function Hs(xH) is defined in (C.16b). In the large 
mass limit (rail >> raZ) the leading logarithm (lnra n)  of 
the function Hs (see (C.18)) cancels in Hu of (C.51), and 
hence one has 

Hu(raH'~ lnc 2 17 1 c2~raZz+o . 
- , # /  

(C.52) 



615 

Note, however, that the m H dependence is very small as 
seen from the table below showing the total bosonic contri- 
bution Uq for several m H values: 

m H ( G e V )  UB 
50 0.345 
100 0.344 
200 0.341 
400 0.340 
1000 0.339 

(c.53) 

C.4 ~b(m2)SM 

The Zbgb L vertex form factor ~b(m2)SM in the SM is ex- 
pressed by: 

8b(m~) r(o) r 2 .  -0) 2 = o 8 tmz)  + 6 b (mz)  + 8~2)(rn2). (C.54) 

The one-loop contribution 

~(o). ~,  b~ 2 vb~(m~) (C.55) b I"'~Z,I = F'~ (mz)+O2Fb2L(~2Z)+ 

is calculated using the vertex functions of appendix A, which 
can be approximated by 

- (mt+3_6"~ 2 
6~o) ~ -0 .00076  - 0.00217 \ 100 J ' (C.56) 

for 100 GeV < m t  < 250 GeV. The second term at the right- 
hand side of  (C.54) is the O(a~m 2) two-loop contribution 
[46]: 

b v '~aJ  = - -  " 2 -- 1 (C.57) 
7r 8 v ~ T r  2 " 

The last term is the O ( m  4) two-loop contribution [47, 48]: 

~(2). 2 -  { GF Trt2 ) 2 
b t m z ) :  - 2  \8-v~7_ r(2)(m"/mt)' (c.58) 

where the function r(2)(mH/mt) is given in [47]. For 
m H / m t  = 0, �89 1,5, 10, it gives r(i)(mH/mt) = 5.71, 2.46, 
1.47, 3.69, 7.92. 

The following table shows the contributions from each 
term in (C.54), r(0), 2 ,  ot, ~(1), 2 ,~ o b [mz), ~ o  b tmz)  with a ,  = 0.12, and 
-(2) ~ 2  ", 6b ( ' t Z )  with m H = 100, 1000GeV, for several mt values: 

m t ( G e V )  

100 
120 
140 
160 
180 
200 

•(o).  2 .  b tmz)  

-0 .00481 
-0 .00603  
-0 .00746  
-0 .00908  
-0 .01089  
-0 .01285  

c~ s = 0.12! 
0.00018 
0.00026 
0.00036 
0.00047 
0.00059 
0.00073 

• (2) .  2 , b tmz)  

m H = 100 m H = 1000 
-0 .00000  -0 .00002  
-0 .00001 -0 .00003  
-0 .00002  -0 .00005  
-0 .00003 -0 .00007  
-0 .00005 -0 .00010  
-0 .00009  -0 .00013  

(C.59) 

Appendix D One loop scalar functions 

In this appendix explicit analytic expressions for the B func- 
tions are given, as well as the reduction of higher C and D 
functions to Co and Do functions. 

D.1A, B, 

Following 
functions are defined by: 

A(mO = f 
dOk 1 

iTr 2 N i '  

f dDk[1, k u, kuk v] 
[Bo, B u, B u~'] (i j)= i7r2 NiNj  ' 

f dDk [1, k u, ktZk u] 
[Co, C u, C u~] ( i jk)= i7r2 N~NjNk ' 

[Do, D u, D u~'] (ijkg) = f 
dDk [1, kU, kUk v] 

i7g 2 NiNjNkNe 

where D = 4 - 2 e, 

dOk = F(1 - e) (Trp2)" dDk 

is the MS 

C and D functions 

Passarino and Veltman [32] the A, B,  C and D 

(D.1) 

(D.2) 

(D.3) 

, (D.4) 

The vector/tensor functions are reduced to scalar functions 
as 

BU(12) = p~Bl(12), (D.7a) 

BU~'(12) = p~p~B21(12) + 9~'VB22(12), (D.7b) 

for the two-point functions, 

C~'(123) = p~Cl1(123) + p~C12(123), (O.8a) 

CU~'(123) = p~p~C21 (123) + p~p~Cz2(123) 

+p}~P2}C23(123) + g~'C24(123),  (D.Sb) 

for the three-point functions, and 

Du(1234) = p~Dll (1234)  + p~D11(1234) + P3UD13(1234), 
(D.9a) 

D~,V (1234) = p~p~ D2, (1234) + p~p~ D22 (1234) 

+p~p~ D23(1234) + p}Up2 } D24(1234) 

+p~Up3} D25(1234) + p~Up3 } D26(1234) 

+gUUD27(1234) ,  (D .9b)  

for the four-point functions. Higher rank tensor functions 
do not appear in our applications in the ' t  Hooft-Feynman 
gauge. 

The scalar functions Bi, C,, Di, are defined by 

B~(12) = Bi(p2; ml ,  m2) (D. 10) 

for / = 0, 1,21 and 22, 

Cd123)  z 2 = C i ( P l ,  P2, (Pl + p2)2; m l ,  17/,2, 7//,3t (D. 1 1) 

for i = 0, 11, 12 and 21-24, and 

Dd1234)  = Di(p 2, p2, p~, (Pl + P2 + P3) 2, 

(Pl + P2) 2, (i~ + p3)2; ml ,  m2, m3, m4) 
(D. 12) 

are  

N1 = k 2 - ml  2 + ie ,  (D.6a) 

N2 = (k + Pl )2 _ m 2 + iE ,  (D .6b)  

N3 = (k + Pl + P2) 2 - m2 + ie ,  (D.6c) 

N4 = (k + Pl + P2 + P3) 2 - m l  + i6.  (D.6d) 

(D.5) 

regularization [70, 117], and the propagator factors 
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for i = 0, 11-13 and 21-27. The basic scalar functions Bo, 
Co and Do were obtained by ' t  Hooft and Veltman [118]. 
The Fortran code FF [119] is used for the general form of Co 
and Do functions. Reductions of higher/3, C, D functions 
are given in the following subsections. 

D.2 B functions 

It is convenient to introduce the following four scalar /3 
functions in addition to B0 and B1 above: 

/32(q2; ml,  m2) = /321(q2; m l ,  m2),  (D.13a) 

/33(q2; m l ,  m2)  = --/31 (q2; m l ,  m2)  

- B 2 ( q 2 ;  m l ,  m2),  (D. 13b) 

/34(q2; m l ,  m2)  = --m2/31 (q2; m2,  m l  ) 

_m2/31(q2; m l ,  m2), (D. 13c) 

Bs(q2; ml,  m2) = A(ml )  + A(m2) 

-4/322(q2; ml,  m2). (D.13d) 

All two-point functions of the standard model and its su- 
persymmetric extension [120] are expressed compactly in 
terms of the above six /3. functions (n = 0, 1,..,5) being 
only logarithmically divergent. The ultra-violet singular fac- 
tor is parametrized by: 

A =  1 - + l n p  2. ( D . 1 4 )  
e 

In the MS (modified minimal subtraction) renormalization 
scheme the singular piece A in these functions is simply 
replaced by a logarithm of the unit of mass #: 

A MS)ln#2" (D.15) 

The six Bn functions are then expressed by 

Bo(q2; ml,  m2) = ~ - Fo(q2; ml,  m2), (D.16a) 

/31(q2; ml,  m2) - 1 A  = + Fl(q2; rr~l, m2), (D.16b) 
2 

/32(q2;ml'm2)= 3 - F2(q2;ml,m2), (D.16c) 

B3(q2;ml'm2) = 6 - F 3 ( q Z ; m l , m 2 ) ,  (D.16d) 

/34(q2;ml,rr~.2) - m21+ m~ A -  F4(q2;ml,m2), (D. 16e) 
2 

Bs(q2;ml, m2) = qzA  - Fs(q2;ml,m2),  (D.16f) 
3 

where the finite parts Fn have the tbllowing Feynman para- 
metrizations: 

~0 
1 

Fo(q2; ml,  m2) = dx lnH,  (D.17a) 

P 1 

Fl(q2;r/~' l ' r~ = L dx  z l n H ,  (D.17b) 

/o F2(q2;rrq,m2) = dx x 2 lnH,  (0.17c) 

/0' F3(q2;ml,m2) = dx x(1 - x )  lnH,  (D.17d) 

fo  
F4(q2;ml,1322)= dx [(1 - x ) m 2 + x m  2] lnH,  (0.17e) 

/o' Fs(q2; m , ,  m2) = dx [(1 - 2 x ) ( m  2 - m 2) + (1 - 2x)2q 2] 

x lnH,  (D.17f) 

with 

g = -  [ ( 1 - x ) m 2 + x m ~ - x ( 1 - x ) q 2 - i e ] .  (D.18) 

Among the six Fn functions four (n = 0, 3, 4, 5) are sym- 
metric under the exchange of the two masses. It is useful to 
introduce the antisymmetric F function 

FA(q2;ml,m2)=~ Fl(q2;m2, m l ) -  Fl(q2;ml,m2).  (D.19) 

In terms of the two symmetric functions F0 and F3 and the 
antisymmetric function FA all the remaining Fn functions 
can be expressed compactly: 

l [Fo - FA](q2; m l ,m2)  , (D.20a) Fl(q2; ml , m2) = 

F2(q2;ml,m2) = ~(Fo - FA) -- F3 (q2;ml,m2),  (D.20b) 

F4(q2; m l ,  m2) 
r m2 + m 2 m 2 _ m 2 

Fo + ---------~FA](q2;ml,rr~2), (D.20c) [ 

F,  2 5(q ;mj ,m2)  

--[q2(Fo-4F3/+(m2_ (0.20d) 

Therefore it is convenient to give closed analytic expressions 
for the three functions, Fo, F3 and FA: 

Fo(q2; ml,  m2) = ln(ml m2) - 6 In m2 - 2 + 3 L ,  (D.21a) 

1 3a - 2626 In m2 
F3(q2; ml,  m2) = ~ In(mira2) 6 m~ 

5 ~ r - 6 2  1 + c r - 2 6 2  
- -  + /3L, (D.21b) 

18 3 6 

FA(q2; rrh, m2) = --(~7 -- 62) In rn~ + 6(1 --/3L), (D.21c) 
1)7.1 

where 

cr - m12 + m~ (D.22) 
q2 ' 

6 - - ( 0 . 2 3 )  q2 

(1 2 ~ + 6  )~ 
for q2 < (ml  -- m2)  2 or q2 > (ml  + 2) 2 

/3 = i(2cr - 62 1)�89 
for (ml  - m2)  2 < q2 < (ml  + m2) 2 

(D.24) 

and the function L is defined as 

L(q2; ml,  m2) 
11- l+/3--cr q2 . . ~ - i T r  for > ( m l + m 2 )  2, 
1 1- l+3-cr q2 . .  ~ for < (TFb I - -  /Tb2) 2 , 

= 1~- --I 1--6 1+6~ 
7ttan ~ +tan-1 131 j 

for (ml - m2) 2 < q2 < (ml + m2) 2. 
(0.25) 
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Also the derivatives Fd, F~ and F~ are needed for certain 
applications. One finds 

F~ ml ' m2) = ~ { l + 61n m-!2 - (62 -- a )~  ' (D.26a) 

F~(q2; ml,  m2) 

~ 7 { 1  62 a m2 = -~ + ~ + 6 ( a  - ~2) In - -  
m l  

fcr 2 + 62 
+ t----------~ + 62(62 -- 2or)) --~ }, (D.26b) 

F~t(q2; ml, m2) 

= ~2{ (~ . . . .  262)lnm2mi 26+6(1 3 o ' + 2 6 2 ) ~ } .  

(D.26c) 

The phase factors in/3 and L in (D.24, D.25) are required to 
obtain correctly the ratio L//3. In terms of the above three 
functions all the other Fn ~ functions are expressed compactly: 

_1 rF,' - F ~ ]  (q2; ml ,  m2),  (D.ZVa) F[(q2; ml, m2) = 2 [ o 

F~(q2; mi, m2) = [ Fd - F~ ] F~ (q2; ml,  m2), (D.27b) 

F~(q2; mi , m2) 

rm, + + ~ ~ ml,  m2), (D.27c) 
L 

F~(q2; ml, m2) 

= [ F o - 4 F 3 + q 2 ( F ~ i 4 F ~ )  

+(m 2 _ rn2)F~4 ] (q2; 77?.1, ~.t,2) ' 

(D.27d) 

The derivative of the Bn functions is found to be: 

Bn~(q2; ml,  m2) = -F~(q2; ml,  m2) for n = 0, 2, 3, 4, 

t 2 Bl(q ;ml ,m2)  = F[(q2;mi,m2), 

! A  t 2 2 2 Bts(q2;ml'm2) = 3 -F~(q  ; m l , m 2 ) .  

(D.28a) 

(D.28b) 

(D.28c) 

D.3 C functions 

The higher C functions 

6i = 6i(p 2, p2, (t91 + P2)2; ml,  m2, m3) (D.29) 

for i = 11, 12, and 21-24 are given in terms of the Co, /30 
and B1 functions as 

( 611~ = X-1  ( B ( 1 3 )  Bo(23, + flCo "~ (D.30a) 
612) k Bo (12) B(o 13) + f2Co ] ' 

1 1 B(23 ) + _ ~  fl f2 
624 ---- ~ -I" ~ 0 Co - ~ -  C l l  - 7 C l 2 '  (D.30b)  

+ z~ o f - 2 624) (D.30c) (621"~ = x - i  (B113) --(23) + lOll 
k623) kB112)- B} 13) + f2Cll ' 

f623"~ = X - I  (Blla'-BI23'+fI612(13,+ 2C12 ) ( D . 3 0 d ) ,  
\ 6 2 2 )  - B1 F - 2 6~4 

where 

( 2p 2 2pip2"~ (D.31) 
X-= k,2piP2 2p 2 .] ' 

and 

fl = m2 z - m~ - p i ,  (D.32a) 

f2 = m32 - m 2 - (Pl + P2) 2 + p 2 .  (O.32b) 

Here the shorthand notations 

B~ 12) - Bi(p~; ml, m2), (D.33a) 

B~ 13) ~- Bi((pl +p2)2 ;  m l ,  m 3 ) ,  (D.33b) 

B~ 23) ~ Bi(p2; m2, m 3 ) ,  (D .33c )  

are used for Bo and B1 functions. 

D.4 D functions 

The higher D functions 

2 2 2 +p3 )2  (pl +p2 )2  (pl  +p3 )2 ;  D~ = Di(Pl,P2,P3, (Pl +P2 
ro t ,  m2,  m3,  m4)  (D.34) 

for i = 0, 11-13 and 21-27 are expressed in terms of the 
Do, Co and Bo functions as follows: 

/ C 0  (134) i CO (23~) "31" fi Do "~ 
( N i l  "~ [ 6 (124' (7( TM, IDI2I x - '  ) = ~0 + f2 Do (D.35a) 

(7(124) k DI3)  kC0 (123) vO + f3 Do 

D27=m~Do+16(234) 1[ ] 2 o - -~  f l D l l + f 2 D l 2 + f 3 D 1 3  , 
(D.35b) 

['D21"~ /rY(134), f~(234) , .e r-i [ t ~ l  I -r t~, 0 -1- J l  Ltl l  --  2 927  
1D24] = X -1 If-Y(124) r,(134) , s Fi  ) | t i l l  --  t J11 n- J2 J i l l  
\D25] ~/'~(123) f-ff124) , .e r'J 

\~ '11 -- ~Jll "1- .]3 Ltl l  
(D.35c) 

(D24"~ /(7(134) - (7(234) / v i i  v i i  + f l  D12 
| D 2 2 |  = X -l  |r7(124) (7(134) /~12 ~11 + f2 D12 -- 2 D27 , ) t-Y(124) t, D25/ t,61  +S3D,2 

(D.35d) 

{D25"~ /t-~(134) _ (?(234) / ~ 1 2  v12 + fl D13 
1 D 2 6 1  = X -1 |(7(124) (7034) ~12 ~12 + f2 DI3 ) k D 2 3 /  t t'-?'(124) ~12 + f3 D13 - 2D27 

(D.35e) 

where 

{ 2p 2 2piP2 2piP3 "~ 
X -  [2pip2 2P 2 2p2P3) , (D.36) 

\2piP3 2p2p3 2P32 

and 

fi = m 2 - m~ - p~, (D.37a) 

f2 = m 2 - m22 - (Pl + P2) 2 + P~, (D.37b) 

f3 = ~n2 -- m~ -- (391 + P2 + P3) 2 + (391 + P2) 2.  (D.37c) 

The higher C functions in (D.35) are written in terms of the 
Co and Bo functions in analogy to the previous subsection: 
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['C11t23)'~ ( 2p 2 2plP2"~-' //Bo 03)-  R(23)+ f,C(0123)~ 
(123).I ~" *R~}13) + f2C0(123); ~.C12 . \2piP2 2t92 ] \Bo 02) ~o 

(D.38a) 

(124) ( 
({~11 "~ 2 P  2 2/91 (4"192 + P 3 ) ~  --1 

(124) = 
~C12 J 2p l  (502 + P 3 )  2(502 + p 3 )  2 J 

.e g,~(124) ) (.B(o 1 4 ) -  j~(024) + j l ta  0 

X ~B0(12 ) B(014) + ( f 2  + f3 )  C(124) ' 

(134) --1 
( C I I  "~ ( 2(/)1 +192) 2 2(p, +P2)P3"~ 

(134) = 2P32 /) ~C12 J ~ 2 ( p l  + P2 )P3  

( B ( 1 4 )  - /~(034, + ( f l  "t- f 2 )  C~134)'~ 
.c /-~(134) ff X ~B(013 ) /~14) + J3 v-' 0 

--1 (234) (C,, ~ ( 2t92 2p2P3"~ 
(234) = ~,C12 } \2p2P3 2p 2 } 

(D.38b) 

(D.38c) 

(/~(024) __ /~(34) + ( f2  + 2plP2)G'0(234)~ 

X ~B~023 ) /~24)  + ( f3  + 2plP3){~o(234)) ' ( D . 3 8 d )  

with 

BO (12) = Bo(,pl2; m l ,  m 2 ) ,  

B(13) 0 = Bo((Pl +p2)a;mj,m3), 
B; 14) = Bo((Pt +P2 + P3)2; ml, m4), 
B(23) 2. 

0 ~- Bo(19 2 , m2,717,3) , 

B(24) 0 -= Bo((P2 +p3)Z;m2,m4), 
/~(34) ~ /~0(P~; m 3 , 7 / 2 4 ) .  

(D.39a) 

(D.39b) 

(D.39c) 

(D.39d) 

(D.39e) 

(D.39f) 
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