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Abstract. The low-x data of the structure function F2 measured by the collaborations H1 and ZEUS are
compared with the prediction of the DGLAP equations. A new method of comparing data and theory
is presented. The systematic and quantitative analysis shows that the predicted 1/x behaviour deviates
increasingly from the observed one as x decreases below 10−3.

PACS. 12.38.Bx QCD perturbative calculations – 12.38.Qk Experimental tests

1 Introduction

Lepton-nucleon experiments have paved the way towards
the Standard Model with the observation of the proton
substructure and the observation of weak neutral currents.
Together with the ideas on gauge theories based on non-
abelian algebrae and renormalizability a new framework
for electroweak and strong interactions has been set up.
A worldwide long term program was initiated.

Both the intermediate γ in e-nucleon and the interme-
diate W in ν-nucleon scattering probe the same internal
structure of the nucleon. The Quark-Parton Model pro-
vided a simple interpretation of lepton-nucleon scatter-
ing, so for instance the structure function F2 manifesting
the fractional momentum distribution of quarks and an-
tiquarks in the nucleon. The precise measurement of the
momentum sumrule in the Gargamelle ν experiment [1]
resulted in 0.50 ± 0.03 rather than 1. This surprising re-
sult indicated that quarks and antiquarks by far do not
make up the momentum of the nucleon and another novel
type of constituents, not visible to the W , must be present.
They were attributed to the gluons as carriers of the strong
force in the new microscopic theory of strong interactions
QCD [2]. The apparently free behaviour of the partons
observed in deep inelastic lepton nucleon scattering found
its explanation in the property of the strong force to de-
crease at short distances. The immediate consequence was
that the nucleon structure functions cannot be functions
of the Bjorkén scaling variable x alone, but must depend
on both kinematic variables characterizing deep inelastic
scattering, namely x and Q2, where Q2 is the 4-momentum
transfer squared from the lepton to the hadron system.

An impressive series of leptoproduction experiments of
increasing precision was carried out. The differential cross
section depends upon three structure functions F2, FL and
xF3. ν, ν-experiments were distinguished by measuring in
addition to F2 also xF3. The deep inelastic scattering ex-
periments constituted a solid testing ground for QCD. In

the kinematic regime, where Q2 is sufficiently large, typi-
cally larger than 1 GeV2, the strong interaction coupling
constant αs(Q

2) is small and a perturbative treatment
is possible. The DGLAP evolution equations [3,4] offered
an elegant way to test perturbative QCD in deep inelastic
scattering experiments through the investigation of the de-
viation from scaling. Given the structure functions or the
parton distribution functions as a function of x for a cho-
sen starting value of Q2

st QCD predicts the Q2-evolution.
The comparison between theory and experiment always
involved a double aspect : the determination of the par-
ton distribution functions, which cannot be predicted, and
the properties of the theory to be tested.

The tests performed in the 70’s and 80’s were a great
success and established the validity of the DGLAP equa-
tions in the (Q2, 1/x)-phase space delimited to a triangu-
lar area by the size of the available beam energy, in prac-
tice reaching out in Q2 to a few 100 GeV2 and in x down
to slightly below 10−2. In comparing and interpreting the
wealth of measurements there remained nevertheless a se-
rious concern related to the arbitrariness in distinguishing
the perturbative from the nonperturbative regime and to
the correlations caused by the unknown gluon distribu-
tion function. As a matter of fact, the Q2 evolution of
the structure function xF3 measured in ν, ν experiments
tests QCD independently of assumptions about the gluon,
however its statistical significance was much less than the
precise F2 measurements, which strongly depend upon as-
sumptions about the gluon distribution function.

A new era of QCD tests started with the running of the
ep-collider HERA 1992, which extended the phase space
by two orders of magnitude in Q2 and in x. The first data
in the low-x region revealed a huge rise and thereby a new
feature in the phenomenology of F2. The subsequent de-
tailed measurements by H1 [5] and ZEUS [6] offered new
tests of QCD. They were performed by the experimental
groups themselves as well as by various groups of theoreti-
cian. Recent global fits by MRST [7], CTEQ [8], GRV [9]
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including the HERA data on F2 resulted in good fits sup-
porting thus the validity of the DGLAP evolution in the
valence region up to Q2 of order 104 GeV2 and in the sea
region, down to x=10−5, up to the phase space limit. The
successful extension of the fits up to the largest Q2 values
was expected. That the fits would still work at low-x was
rather a surprise, as many were prepared to a failure of the
perturbative approach, where terms with log 1/x should
get numerically more and more prominent.

It is the purpose of this study to focus on the low-x
regime of the (Q2, 1/x) phase space available in the HERA
experiments, to investigate there in detail the rôle of the
1/x terms in the DGLAP kernels and to show that for x
below 10−3 a discrepancy between theory and experiment
develops.

1.1 Outline

Chapter 2 recalls some phenomenological aspects of F ep
2

reformulated in terms of a new variable q replacing ln Q2.
A new method of comparing data and theory is presented
in chapter 3, which makes use of F2, its first and second
derivative in Q2. The next chapter describes the decompo-
sition of F ep

2 into a singlet and a nonsinglet part. Chapter
5 deals with the DGLAP equations formulated in terms
of q and illustrates their effect when applied to a valence-
like and a sea-like distribution separately for leading and
next-to-leading order. After these preparations the main
step is taken in chapter 6 with the evaluation of the cur-
vature of the singlet part and F ep

2 itself. The last chapter
concludes with the comparison of data and theory.

2 Phenomenology of F2

The investigation of the Q2 behaviour of the early low-
x F2 data measured by the HERA collaborations H1 and
ZEUS suggested an approximate scaling behaviour [10,11]
of the form F2 ∼ log Q2/Q2

0 with Q2
0 ≈ 0.5 GeV2. With

the advent of further measurements extending to Q2 < 1
GeV2 it was desirable to have, instead of the usual ln Q2,
a quantity, which allows to examine the Q2 dependence of
the F2 data in the neighborhood of 0. This is achieved[12]
with the quantity 1

q = log(1 + Q2/Q2
0) , (1)

where Q2
0 is a constant set to 0.5 GeV2. The new quantity

q is mathematically equivalent to the traditional ln Q2,
but has the feature to run from 0 to ∞. For Q2 � Q2

0

q is equivalent to ln Q2, while otherwise it approaches
Q2. Fig. 1 illustrates the F2-measurements by H1 [5] and
ZEUS [6] as a function of q for a x-bin centered at x=10−4.
The structure function is within experimental uncertain-
ties proportional to q over the full measured range corre-
sponding to Q2 from about 0.3 until 6.7 GeV2, i.e. near
to the HERA phase space limit. When the F2 points are

1 log is taken to base 10.
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blue symbols F2 data
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Fig. 1. The above figure shows the q-dependence of F2-data for
x-bin centered at x=10−4; the dotted line is the prediction of
the MRST01 parametrization. In the figure below predictions
of the MRST01 and the CTEQ6 parametrization are compared
for x=10−4.

extrapolated towards Q2=0 by a linear fit, a value for F2

consistent with 0 comes out in agreement with the conser-
vation of the electromagnetic current.

Fig. 1 shows also by the dotted line the prediction of
the MRST parametrization[7] for x=10−4, which is the re-
sult of their global fit. The fit is based on the x-dependence
of the parton distributions a priori assumed at the starting
scale Q2

st = 1.25 GeV2, i.e. qst=0.54, and then evolved in
Q2 using the DGLAP evolution equations (see eq. 4). The
free parameters of the initial parton distributions are var-
ied in an iterative procedure until the overall data and pre-
diction yield a minimal χ2. The comparison of the dotted
line with the measured points illustrates that the global
fit in this particular x-bin is a best fit, though not a good
fit. In fact, there seems to be an indication for a difference
in shape. This suggests the size of the second derivative
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of F2 w.r.t. q to serve as a test quantity in examining the
validity of DGLAP in the deep sea.

The data of F2 in the deep sea are well described by a
second order polynom in q

F2(x, q) = a0(x) + a1(x) · q + a2(x) · q2

where a0(x) and a2(x) are approximately 0, as seen for
example in fig. 1. This form remains valid even in the
valence region as long as q is restricted to the interval
(0.5,2). The curvature term a2(x) is obtained as the second
derivative of F2 w.r.t. q, namely ∂2

q F2(x, q) = 2a2(x).

The fig. 2 shows the curvature term a2(x) for the data
at various fixed x-bins in comparison with the prediction
of MRST. The lower limit in q is set to the starting scale
for the DGLAP evolution in the MRST fit. The upper
limit is chosen as small as possible such that there are
still enough measurements to determine the curvature.
This requirement led to Q2 < 12 GeV2 or q < 1.4, unless
the HERA phase space limit is smaller. The experimental
points are shown by the crosses, the MRST-points by the
dots. The MRST-points are obtained applying the same
procedure, but replacing the measured F2 values by the
corresponding values predicted by MRST. It should be
noted that the average value of q decreases with decrea-
sing x due to the more and more restricted phase space.
The data are consistent with being flat in q, while the

Curvature of F2 in q
averaged over 0.5 < q < 1.4
1 GeV2 < Q2 < 12 GeV2
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Fig. 2. Curvature of F2 averaged over the interval 0.5 < q <
1.4 for various fixed x-bins; the data points (squares) are com-
pared with the MRST prediction.

MRST prediction deviates the more, the smaller x is.

3 Analysis method

The traditional way of testing the linear system of coupled
DGLAP equations (see eq. 4) consists in performing the

Q2 evolution in form of a global fit, as indicated above
(c.f. sect. 2). One single quantity, the overall χ2, holds
simultaneously the information on the shape of the parton
distribution functions and on the validity of the DGLAP
equations. A good fit means merely a consistency check
for QCD.

A curve can be characterized in two distinct ways :
either by points over a finite size or infinitesimally by
one point and derivatives at this points. The method pro-
posed here and elaborated relies on the latter characteri-
zation. Instead of performing the evolution of the singlet
over the range in q, where measurements exist, the sing-
let is studied locally in q and the information about the
q-behaviour is accounted for by considering the higher or-
der derivatives w.r.t. q.

For all subsequent numerical calculations q is chosen
to be 1 corresponding to Q2=4.5 GeV2. This value is big
enough to justify the use of perturbative QCD and small
enough to access the HERA F2 measurements down to
x=10−5 leaving two orders of magnitude in x for probing
the low-x properties of the DGLAP kernels.

Given as input distributions the singlet Q+(x, 1) and
its derivative ∂qQ

+(x, 1) the gluon distribution function
G(x, 1) is derived from the first of the coupled DGLAP
equations, as elaborated below in sect.6. In the next step
the second derivative ∂2

qQ+(x, 1) is calculated. There the
unknown derivative ∂qG(x, 1) emerges. The second of the
coupled DGLAP equations provides precisely this term.
The quantity ∂2

q Q+(x, 1) is calculated in the deep sea and

after relating it to ∂2
q F2(x, 1) is compared with the experi-

mentally determined curvature. This completes the local
test of the validity of the DGLAP equations.

4 Decomposition of F ep
2

The Q2-evolution of the structure function F2 in ep scat-
tering proceeds differently for the singlet and the non-
singlet part. The QCD expression for F ep

2 is given in terms
of quark ( qi(x, Q2) ), antiquark ( qi(x, Q2) ) density func-
tions for each flavor i and the gluon function g(x, Q2) :

F ep
2 = CF ⊗ N + ε (CF ⊗ Q+ + CG ⊗ G) (2)

This is the standard decomposition (see e.g. ref. [13]). The
meaning of the variables is:

– Singlet : Q+ =
∑f

i x(qi + qi) with f the number of
active flavors

– QED coupling constants : e2
i for flavor i.

– ε = 1

f

∑f

i e2
i

– Non-singlet : N =
∑f

i e2
i

(

x(qi + qi) − 1

f
Q+

)

– Gluon : G = xg
– Coefficient functions CF and CG : CF has a leading

δ-function and a O(αs/2π) contribution, while CG is
directly of order to O(αs/2π).

The MS scheme is used and four massless quarks. F ep
2 is

dominated by N + εQ+, but receives subleading contri-
butions from both the quarks and the gluon through the
coefficient functions.
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Detailed F ep
2 measurements are available from the two

HERA collaborations H1 [5] and ZEUS [6]. The collabora-
tions have provided in their publications careful analyses
of systematic error sources. In their kinematic overlap re-
gion the data sets agree well, once the systematics is taken
into account. Some of the correlated systematic sources af-
fect not only the absolute values F2, but also the derivative
∂qF2.

The structure function F ep
2 (eq. 2) is dominated by

εQ+ and receives contributions from the coefficient func-
tions at O(αs/2π) and from the nonsinglet. For the actual
calculations done below for q=1 it is then a good appro-
ximation to relate the x distributions of the singlet and
its derivative to the well measured structure function as
follows :

Q+(x, 1) =
1

ε
F meas

2 (x, 1)

∂qQ
+(x, 1) =

1

ε
∂qF

meas
2 (x, 1). (3)

In the kinematic region of interest, the deep sea with
x <0.001, the non-singlet distribution contributes little
to F2 and ∂qF2. Furthermore, the convolutions of Q+ and
G with the coefficient functions only moderately modify
the shape of the singlet distribution, both for the x and Q2

dependences. The small corrections implied by the identi-
fication given in eq. 3 are considered in sect.7.

5 The DGLAP equations

From the parton density functions of the quarks qf (x, Q2),
antiquarks qf (x, Q2) for the active flavors f and the gluon

g(x, Q2) one can form the following distributions :

V alence Q− =
∑

x(qi − qi)
Singlet Q+ =

∑

x(qi + qi)
Gluon G = xg.

For the values of Q2 considered f=4 is assumed and fur-
thermore all quarks are taken to be massless.

The DGLAP integro-differential equations for the sing-
let and the gluon read in compact form :

∂q

(

Q+

G

)

= a(q)

(

Pqq Pqg

Pgq Pgg

)

⊗
(

Q+

G

)

(4)

The equations are formulated in terms of the variable q
rather than the usual ln Q2. The variable transformation
ln Q2 → q = log(1 + Q2/Q2

0) implies

d q =
Q2

Q2 + Q2
0

1

ln10
d lnQ2,

where the Jacobi factor Q2/(Q2 + Q2
0) appears and the

factor ln 10, since the variable q is defined with log to base
10. The notation ∂q is a shorthand for ∂/∂q. Furthermore,

a(q) =
αs(Q

2)

2π

Q2 + Q2
0

Q2
ln 10.

It is interesting to note, that q · a(q) has only a small
Q2-dependence: it increases by 3 % in going from 5 to 50
GeV2 and decreases by 3 % in going from 5 to 1 GeV2.

The kernels Pij describe the splitting of parton j → i.

They are used in next-to-leading order in the MS-scheme
as published in ref. [13] :

P (x, αs) = P LO(x) +
αs

2π
P NLO(x).

The leading and next-to-leading kernels are by themselves
functions of x alone. However, the full kernels receive a Q2

dependence indirectly through the Q2 dependence of the
QCD coupling αs.

A characteristic feature of all four kernels consists in
the fact that they contain in next-to-leading order terms
proportional to 1/x, the two kernels Pqg and Pgg even al-
ready at lowest order. Their presence provokes an almost
explosive rise at values of x < 0.001, as illustrated in fig. 3
for the off-diagonal kernels Pqg and Pgq . Their behavior
becomes singular for x → 1 and is not shown. In the deep

log 1/x
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Fig. 3. The kernels Pqg and Pgq vs. log 1/x; the upper curve
refers to Pgq. The log 1/x starts at 0.1 excluding the singular
behaviour of x near to 1.

sea region the x behaviour of Pqg and Pgq is similar, this
leads in their ratio to a nearly x independent shape, as
displayed in fig. 4. The two diagonal kernels Pqq and Pgg
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Fig. 4. The ratio Pqg/Pgq for 0.00001 < x < 0.97.
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include distributions, i.e. plus- and δ-functions, and cannot
be displayed directly. Instead, the properties of a kernel
P can be studied by comparing a given distribution func-
tion f with the corresponding folded distribution function
P ⊗ f :

f(x) → P ⊗ f(x).

The convolution of a function f(x) with the kernel P (x)
is defined by :

P ⊗ f(x) =

∫ 1

x

dξ P (ξ) f(
x

ξ
).

The integral runs from x to 1, consequently the value of
the folded distribution at x̂ involves the functional depen-
dence of the input function from x̂ until 1. The graphical
representation of the x dependence is conveniently given
in terms of log 1/x.

For illustration the convolution effect is demonstrated
for two adhoc, but typical functions, a valence like distri-
bution (fval) and sea like distribution (fsea).

5.1 Study of fval(x) → a(q) P (x, αs(q)) ⊗ fval(x)

Fig. 5 shows on top the valence like distribution :

fval(x) = 3.28
√

x(1 − x)3

and below (b and c) for q=1 the distributions resulting
from the folding with the four kernels. The factor 3.28 is
chosen to make the integral over the corresponding density
equal to 3. The diagonal kernels generate the characteri-
stic shape, which causes the depletion of the input distri-
bution in the valence region and the corresponding gain in
the sea region. There is a marked difference between Pqq

and Pqg at lowest order and full order in the sea region. It
originates from the fact, that in the leading order kernels
1/x terms are absent, while present at next-to-leading or-
der. On the contrary, the other two kernels, Pgq and Pgg ,
have 1/x terms both at leading order and next-to-leading
order and the leading order contribution dominates. The
above mentioned divergences of the kernels Pgq and Pgg

for x → 1 are absent in P ⊗ fval due to the power be-
haviour of fval near to 1.

The convolution of a valence like function leads in the
deep sea to a flat shape for all four kernels, as expected
for 1/x ⊗ fval → constant. The plateau heights are
characteristically different : smallest for Pqq and largest
for Pgg .

5.2 Study of fsea(x) → a(q) P (x, αs(q)) ⊗ fsea(x)

Similarly, fig. 6 shows the four convolutions of a sea like
distribution function chosen to be

fsea(x) = 1.5 log

(

1 +
0.04(1− x)

x
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Fig. 5. a. The valence-like distribution fval(x) versus log
1/x. b. a(q) Pqq ⊗ fval and a(q)Pqg ⊗ fval for q=1 versus
log 1/x. c. a(q)Pgg ⊗ fval and a(q)Pgq ⊗ fval for q=1 versus
log 1/x. The solid (dashed) curves show the convolution with
the full (leading) order kernel marked with the appropriate
indices. The curves resulting from the folding with the diagonal
kernels Pqq and Pgg show the characteristic underswinger in the
valence region.

It is similar to Q+ with regard to the behaviour in the deep
sea (see fig. 7a). The asymptotic behaviour in the deep sea
is again determined by the 1/x terms of the kernels with
the effect that the linear logarithmic behaviour turns into
a quadratic one. The properties of the kernels generate a
pattern analogous to the valence like case. The Pqq ⊗ fsea

becomes very small, while Pgg ⊗ fsea is strongly enhanced
in the deep sea.

5.3 Some conclusions

The two opposite cases may serve to estimate the effect
of a modification in the input distributions regarding the
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Fig. 6. Convolution of the sea-like distribution fsea (upper-
most curve) with the four kernels Pij vs. log 1/x. Explanation
of the curves as in caption of fig. 5 exchanging val by sea.

size and shape of the folded distributions. Three simple
examples may illustrate it : (a) Adding to the gluon func-
tion a small valence like contribution would affect ∂qQ

+,
the slope of the singlet, in the deep sea by a small x-
independent upward shift. Fig. 5b allows for a quantita-
tive evaluation. (b) Consider fig. 1. Suppose a small sea
like contribution is added to the shape of the gluon dis-
tribution function, then fig. 6b shows that to ∂qQ

+ in the
deep sea would be added a term quadratic in log 1/x,
thus generating a nontrivial increase of the curvature of
the singlet Q+. (c) It is also clear, that a small modifica-
tion of the x-dependence of the singlet Q+ (for given q)
does not sizeably affect its slope in q.

It is interesting to note that all folded distributions are
positive in the deep sea region regardless whether they are
valence or sea like. This is different in the valence region.
Therefore, compensating effects in the coupled DGLAP
are possible in the valence region, but not so in the deep
sea region.

Even if the distribution function f is independent of
q, the folded distribution function Pij ⊗ f depends upon
q through the αs dependence of the kernels Pij .

6 The Curvature

The 1st of the coupled DGLAP equations (see eq. 4), i.e.

∂qQ
+ = a(q)

(

Pqq ⊗ Q+ + Pqg ⊗ G
)

(5)

is differentiated w.r.t. q in order to obtain the required
test quantity, yielding

∂2
q Q+(x, q) = (Quark − term) + (Gluon − term). (6)

Each of the two terms consists in turn of three contribu-
tions.

The Quark-term is numerically small, because the q-
dependences of Q+ and of a(q) nearly compensate each
other, as mentioned in sect.3. The numerical result is shown
in fig. 8 by curve d.

The Gluon-term with its three contributions is given
explicitly in the following equation 7 :

∂q

(

a(q)Pqg ⊗ G(x, q)

)

=

+ (a′

a
+

α′

s

αs

) · a(q) Pqg ⊗ G

− α′

s

αs

· a(q) P LO

qg ⊗ G
+ a(q) Pqg ⊗ ∂qG

(7)

The prime (′) in eq. 7 denotes the derivative w.r.t. q. Eq. 7
involves both the gluon distribution function G and its
derivative ∂qG. A closer inspection of the formula shows,
however, that the dependence on the gluon is not strong.
To this end it is noted that the expression a(q) Pqg ⊗ G
follows directly from the 1st DGLAP equation (eq. 5),
namely

a(q) Pqg ⊗ G = ∂qQ
+ − a(q) Pqq ⊗ Q+. (8)

It is determined by the experimental input distributions
Q+(x, 1) (see curve a in fig. 7) and ∂qQ

+(x, 1). The gluon
distribution function G(x, 1) itself can be obtained from
the constraint equation 8. Given the properties of the ker-
nel Pqg the magnitude and shape of G(x, 1) are defined
and little scope for variations is left. Fig. 7 (curve c) shows
the resulting distribution.

The three terms of eq. 7 are discussed one by one and
evaluated for q=1.

– Term 1: The x dependence is given by eq. 8, since
the factor a′/a + α′

s/αs is independent of x and, for
q=1, equals to -1.3.

– Term 2 involves the gluon folded with the leading or-
der kernel P LO

qg , which has the simple form x2 + (1 − x)2;
it is numerically insignificant.

– Term 3 involves ∂qG and is the critical one. The ex-
pression for ∂qG is given by the 2nd of the coupled
DGLAP equations (eq. 4)

∂qG = a(q)
(

Pgq ⊗ Q+ + Pgg ⊗ G
)

. (9)
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Insertion in term 3 yields :

a(q) Pqg ⊗ ∂qG =

a(q) Pqg ⊗ G · a(q)
Pqg ⊗ (Pgq ⊗ Q+ + Pgg ⊗ G)

Pqg ⊗ G

The first factor (eq. 8) does not depend upon the gluon,
while in the second factor, the ratio, the gluon appears
both in the numerator and the denominator. Its magni-
tude cancels and its shape affects the ratio only weakly.
In the deep sea the ratio is well approximated by

1.2 a
Pqg ⊗ P LO

gg ⊗ G

Pqg ⊗ G
.

Recalling the structure of the kernels it is quite evi-
dent that the numerator is sensitive to 1

x
⊗ 1

x
, while

the denominator only to one 1

x
-operator. It is then not

so surprising that term 3 with ∂qG dominates the be-
haviour in the deep sea and produces unavoidably a
strong x-dependence.

The quantitative evaluation of the contributions to the
curvature is carried out using the singlet and gluon distri-
bution functions displayed in fig. 7. The results are shown

log 1/x

a

b

c

1 2 3 4 5

1

2

3

4

5

pdf_used.nb 1

Fig. 7. The x-distributions of Q+(x, 1) (a), Q−(x, 1) (b) and
the gluon G(x, 1) (c).

in fig. 8. The contribution of the Quark-term (curve d)
is negative and very near to 0, as anticipated. The three
contributions from the Gluon-term decrease linearly (a),
remain approximately constant (b) and increase quadra-
tically (c).

It is concluded that Q+(x, q) has a significant posi-
tive curvature in the deep sea region, where the contri-
bution from ∂qG outnumbers all other contributions. The
x behaviour of the curvature is a property of the kernels
and is hardly sensitive to the size and shape of the gluon.
The quantity ∂2

q Q+(x, q) probes in a nontrivial way both
DGLAP equations and their kernels.
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Fig. 8. Contributions to ∂2
q Q+ versus log 1/x for q=1. The

curves represent the Quark-term (d) and the three contribu-
tions of the Gluon-term, i.e. term 1 (a), term 2 (b) and term 3
(c).

7 Prediction of ∂2

qF
ep
2

The theoretical expression for F ep
2 is given in eq. 2. It

involves the parton distributions and the coefficient func-
tions CF and CG. The quantity to be determine is the
second derivative of F ep

2 w.r.t. q, i.e.

∂2
q F ep

2 = ∂2
q

(

CF ⊗ (N + ε Q+) + CG ⊗ εG

)

evaluated in the deep sea and for q = 1. In addition to
the dominating contribution of ∂2

q Q+ discussed in sect.6
also the effect of the non-singlet N and the coefficient
functions together with their respective derivatives have
to be considered.

CF , the first coefficient function, consists of two dis-
tributions, a δ-distribution, which reproduces N + ε Q+

and a plus-distribution applied to N + ε Q+ contributing
at order αs/2π.

N + ε Q+ is dominated by the singlet Q+. Even in the
deep sea the non-singlet N is not vanishing, since at Q2 =
4.5 GeV2 the charmed sea is not yet fully developped im-
plying c− s <0. However, the evolution of the non-singlet
contributes negligibly to the first and second derivative of
F ep

2 .
The gluon and its derivatives w.r.t. q contribute di-

rectly through the second coefficient function CG and also
in the evaluation of ∂2

q Q+.
The figure 9 shows the contribution arising from the

coefficient functions to N +εQ+ and its derivatives. As an-
ticipated, N +εQ+ is a good approximation to F ep

2 and as
well for the first derivative w.r.t. q. The second derivative
is modified in the deep sea regime by less than about 10 %.
The contribution of the non-singlet to ∂2

q F2 is negligible.

In conclusion : The statement, that ∂2Q+ is signifi-
cantly positive, remains valid also for ∂2F ep

2 . This conclu-
sion is stable against variations of the input distributions.

It may be noted that, qualitatively, the feature of a
positive curvature can be deduced already from the the-
oretical study [14] predicting an unbounded growth of F2

with 1/x under certain uniformity assumptions.
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Fig. 9. Effect of the coefficient functions to N + εQ+ and its
derivatives versus log 1/x for q=1.

8 Conclusions

A dedicated investigation of the DGLAP kernels in the
low-x regime has been performed. Their striking feature
is the presence of 1/x terms producing a strong rise in
F2 for x <0.001. Previous QCD analyses based on low
energy lepton-nucleon data did not probe that behaviour,
since they reached in x hardly below 0.01. Recent global
QCD analyses, which also include the low-x HERA F2

data, are only partially sensitive to the low-x behaviour
of the kernels, because the relevant data represent a small
fraction of the data entering the global fit und thus their
effect to the overall χ2 remained unnoticed.

The study presented here was focussed directly on the
deep sea and has examined the second derivative of the

structure function F ep
2 w.r.t. q as a quantity for probing

the low-x feature of the DGLAP kernels. The main result
is shown in fig. 10. The DGLAP kernels predict a signif-

Curvature of F2 at Q2=4.5 GeV2
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squares = DATA
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Fig. 10. Measured and calculated curvature of F2 for q=1
versus x.

icant positive curvature of F2 at fixed q=1 in the low-x
region in contrast to the flat behaviour in q of the HERA
F2-data. This conclusion is stable against changes of the
shape of the parton distribution functions, in particular of
the gluon distribution.

It is interesting to note that Pij ⊗ f is positive for all
kernels provided x is deep enough in the sea region and f
positive definite. This implies for the DGLAP equations
that in the deep sea the derivatives of the singlet and the
gluon receive positive contributions from both the folded
singlet and the folded gluon, contrary to mutual compen-
sations possible in the valence region.
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