Log-Log behaviour of F_2 at low x in the Q^2 range from 0.1 to 35 ${\rm GeV^2}$

Dieter Haidta*

^aDESY, 22603 Hamburg, Germany

1. INTRODUCTION

In previous DIS workshops[1] it has been shown that in the low-x region the structure function F_2 is linear in terms of the empirical variable:

$$\xi = \log(x_0/x)\log(1 + Q^2/Q_0^2) \tag{1}$$

2. DATA

New data from the H1[2,3] and ZEUS[4] Collaborations are considered (see fig 1). In or-

Figure 1. Phase space considered for F_2 -analysis.

der to stay safely away from the valence region only data satisfying x < 0.001 are selected. The data samples cover nearly the whole phase space with Q^2 -values extending up to the HERA kinematic limit which increases with x. The lowest Q^2

value is 0.11 GeV²[5]. All experiments have carefully studied various sources of systematic errors. Since the F_2 measurements are statistically quite accurate, the account of systematic uncertainties in comparing the 4 data sets is indispensable,

Figure 2. Shift of (u_0, u_1) ellipse due to systematic errors.

when testing the hypothesis

$$F_2(x, Q^2) = u_0 + u_1 * (\xi - \langle \xi \rangle)$$
 (2)

The arrows in fig.2 illustrate the displacement of the (u_0, u_1) -ellipse (uncorrelated errors) due to a 1σ shift induced by each systematic source in the H1-1995 data[2].

^{*}Contribution to DIS99, DESY-Zeuthen, April 1999

3. Q^2 -DEPENDENCE

 $F_2(x,q)$ behaves linearly in $q = \log(1+Q^2/Q_0^2)$ with Q_0^2 chosen to be 0.5 GeV², as seen in the fig.3 for the 6 low x-bins and in fig.4 for the following 6 x-bins up to x=0.001. A 2-parameter fit of the form $u_0(x)+u_1(x)*(q-\langle q\rangle)$ is performed for each x-bin. The extrapolation of $F_2(x,q)$ towards q=0, and thus $Q^2=0$, is well consistent with 0 for all x-bins. This is in agreement with the theoretical expectation based on the conservation of the electromagnetic current. The fit quality for

Figure 3. F_2 versus q for fixed lower x-bins in increasing order.

the 12 x-bins is good apart from two bins, as seen in fig. 4. The range of the measurements in q is x-dependent (see fig. 1). In particular the lowest x-bins are stongly phase space limited. It is worth noting that the linearity in q is valid down to the smallest measured x-bins. The variable q has the property of interpolating smoothly between Q^2 and $\log Q^2$. The transition region is governed by the value of Q_0^2 .

The fitted slopes $u_1(x)$ of the lines in figs. 3, 4 are plotted in fig. 5 and are consistent with

Figure 4. F_2 versus q for fixed higher x in increasing order.

a linear logarithmic behaviour, i.e. $u_1(x) = m \log(x_0/x)$, where $x_0=0.04$ and m=0.41. The lines drawn in the two figures. 3,4 correspond to $0.41 \log(0.04/x)$.

4. RESULTS

The linearity of $F_2(x,q)$ in q implies that the derivative of F_2 with respect to q is a function of x alone. Then, the derivative of F_2 with respect to $\log Q^2$ is bound to exhibit a characteristically different behaviour at low values of Q^2 , namely:

$$\partial F_2/\partial \log Q^2 = \partial F_2/\partial q \, \delta q/\delta \log Q^2$$
 (3)
= $m \log e \, \log(x_0/x) \frac{Q^2}{Q^2 + Q_0^2}$

The appearence of the Jacobian factor $\delta q/\delta Q^2$ causes a sharp decrease of $\partial F_2/\partial \log Q^2$ as x decreases, which corresponds to small values of Q^2 (see fig.1), in contrast to the smooth behaviour of $\partial F_2/\partial q$ in x, as seen in fig.5.

The empirical properties of the 2 quantities, average (u_0) and slope (u_1) , characterizing the linear fits, show that F_2 actually depends only on

Figure 5. Fitted slopes from 2-parameter fit in q to $F_2(x,q)$ for each x-bin.

the product of $\log(x_0/x)$ and $q = \log(1+Q^2/Q_0^2)$, i.e. on the scaling variable ξ (see eq. 1). All F_2 measurements are plotted in fig. 6 as a function of ξ as calculated from eq. 1. A 2-parameter fit in ξ to the F_2 data yields $\chi^2/\text{dof} = 215/171$ including 2 points contributing 34.1. The extrapolation towards 0 is consistent with 0.

In the kinematic range investigated the structure function $F_2(x,Q^2)=F_2(\xi,q)$ has - within experimental uncertainties - no measurable dependence on q, if expressed in terms of ξ . This yields the simple form :

$$F_2(\xi) = 0.41 \; \xi \tag{4}$$

This representation holds equally well in the perturbative as in the nonperturbative regime. It has been checked that it is consistent with the prediction of the MRST parametrisation[6], which is based on the QCD evolution and applicable for $Q^2 > 1.25 \text{ GeV}^2$ and $x > 10^{-5}$.

Figure 6. F_2 data from 4 HERA experiments plotted in terms of the scaling variable $\xi = \log(x_0/x)\log(1+Q^2/Q_0^2)$.

Acknowledgement

I like to thank J. Bluemlein and M. Klein for the invitation and for creating an inspiring atmosphere at DESY-Zeuthen. I enjoyed fruitful discussions with W. Buchmüller, J. Dainton and P. Zerwas.

REFERENCES

- D. Haidt, DIS97 Chicago, April 1997, p.386, and references therein
- 2. C. Adloff et al.: Nucl. Phys. B497 (1997) 3
- 3. H1-Collaboration, contributed paper to the ICHEP Conference at Vancouver 1998 abs. 534 (preliminary)
- 4. J. Breitweg et al.: Phys.Lett. B407 (1997) 432; Eur.Phys.J.C7 (1999) 609.
- B. Surrow, EPJdirect C1 (1999) 1
- 6. A.D. Martin et al.: Eur. Phys. J. C4 (1998) 463