THE TRANSITION FROM $\sigma(\gamma^* p)$ TO $\sigma(\gamma p)$

DIETER HAIDT

DESY, Notke Strasse 85,D-22603 HAMBURG, Germany E-mail: dieter.haidt@desy.de*

1 Relation between $\sigma(\gamma^* p)$ and F_2

In electron-proton scattering the structure function F_2^{ep} and the cross section $\sigma(\gamma^* p)$ are related. For small x one finds :

$$\sigma^{\gamma^* p}(W^2, Q^2) \approx \frac{4\pi^2 \alpha}{Q^2} \cdot F_2^{ep}(W^2, Q^2) \tag{1}$$

Empirically¹ the HERA F_2 -data (F_2 short for F_2^{ep}) are well described by :

$$F_2(x, Q^2) = m \cdot \log (x_0/x) \cdot \log (1 + Q^2/Q_0^2)$$
(2)

 $(m=0.40, x_0=0.04 \text{ and } Q_0^2=0.50 \text{ GeV}^2)$ for x < 0.001 without restriction in Q^2 . Therefore, it is convenient to use the quantity $q = \log (1+Q^2/Q_0^2)$ rather than Q^2 itself and cast eq. 1 in the form :

$$\sigma^{\gamma^* p}(W^2, Q^2) = \frac{4\pi^2 \alpha}{Q_0^2} \cdot \frac{q}{Q^2/Q_0^2} \cdot \frac{F_2(W^2, q)}{q}$$
(3)

Since $Q^2 \to 0$ implies $q \sim Q^2/Q_0^2$, the observable F_2/q carries the information on the transition $\sigma(\gamma^* p) \to \sigma(\gamma p)$.

2 The data

For the purpose of this study the low- $Q^2 F_2$ -data^{2,4,5} together with the recently published data^{3,6} are applied requiring x < 0.001.

The two ZEUS samples called bpc^4 and bpt^6 have 34 F_2 -measurements in common allowing for the hypothesis test :

1		
I		
1		

^{*}Talk presented at DIS2001,Bologna, April 2001

 $F_2^{bpt} - F_2^{bpc} = 0$. Fig. 1, 2 shows the differences grouped in Q^2 bins. The errors are calculated from the uncorrelated uncertainties alone. The average being $\langle F_2^{bpt} - F_2^{bpc} \rangle = 0.031 \pm 0.008$ and $\chi^2/dof = 50/33$ imply that for obtaining consistency between the two samples the systematic uncertainties must be taken into account. The HERA Collaborations have performed a careful study of the systematics. With F_2/q linear in log 1/x (see fig. 3), the effect of each systematic source can be illustrated in a planar arrow diagram, each arrow representing the 1σ - shift in the average u_0

Figure 1. Difference of $F_2^{bpt} - F_2^{bpc}$ versus log W^2 for various Q^2 -bins; each line corresponds to 0.

and slope u_1 , as shown in fig. 2 for the *bpt*-data.

 $\mathbf{2}$

Figure 2. Shifts induced by each systematic source for the ZEUS-bpt data; the ellipse refers to the statistical precision.

3 Properties of F_2/q

The measured F_2/q values are displayed in fig. 3 versus log x_0/x for all Q^2 supporting again eq. 2. There is no observable Q^2 -dependence.

For the study of $\sigma(\gamma^* p) \to \sigma(\gamma p) F_2/q$ is reexpressed in terms of (q, W^2) instead of (x, Q^2) . In the selected phase space region $W^2 = Q^2 \cdot \frac{1}{x}$, thus $F_2/q \sim \log 1/x$ implies $F_2/q \sim \log W^2$. The *q*-dependence of the data is therefore analysed in the form :

$$\frac{F_2(W^2, q)}{q} = u_0(q) + u_1(q) \cdot (\log W^2 - \langle \log W^2 \rangle)$$

The slopes of F_2/q for fixed values of $\log W^2$ are plotted in fig. 4(left) and are q-independent. In fig. 4(right) the F_2/q points

4

Figure 4. Left : Slopes for constant W^2 . Right : F_2/q versus q for W = 200 GeV compared with extended parametrisation; also displayed are the two direct measurements of $\sigma(\gamma p)$ by H1 and ZEUS.

are displayed for the value W = 200 GeV, since there the corresponding phase space region is populated and direct γp measurements exist. The lowest measured Q^2 being 0.05 GeV² is quite close to 0 and the trend of the data suggests to bridge the gap linearly. Physically, the transition has to be smooth.

The prediction using eq. 2 is consistent with the F_2 -data. Its differential form is : $dF_2/q = m d\log W^2 - m(1 + Q_0^2/Q^2) dq$. The slopes $u_1(q)$ are consistent with m (the line in fig. 4 left). The slopes of F_2/q for W=200 GeV are Q^2 -independent for large q, while for smaller q an enhancement due to the Q_0^2/Q^2 -term occurs. For yet smaller values, outside the measured region, the formula (eq. 2) is bound to fail, since F_2/q is a function of x alone in the measured region, whereas $\sigma(\gamma p)$ is a function of W^2 alone. This asks for a quantity turning from x to W^2 , as q approaches 0, which is achieved by the replacement $\frac{x_0}{x} \rightarrow \frac{x_0}{x} \frac{Q^2}{Q^2 + Q_w^2}$; for consistency $0 < Q_w^2 \ll Q_0^2$.

H1⁷ and ZEUS⁸ have measured $\sigma(\gamma p)$ at W = 200 and 207 GeV with $q = \mathcal{O}(10^{-4}) \approx 0$. The two points expressed as F_2/q (see eq. 3)

ิก
_

are also displayed in fig. 4(right). The line in the figure shows the prediction of the extended formula with $Q_w^2 \approx 0.05 \text{ GeV}^2$.

4 Conclusions

All F_2 -data considered are consistent with each other. The systematic uncertainties of the H1 and ZEUS data samples are well estimated and need to be taken into account in detail.

 F_2/q , the key quantity in the study of $\sigma(\gamma^* p) \to \sigma(\gamma p)$, is well described by eq. 2 and can be extended to the γp -limit with a small modification in agreement with the direct $\sigma(\gamma p)$ measurements of H1 and ZEUS. The W^2 -dependence of $\sigma(\gamma p)$ turns out to be *logarithmic*.

Acknowledgments

It is a pleasure to thank Prof. A.Zichichi, Prof. R.Nania and their collaborators for creating a fruitful atmosphere. I like to thank the organisers of the Structure Function Working Group Profs. J.Stirling, K.Long and R.Nisius. I enjoyed discussions with Prof. E.Lohrmann and Prof. P.Zerwas.

References

- 1. D. Haidt, Proceedings of DIS 97, Chicago, April 1997, p.386.
- H1 Collaboration, C. Adloff *et al*, *Nucl. Phys.* B **497**, 3 (1997).
- H1 Collaboration, C. Adloff *et al*, accepted by *Eur. Phys. J.* C (2001); DESY Preprint 00-181 and hep-ex/0012052.
- ZEUS-Collaboration, J. Breitweg *et al*, *Phys. Lett.* B 407, 432 (1997) (bpc).
- ZEUS-Collaboration, J. Breitweg *et al*, *Eur. Phys. J.* C 7, 609 (1999) (svx).
- ZEUS-Collaboration, J. Breitweg *et al*, DESY Preprint 00-71 (May 2000) (bpt); hep-ex/0005018 and *Phys. Lett.* B 487, 53 (2000).

6

- 7. H1 Collaboration, S. Aid *et al*, Z. Phys. C **69**, 27 (1995).
- 8. ZEUS-Collaboration, preliminary result published in http://www-zeus.desy.de/conferences00/2000_DIS_ginsburg.ps.gz.

 $\mathbf{7}$