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1 Relation between o(v* p) and F>

In electron-proton scattering the structure function F;” and the
cross section o(v* p) are related. For small x one finds :
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Empirically! the HERA Fy-data (Fy short for F3”) are well de-

scribed by :

Fy(2,Q%) = m-log (zo/x) - log (1 +Q*/Q}) (2)
(m=0.40, 0=0.04 and Q3=0.50 GeV?) for x < 0.001 without re-
striction in Q2. Therefore, it is convenient to use the quantity ¢ =
log (14+Q?%/Q3) rather than Q2 itself and cast eq. 1 in the form :
4o q FQ(W27 Q) (3)

Q  Q*/Q5 q

Since Q% — 0 implies ¢ ~ Q*/Q2, the observable Fy/q carries the
information on the transition o(v*p) — o(yp).

Oﬂ/*p(W2vQ2) ~ 'Fer(W27Q2) (1)

oW, Q) =

2 The data

For the purpose of this study the low-Q? F,-data®>*5 together with

the recently published data®% are applied requiring = < 0.001.
The two ZEUS samples called bpc* and bptS have 34 F,-

measurements in common allowing for the hypothesis test :
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FP' — FPPe — 0. Fig. 1, 2 shows the differences grouped in Q2-
bins. The errors are calculated from the uncorrelated uncertain-
ties alone. The average being (Fi*' — F2P)=0.031 + 0.008 and
x?/dof=50/33 imply that for obtaining consistency between the
two samples the systematic uncertainties must be taken into ac-
count. The HERA Collaborations have performed a careful study
of the systematics. With F3/q linear in log 1/z (see fig. 3), the ef-
fect of each systematic source can be illustrated in a planar arrow
diagram, each arrow representing the lo- shift in the average ug
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Figure 1. Difference of FQth — Fprc versus log W2 for various Q?-bins; each line corre-
sponds to 0.

and slope u1, as shown in fig. 2 for the bpt-data.
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Figure 2. Shifts induced by each systematic source for the ZEUS-bpt data; the ellipse refers
to the statistical precision.

3 Properties of Fy/q

The measured Fy/q values are displayed in fig. 3 versus log zo/z
for all Q* supporting again eq. 2. There is no observable (*-
dependence.

For the study of o(v*p) — o(yp) Fz/q is reexpressed in terms
of (¢, W?) instead of (z,Q?). In the selected phase space region
wW? = Qz-%, thus Fy/q ~ log 1/x implies Fy/q ~ log W?2. The
g-dependence of the data is therefore analysed in the form :

F2<W27 Q)

= uola) + wi(g) - (log W2 — {log W2))
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Figure 3. The xz-dependence of Fa/q.

The slopes of Fy/q for fixed values of log W? are plotted in
fig. 4(left) and are g-independent. In fig. 4(right) the F3/q points
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Figure 4. Left : Slopes for constant W2. Right : Fa/q versus q for W = 200 GeV compared
with extended parametrisation; also displayed are the two direct measurements of o(yp) by
H1 and ZEUS.

are displayed for the value W = 200 GeV, since there the corre-
sponding phase space region is populated and direct v p measure-
ments exist. The lowest measured Q% being 0.05 GeV? is quite
close to 0 and the trend of the data suggests to bridge the gap
linearly. Physically, the transition has to be smooth.

The prediction using eq. 2 is consistent with the Fy-data. Its
differential form is : d Fy/q = m dlog W2 - m(1 + Q%/Q?%) dgq.
The slopes u;(q) are consistent with m (the line in fig. 4 left). The
slopes of Fy/q for W=200 GeV are Q*-independent for large ¢,
while for smaller ¢ an enhancement due to the Q3/Q?-term occurs.
For yet smaller values, outside the measured region, the formula
(eq. 2) is bound to fail, since Fy/q is a function of x alone in the
measured region, whereas o (v p) is a function of W? alone. This
asks for a quantity turning from x to W2, as ¢ approaches 0, which
is achieved by the replacement 22 — x—;QQQTz%U, for consistency 0
< Qi < Q5.

H17 and ZEUS® have measured o (y p) at W = 200 and 207 GeV
with g=0O(107%) ~ 0. The two points expressed as F5/q (see eq. 3)

5



are also displayed in fig. 4(right). The line in the figure shows the
prediction of the extended formula with Q2 = 0.05 GeV?.

4 Conclusions

All F,-data considered are consistent with each other. The sys-
tematic uncertainties of the H1 and ZEUS data samples are well
estimated and need to be taken into account in detail.

F,/q, the key quantity in the study of o(v* p) — o(yp), is well
described by eq. 2 and can be extended to the v p-limit with a
small modification in agreement with the direct o(vyp) measure-
ments of H1 and ZEUS. The W?-dependence of o(vyp) turns out
to be logarithmic.
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