R&D Status of Optical Cavity for ILC Polarized e+

Hiroki Sato Hiroshima University

Polarized e+ generation in optical cavities

Refer to Urakawa and Omori's talk

R & D Issues of optical cavities

• To achieve high γ yield

- Use mode-locked (pulse) laser synchronized with electron repetition rate (bunch spacing)
- High multiplication factor (power gain) <- high reflectivity mirrors and feedback system
- Smaller waist size
- Smaller crossing angle

Pulse stacking cavity

Basic parameters

	ILC Proposal (Posipol2006) YAG case	Next experiment (October 2006~) at KEK-ATF	Past experiment (Takezawa et al., 2004) at KEK-ATF
Electron Energy (GeV)	1.3	1.3	1.3
Ne/bunch	6.2E10	2.0E10	1.0E10
Electron repetition rate (MHz)	325	357	357
Hor. Beam size (rms,us)	25	79	79
Ver. Beam size (rms,us)	5	6	6
Bunch length (rms,mm)	5	9	9
Laser type (wavelength)	YAG(1064nm)	YAG(1064nm)	YAG(1064nm)
Laser frequency (MHz)	325	357	357
Laser radius (rms, um)	5	29	125
Laser pulse width (rms,mm)	0.9	0.9	0.9
Laser pulse power /cavity	0.75mJ x 1000	28nJ(10W) x 1000	1nJ(0.3W) x 65
Number of laser cavities	30	1	1
Crossing angle (degree)	8	10	90

Expected number of events and energy spectrum

KEK-ATF Damping Ring

Compton Cavity

Cavity:	Super Invar
Cavity length:	420 mm
Mirrors:	
Reflectivity:	99.9% (gain =1000)
Curvature:	210.5 mm ($w_0 = 59 \mu$ m)

Curv.	w ₀ (μm)
250	176
210.5	59
210.1	39
210.01	22
210.001	12
	Curv. 250 210.5 210.1 210.01 210.001

Test bench status (small waist size)

 Successfully accumulate CW laser in 420mm cavity with mirror curvature of 210.5mm and 99.7% reflectivity.

Chamber design

- Sakaue's design for the LUCX experiment (next talk) will be our baseline.
- We aim to achieve crossing angle of 10 degrees.

Milestones

May 2006~

- Make a moving table for the Compton cavity and optical setup -> control the collision point within 1µm accuracy
- Design and build a vacuum chamber and Compton cavity
- Achieve 59µm waist size (29µm in rms) with 99.9% reflectivity mirrors and feedback system in the test bench
- August 2006~
 - Install the chamber
- October 2006~
 - Install 10W laser
 - Start experiment

Optical cavity using parabolic mirrors

- Can independently adjust waist size and cavity length
- Matching is relatively easier
- S_{cav}~R₂(1+R₃²R₄)/(1-R₂²R₃²R₄) -> Reflectivity of parabolic mirrors should be large (close to 1)
- High-reflectivity (~99.5%) parabolic mirrors are expensive (~\$30k/mirror) and smaller off-axis angle (<=20 degrees)