CLIC scheme of polarized e+ source based on laser Compton scattering

Frank Zimmermann POSIPOL2006, CERN, 26. April 2006

Thanks to Eugene Bulyak, Peter Gladkikh, Masao Kuriki, Klaus Moenig, Tsunehiko Omori, Junji Urakawa, Alessandro Variola

outline

(1) history of CLIC e+ source (2) "new" Compton Scheme (3) Snowmass'05 ILC Compton proposal (4) CLIC-ILC differences (5) CLIC scheme (6) Compton ring (7) laser system (8) optical cavities (9) e+ stacking, accumulator ring (10) arguments for Compton source (11) e- kick from laser collision (12) summary

(1) history of CLIC e+ source

- 1997, conventional unpolarized source (L. Rinolfi); W₇₅Re₂₅ target hit by 2-GeV e- beam from linac; 67 kW beam power on target; yield 0.6 e+/e- at 200 MeV [CLIC Note 354]
- 2000, CLIC undulator source (T. Kamitani) L=150 m, B_u =1.76 T, λ_u =3.37 cm, E_1 =20 MeV, ΔE =38.2 GeV at 1.5 TeV, addt'l rms energy spread $\sigma_{E'}E$ ~1.3x10⁻³
- Snowmass 2001 (R. Assmann, F. Zimmermann) comparison of 4 schemes for producing polarized e+, identified old JLC Compton scheme as preferred option among the four [CLIC Note 501]
- 2005, new ILC Compton scheme (F. Zimmermann), adopted to CLIC parameters

(2) "new" Compton scheme

polarized e+ source based on laser Compton scattering for the ILC was proposed at Snowmass 2005

- Experimental tests at the ATF demonstrated production of 10⁴ polarized e+ per bunch with 73%+/- 15%+/-19% polarization
- e+ stacking in the damping ring new feature proposed for the ILC

Recent References

 S. Araki et al, "Conceptual Design of a Polarized Positron Source Based on Laser Compton Scattering – A Proposal Submitted to Snowmass 2005", KEK-Preprint 2005-60, CLIC Note 639, LAL 05-94 (2005)

→ ILC Compton scheme proposal at Snowmass'05

- T. Omori et al, "Efficient Propagation of the Polarization from Laser Photons to Positrons Through Compton Scattering and Electron-Positron Pair Creation", Phys. Rev. Letters (2005)
 → Experimental Compton results from KEK/ATF
- 3) E. Bulyak, P. Gladkikh, V. Skomorokhov, "Synchrotron Dynamics in Compton X-Ray Ring with Nonlinear Compaction", in arXiv p. 5 physics/0505204v1 (2005)

 \rightarrow Design of Compton Ring

(3) Snowmass '05 proposal

physics/0509016 CARE/ELAN Document-2005-013 CLIC Note 639 KEK Preprint 2005-60 LAL 05-94 September 2, 2005

Conceptual Design of a Polarised Positron Source Based on Laser Compton

Scattering — A Proposal Submitted to Snowmass 2005 —

proposal of a polarized e+ source based on laser Compton scattering for the ILC was presented at Snowmass 2005; the same scheme can be adapted to CLIC

"POSIPOL collaboration"

Sakae Araki, Yasuo Higashi, Yousuke Honda, Yoshimasa Kurihara, Masao Kuriki, Toshiyuki Okugi, Tsunehiko Omori, Takashi Taniguchi, Nobuhiro Terunuma, Junji Urakawa *(KEK, Ibaraki, Japan)*

> X. Artru, M. Chevallier (IPN, Lyon, France)

V. Strakhovenko (BINP, Novosibirsk, Russia)

Eugene Bulyak, Peter Gladkikh (NSC KIPT, Kharkov, Ukraine)

Klaus Mönig (DESY, Zeuthen, Germany & LAL, Orsay, France)

Robert Chehab, Alessandro Variola, Fabian Zomer (LAL, Orsay, France)

> Susanna Guiducci, Pantaleo Raimondi (INFN, Frascati, Italy)

Frank Zimmermann (CERN, Geneva, Switzerland)

Kazuyuki Sakaue, Tachishige Hirose, Masakazu Washio (Waseda University, Tokyo, Japan)

> Noboru Sasao, Hirokazu Yokoyama (Kyoto University, Kyoto, Japan)

Masafumi Fukuda, Koichiro Hirano, Mikio Takano (NIRS, Chiba, Japan)

Tohru Takahashi, Hiroki Sato (Hiroshima University, Hiroshima, Japan)

Akira Tsunemi (Sumitomo Heavy Industries Ltd., Tokyo, Japan)

> Jie Gao (IHEP, Beijing, China)

Viktor Soskov (IHEP, P.N. Lebedev Physical Institute, Russian Academy of Sciences, Moscow)

ILC pol. e+ source w. CO2 or YAG laser

- ILC Compton ring contains 30 coupled optical cavities
- 100 (50) turns in Compton ring result in 10x2800 bunches of pol. e+, accelerated in 100-Hz 5 GV pulsed s.c. linac
- bunches are stacked 10 times in each DR bucket; whole process is repeated 10x with 10-ms time for damping
- after 90 ms accumulation is completed; damping ring stores e+ bunches for 100 further ms before extraction

Compton IP for ILC

J. Urakawa

Compton-based e+ source for CLIC - Why?

either ILC or CLIC could be realized depending on physics case and cost

 CLIC differs from ILC in beam parameters, damping ring, bunch spacing, and repetition rate

 → several aspects of e+ source become easier

recommendation by Yokoya san at NB'05 to use Compton source at CLIC (but not at ILC)

for simplicity consider only YAG laser case, since it facilitates injection linac & lowers Compton-ring energy

(4) CLIC – ILC differences

 ♦ beam structure: CLIC has a smaller bunch charge (about 10x less) and less bunches per pulse (about 20x less) → relaxed laser parameters

bunch spacing in DR: 0.533 ns instead of 2.8 ns

 \rightarrow layout of optical cavities more challenging

 \rightarrow multiple pulses stored in one cavity?

☆ damping ring; CLIC damping ring needs to produce beam with extremely small emittance, limited dynamic aperture; →pre-damping ring is required; we can use and optimize pre-damping ring for stacking polarized e+ from Compton source

CLIC repetition rate is 150 Hz instead of 5 Hz for ILC

CLIC and ILC Damping Ring Parameters

parameter	CLIC	ILC (OTW/PPA)
energy	2.424 GeV	5 GeV
circumference	360 m	3230 m (or ~6 km)
bunch population	2.56x10 ⁹	2x10 ¹⁰
bunches/train	110	280
intertrain gap	flexible	80 missing bunches
# trains/pulse	2	10
bunch spacing	0.533 ns	3.077 ns
hor.norm.emittance	550 nm	8 μm
rf frequency	1.875 GHz	650 MHz
vert.norm. emittance	3 nm	20 nm
rms bunch length	1.54 mm	6 mm
rms energy spread	0.126%	0.14%
repetition rate	150 Hz	5 Hz

as consequence of these differences, we can significantly reduce number of laser cavities in the CLIC Compton ring, ideally to one (a case which was already demonstrated at ATF)

this may considerably *simplify design of Compton ring, laser hardware, and operation*

tentative polarized e+ source parameters for CLIC & ILC

parameter	CLIC	ILC
energy	1.3 GeV	1.3 GeV
circumference	42 m	277 m
rf frequency	1.875 GHz	650 MHz
bunch spacing	0.16 m	0.923 m
# bunches stored	220	280
bunch population	6.2x10 ¹⁰	6.2x10 ¹⁰
#optical cavities	1	30
photons/bunch/turn	2.8x10 ⁹	5.8x10 ¹⁰
photons 23.2 MeV-29 MeV	6.9x10 ⁸	1.36x10 ¹⁰
pol. e+ /bunch/turn	9.8x10 ⁶	1.9x10 ⁸
#injections/bunch	400	100
total # e+/pulse	(5.6-8.6)x10 ¹¹	5.3x10 ¹³
total # e+/second	(8.4-12.9)x10 ¹³	2.7x10 ¹⁴

(6) Compton ring

e- bunch length at C-IP	5 mm?	
e- rms hor./vert. beam size	25, 5 µm	
e- beam energy	1.3 GeV	
e- bunch charge	10 nC	
laser photon energy	1.164 eV	
rms laser radius	5 μm	
rms laser pulse width	0.9 mm	
laser pulse energy	592 mJ	
no. of laser cavities	1	
crossing angle	~10 degrees	
photons in cavity pulse	3.2x10 ¹⁸	
polarized γ s per bunch & turn	6.9x10 ⁸	
positron yield e+/γ	0.014	

Compton parameters x=0.023, $E_{\gamma,max}$ =30 MeV $\sigma_c \approx \sigma_T = \frac{8\pi}{3} r_e^2$

 \rightarrow laser-photon scattering probability in 1 collision < 10⁻⁸

 \rightarrow pulse depletion from scattering negligible

$$\xi^{2} = \frac{2n_{\gamma}r_{e}^{2}\lambda}{\alpha} \approx 0.02 <<1$$

$$\rightarrow nonlinear Compton effect not important$$

-0.15

Se poc = 0.

62.5

60.0

65.0 67.5 70.0

72.5 75.0 77.5 80.0

82.5 85.0

87.5

- for rms e- size ~ 10 μ m, need C>100 m
- increased bunch spacing to 4 λ_{rf} ~64 cm, allows crossing angle ϕ ~10° and reduces heat load on mirrors

simulated photon yield as a function of turn number for continuous interaction with the 590-mJ YAG laser pulse over 400 turns

problem with CLIC YAG ring: large energy spread P. Gladkikh

requires large momentum acceptance of 7-8%; reducing laser power & increasing turn number does not help

remedies:

 decreasing turn number and increasing electron bunch number (leading to larger circumference)
 and/or introduction of additional damping using wigglers

> or CO2 laser as for ILC (CLIC ring still easier)

additional damping by wigglers increases yield & reduces energy spread

P. Gladkikh

many other improvements of Compton rings considered for more difficult ILC conditions; these would also boost CLIC performance:

- rf phase manipulation
- low & nonlinear momentum compaction
- pulsed momentum compaction lattice
- optimized lattice design

(7) laser system

tentative YAG laser parameters for CLIC & ILC

parameter	CLIC	ILC
laser pulse duration	57 μs	90 µs
rest between Compton cycles	6.1 ms	9.9 ms

laser parameters: ATF (existing), JLC, ILC, CLIC

parameter	ATF	JLC '99	ILC	CLIC
pulse energy	0.1 mJ (rf gun)	350 mJ	6 mJ	0.6 mJ
	400 mJ (e+)		2.1 mJ	
pulses / second	~1200, 3	7x10 ⁵	4.2x10 ⁷ ?	1.3x10 ⁷
type	YAG	CO2	YAG	YAG
	YAG (2 nd)		CO2	
average total	0.12 W?	245 kW	250 kW	8 kW
power	1.2 W?		88 kW	

laser options

- YAG laser with pulse energy >0.6 mJ & smaller quality factor for optical cavity
- CO₂ laser with 0.21 mJ / pulse (alternative ILC scheme)
- continuous mode laser operation (fiber laser?) at ~50 MHz with 10 μ J / pulse and higher quality factor 10⁴-10⁵ (LAL) *A. Variola*
- feedback on laser (LAL) and/or on optical cavity (KEK)

another method for short bunch spacing

higher collision frequency with independent laser pulses in several larger optical cavities

A. Variola, LAL

(9) e+ stacking

features of e+ accumulator ring: large acceptance fast damping

economic solution for ILC: use one or three 6-km main damping rings

CLIC approach: pre-damping ring (required in any case)

stacking in 3-km ILC DR – longitudinal phase space

e+ stacking

ILC scheme: 10 turn injection into the same bucket of main DR (at different δ); followed by 10 ms damping, this is repeated 10 times!

CLIC:

250-400 turn injection into the same bucket, no repetition

CLIC uses pre-damping ring optimized for e+ accumulation

CLIC e+ stacking in pre-damping ring

- pre-DR can be optimized for accumulation independently of DR constraints
- may adopt NLC pre-DR design of Wolski (EPAC'02) and Reichel & Wolski (EPAC'04)

10-fold symmetric DBA structure; optimized for large acceptance; wiggler damping ~2x arc damping beam energy ~2 GeV circumference ~200 m bunch spacing ~0.4 m damping time ~3.5, 2 ms repetition rate ~100-150 Hz

injected e+ rms emittance ~2 mm-rad, edge emittance ~20 mm rad?

dynamic aperture for particles with zero & +/-1.5% $\delta p/p$

(10) arguments for Compton source

- KEK-ATF proof-of-principle experiment
- future R&D at ATF & DAFNE
- rapid advances in <u>lasers</u> & optical cavities
- several 10s of <u>Compton X-ray sources</u> are under development across the globe for medical & biological applications
- does not couple e+ and e- arms of collider
- does not impact main beam
- ✤ adequate for CLIC e+ charge requirements

Past Compton source R&D at ATF

arXiv:hep-ex/0508026 KEK Preprint 2005-56

Efficient propagation of the polarization from laser photons to positrons through Compton scattering and electron-positron pair creation

T. Omori¹, M. Fukuda², T. Hirose³, Y. Kurihara¹, R. Kuroda^{3, 4}, M. Nomura², A. Ohashi⁵, T. Okugi¹, K. Sakaue³, T. Saito³, J. Urakawa¹, M. Washio³, I. Yamazaki³

¹KEK: High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801 Japan ²National Institute of Radiological Sciences, 4-9-1 Anakawa, Inage, Chiba-city, Chiba 263-8555, Japan ³Advanced Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan ⁴National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 Japan ⁵Department of Physics, Tokyo Metropolitan University, Minami-Ohsawa, Hachioji-shi, Tokyo 192-0397, Japan

Abstract

We demonstrated for the first time the production of highly polarized short-pulse positrons with a finite energy spread in accordance with a new scheme that consists of two-quantum processes, such as inverse Compton scattering and electron-positron pair creation. Using a circularly polarized laser beam of 532 nm scattered off a high-quality, 1.28 GeV electron beam, we obtained polarized positrons with an intensity of 10⁴ e⁺/bunch. The magnitude of positron polarization was determined to be $\sqrt{3} \pm 15$ (sta) ± 19 (sys) % y means of a newly designed positron polarimeter.

Proposal for Study of High Intensity Multi-Bunch γ-Ray Generation by Compton Scattering at ATF

T. Omori, T. Takahashi et al, April 2006

- design & fabricate laser pulse stacking cavity with high enhancement factor and small spot size
- design collision point which realizes minimal collision angle
- install a laser pulse stacking cavity into ATF damping ring and demonstrate γ-ray generation

(later? coupled cavities with feedback control?)

Letter of Intent for EU FP7 JRA proposal on 'positron polarized (POSIPOL) sources'

Technological R&D

high-power & high-repetition rate lasers

- Fabry-Perot optical cavities in pulsed regime
- polarimetry

Design Study

- parameters optimization
- Compton ring design
- Collection system design
- multiple injection schemes

Test Facility Experiments

> validation at <u>ATF & Da Φ ne</u> accumulation ring

A. Variola, LAL

Compton X-ray sources

Lyncean Technologies (Ron Ruth & Co.), Palo Alto HIGS, Duke University **BNL-ATF KEK-ATF** BINP ROKK-1M facility Spring-8 LLNL/UCLA (PLEIADES) ALS, LBNL NIRS Chiba/U. Tokyo/KEK - coronary arteriography

rapidly evolving field with huge synergy!

Since 2004 Lyncean Example Technologies is constructing the Compact Light Source (CLS), ... specifically designed to bring state-of-the-art protein structure determination to the university or industrial laboratory - but it has also promised a broad impact across the spectrum of x-ray science. Unlike the stadium-sized synchrotron light sources, the Compact Light Source will fit into a typical university x-ray lab. The reduction in scale and cost is a factor of 200 made possible by using a laser beam instead of the "undulator" magnets of the large synchrotrons. On March 2, 2006, Ronald Ruth, Ph.D., president of Lyncean Technologies, announced that the CLS prototype is up and running and has just produced its first X-ray beams. Medical Devices News, 6 March 2006

Reference: Ron D. Ruth, Zhirong Huang, "Laser Electron Storage Ring," Phys. Rev. Lett. 80, 976 (1998)

(11) e- kick from laser collision

A.Mikhailichenko, Snowmass 2005 *kick of order 5x10⁻⁶ rad, beam misses laser bunch at second interaction; effect the same for YAG and CO2 laser* A.Mikhailichenko, Cornell CLNS 05/1942 *same statement, but numbers differ by factors ~2 from before*

K. McDonald, *"…some fundamental limitations of this method seem to be underappreciated by its proponents…"* 20.12.05

E. Bulyak et al., "Comments on 'One Comment to the KEK's Positron Production Scheme' by A. Mikhailichenko", August 2005 only 3% electrons scatter, scattered e- receive kick of 3x10⁻⁶ rad for YAG laser and 10 times less for CO2 laser; partial steady-state transverse emittance ~2 times smaller than natural one

effect of $e-\gamma$ collision on transverse emittance

R.D. Ruth, Z. Huang, "Laser Electron Storage Ring," Phys. Rev. Lett. 80, 976 (1998), "Radiative Cooling of Relativistic Electron Beams," PAC99 (1999).

$$\frac{\Delta \varepsilon}{\varepsilon} \approx \frac{32\pi}{10} \left(\frac{r_e^2 \lambda_c E_L}{Z_R \lambda_L^2 m c^2} \right) \frac{\beta}{\varepsilon} \approx 4 \times 10^{-3} \quad \text{(YAG laser case,} \\ >100 \text{ times smaller for CO2)}$$

V.I. Telnov, "Is a Laser 'Wire' a Non-Invasive Method?", Nanobeam'02 ICFA Advanced Beam Dynamics Workshop, Lausanne (2002)

$$\frac{\Delta P_{\perp}}{P_{\perp}} \approx \frac{k_{prob}}{\alpha \gamma^2} \sqrt{\frac{\beta}{\varepsilon}} \approx 0.015$$

(YAG laser case,10 times smaller for CO2)

using β=0.25 m, ε=0.5 nm, k_{prob} ~1/30

"What I think about emittance in Compton ring:

1) In Mikhailichenko's estimation, Eq. (6) is correct within some factor of 2 (which makes his result smaller). Even though he recognizes L_{eff} (effective interaction length) is smaller than pulse length τ , he still plugs in τ for numerical calculation. Because of the crossing angle (not all electrons and photons cross each other), I estimate L_{eff} to be 50 times smaller than τ (about 1 mm) at 8 degree crossing angle. 2) In Frank's second estimation which uses Telnov's formula, I think a factor of $k^*\sigma$ (transverse beam size) is missing since Telnov considers $\sigma \sim \lambda$ for laser wire. Thus the result will be smaller by a factor of $2^*\pi^*\sigma/\lambda=30$. These corrections, if confirmed, seem to suggest that the

ponderomotive force is small in such a device.

The emittance growth in our laser electron storage ring paper with Ron comes from quantum diffusion of discrete photon energies (with Compton wavelength in Frank's first estimation), which is counterbalanced by radiation damping. Frank's estimation shows this is also small." Zhirong Huang, 12.01.2006

(12) summary

- CLIC e+ / pulse ~ 1/100 ILC number
- scaled-down Compton source (→ single Compton IP) looks attractive

feasibility & optimization

- open questions:
 - laser system
 - optical cavity
 - Compton ring
 - 6-D e+ distribution
 - stacking in pre-damping ring

thank you

for your attention!