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1. Introduction




Problems with the Standard Model
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Figure 1: The Standard Model of particle physics.



Why Study the trilinear Higgs Coupling?

e Vacuum Stability: crucial for understanding the Higgs potential and
vacuum stability in the Standard Model.

e (S)FOEWPT: Potentially relevant for explaining the baryon asymmetry of
the universe (Nucleation, Thermal inequilibrium, Sphaleron).

e Baryon Asymmetry: The Standard Model does not provide a sufficient
mechanism for the observed matter-antimatter asymmetry.



The Lagrangian of the Higgs Potential

e Consider the Lagrangian of the Higgs field V' (¢) in the Standard Model,
which can be expressed as:

A
L=0"¢0up+ 1?66 — L (019)? )

where ¢ is the Higgs field, p? is a parameter related to the Higgs mass, and
A is the self-coupling constant.

e The trilinear Higgs coupling arises from the interaction term %(q&’fqb)?



Spontaneous Symmetry Breaking

e In the SM, the Higgs field is initially written as

in terms of physical fields and Goldstones:

at
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where v is the VEV, H is the physical Higgs field, and Gt, GO are the

Goldstone bosons.

e Substituting and disregarding the Goldstone terms, we obtain:
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e trilinear coupling(H?), mass term (H?2) the tadpole term (H).



Deriving Input Variables From The Lagrangian

Let’s identify.
e The coefficient of H in (subset) £ corresponds to ¢:

UED 2
_ =t 3
1 L 3)

e The coefficient of H? in (subset) £ corresponds to —%MIQ_I:
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e Solve the system of equations:
Solving for A and u?, we find:
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Obtaining the countervertex

e Substitute solutions into the Lagrangian:
Substituting these into the Lagrangian, we obtain:
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e (tree - level) Vertex Term:
Equating v = QM%S“’, the vertex term is identified by the coefficient of H3

in L:
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2. Derivation Of The Vertex And The

Counterterm Expression




Counterterm transformation

e Substitute Shifts:
To account for higher-order corrections, we introduce the following shifts
into the vertex term:
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Counterterms and Self Energies

e We need to compute many counterterm expressions (for 2 -loop: 12 in total)
Let us exemplify a first order calculation®
‘We write down the Pole equation:

ME —m? + 35 (MF) =0, )
With M beeing the Complex pole given by:
M} = M? —iM;T;, (10)
Expanding to first order around the real pole:

M2 — m2 + ReSL, (M2) £ 0. (11)

i
Implementing the OS scheme:
M} =m, (12)
Expressing the ren. SE through the bare SE and CTs:
Re$j; (M7) = Rexj; (M7) — 6" M? (13)
To finally recover the mass counterterm (for instance with the Z-Boson):

§'MZ = Res D} (M32). (14)

LOf course, 2-loop counterterms are more involved. [2] and [3] discuss this in more detail.



Expanding the Vertex Term to first order

o We expand the shifted vertex term to the first loop order, substitute t = 0
and the equation for the counterterm of the W mass as given by:

ST M3
o3 i 15
Mw 2Mw (15)
e Vertex:
The expression, as can be cross-checked in [1]:
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Results for first order

e Calculating every counterterm and inserting in (16) gives numerical
contributuion to lambda

e We express the deviance from the tree level with ky:

Co + Noq)
Ky= ——~= 17
= ()
where Co is the tree-level vertex value and Np () is the numerical
contribution to the vertex up to order [
e For the top - and bottom contributions in the SM (I = 1) we have:
Kagaen ~ 0.899124 (18)
e For the full SM (I = 1)we have:
Fagy ~ 0.941966 (19)

For both we used the input values given in the Particle Data Group.
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Expanding the Vertex Term to the second order

e Our first result
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Subloop (CT) Diagrams

e We could potentially start with O(N2) contributions
e Counterterms: Generate self energy amplitudes
e Focus on contributions from the top and bottom quarks.
e Restriction to O(N?2) contributions: only two-loop corrections involving CT
insertions contribute.
e Present two key types of diagrams:
e The first type involves a counterterm insertion at the vertex
of external to internal particles
e The second type includes a counterterm insertion at the
propagator.
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Subloop (CT) Diagrams
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Figure 2: Feynarts
diagram of the
trilinear Higgs
coupling with a
subloop insertion at
the vertex of f to H
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Figure 3: Feynarts
diagram of the
trilinear Higgs
coupling with a
subloop insertion at
the propagator
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Figure 4: Feynarts
diagram of a
self-energy with a
subloop insertion
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3. Outlook




What is about to come

e Analytic expressions: Amplitudes of all relevant diagrams (even beyond
O(N2)).-

e Counterterms: Functions of self-energies, their derivatives, first-order
counterterms.

e Finiteness: Eliminating 1/€2, 1/¢ terms, computing finite contributions.

e Constraints: Numerical contributions, accounting for constraints from
unitarity, stability, electroweak precision observables...
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