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1. Introduction
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Problems with the Standard Model

Figure 1: The Standard Model of particle physics.
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Why Study the trilinear Higgs Coupling?

• Vacuum Stability: crucial for understanding the Higgs potential and

vacuum stability in the Standard Model.

• (S)FOEWPT: Potentially relevant for explaining the baryon asymmetry of

the universe (Nucleation, Thermal inequilibrium, Sphaleron).

• Baryon Asymmetry: The Standard Model does not provide a sufficient

mechanism for the observed matter-antimatter asymmetry.
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The Lagrangian of the Higgs Potential

• Consider the Lagrangian of the Higgs field V (ϕ) in the Standard Model,

which can be expressed as:

L = ∂µϕ∂µϕ+ µ2ϕ†ϕ−
λ

4
(ϕ†ϕ)2 (1)

where ϕ is the Higgs field, µ2 is a parameter related to the Higgs mass, and

λ is the self-coupling constant.

• The trilinear Higgs coupling arises from the interaction term λ
4
(ϕ†ϕ)2
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Spontaneous Symmetry Breaking

• In the SM, the Higgs field is initially written as

ϕ =

(
ϕ+

ϕ0

)
in terms of physical fields and Goldstones:

ϕ =

(
G+

1√
2
(v +H + iG0)

)
,

where v is the VEV, H is the physical Higgs field, and G+, G0 are the

Goldstone bosons.

• Substituting and disregarding the Goldstone terms, we obtain:

L ⊃ +H4

(
−

1

16
λ

)
+H3

(
v3λ

4
−

vµ2

2

)
+H2

(
v2λ

8
+

µ2

2

)
+H

(
−
v3λ

4
+ vµ2

)
(2)

• trilinear coupling(H3), mass term (H2) the tadpole term (H).
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Deriving Input Variables From The Lagrangian

Let’s identify.

• The coefficient of H in (subset) L corresponds to t:

v3λ

4
− vµ2 = t (3)

• The coefficient of H2 in (subset) L corresponds to − 1
2
M2

H :

1

8

(
−3v2λ+ 4µ2

)
= −

M2
H

2
(4)

• Solve the system of equations:

Solving for λ and µ2, we find:

{λ →
2(t+M2

Hv)

v3
, µ2 →

−3t−M2
Hv

2v
} (5)
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Obtaining the countervertex

• Substitute solutions into the Lagrangian:

Substituting these into the Lagrangian, we obtain:

Lfinal ⊃ +Ht

−H2M
2
H

2

−
H3

2v2

(
t+M2

Hv

2

)

−
H4

8v3

(
t+M2

Hv

2

)
(6)

• (tree - level) Vertex Term:

Equating v = 2MW sw
e

, the vertex term is identified by the coefficient of H3

in L:

Vertex = −
e2H3

(
2M2

HMW sw
e

+ t

)
8M2

W s2w
(7)
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2. Derivation Of The Vertex And The

Counterterm Expression



Counterterm transformation

• Substitute Shifts:

To account for higher-order corrections, we introduce the following shifts

into the vertex term:

VertexC = Vertex

∣∣∣∣∣ M2
H→M2

H+δ1
M2

H

+δ2
M2

H

MW→MW+δ1MW
+δ2MW

t→t+δ1t+δ2t
e→e(1+δZ1

e+δZ2
e)

sw→sw

(
1+δZ1

sw
+δZ2

sw

)
H→H

√
1+δZ1

H
+δZ2

H

(8)
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Counterterms and Self Energies

• We need to compute many counterterm expressions (for 2 -loop: 12 in total)

Let us exemplify a first order calculation1

We write down the Pole equation:

M2
i −m2

i + Σ̂eff
ii (M2

i ) = 0, (9)

With M beeing the Complex pole given by:

M2
i = M2

i − iMiΓi, (10)

Expanding to first order around the real pole:

M2
i −m2

i +ReΣ̂1
ii(M

2
i )

!
= 0. (11)

Implementing the OS scheme:

M2
i = m2

i , (12)

Expressing the ren. SE through the bare SE and CTs:

ReΣ̂1
ii(M

2
i ) = ReΣ1

ii(M
2
i )− δ1M2

i (13)

To finally recover the mass counterterm (for instance with the Z-Boson):

δ1M2
Z = ReΣT,1

ZZ(M2
Z). (14)

1Of course, 2-loop counterterms are more involved. [2] and [3] discuss this in more detail.

8



Expanding the Vertex Term to first order

• We expand the shifted vertex term to the first loop order, substitute t = 0

and the equation for the counterterm of the W mass as given by:

δ1MW
→

δ1M2
W

2MW
(15)

• Vertex:

The expression, as can be cross-checked in [1]:

C0+C1 = −
3e

2sw

M2
H

MW

[
1 + δZe −

δsw

sw
+

δM2
H

M2
H

+
e

2sw

δt

MWM2
H

−
1

2

δM2
W

M2
W

+
3

2
δZH

]
(16)
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Results for first order

• Calculating every counterterm and inserting in (16) gives numerical

contributuion to lambda

• We express the deviance from the tree level with κλ:

κλ =
C0 +NO(l)

C0
(17)

where C0 is the tree-level vertex value and NO(l) is the numerical

contribution to the vertex up to order l

• For the top - and bottom contributions in the SM (l = 1) we have:

κλSMtb
≈ 0.899124 (18)

• For the full SM (l = 1)we have:

κλSM
≈ 0.941966 (19)

For both we used the input values given in the Particle Data Group.
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Expanding the Vertex Term to the second order

• Our first result

C0 + C1 + C2 = −
2eM2

H

MW sw

([
3

4
+

3

8M2
H

MW sw

{
M

2
H

(
2MW swδ

1
Ze + 3MW swδ

1
ZH

− MW swδ
1
M2

W
− 2MW δ

1
sw

+ eδ
1
t + 2MW swδ

1
M

2
H

}]
3

32M2
H

M2
W

s2w

{
12M

2
HM

2
W s

2
wδ

1
Zeδ

1
ZH

+
4MW swδ1M2

H

8M2
H

M2
W

s2w

(
2MW swδ

1
Ze + 3MW swδ

1
ZH − MW swδ

1
M2

W
− 2MW δ

1
sw

)

+ 2eδ
1
t

(
MW

(
4swδ

1
Ze + 3swδ

1
ZH − 4δ

1
sw

)
− 2MW swδ

1
M2

W

)
− 4M

2
HM

2
W s

2
wδ

1
Zeδ

1
M2

W
+ 8M

2
HM

2
W s

2
wδ

2
Ze

− 8M
2
HM

2
W swδ

1
Zeδ

1
sw + 4eMW swδ

2
t

− 6M
2
HM

2
W s

2
wδ

1
ZHδ

1
M2

W
+ 3M

2
HM

2
W s

2
w(δ

1
ZH )

2

+ 12M
2
HM

2
W s

2
wδ

2
ZH − 12M

2
HM

2
W swδ

1
ZHδ

1
sw

+ 2M
2
HM

2
W s

2
w(δ

1
M2

W
)
2 − 4M

2
HM

2
W s

2
wδ

2
M

2
W

+ 4M
2
HM

2
W swδ

1
M2

W
δ
1
sw + 8M

2
W s

2
wδ

2
M

2
H

+ 8M
2
HM

2
W (δ

1
sw)

2 − 8M
2
HM

2
W swδ

2
sw

})
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Subloop (CT) Diagrams

• We could potentially start with O(N2
c ) contributions

• Counterterms: Generate self energy amplitudes

• Focus on contributions from the top and bottom quarks.

• Restriction to O(N2
c ) contributions: only two-loop corrections involving CT

insertions contribute.

• Present two key types of diagrams:

• The first type involves a counterterm insertion at the vertex

of external to internal particles

• The second type includes a counterterm insertion at the

propagator.
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Subloop (CT) Diagrams

Figure 2: Feynarts

diagram of the

trilinear Higgs

coupling with a

subloop insertion at

the vertex of f to H

Figure 3: Feynarts

diagram of the

trilinear Higgs

coupling with a

subloop insertion at

the propagator

Figure 4: Feynarts

diagram of a

self-energy with a

subloop insertion
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3. Outlook



What is about to come

• Analytic expressions: Amplitudes of all relevant diagrams (even beyond

O(N2
c )).

• Counterterms: Functions of self-energies, their derivatives, first-order

counterterms.

• Finiteness: Eliminating 1/ϵ2, 1/ϵ terms, computing finite contributions.

• Constraints: Numerical contributions, accounting for constraints from

unitarity, stability, electroweak precision observables...
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