

"Tell me that you have found no sign of New Physics again, I dare you. I double dare you. Tell me one more goddamn time!"

The 96 GeV Excess at the ILC

Sven Heinemeyer, IFT/IFCA (CSIC, Madrid/Santander)

Hamburg/zoom, 06/2020

- The Excesses
- General Analysis
- Probes of the 125 GeV Higgs
- Probes of the 96 GeV Higgs at the ILC
- Conclusions

1. The excesses

- What was seen in Run I?
- What was seen in Run II?
- What was seen at LEP?
- Should we get excited?
- Which model fits?

"So, Edith, you didn't tell me?...Your son finished law school?"

[S. Shotkin, talk at HDays17]

• ~2 σ excursion @~97.5 GeV

18

h-->γγ (70-110 GeV) Runs 1+2

8 TeV: minimum(maximum) limit on σ X Br : 31(133) fb at m=102.8(91.1)GeV

13 TeV: minimum(maximum) limit on σ X Br : 26(161) fb at m=103.0(89.9)GeV

 8 TeV limits on σ X Br redone with 0.1 GeV step. Production processes assumed in SM proportions. No significant excess with respect to expected limits observed.

S. Gascon-Shotkin HDays17, Santander, ES Sept. 22 2017

26

[S. Shotkin, talk at HDays17]

h-->γγ (70-110 GeV) Runs 1+ 2

All experimental + theoretical systematic uncertainties assumed uncorrelated except for those on signal acceptance due to scale variations + those on production cross sections (assumed 100% correlated).

8 TeV+13 TeV: minimum(maximum) limit on (σ X Br)/ (σ X Br)_{SM} : 0.17(1.15) at m=103.0(90.0)GeV

• Combined 8 TeV+13 TeV σ X BR limit normalized to SM expectation (production processes assumed in SM proportions). No significant excess with respect to expected limits observed.

29

S. Gascon-Shotkin HDays17, Santander, ES Sept. 22 2017

٠

8 TeV: Excess with ~2.0 σ local significance at m=97.6 GeV

13 TeV: Excess with ~2.9 σ local (1.47 σ global) significance at m=95.3 GeV

8TeV+13 TeV: Excess with ~2.8 σ local (1.3 σ global) significance at m=95.3 GeV

More data are required to ascertain the origin of this excess

their combination S. Gascon-Shotkin HDays17, Santander, ES Sept. 22 2017

[S. Shotkin, talk at HDays17]

h-->γγ (70-110 GeV) <mark>Runs 1+2</mark>

Excess here mostly driven by class 1 (&2) at 13 TeV

 χ^2 probability for the seven individual values to be compatible with a single signal hypothesis: 41%

- 'Signal' strengths for the 7 event classes and overall, in the 8 TeV+13TeV combination, fixing $m_{\rm H}\text{=}95.3~\text{GeV}$
- More data are required to ascertain the origin of this excess

S. Gascon-Shotkin HDays17, Santander, ES Sept. 22 2017

55

 $\mu_{\text{CMS}}(96 \text{ GeV}) = [\sigma(pp \rightarrow h_1) \times \text{BR}(h_1 \rightarrow \gamma \gamma)]_{\text{exp/SM}} = 0.6 \pm 0.2$

What about ATLAS?

Note: ATLAS gives fiducial cross section! Conversion factor: 1/0.45 \Rightarrow ATLAS limit is even weaker than CMS exclusion limit (120 fb) **Q:** why does ATLAS has same sensitivity with twice amount of data? Sven Heinemeyer – DESY Multi-Higgs WG meeting, 04.06.2020

\Rightarrow everything well compatible with the excess!

What was seen at LEP?

 $\mu_{\text{LEP}}(98 \text{ GeV}) = \left[\sigma(e^+e^- \to Zh_1) \times \text{BR}(h_1 \to b\overline{b})\right]_{\text{exp/SM}} = 0.117 \pm 0.057$

What about the MSSM?

[P. Bechtle, H. Haber, S.H., O. Stål, T. Stefaniak, G. Weiglein, L. Zeune '16]

 \Rightarrow too small rates! \Rightarrow 2HDM structure to "rigid"

2. General analysis

MSSM: too small rates!

 \Rightarrow problem: 2HDM structure to "rigid"

More general Ansatz:

- richer Higgs structure
 - \Rightarrow add (at least) another Higgs singlet
- drop SUSY for now
 - \Rightarrow allow for more flexibility
 - \Rightarrow but check for hints towards SUSY
- check explicit SUSY scenarios later ⇒ back-up

More general Ansatz: N2HDM

[T. Biekötter, M. Chakraborti, S.H. '19]

Fields:

$$\Phi_1 = \begin{pmatrix} \phi_1^+ \\ \frac{1}{\sqrt{2}}(v_1 + \rho_1 + i\eta_1) \end{pmatrix}, \ \Phi_2 = \begin{pmatrix} \phi_2^+ \\ \frac{1}{\sqrt{2}}(v_2 + \rho_2 + i\eta_2) \end{pmatrix}, \ \Phi_S = v_S + \rho_S$$

Potential:

$$V = m_{11}^{2} |\Phi_{1}|^{2} + m_{22}^{2} |\Phi_{2}|^{2} - m_{12}^{2} (\Phi_{1}^{\dagger} \Phi_{2} + h.c.) + \frac{\lambda_{1}}{2} (\Phi_{1}^{\dagger} \Phi_{1})^{2} + \frac{\lambda_{2}}{2} (\Phi_{2}^{\dagger} \Phi_{2})^{2} + \lambda_{3} (\Phi_{1}^{\dagger} \Phi_{1}) (\Phi_{2}^{\dagger} \Phi_{2}) + \lambda_{4} (\Phi_{1}^{\dagger} \Phi_{2}) (\Phi_{2}^{\dagger} \Phi_{1}) + \frac{\lambda_{5}}{2} [(\Phi_{1}^{\dagger} \Phi_{2})^{2} + h.c.] + \frac{1}{2} m_{S}^{2} \Phi_{S}^{2} + \frac{\lambda_{6}}{8} \Phi_{S}^{4} + \frac{\lambda_{7}}{2} (\Phi_{1}^{\dagger} \Phi_{1}) \Phi_{S}^{2} + \frac{\lambda_{8}}{2} (\Phi_{2}^{\dagger} \Phi_{2}) \Phi_{S}^{2}$$

 Z_2 symmetry: $\Phi_1 \rightarrow \Phi_1$, $\Phi_2 \rightarrow -\Phi_2$, $\Phi_S \rightarrow \Phi_S$

Physical states: h_1 , h_2 , h_3 (CP-even), A (CP-odd), H^{\pm} (charged)

Extension of the Z_2 symmetry to fermions determines four types:

	<i>u</i> -type	<i>d</i> -type	leptons
type I	Φ2	Φ2	Φ2
type II	Φ2	Φ_1	Φ_1
type III (lepton-specific)	Φ2	Φ2	Φ_1
type IV (flipped)	Φ2	Φ_1	Φ2

\Rightarrow exactly as in 2HDM

Three neutral CP-even Higgses:

$$\begin{pmatrix} h_1 \\ h_2 \\ h_3 \end{pmatrix} = R \begin{pmatrix} \rho_1 \\ \rho_2 \\ \rho_S \end{pmatrix}, \quad R = \begin{pmatrix} c_{\alpha_1}c_{\alpha_2} & s_{\alpha_1}c_{\alpha_2} & s_{\alpha_2} \\ -(c_{\alpha_1}s_{\alpha_2}s_{\alpha_3} + s_{\alpha_1}c_{\alpha_3}) & c_{\alpha_1}c_{\alpha_3} - s_{\alpha_1}s_{\alpha_2}s_{\alpha_3} & c_{\alpha_2}s_{\alpha_3} \\ -c_{\alpha_1}s_{\alpha_2}c_{\alpha_3} + s_{\alpha_1}s_{\alpha_3} & -(c_{\alpha_1}s_{\alpha_3} + s_{\alpha_1}s_{\alpha_2}c_{\alpha_3}) & c_{\alpha_2}c_{\alpha_3} \end{pmatrix}$$

Coupling to massive gauge bosons: (identical for all four types)

$$c_{h_iVV} = c_{\beta}R_{i1} + s_{\beta}R_{i2}$$

$$h_1 \qquad c_{\alpha_2}c_{\beta-\alpha_1}$$

$$h_2 \qquad -c_{\beta-\alpha_1}s_{\alpha_2}s_{\alpha_3} + c_{\alpha_3}s_{\beta-\alpha_1}$$

$$h_3 \qquad -c_{\alpha_3}c_{\beta-\alpha_1}s_{\alpha_2} - s_{\alpha_3}s_{\beta-\alpha_1}$$

Coupling to fermions: (same pattern as in 2HDM)

	u -type (c_{h_itt})	d -type (c_{h_ibb})	leptons ($c_{h_i au au}$)
type I	$\frac{R_{i2}}{s_{\beta}}$	$\frac{R_{i2}}{s_{\beta}}$	$\frac{R_{i2}}{s_{\beta}}$
type II	$\frac{R_{i2}}{s_{\beta}}$	$\frac{R_{i1}}{c_{\beta}}$	$\frac{R_{i1}}{c_{\beta}}$
type III (lepton-specific)	$\frac{R_{i2}}{s_{\beta}}$	$\frac{R_{i2}}{s_{\beta}}$	$\frac{R_{i1}}{C_{e}}$
type IV (flipped)	$rac{R_{i2}}{s_{eta}}$	$\frac{\frac{R_{i1}}{c_{\beta}}}{c_{\beta}}$	$rac{R_{i2}}{s_{eta}}$

"Physical" input parameters:

 $\alpha_{1,2,3} , \quad \tan eta \, , \quad v \, , \quad v_S \, , \quad m_{h_{1,2,3}} \, , \quad m_A \, , \quad M_{H^{\pm}} \, , \quad m_{12}^2 \, ,$

Needed to fit the two excesses: $m_{h_1} \sim 96~{
m GeV}$, $m_{h_2} \sim 125~{
m GeV}$

- $-c_{h_1VV}^2$ strongly reduced for μ_{LEP}
- $-c_{h_1bb}$ reduced to enhance $BR(h_1 \rightarrow \gamma \gamma)$
- $-c_{h_1tt}$ not reduced for μ_{CMS}
- $-c_{h_1\tau\tau}$ possibly reduced to enhance BR($h_1 \rightarrow \gamma\gamma$)

	Decrease $c_{h_1 b \overline{b}}$	No decrease $c_{h_1 t \overline{t}}$	No enhancement $c_{h_1 auar au}$
type I	$\left(\frac{R_{12}}{s_{\beta}}\right)$:-)	$\left(\frac{R_{12}}{s_{\beta}}\right)$:-($\left(\frac{R_{12}}{s_{\beta}}\right)$:-)
type II	$\left(\frac{R_{11}}{c_{\beta}}\right)$:-)	$(\frac{R_{12}}{s_{\beta}})$:-)	$\left(\frac{R_{11}}{c_{\beta}}\right)$:-)
type III	$\left(\frac{R_{12}}{s_{\beta}}\right)$:-)	$(\frac{R_{12}}{s_{\beta}}) :-($	$\left(\frac{R_{11}}{c_{\beta}}\right)$:-(
type IV	$\left(\frac{R_{11}}{c_{\beta}}\right)$:-)	$(\frac{R_{12}}{s_{\beta}})$:-)	$\left(\frac{R_{12}}{s_{\beta}}\right)$:-(

Type II and IV: c_{h_1bb} and c_{h_1tt} independent Type II bonus: $c_{h_1\tau\tau}$ can be suppressed (together with c_{h_1bb})

\Rightarrow only type II and IV can fit CMS and LEP excesses

 \Rightarrow Parameter scan \Rightarrow ScannerS

Constraints:

- Tree-level perturbativity \Rightarrow ScannerS
- Minimum of potential is global minimum \Rightarrow ScannerS
- Higgs searches at LEP, Tevatron, LHC \Rightarrow HiggsBounds
- SM-like Higgs properties \Rightarrow HiggsSignals (N2HDECAY, SusHi) $\chi^2_{\rm red} := \chi^2/n_{\rm obs}$
- Flavor physics (mainly $BR(B_s \rightarrow X_s \gamma)$, $\Delta M_{B_s}) \Rightarrow SuperIso$ bounds
- Electroweak precision data $(T \text{ and } S) \Rightarrow \text{ScannerS}$

Fitting the excesses:

$$\mu_{\text{LEP}} = 0.117 \pm 0.057, \quad \mu_{\text{CMS}} = 0.6 \pm 0.2$$

$$\mu_{\mathsf{LEP}} = \frac{\sigma_{\mathsf{N2HDM}}(e^+e^- \to Zh_1)}{\sigma_{\mathsf{SM}}(e^+e^- \to ZH)} \cdot \frac{\mathsf{BR}_{\mathsf{N2HDM}}(h_1 \to b\bar{b})}{\mathsf{BR}_{\mathsf{SM}}(H \to b\bar{b})}$$
$$= \left|c_{h_1VV}\right|^2 \frac{\mathsf{BR}_{\mathsf{N2HDM}}(h_1 \to b\bar{b})}{\mathsf{BR}_{\mathsf{SM}}(H \to b\bar{b})}$$

$$\mu_{\mathsf{CMS}} = \frac{\sigma_{\mathsf{N2HDM}}(gg \to h_1)}{\sigma_{\mathsf{SM}}(gg \to H))} \cdot \frac{\mathsf{BR}_{\mathsf{N2HDM}}(h_1 \to \gamma\gamma)}{\mathsf{BR}_{\mathsf{SM}}(H \to \gamma\gamma)}$$
$$= |c_{h_1tt}|^2 \frac{\mathsf{BR}_{\mathsf{N2HDM}}(h_1 \to \gamma\gamma)}{\mathsf{BR}_{\mathsf{SM}}(H \to \gamma\gamma)}$$

$$\chi^{2}_{\text{CMS-LEP}} = \frac{(\mu_{\text{LEP}} - 0.117)^{2}}{(0.057)^{2}} + \frac{(\mu_{\text{CMS}} - 0.6)^{2}}{(0.2)^{2}}$$

\Rightarrow "best-fit point"

 \Rightarrow excesses well fitted, with good χ^2_{red} : 0.9 – 1.3

⇒ preferred $M_{H^{\pm}}$: 650 GeV – 950 GeV (lower limit: flavor constr.) ⇒ preferred tan β : 0.8 – 3.8 What can we learn from future measurements?

- LHC h_{125} coupling measurements
- HL-LHC h_{125} coupling measurements
- ILC (or other e^+e^- coll.) h_{125} coupling measurements
- NEW: ILC (or other e^+e^- coll.) ϕ_{96} coupling measurements [*S.H., P. Toledo '20*]
- direct production of ϕ_{96} at the LHC
- direct production of ϕ_{96} at the HL-LHC
- direct production of ϕ_{96} at the ILC (or other e^+e^- coll.)
- production of other BSM Higgs bosons at the LHC/HL-LHC/ILC/...

What can we learn from future measurements?

- LHC h_{125} coupling measurements \Leftarrow focus- HL-LHC h_{125} coupling measurements \Leftarrow focus- ILC (or other e^+e^- coll.) h_{125} coupling measurements \Leftarrow focus- NEW: ILC (or other e^+e^- coll.) ϕ_{96} coupling measurements \Leftarrow focus[S.H., P. Toledo '20] \leftarrow
- direct production of ϕ_{96} at the LHC
- direct production of ϕ_{96} at the HL-LHC
- direct production of ϕ_{96} at the ILC (or other e^+e^- coll.) \leftarrow focus
- production of other BSM Higgs bosons at the LHC/HL-LHC/ILC/...

3. Probes of the 125 GeV Higgs

Future measurements: ⇒ HL-LHC/ILC Higgs coupling measurements

\Rightarrow type II shows deviation from SM

Future measurements: ⇒ HL-LHC/ILC Higgs coupling measurements

$\Rightarrow type IV shows deviations from SM$ $\Rightarrow N2HDM can always be distinguished from SM!$

Future measurements: ⇒ HL-LHC/ILC Higgs coupling measurements

 \Rightarrow type II and IV show strong deviations from SM \Rightarrow N2HDM can always be distinguished from SM!

4. Probes of the 96 GeV Higgs at the ILC

- Direct production at the ILC
 Uses work by:
 [P. Drechsel, G. Moortgat-Pick, G. Weiglein '18]
 [Y. Wang, M. Berggren, J. List '20]
- Coupling measurements at the ILC [S.H., P. Toledo '20]
 Thanks go to:
 - T. Biekötter (for the data and discussions)
 - M. Cepeda (for her help with the formulas)
 - J. List (for help on S/B in BSM models)
 - J. Tian (for help on S/B in the SM)
 - C. Schappacher (for some production cross sections)

\Rightarrow focus on ''good'' points with $\chi^2_{\rm CMS-LEP} < 2.3$

Next project? \Rightarrow ILC production of the light scalar

[T. Biekötter, M. Chakraborti, S.H. '19]

\Rightarrow new state easily in the reach of the ILC \Rightarrow coupling measurements

Start with data of the SM Higgs:

SM Higgs BRs:

[YR4 LHCHXSWG]

final state	$b\overline{b}$	gg	$\tau^+\tau^-$	WW^*	σ_{ZH}
BR	0.582	0.082	0.063	0.214	206 fb

SM Higgs coupling uncertainties:

ILC, $\mathcal{L}_{int} = 2 a b^{-1}$ at $\sqrt{s} = 250 \text{ GeV}$

[T. Barklow et al. '17]

coupling	$b\overline{b}$	gg	$\tau^+\tau^-$	WW	ZZ
rel. unc. [%]	1.04	1.60	1.16	0.65	0.66

SM Higgs S/B:

[S. Dawson et al. '13] [J. Tian, priv. commun.]

coupling	$H \to b\overline{b}$	$H \to gg$	$H \to \tau^+ \tau^-$	$H \to WW$	σ_{ZH}
S/B	1/0.89	1/13	1/0.44	1/0.96	1/1.65

$$f := S/B \equiv N_S/N_B$$
$$\frac{\Delta N_S}{N_S} = \frac{1}{\sqrt{N_S}} \sqrt{1 + 1/f}$$

Holds is background is known perfectly and the overall uncertainty is dominated by statistical precision

Uncertainty improves with $1/\sqrt{N_S}$ for $f=S/B\gg 1$

Cross section for ϕ_{96} :

$$\sigma(e^+e^- \to \phi Z) = \sigma_{\rm SM}(e^+e^- \to Z H_{\rm SM}^{\phi_{96}}) \times |c_{\phi VV}|^2$$
$$\sigma_{\rm SM}(e^+e^- \to Z H_{\rm SM}^{\phi_{96}}) = 0.332 \,\text{pb}$$
$$\Rightarrow \mathcal{O}\left(10^5\right) \,\phi\text{'s can be produced at } \sqrt{s} = 250 \,\text{GeV and } \mathcal{L}_{\rm int} = 2 \,\text{ab}^{-1}$$

Evaluating uncertainties:

• Coupling is measured via decay

A new Higgs boson ϕ couples with g_x to xx

$$\Gamma(\phi \to xx) \propto g_x^2$$
$$\mathsf{BR}(\phi \to xx) =: 1/p$$
$$\frac{\Delta N_S}{N_S} = 2 \frac{\Delta g_x}{g_x} \left(1 - \frac{1}{p}\right)$$

• Coupling is measured via production: g_Z

$$\sigma(e^+e^- \to Z\phi) \propto g_Z^2$$
$$\frac{\Delta N_S}{N_S} = 2 \frac{\Delta g_x}{g_x}$$

• Final assumption:

$$\left(\frac{N_S}{N_B}\right)_H / \left(\frac{N_S}{N_B}\right)_\phi = f_H / f_\phi =: D$$

with D = 2 as starting point

Evaluating uncertainties of ϕ_{96} :

• Coupling is measured via decay

$$\begin{pmatrix} \Delta g_x \\ g_x \end{pmatrix}_{\phi} = \left(\frac{\Delta g_x}{g_x} \right)_H \times \frac{\left(\frac{\Delta N_s}{N_s} \right)_{\phi}}{\left(\frac{\Delta N_s}{N_s} \right)_H} \times \frac{\left(1 - \frac{1}{p_H} \right)}{\left(1 - \frac{1}{p_{\phi}} \right)}$$

$$\rightarrow \sqrt{\frac{D + f_H}{1 + f_H}} \times \sqrt{\frac{\sigma(e^+e^- \to ZH)}{\sigma(e^+e^- \to Z\phi)}} \times \sqrt{\frac{\mathsf{BR}(H \to xx)}{\mathsf{BR}(\phi \to xx)}} \times \frac{(1 - \mathsf{BR}(H \to xx))}{(1 - \mathsf{BR}(\phi \to xx))}$$

• Coupling is measured via production: g_Z (S/B does not change)

$$\begin{pmatrix} \Delta g_Z \\ g_Z \end{pmatrix}_{\phi} = \left(\frac{\Delta g_Z}{g_Z} \right)_H \times \frac{\left(\frac{\Delta N_S}{N_S} \right)_{\phi}}{\left(\frac{\Delta N_S}{N_S} \right)_H} \\ \rightarrow \sqrt{\frac{\sigma(e^+e^- \to ZH)}{\sigma(e^+e^- \to Z\phi)}}$$

N2HDM: Number of $b\overline{b}$ events:

\Rightarrow no difference between type II and IV

N2HDM: Number of $\tau^+\tau^-$ events:

[S.H., P. Toledo '20]

 \Rightarrow clear distinction between type II and IV \Rightarrow linear dependence for type II

N2HDM: Number of $\tau^+\tau^-$ events:

 \Rightarrow clear distinction between type II and IV \Rightarrow linear dependence for type IV

N2HDM: precision of ILC coupling measurements [S.H., P. Toledo '20]

 $\Rightarrow \mathcal{O}(1-5\%)$: g_Z best from production, g_τ very precise in type IV

N2HDM: dependence on $D = f_H/f_\phi$:

[S.H., P. Toledo '20]

\Rightarrow non-negligible, but small \Rightarrow "robust" result

N2HDM: $\tau\tau$ vs. $b\overline{b}$ coupling:

[S.H., P. Toledo '20]

\Rightarrow model distinction possible via coupling measurements

N2HDM: $\tau\tau$ vs. WW/ZZ:

[S.H., P. Toledo '20]

\Rightarrow model distinction possible via coupling measurements

5. Conclusinos

• Interesting excesses at ~ 96 GeV: CMS: $pp \rightarrow \phi \rightarrow \gamma \gamma$ (3 σ local) ATLAS: no sensitivity (yet) LEP: $e^+e^- \rightarrow Z \phi \rightarrow Z b\overline{b}$ (2 σ local)

- MSSM cannot explain the CMS excess ⇒ to rigid 2HDM structure More general ansatz: ⇒ N2HDM analysis
- Only type II and IV can fit both excesses simultaneously ⇒ type II fits best (as predicted by SUSY :-)
- Analysis with ScannerS, HiggsBounds, HiggsSignals, N2HDMDecay, SusHi, SuperIso \Rightarrow many good fit points ($\chi^2_{CMS-LEP} < 2.3$) found
- Couplings of $h_2(125)$ can distinguish N2HDM vs. SM and type II and IV
- Coupling analysis of h_1 :
 - number of $\tau\tau$ events clearly distinguishes type II and IV
 - $\Rightarrow \mathcal{O}(1-5\%)$: g_Z best from production, g_τ very precise in type IV
 - no strong dependence on $D = f_H/f_\phi$
 - coupling measurements (au au, $b\overline{b}$, ZZ) distinguishes type II and IV

Further Questions?

 \Rightarrow type II fits best, type II is needed for SUSY \Rightarrow no surprize! ;-)

 \Rightarrow type II fits best, type II is needed for SUSY \Rightarrow no surprize! ;-)

 \Rightarrow models with an additional singlet??

 \Rightarrow type II fits best, type II is needed for SUSY \Rightarrow no surprize! ;-)

 \Rightarrow models with an additional singlet??

- NMSSM
- $-\mu\nu$ SSM
- . . .

 \Rightarrow type II fits best, type II is needed for SUSY \Rightarrow no surprize! ;-)

 \Rightarrow models with an additional singlet??

- NMSSM
- $-\mu\nu$ SSM

— . . .

Q: Can the models fit the excesses despite the additional SUSY constraints on the Higgs sector **???**

What about the NMSSM? [F. Domingo, S.H., S. Passehr, G. Weiglein '18]

Parameters:

 \Rightarrow both excesses can be fitted simultaneously (at $1 - 1.5 \sigma$)!

What about the $\mu\nu$ SSM?

μνSSM: [D. Lopez-Fogliani, C. Muñoz '06]

$\mu\nu$ SSM: NMSSM + well motivated RPV (in simple terms) \Rightarrow EW scale seesaw to reproduce the neutrino data

What about the $\mu\nu$ SSM?

 $\mu\nu$ SSM: [D. Lopez-Fogliani, C. Muñoz '06]

$\mu\nu$ SSM: NMSSM + well motivated RPV (in simple terms) \Rightarrow EW scale seesaw to reproduce the neutrino data

Can the $\mu\nu$ SSM explain the two excesses?

[T. Biekötter, S.H., C. Muñoz '17]

v_{iL}	Y_i^{ν}	$A_i^{ u}$	aneta	μ	λ	A^{λ}	κ	A^{κ}	M_1
$\sqrt{2} \cdot 10^{-5}$	10^{-7}	-1000	2	[413; 418]	0.6	956.035	0.035	[-300; -318]	100
M_2	M ₃	$m^2_{\widetilde{Q}_{iL}}$	$m^2_{\widetilde{u}_{iR}}$	$m^2_{\widetilde{d}_{iR}}$	A_1^u	$A^{u,d}_{2,3}$	$(m_{\widetilde{e}}^2)_{ii}$	A^e_{33}	$A^e_{11,22}$
200	<mark>150</mark> 0	800 ²	800 ²	800 ²	0	0	800 ²	0	0

Can the $\mu\nu$ SSM explain the two excesses?

[T. Biekötter, S.H., C. Muñoz '17]

 \Rightarrow YES, WE CAN! :-) at the 1 - 1.5 σ level Why can SUSY explain the excesses only at $1 - 1.5 \sigma$? [*T. Biekötter, S.H., C. Muñoz '19*]

⇒ SUSY enforces strong correlation! ⇒ note: ATLAS limits and CMS "observation" will likely result in a lower μ_{LHC} !

Best-fit point in type II:

m_{h_1}	m_{h_2}	m_{h_3}	m_A	$M_{H^{\pm}}$	
96.5263	125.09	535.86	712.578	737.829	
aneta	α_1	α_2	α_3	m_{12}^2	v_S
1.26287	1.26878	-1.08484	-1.24108	80644.3	272.72
$BR^{bb}_{h_1}$	$BR^{gg}_{h_1}$	$BR_{h_1}^{\tau\tau}$	$BR_{h_1}^{\gamma\gamma}$	$BR_{h_1}^{WW}$	$BR_{h_1}^{ZZ}$
0.5048	0.2682	$5.09 \cdot 10^{-2}$	$2.582 \cdot 10^{-3}$	$1.37 \cdot 10^{-2}$	$1.753 \cdot 10^{-3}$
$BR^{bb}_{h_2}$	$BR^{gg}_{h_2}$	$BR_{h_2}^{\tau\tau}$	$BR_{h_2}^{\gamma\gamma}$	$BR_{h_2}^{WW}$	$BR_{h_2}^{ZZ}$
0.5916	0.0771	$6.36 \cdot 10^{-2}$	$2.153 \cdot 10^{-3}$	0.2087	$2.610 \cdot 10^{-3}$

\Rightarrow surprizingly large $\mathsf{BR}_{h_1}^{\gamma\gamma}$

m_{h_1}	m_{h_2}	m_{h_3}	m_A	$M_{H^{\pm}}$	
97.8128	125.09	485.998	651.502	651.26	
aneta	α_1	α_2	$lpha_{3}$	m_{12}^2	v_S
1.3147	1.27039	-1.02829	-1.32496	41034.1	647.886
$BR^{bb}_{h_1}$	$BR^{gg}_{h_1}$	$BR_{h_1}^{\tau\tau}$	$BR_{h_1}^{\gamma\gamma}$	$BR_{h_1}^{WW}$	$BR_{h_1}^{ZZ}$
0.4074	0.20714	0.248324	$2.139 \cdot 10^{-3}$	$1.347 \cdot 10^{-2}$	$1.579 \cdot 10^{-3}$
$BR^{bb}_{h_2}$	$BR^{gg}_{h_2}$	$BR_{h_2}^{\tau\tau}$	$BR_{h_2}^{\gamma\gamma}$	$BR_{h_2}^{WW}$	$BR_{h_2}^{ZZ}$
0.5363	0.09388	$7.58 \cdot 10^{-2}$	$2.247 \cdot 10^{-3}$	0.2267	$2.836 \cdot 10^{-2}$

 \Rightarrow substantially larger $\mathsf{BR}_{h_1}^{\tau\tau}$ than in type II