Phenomenology of super-symmetric model inspired by inflation

Wolfgang G. Hollik, Cheng Li, Gudrid Moortgat-pick, Steven Paasch

Motivations

- Embedding inflation in collider phenomenology
- Distinguishing inflation-inspired SUSY models from SUSY models without inflation

NMSSM and Inflation

Superpotential with non-minimal coupling

$$\mathcal{W}_{\text{Higgs}} \to \mathcal{W}_{\text{Higgs}} + \frac{3}{2} m_{3/2} \chi \hat{H}_u \cdot \hat{H}_d \qquad \qquad \mu_{\text{inf}} = \frac{3}{2} m_{3/2} \chi$$

Higgs potential

$$\begin{split} V_{\text{Higgs}} &= \left(m_{H_d}^2 + (\mu_{\text{inf}} + \lambda S)^2 \right) |H_d|^2 + \left(m_{H_u}^2 + (\mu_{\text{inf}} + \lambda S)^2 \right) |H_u|^2 \\ &+ \left(\kappa S^2 + \lambda H_u \cdot H_d \right)^2 + \frac{g_2^2}{2} |H_d^{\dagger} H_u|^2 + \frac{g_1^2 + g_2^2}{8} \left(|H_d|^2 - |H_u|^2 \right)^2 \\ &+ m_S^2 S^2 + 2\lambda A_\lambda S H_u \cdot H_d + \frac{2}{3} \kappa A_\kappa S^3 \,. \end{split}$$
$$-\mathcal{L}_{\text{soft}} &= \left[A_\lambda \lambda S H_u \cdot H_d + \frac{1}{3} A_\kappa \kappa S^3 + B_\mu \mu H_u \cdot H_d + \text{h. c.} \right] \\ &+ m_{H_d}^2 |H_d|^2 + m_{H_u}^2 |H_u|^2 + m_s^2 |S|^2 \,. \end{split}$$

05/14/20

NMSSM benchmark point

• Fixed input parameters

 $M_1 = 239 \text{ GeV}$ $M_2 = 500 \text{ GeV}$ $M_3 = 2500 \text{ GeV}$ $A_{f_3} = 1200 \text{ GeV}$

 $m_{\tilde{f}_{L},\tilde{f}_{R}} = 2000 \text{ GeV} M_{A} = 2000 \text{ GeV} \tan \beta = 12$

- Random Scan interval
 - $-\kappa$ {0, 0.1}
 - $-\lambda$ {0, 0.1}
 - $|\mu_{\rm eff}|$ {100, 1000} GeV
 - *A_κ* {-300, 300} GeV

05/14/20

NMSSM benchmark point

Input parameters of benchmark point

 $\kappa = 0.01846$ $\lambda = 0.04215$

 $\mu_{\rm eff} = -212.3 \text{ GeV} A_{\kappa} = 268.6 \text{ GeV}$

• Benchmark mass spectrum:

 $m_{h_1} = 96.99 \text{ GeV} m_{h_2} = 125.3 \text{ GeV} m_{H_3} = 1962 \text{ GeV}$

 $m_a = 273.7 \text{ GeV}$ $m_A = 1962 \text{ GeV}$ $m_{H^{\pm}} = 1964 \text{ GeV}$

 $m_{\tilde{\chi}_1^0} = 190.4 \text{ GeV} \ m_{\tilde{\chi}_2^0} = 194.2 \text{ GeV} \ m_{\tilde{\chi}_3^0} = 226.1 \text{ GeV}$

 $m_{\tilde{\chi}_{4}^{0}} = 255.1 \text{ GeV} \ m_{\tilde{\chi}_{5}^{0}} = 538.3 \text{ GeV}$

 $m_{\tilde{\chi}_1^{\pm}} = 214.5 \text{ GeV} m_{\tilde{\chi}_2^{\pm}} = 538.3 \text{ GeV}$

05/14/20

Experimental Check

- HiggsBounds
 - Higgs production
 - LEP bounds
 - Tevatron bounds
 - LHC bounds
- HiggsSignal:

$$\chi^2 = 77.30283230$$

• Dark Matter relic density:

 $\Omega h^2 = 0.109070098$

05/14/20

- CheckMATE
 - Neutralino & chargino production:
 - HL_LHC bounds

µNMSSM Scan

- "Direct" μ_{inf} scan
 - Vary μ_{inf} directly

- "Pure" μ_{inf} scan
 - Vary μ_{inf} with fixing combinations:

 $\mu_{\text{inf}} + \mu_{\text{eff}}, \qquad \frac{\kappa}{\lambda} \mu_{\text{eff}}$

05/14/20

"Direct" μ_{inf} effects

Mixings

Branching ratios

05/14/20

"Direct" μ_{inf} effects

Cross-section

Reduced couplings

05/14/20

"Pure" μ_{inf} effects

Cross section

05/14/20

"Pure" μ_{inf} effects

Reduced couplings

- For h_2 , deviations are ~1%.

- For h_1 , there are ~10% deviations

05/14/20

Conclusions

- We discussed phenomenological effect from μ_{inf}
- We found some experimental distinction between $\mu \rm NMSSM$ and normal NMSSM
- We studied reduced couplings and prodcution cross section of the 97 GeV light singlet-like Higgs state at ILC

Outlook

- One can study the $\mu_{\rm inf}$ effect for heavy Higgs states

Other NMSSM points

 $(\tan\beta=12, M_{A}=800)$

к=0.0298	λ=0.0726	µ _{eff} = -126.32	A _K =15.06	M ₁ =341.998	M ₂ =253.065	A _{f3} =2000
M _{h1} =95.7	M _{h2} =124.6	M _a =48.87	M _{_{X1+} =121.9	M _{x10} =105.6	M _{x20} =112.0	M _{_{_{\chi30}}} =143.3

к=0.0045	λ=0.0148	μ_{eff} = 247.51	A _k =-130.65	M ₁ =286.04	M ₂ =193.51	A _{f3} =2500
M _{h1} =112.0	M _{h2} =125.3	M _a =172.3	M _{X1+} =170.68	M _{x10} =154.5	M _{x20} =166.8	M _{x30} =260.1

05/14/20

05/14/20

05/14/20

15

