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Evidence for dark matter

There are lots of evidence for the 
existence of a non-relativistic non-
baryonic matter in the universe 
which makes up ~ 26% of the 
energy of the universe

CMB temperature 
fluctuationsRotation curves of 

galaxies

Assuming a thermal production of dark matter (DM) in the early universe and 
thermal freeze out, we can write a Boltzmann equation describing the 
evolution of dark matter density in the universe and deduce from it the present 
abundance of dark matter.
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Dark matter relic density

● Experimental results for DM relic 
abundance very precise (Planck 2018) 

● Need to increase the precision in 
theoretical calculations of the Boltzmann 
equation.

● One possibility : consider Next-to-leading 
order(NLO) corrections to σeff

Source: Daniel Baumann TASI Lecture notes 
on primordial cosmology
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● NLO corrections include real and virtual contributions. 

Virtual contributions:

 

Real contributions:

Involving loop calculations Involving emission of e.g: gluon 
(QCD), photon (QED),...

2 to 3 processes 
2 to 2 processes 

Dark matter relic density
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Problem:

Virtual contributions induce ultraviolet (UV) and infrared (IR) divergences. 

Real contributions induce infrared divergences.

Cancel ultraviolet divergences 
using renormalization 
techniques. 

All UV divergences absorbed in 
counterterms.

Infrared divergences cancel when considering 
the full NLO correction according to Kinoshita-
Lee-Nauenberg theorem.

Add both real and virtual contributions:
IR divergences in real and virtual 
contributions cancel each other analytically.
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IR Divergences in QCD

In general, infrared divergences can be described in 3 classes:
soft, collinear or soft-collinear

“Soft” divergence “Soft”, “collinear” or “soft- 
collinear” divergence

“Collinear” divergence

Example: Massive quark 
emits a soft gluon.

Example: Gluon emits a soft 
gluon or/and both gluons parallel 
to each other.

Example: Gluon decays 
into a collinear massless 
quark antiquark pair.
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Soft divergences

Consider the process of gluon emission off a final state quark.

Now we use the eikonal approximation for the soft limit 

In case we have multiple particles in the 
final/initial state that can emit a gluon: 
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Collinear divergence

Consider the process of decay of a gluon into a quark-antiquark pair. 

Define the Sudakov notation, which is useful to 
parameterize the collinear divergence of two 
momenta: 

We work in d=4-2ε dimensions:
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Plug in the expression for p and k in the 
Sudakov parametrization in the matrix 
element and taking the collinear limit 

P
gq 

is the Altarelli-Parisi splitting function.

In the case of a gluon:

Collinear divergence
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Summarizing the possible IR divergences

We can write down the behavior of the matrix 
element squared as:

Scalar propagator
Soft limit:

Collinear limit:
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We can analytically cancel all IR divergences when adding both virtual and real 
contributions. 

Problem: Numerically, we calculate the 
contributions in two different phase spaces

Solution:

● Find a method to cancel the infrared divergences separately in both contributions.

Already lots of methods available:

● Phase space slicing (Harris 2001)

● Dipole subtraction methods (Catani,Seymour 96, Dittmaier 99, Catani, Seymour 
2002)
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Dipole subtraction method

Subtract an auxiliary cross section σ
A 
 from the real contribution and add it back 

to the virtual contribution.

This auxiliary cross section should have the properties:

● Have the same divergent behavior in the soft/collinear limits as the real contribution.

● Must be easily analytically integrable over d-dimensional one-particle phase space of 
the gluon.
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Dipole subtraction method in the literature

Dipole subtraction method initially developed for collider 
physics:

Massless particles (Catani-Seymour 1996)

Massive particles in the final state (Catani-Seymour 2002)

Problem with dark matter processes:

Initial state particles cannot be taken as massless, as it can also include squarks

We need to extend the formalism to also 
include massive initial states for QCD 
and using dimensional regularization.

Treatment of initial massive states done 
by (Dittmaier 1999) but only considered 
QED processes and mass regularization.
Another work by (Kotko 2012) considered 
QCD processes but used another 
notation.  



  15

General structure of the dipoles

Ingredients:

1) S
ij
 usual scalar propagator of emitter.

2) V
ij,k 

Dipole splitting functions. Have the same 
divergent behavior as V

i,j
 in M

3 
.

3)
                      

The tree matrix element written in terms of 
the dipole momenta. 

In contrast to the usual momenta, 
dipole momenta       and 
satisfy 2 to 2 momentum 
conservation        they will be used 
in the tree matrix element
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How to choose the dipoles ? 

Naively we 
can choose:

same as 

Problem 1
In the soft and collinear limit, we end up counting the soft limit two times because the 
Altarelli-Parisi splitting functions are also divergent in the soft limit.
Solution:
Choose a single splitting function for all limits. 

Problem 2
We have momentum conservation for M

2
 only at the strict soft limit. 

Outside this limit, M
2 
is not defined as the Mandelstam variables are 

only defined for 
Solution:
Contruct new momenta that always respect momentum conservation 
and build the matrix element with them.   
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● Dipole kinematics

● Dipole splitting functions

● Phase space factorization

● Integration

Constructing the dipoles 

Final state emission, Initial state spectator DFE-IS

Steps:

“Feynman diagram” of the dipole function
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Dipole Kinematics

In order to get well defined tree matrix elements, we 
need to impose momentum conservation in all points 
of the phase space for 2 to 2 processes.  

Dipole momenta need to satisfy the conditions:

Momentum conservation On-shell relations Soft limit

Motivates writing the dipole momenta 
as a linear combination of Q and p

a
:

2 to 3 momentum 
conservation

2 to 2 momentum 
conservation
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We end up with the system of equations:

Solve for f and g:

Dipole Kinematics
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Dipole Splitting Functions

Define the dipole variables:

Final state emission of a gluon off a 
quark, with the initial state squark as 
spectator

Parameterize the energy 
of the gluon.

Describes angle between 
emitter and spectator

Describes the angle between 
the emitted particle and the 
spectator

Motivation:
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Final state gluon decay into a quark-antiquark 
pair, with the initial squark as spectator

Final state emission of a gluon off a gluon, with the initial state squark 
as spectator

Compare to:

Motivation:

Compare to:

With:
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Phase Space Factorization

In order to integrate the dipoles, we need to separate the three-
particle phase space into a dipole phase space and a two-particle 
phase space (corresponding to the tree matrix element)

Start by factorizing the three-particle phase space in 
the normal momenta:

with 
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Integrated over dipole 
phase space.

Integrated over 
two-particle 
phase space.

For simplicity 
define:

We now use the substitution:
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Integration
To cancel the virtual divergences we need to perform the integral:

Start with Involves non trivial integration over variable z:

Result can be written in 
the generic form:

for all dipole splitting 
functions.

Function f(x;ε) is divergent at x=1

Function K(x;ε) is finite for all x

Perform the integration of the remaining 
part over x using the “+”-distribution trick

 e.g the case of emission from quark:
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The generic result for all dipoles is then:

After expanding up to O(ε), we can write the result in the generic form:

I
pole

 is a sum over terms in inverse powers of ε.
The second term will cancel IR divergences in 
the virtual contribution.

Cancels IR virtual divergences

Finite contribution
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Initial state emission - Final state spectator

● Dipole kinematics (same as the case of final emission – initial spectator)

● Dipole Splitting function (consider the dipoles related to squarks)

● Phase space factorization (same as the case of final emission – initial 
spectator)

● Integration (same concepts as the case of final emission – initial 
spectator)
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Dipole splitting functions

Initial state emission of a gluon off a squark, with 
final state quark/gluon as spectator

Recall:

Motivation:
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Implementation of the dipoles

For these processes, we need to include final 
state emission-initial state spectator dipole DFE-IS 
and Initial state emission-Final state spectator 
dipole DIE-FS.

Recall:

We use the formalism to 
cancel all IR divergences 
in NLO of Neutralino-
Stop coannihilation into 
a top quark and a higgs 
boson.
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Now use the condition of color conservation:

The dipoles are given by:

Applied to our case:

The dipole functions 
then become:

In this form, subtracting 
the dipoles from the real 
cross section cancels all 
divergences in the real 
contribution.

Express         in terms of the dipole 
Mandelstam variables:
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Consider now the implementation in the virtual contribution:

Recall that the general form of the 
integrated dipoles is:

Will cancel all the 
divergences in the 
virtual contributionThe other x-dependent part will be integrated 

over the two-particle phase space in the dipole 
momenta.  
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Results

Start with the real contribution Dipole counterpart

Where: 

Source: Hitchhiker’s guide to 
renormalization
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Fix x
3
 to a very small value to get soft 

limit: x
3 
= 0.000001

Here dipole contribution 
multiplied with a minus sign. 

We see that there is good 
agreement between both 
contributions and all the IR 
divergences cancel.
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Full Results Work with Luca Wiggering (Münster) after 
submitting the thesis
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Full result after removing the divergences in 
the virtual part and real part. Full implementation of the dipoles.

The contribution from the x-dependent part is very high. 
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Compare the results with phase space slicing method:

High discrepency 
with the results from 
phase space slicing!

The issue seems to be related to the integration result of the x-dependent part 
as it gives big contributions.
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Conclusions and outlook

● We developed the QCD dipole formalism for massive initial state particles, 
including the possibility of scalars as emitters. All this using dimensional 
regularization. 

● The formalism was implemented for the NLO QCD corrections to the 
coannihilation process of neutralino-stop into a top quark and a higgs boson. The 
formalism successfully canceled all IR divergences in the real as well in the 
virtual contribution.

● The results were compared to the results using phase space slicing. We 
observe a very good agreement with the optimized results of phase space slicing.

● Implementation in the case of a final state gluon is in progress. All divergences 
are cancelled but there is a discrepency between the results from the dipoles 
and phase space slicing.
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Backup



  42

Virtual Contribution

Dipole counterpart:
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Phase space slicing (Backup)
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● Dipole Kinematics

● Dipole splitting functions

● Phase space factorization

● Integration

Initial state emitter – initial state spectator
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Dipole Kinematics

We need to define new 
momenta in order to 
have well defined matrix 
elements in all points of 
the phase space. Usual momentum conservation: Dipole momenta conservation:

Postulate the following dipole momenta:

The dipole momenta should satisfy the conditions:

Momentum conservation:              On-shell relations:                     Soft limit:  
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We get a system of two equations for f and g:

Solving for f and g:
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Dipole splitting functions

Initial state emission of a gluon off a squark, with a 
squark in the initial state as spectator.

where

will be canceled with: 
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Phase space factorization

We separate the three-particle phase space into a two 
particle phase space and a dipole phase space:

Calculate                                       explicitly:
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now use:

We end up with:

and define:
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For actual implementations, we need the phase space with particles         and 

 use:
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Integration

The integration of the dipole splitting functions is 
analogous to the previous cases. 

The general result of the integration over the dipole phase space is again given as 
a distribution in x.  

Use “+”-distribution to write the result as a 
distribution in x:

divergent 
at x=1

finite for 
all x



  53

After expanding up to O(ε), we can write the result in the generic form:

I
pole

 is a sum over terms in inverse powers of ε.
The second term will cancel IR divergences in 
the virtual contribution.

Cancels IR virtual divergences

Finite contribution
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Example

Real contribution
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