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SRF Cavity Detectors for High-Frequency Gravitational 
Waves

Outline
  Gravitational wave coupling mechanisms 
  Sensitivity estimation of the MAGO detector 
  A detector concept for high-frequency gravitational 

waves 
  Quantum enhanced cavity searches 
  Gravitational wave sources of new physics 

29.08.2024 2/20



SRF Cavity Detectors for High-Frequency Gravitational 
Waves

3

Gravitational Waves
 Linearized general relativity: flat space + perturbation 
 Gravity must be spin-2: Radiation generates quadrupole moment 

29.08.2024
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Unique experiments to probe
beyond standard model physics  

https://www.sr.bham.ac.uk/~cplb/GWplotter/



SRF Cavity Detectors for High-Frequency Gravitational 
Waves

4

Gravitational Wave Coupling with 
EM Cavities
 Deforms the mechanical 

structure of the detector 
 Induces a current for an 
electromagnetic 
background field 
(Gertsenshtein effect)
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Gravitational Wave Cavity 
Experiments 
 Superconducting cavities 

in a heterodyne set-up
 EM eigenmode loaded 

with EM energy 
 MAGO prototype 

 Normal conducting 
Cavities in static 
magnetic fields 

 Empty EM mode and 
strong external B-field 
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Coordinate Systems for 
Gravitational Waves
 Transverse-traceless 

(TT) frame GW take 
simple form

 Proper detector (PD) 
frame suited to describe 
laboratory 
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EM fields in TT  EM fields in 
PD

For the direct 
conversion choose the 
PD frame

𝒉𝝁𝝂 𝒉𝝁𝝂
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Mechanical Coupling Signal Strength
 Mechanical coupling on resonance

 Mechanical displacement of cavity walls by force 

 For tidal force of a GW   
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Electromagnetic Coupling Signal 
Strength 
 GW induced effective current 

 Signal strength of direct conversion is 

 Ratio of direct and indirect signal strength  

 Indirect conversion enhanced on resonance ()
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Noise Sources Power Spectral 
Densities (PSD)
  Including field back-action  

29.08.2024

Löwenberg, Moortgat-Pick 2307.14379

Mechanical Noise LimitedThermal Noise Limited
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MAGO Detector Sensitivity 
 Estimate minimal measurable strain  by integrating PSDs in 

signal-to-noise ratio   
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h𝑚𝑖𝑛≃( 𝑡 𝑖𝑛𝑡2𝜋∫𝑑𝜔( 𝑆𝑠𝑖𝑔
h (𝜔)

𝑆𝑛𝑜𝑖𝑠𝑒(𝜔) )
2

)
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Non-Scanning MAGO Sensitivity 

Overcoupling the signal mode, i.e. 
and 

Scanning MAGO Sensitivity 

Critical coupling the signal mode, i.e. 
and 
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SRF Detectors for High-
Frequencies
A regime of quantum limited noise 
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Direct Conversion Static B vs. 
Heterodyne 
 Recall the signal strength for a heterodyne cavity

 For direct conversion in a static B-field 

 The signal strength ratio is 

 Static B-field dominate for 
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Δ𝜔∼𝑘𝐻𝑧Δ𝜔∼𝐺𝐻𝑧

A Detector at the Quantum Limit 
  A detector with  GHz: 
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 Criteria for a detector of high-frequency GW
 Frequency separation of mode pair 
 Azimuthal mode number difference 

 For example, choose a cylindrical cavity of equal radius 
and length

  
 For ,  

 Coupling determined by overlap of effective current and 
E-field of the signal mode 

Detector for a HFGW Heterodyne 
Search

29.08.2024
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Peak Sensitivity
 Estimate sensitivity with signal-to-noise ratio 

 Heterodyne SRF cavity experiments 

 Static B-field cavity experiments 

29.08.2024

 where     is the signal bandwidth
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Detector Signal 
 Coupling coefficient

 Signal power for periodic sources 
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Limited broadband sensitivity! 

𝜅0𝑛=
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Coupling Coefficient  for 

𝑡𝑖𝑛𝑡=1 𝑦𝑟Overcoupling the signal mode for Non-scanning, i.e. 
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Quantum Enhanced Searches
 Squeezing increased sensitivity in 

GW interferometers

 Direct axion searches speed up scan rate
with squeezed vacuum 

 Can squeezed states in a 
heterodyne cavity 
enhance the search for GWs? 

29.08.2024

GEO600, DOI: 10.1038/NPHYS2083

HAYSTAC, DOI: 10.1038/s41586-021-03226-
7
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Squeezed States of Light 
 Until here: Classical field theory

29.08.2024

𝐸⃗ (𝑡 , 𝑥 )=𝐸0𝑞 (𝑡 ) sin𝑘𝑥        (Maxwell in 1D)𝑞̂ 𝑝̂
¿ℰ 0( 𝑎̂+ 𝑎̂†)sin𝑘𝑥 ¿−𝑖ℬ 0 (𝑎̂− 𝑎̂† )cos𝑘𝑥

 Define quadrature operators:    and   
 ,     for      

From  follows the uncertainty relation   

  Squeezed light for            or    
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Squeezed States of Light 

29.08.2024

Phases space Electric field oscillation, real space

(Δ 𝑋̂ )2

( Δ𝑌 )2

 Squeezed vacuum state 
R. Schnabel, arXiv:1611.03986
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 Interaction of incoming bath 
modes with the cavity 

 Model in it‘s own rotating 
frame

 Interaction of bath an cavity in 
Heisenberg picture

 Assuming  

A Cavity Model within Input-Output 
Theory

29.08.2024SRF Cavity Detectors for High-Frequency Gravitational 
Waves

 

˙̂𝐴0=− 𝑖𝑔 𝐴̂1−
𝜅𝑑+𝜅𝑙

2
𝐴̂0+√𝜅𝑑 𝑎̂𝑖𝑛 ,𝑑+√𝜅𝑙𝑝𝑎̂𝑖𝑛 , 𝑙

Measurement port Drive port

Loss port Loss port

 𝐻̂𝑐𝑎𝑣=𝐻̂1+𝐻̂0+𝐻̂ 𝑖𝑛𝑡

𝐻̂ 𝑖𝑛𝑡=ℏ𝑔 ( 𝐴̂0† 𝐴̂1+ 𝐴̂0 𝐴̂1† )

˙̂𝐴1=−𝑖𝑔 𝐴̂0−
𝜅𝑚+𝜅 𝑙

2
𝐴̂1+√𝜅𝑚 𝑎̂𝑖𝑛 ,𝑚+√𝜅 𝑙𝑠 𝑎̂𝑖𝑛, 𝑙

𝑎̂𝑜𝑢𝑡 , 𝑥 (𝑡 )=𝑎̂𝑖𝑛 , 𝑥 (𝑡 )+√𝜅𝑥 𝐴̂0,1 𝐻̂ 𝑖𝑛𝑡

Based on: Malnou et al., PhsyRevX 9, 
021023 (2019)

Clerk et al., arXiv:0810.4729

 Solve for  in Fourier space
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 Interaction of all incoming  with the cavity yields the outgoing  of 
the signal mode

 Where the (2x2) sucsceptibility matrices are

A Cavity Model within Input-Output 
Theory

29.08.2024SRF Cavity Detectors for High-Frequency Gravitational 
Waves

𝑎̂𝑜𝑢𝑡 , 𝑠 (𝜔 )=∑
𝑛
𝜒𝑛𝑠
0 (𝜔 ) 𝑎̂𝑖𝑛 ,𝑛(𝜔)+∑

𝑗
𝜒 𝑗 𝑠
1 (𝜔 ) 𝑎̂𝑖𝑛 , 𝑗(𝜔)

𝜒𝑛𝑠
0 (𝜔 )=

𝑖𝑔√𝜅𝑛𝜅𝑠

𝑍1 (𝜔 )𝑍0 (𝜔 )+𝑔2
, 𝜒 𝑗𝑠

1 (𝜔 )=
−√𝜅 𝑗𝜅𝑠𝑍 0 (𝜔 )+𝛿 𝑗𝑠(𝑍1 (𝜔 ) 𝑍 0 (𝜔 )+𝑔2)

𝑍 1 (𝜔 )𝑍0 (𝜔 )+𝑔2

𝑍1 (𝜔 )≔𝑖𝜔+(𝜅𝑙+𝜅𝑚)/2
𝑍0 (𝜔 )≔𝑖𝜔+(𝜅𝑙+𝜅𝑑)/2

Mode 
„impedances“:
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A Cavity Model in Input-Output 
Theory 
 Follow the  quadrature through

individual elements

 Projector for  

 Find susceptibility matrices for output quadratures 
 Cascading field quadratures:

29.08.2024

 

Measurement port

Loss port Loss port

 

𝐻̂ 𝑖𝑛𝑡

( 𝑥⃗𝑦 )= 1
√2 ( 𝐼 2 𝐼 2

−𝑖 𝐼 2 𝑖 𝐼 2)( 𝑎⃗𝑎⃗†)

𝑥⃗𝑖𝑛 ,0=(𝑋 𝑖𝑛 ,𝑑

𝑋̂ 𝑖𝑛 , 𝑙
) 𝑥⃗𝑖𝑛 ,1=(𝑋 𝑖𝑛 ,𝑚

𝑋̂ 𝑖𝑛 , 𝑙
)

𝑥⃗𝑜𝑢𝑡 ,1=𝚵𝑋 ,0 𝑥⃗𝑖𝑛 ,0+𝚵𝑋 , 1 𝑥⃗ 𝑖𝑛 ,1
Squeezing (SQ) 

Cavity  
Amplification (AMP)  

Drive 
port
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A Cavity Model in Input-Output 
Theory 
 From input to output quadratures 

 Squeezing (SQ) the signal mode 

 Amplify (AMP) signal output

 Output spectral density  

29.08.2024

𝑥⃗𝑜𝑢𝑡 ,1=𝑨𝑋 (𝝌 0 (𝜔 )𝑺𝑋
0 𝑥⃗ 𝑖𝑛 , 0+𝝌 1 (𝜔 )𝑺𝑋

1 𝑥⃗ 𝑖𝑛 , 1 )=𝚵𝑋 ,0 𝑥⃗𝑖𝑛 ,0+𝚵𝑋 ,𝟏 𝑥⃗𝑖𝑛 ,1

SQ pump input SQ signal inputAMP signal output
 

 

𝚺𝑜𝑢𝑡 ,𝑋 , 1= ⟨ ( 𝑥⃗𝑜𝑢𝑡 ,1 )∗ ( 𝑥⃗𝑜𝑢𝑡 , 1)
𝑇 ⟩ /2𝜋
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Improved Signal Visibility 
 First element in  corresponds to

 measurement output port 
 “Signal visibility”  is SNR of 

29.08.2024

𝑛𝑇+1/2 𝑛𝑇+1/2

𝑛𝑇+1/2 𝑛𝑑+1/2

𝛼 (𝜔 )≈
𝑔2𝑛𝑑𝜅𝑑𝜅𝑚/𝐺𝑝

(𝑛𝑇+1/2)(𝛾 (𝜔 )𝜅 𝑙𝜅𝑚+𝑔2𝜅𝑙𝜅𝑚+𝛽 (𝜔) /𝐺𝑠)

Squeeze pump or signal mode Squeeze signal mode and overcouple
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BSM Gravitational Wave Sources for 
MAGO

29.08.2024

Equal mass primordial black hole binary mergers Black hole superradiance from bosonic clouds 
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Conclusion 
 Heterodyne Cavity experiments have a unique broadband sensitivity 

for 
 Potential region, where direct and indirect conversion can be 

combined at 
 In this spectral range a detector is likely operating at the quantum 

limit 
 Inspection of a detector only using the direct conversion of the 

Gertsenshtein effect shows limited broadband sensitivity 
 Construction of a quantized heterodyne cavity model within an input-

output theory showed potential improvements with squeezed states 

29.08.2024
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Ideas and Thoughts  
 Expand the signal analysis to more realistic signal forms, like 

chirp or stochastic signals 
 Quantify the detector sensitivity with less biased quantities, e.g. 

„effective noise strain“  or characteristic strain 
 Optimizing detector geometries and tuning mechanisms for high-

frequency GWs
 A detailed investigation of detector correlation and signal 

analysis to improve the sensitivity 
 Experimentally test the opportunities of squeezing to enhance 

the broadband sensitivity of a quantum limited detector 
29.08.2024
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Back up 

29.08.2024
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The Proper Detector Frame 
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Numerical Evaluation of the 
Coupling
 Mechanical-EM and GW-mechanical 
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Gravitational Wave Coupling all 
Directions 

29.08.2024

GW-mechanical 

GW-E-field
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Overcoupling Heterodyne Cavity 

29.08.2024
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Input-Output Theory

29.08.2024
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Squeezing in HAYSTAC

29.08.2024

High-electron-mobility transistor (HEMT) amplifier

HAYSTAC, DOI: 10.1038/s41586-021-03226-
7
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Flux-pumped Josephson Parametric 
Amp.
 Parametric processes with 

nonlinear „optical“ devices 
 crystal material/SQUID with 

nonlinear susceptibility
  amplified or deamplified 

depending on the phase
 In RF use Josephson Parametric 

Amplifier (JPA)
 Nonlinearities in Josephson-

junction, effective inductance of 
an LC-circuit 

29.08.2024

SQUID array of
josephson junctions 

Flux line with 
pump current 

Vacuum reflected 
and  squeezed

Modulates 
inductance
at 



SRF Cavity Detectors for High-Frequency Gravitational 
Waves

36

Improved Models in Input-Output 
Theory
 Including transmission losses along all transmission lines 

 Add a third cavity with GW quanta to calculate for 

29.08.2024

𝛼 (𝜔 )≈
𝑔2 𝜆(1− 𝜆+𝜆 /𝐺𝑝)𝑛𝑑𝜅𝑑𝜅𝑚

(𝑛𝑇+1 /2 )(𝐵 (𝜔 ) (1− 𝜆 )+𝜆 [𝛾 (𝜔 )𝜅 𝑙𝜅𝑚+𝑔2𝜅𝑙𝜅𝑚+ (1− 𝜆+𝜆/𝐺𝑠 ) 𝛽 (𝜔)] )
: New terms 
 with transmission
 efficiency 

𝐻̂𝑔=ℏ𝜔𝑔 (𝑞̂† 𝑞̂+1 /2 )
𝐻̂ 𝑖𝑛𝑡=ℏ𝑔 (𝑞̂† 𝐴̂0† 𝐴̂1+ 𝑞̂ 𝐴̂0 𝐴̂1† )

𝛼 (𝜔𝑔+𝜔0 )≈
𝑞2𝑛𝑑𝜅𝑑𝜅𝑚/𝐺𝑝

(𝑛𝑇+1/2)(𝜅𝑙𝜅𝑚+𝑞2𝜅 𝑙𝜅𝑚+¿ 𝛽 (𝜔𝑔+𝜔0 )|2/𝐺𝑠)
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A Cavity Model within Input-Output 
Theory

29.08.2024SRF Cavity Detectors for High-Frequency Gravitational 
Waves

𝐻̂𝑐𝑎𝑣 , 𝑠=ℏ𝜔𝑠 ( 𝐴̂𝑠
† 𝐴̂𝑠+1/2)

𝐻̂ h𝑏𝑎𝑡 =∑ℏ𝜔𝑞 𝑎̂𝑞
† 𝑎̂𝑞

𝐻̂𝑠 ,𝑝=𝐻̂𝑐𝑎𝑣+𝐻̂ h𝑏𝑎𝑡 +𝐻̂ 𝑖𝑛𝑡

𝐻̂𝑐𝑎𝑣 ,𝑝=ℏ𝜔𝑝( 𝐴̂𝑝
† 𝐴̂𝑝+1/2)

𝐻̂𝑠 𝐻̂𝑝

  in rotating wave approx.

coupling of bath and cavity mode:   

Measurement port Drive port

Loss port Loss port

density of states:  

 Markov approximtaion to simplify cavity and bath interaction 
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