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Introduction
• Spontaneous electroweak symmetry breaking in the early

universe

• Universe settles in minimum with non zero vacuum
expectation value

• Not generally global minimum in extended scalar sectors,
tunneling possible

• Closest/deepest minimum not generally the most dangerous

• Compare EWV lifetime to age of the universe

• Important constraints on extended scalar sectors



4/25

False Vacuum Decay
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• Random fluctuations form bubbles of the true vacuum
• Bubbles expand to convert the entire universe to true vacuum

ρ ≡
√
τ2 + |x⃗ |2

Equation of motion
d2ϕ

dρ2
+

3

ρ

dϕ

dρ
−∇V (ϕ) = 0

With boundary conditions
dϕ

dρ

∣∣∣∣
ρ=0

= 0 ϕB(∞) = ϕf

S. Coleman. “Fate of the false vacuum: Semiclassical theory”. In: Phys. Rev. D (10
May 1977).
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False Vacuum Decay

B[ϕ] = 2π2

∫ ∞

0
dρρ3

[
1

2

(
dϕ

dρ

)2

+ V (ϕ)

]
, Γ ∝ M4e−B

B > 440 long-lived

390 ≥ B ≥ 440 uncertain

B < 390 short-lived

W. G. Hollik, G. Weiglein, and J. Wittbrodt. “Impact of vacuum stability constraints
on the phenomenology of supersymmetric models”. In: Journal of High Energy
Physics 3 (Mar. 2019).
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False Vacuum Decay
Split the functional into two parts

B[ϕ] = Bkin [ϕ] + Bpot [ϕ]

Bkin [ϕ] = 2π2

∞∫
0

dρρ3
1

2

(
dϕ

dρ

)2

, Bpot [ϕ] = 2π2

∞∫
0

dρρ3V (ϕ)

By change of variables ρ → aρ one finds

δB

δa

∣∣∣∣
a=1

= 0 ⇒ Bpot [ϕB ] = −1

2
Bkin [ϕB ]

B [ϕB ]︸ ︷︷ ︸
B1

=
Bkin [ϕB ]

2︸ ︷︷ ︸
B2

= −Bpot [ϕB ]︸ ︷︷ ︸
B3

Lbc[ϕ] = |B1 − B2|+ |B1 − B3|+ |B2 − B3|

P. Athron et al. “Cosmological phase transitions: From perturbative particle physics to
gravitational waves”. In: Progress in Particle and Nuclear Physics (Feb. 2024).
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EVADE

• Works for any renormalisable Higgs potential at zero
temparature and tree-level, quartic potential of n fields

• Find all extrema using polynomial homotopy continuation, up
to 3n

• Straight path approximation,
V (φ, φ̂) = λ(φ̂)φ4 − A(φ̂)φ3 +m2(φ̂)φ2

• Use semianalytic result, B = B(λ,A,m)

model.m model.cpp EVADE

output.csv

input.csv

Mathematica
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Path deformation algorithm

• Start with initial guess

• Split equation into parallel and perpendicular to the path

• Solve the parallel (one dimensional) equation using
overshoot/undershoot

• Calculate normal forces on the path

• Deform the path based on the normal forces

• Repeat until normal forces vanish

• Implemented in the Python package CosmoTransitions

C. L. Wainwright. “CosmoTransitions: Computing cosmological phase transition
temperatures and bubble profiles with multiple fields”. In: Computer Physics
Communications 9 (Sept. 2012).
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Adding path deformation to EVADE

model.m model.cpp EVADE

output.csvmodel.py CosmoTransitions

input.csv

Mathematica

pybi
nd

• Minimal additional setup

• Combines efficiency of EVADE with increased accuracy of
using path deformation

https://gitlab.com/fcampello/EVADE/-/tree/develop?ref_type=heads.

https://gitlab.com/fcampello/EVADE/-/tree/develop?ref_type=heads
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EVADE path deformation results
MSSM NMSSM
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• Path deformation algorithm leads to stricter exclusion limits
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Neural network approach - Definitions

Train neural network to predict the tunneling path ϕ(ρ)
Choose a ρmax and discretize the path into nρ steps
Define the loss: L = Leq + nρLb

Leq =
∑
i

(
d2ϕ(ρi )
dρ2

+ 3
ρi

dϕ(ρi )
dρ −∇V (ϕ(ρi ))

)2

Lb =
(
dϕ(ρ0)
dρ

)2
+ (ϕ(ρmax)− ϕf)

2

Neural network prefers values between 0 and 1
⇒ ϕ(ρ) = ϕt +NN(ρ)(ϕf − ϕt)
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Neural network approach - Training process

Leq =
∑
i

(
d2ϕ(ρi )
dρ2

+ 3
ρi

dϕ(ρi )
dρ −∇V (ϕ(ρi ))

)2

Lb =
(
dϕ(ρ0)
dρ

)2
+ (ϕ(ρmax)− ϕf)

2

• Equation has a trivial solution ϕ(ρ) = ϕf

• Random initialization → Network finds trivial solution

• Solution: Two step training process

Randomly initialize the network, then train a few epochs on
Linit =

∑
i
(NN(ρi )− ρi

ρmax
)2

Continue training with the correct Loss function
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Neural network approach - Implementation overview

• Option 1: Use only existing TensorFlow operations via python

• Option 2: Write custom TensorFlow operation in C++

Python option:

• Easier to implement, no additional code to compile

• Use automatic differentiation of TensorFlow

• C++ model files can not be used

• Graph creation for complicated models is very slow

C++ option:

• C++ for Loss and its gradient, separate for CPU and GPU

• Need to use finite differences

• Use already available C++ model files

• Overall better performance
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Neural network approach - Hyperparameter

Toy model MSSM/NMSSM

Hidden layers 5 6

Neurons per hidden layer 10 50

Activation function sigmoid sigmoid

Initialization epochs 103, 2 · 103 2 · 104
Initialization learning rate 10−2 10−2

Main epochs 5 · 103, 3 · 104 106

Main learning rate 10−3 10−4

ρ1 10−4 10−4

nρ 103 5 · 102

• small networks

• high number of epochs

• large impact of the learning rate
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Neural network approach - Results - Toy Model

• Toy model: V =
N∑
i=0

λix
4
i − Aix

3
i +mix

2
i

• λi ,Ai ,mi > 0 randomly generated
• Compute tunneling from highest to lowest minimum

Comparison of Elvet, a general
purpose differential equation
solver using neural networks, and
my implementation which is
specialized to the bounce
equation
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1• The specialized implementation is significantly faster.

J. Y. Araz, J. C. Criado, and M. Spannwosky. Elvet – a neural network-based
differential equation and variational problem solver. 2021. arXiv: 2103.14575
[cs.LG].

https://arxiv.org/abs/2103.14575
https://arxiv.org/abs/2103.14575
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Neural network approach - Results - Toy Model
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1• Path deformation algorithm converges to the wrong side
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Neural network approach - Results - Toy Model
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B1 B2 B3 Lbc

Straight path 47.78 47.57 47.37 0.8215

Path deformation −15332 3060 21452 73570

Neural network 107.24 107.26 107.28 0.0915

• Path deformation algorithm converges to the wrong side
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Neural network approach - Results - Toy Model
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• The neural network is able to find the bounce solution
consistently up to very high numbers of fields.



19/25

Neural network approach - Results - MSSM
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Neural network approach - Results - MSSM
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B1 B2 B3 Lbc

Straight path 499.55 499.55 499.55 0.01

Path deformation 413.04 410.65 408.26 9.56

Neural network 378.20 379.56 380.92 5.44

• Path deformation result is in the uncertainty region

• Excluded by neural network
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Neural network approach - Results - NMSSM
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Neural network approach - Results - NMSSM
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• Straight path approximation not applicable
• ϕi (ρ) = ϕi false + 5(ϕi true − ϕi false) NNi (ρ)
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Neural network approach - Results - NMSSM
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Straight path 720.73 730.49 740.24 39.03

Path deformation 235.58 285.60 335.62 200.08

Neural network 218.65 256.65 294.65 152.00

• Straight path approximation bounce too high

• Excluded by path deformation and neural network
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Summary and outlook

The computation of the bounce action in EVADE was improved with important effects
on the vacuum stability analysis and the resulting limits.

• Added path deformation to EVADE via CosmoTransitions

• Enables large scale parameter scans with improved accuracy

• Added neural network based bounce action solver to EVADE

• Neural network outperforms path deformation in accuracy of the solution

• Ability to handle O(50) scalar fields was shown, even higher numbers expected
on more powerful hardware

• Demonstrated the significance of an accurate computation of the bounce
solution

• High computational cost

• Tuning of hyper parameters can be necessary

Outlook

• Improve determination of stationary points to make full use of the neural
network capabilities

• Finite temperature

https://gitlab.com/fcampello/EVADE/-/tree/develop?ref_type=heads.

https://gitlab.com/fcampello/EVADE/-/tree/develop?ref_type=heads
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Backup - Benchmark scenarios

Scenario tanβ µ M1 M2 MA

M125
h [0, 60] 1000 1000 1000 [0, 2000]

M125
h (τ̃) [0, 60] 1000 180 300 [0, 2000]

M125
h (A) 20 [−5000, 5000] 1000 1000 1500

Scenario mL3,e3 Xt Aτ A

M125
h 2000 2800 Aτ = A A(Xt , µ, tanβ)

M125
h (τ̃) 350 2800 800 A(Xt , µ, tanβ)

M125
h (A) 2000 Xt(A, µ, tanβ) Aτ = A [−6000, 6000]

mQ3,u3,d3 = 1500, M3 = 2500
A ≡ At = Ab = Aτ , A = Xt + µ/ tanβ
Aκ = −100, µeff = µ, λ = κ = 0.1
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Backup - EVADE path deformation results
MSSM NMSSM
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Backup - Neural network approach - Results - MSSM
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1• Neural network path has the lowest loss and barrier.
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