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Introduction

Spontaneous electroweak symmetry breaking in the early
universe

Universe settles in minimum with non zero vacuum
expectation value

Not generally global minimum in extended scalar sectors,
tunneling possible

Closest/deepest minimum not generally the most dangerous
Compare EWYV lifetime to age of the universe
Important constraints on extended scalar sectors




False Vacuum Decay

V(o)

Random fluctuations form bubbles of the true vacuum

Bubbles expand to convert the entire universe to true vacuum
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S. Coleman. “Fate of the false vacuum: Semiclassical theory”. In: Phys. Rev. D (10
May 1977).




False Vacuum Decay
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W. G. Hollik, G. Weiglein, and J. Wittbrodt. “Impact of vacuum stability constraints
on the phenomenology of supersymmetric models”. In: Journal of High Energy
Physics 3 (Mar. 2019).



False Vacuum Decay
Split the functional into two parts

B[¢] = Bkin [QS] + Bpot [¢]
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By change of variables p — ap one finds

5B 1
5 _ =0 = Butl[os]l= —EBkin [¢8]
B n
B 0a] = %)% — B [0
By T Bs

Loc[¢] = |B1 — Bz2| + |B1 — B3| + | B2 — B3|

P. Athron et al. “Cosmological phase transitions: From perturbative particle physics to
gravitational waves”. In: Progress in Particle and Nuclear Physics (Feb. 2024).



EVADE

» Works for any renormalisable Higgs potential at zero
temparature and tree-level, quartic potential of n fields

« Find all extrema using polynomial homotopy continuation, up
to 3"

 Straight path approximation,
V(e, @) = A@)p* — A(@)p* + m?()¢?
+ Use semianalytic result, B = B(\, A, m)

Mathematica

output.csv




Path deformation algorithm

o Start with initial guess
« Split equation into parallel and perpendicular to the path

« Solve the parallel (one dimensional) equation using
overshoot/undershoot

« Calculate normal forces on the path
o Deform the path based on the normal forces
» Repeat until normal forces vanish

o Implemented in the Python package CosmoTransitions

C. L. Wainwright. “CosmoTransitions: Computing cosmological phase transition
temperatures and bubble profiles with multiple fields”. In: Computer Physics
Communications 9 (Sept. 2012).



Adding path deformation to EVADE

input.csv

Mathematica

CosmoTransitions H@

« Minimal additional setup

« Combines efficiency of EVADE with increased accuracy of
using path deformation

https://gitlab.com/fcampello/EVADE/-/tree/develop?ref_type=heads.


https://gitlab.com/fcampello/EVADE/-/tree/develop?ref_type=heads

EVADE path deformation results
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Path deformation algorithm leads to stricter exclusion limits



Neural network approach - Definitions

Train neural network to predict the tunneling path ¢(p)
Choose a pmax and discretize the path into n, steps
Define the loss: £ = Leq + n,Lp

20(p: . 2
Leq =5 (L5542 + 2980 - vV (6(p))
2
Lo = (2420)" + (9(pmax) — 01’

Neural network prefers values between 0 and 1

= ¢(p) = ¢ + NN(p)(¢¢ — r)



Neural network approach - Training process

Log = Z (d 9(pi) - 3 d¢(p:) VV(@(P;))>2

Lo = (450) 1 (8(pmar) — 01)?

« Equation has a trivial solution ¢(p) = ¢
o Random initialization — Network finds trivial solution

« Solution: Two step training process

Randomly initialize the network, then train a few epochs on
Linit = Z(NN(PI) )

pmax

Continue training with the correct Loss function



Neural network approach - Implementation overview

« Option 1: Use only existing TensorFlow operations via python
« Option 2: Write custom TensorFlow operation in C+-+
Python option:
« Easier to implement, no additional code to compile
» Use automatic differentiation of TensorFlow
+ C++ model files can not be used
» Graph creation for complicated models is very slow
C++ option:
o CH4+ for Loss and its gradient, separate for CPU and GPU
» Need to use finite differences
o Use already available C++ model files

» Overall better performance



Neural network approach - Hyperparameter

| [ Toy model || MSSM/NMSSM |

Hidden layers 5 6
Neurons per hidden layer 10 50
Activation function sigmoid sigmoid
Initialization epochs 103, 2-10° 2-10%
Initialization learning rate 1072 1072
Main epochs 5.103, 3-10* 100
Main learning rate 1073 10~%
p1 10~4 10~4
n, 10° 5 10°

o small networks
» high number of epochs

 large impact of the learning rate



Neural network approach - Results - Toy Model
« Toy model: V = Z Aixt — A 4+ mix?

o MN,A;,m >0 randomly generated
« Compute tunneling from highest to lowest minimum

—— Elvet

10° My Implementation

Comparison of Elvet, a general
purpose differential equation
solver using neural networks, and "
my implementation which is
specialized to the bounce
equation

Time (s)

100

0 10 20 30
N

o The specialized implementation is significantly faster.

J. Y. Araz, J. C. Criado, and M. Spannwosky. Elvet — a neural network-based
differential equation and variational problem solver. 2021. arXiv: 2103.14575
[cs.LG].


https://arxiv.org/abs/2103.14575
https://arxiv.org/abs/2103.14575

Neural network approach - Results - Toy Model
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» Path deformation algorithm converges to the wrong side




Neural network approach - Results - Toy Model
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| B B, Bs Ly
Straight path 47.78 4757  47.37 0.8215
Path deformation || —15332 3060 21452 73570
Neural network 107.24 107.26 107.28 0.0915

» Path deformation algorithm converges to the wrong side




Neural network approach - Results - Toy Model
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The neural network is able to find the bounce solution

consistently up to very high numbers of fields.




Neural network approach - Results - MSSM
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Neural network approach - Results - MSSM
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| B B> By Ly
Straight path 499.55 499.55 499.55 0.01
Path deformation || 413.04 410.65 408.26 9.56
Neural network 378.20 379.56 380.92 5.44

« Path deformation result is in the uncertainty region

» Excluded by neural network




Neural network approach - Results - NMSSM
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Neural network approach - Results - NMSSM
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Neural network approach - Results - NMSSM

straight path
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| B By Bs Ly
Straight path 720.73 730.49 740.24 39.03
Path deformation || 235.58 285.60 335.62 200.08
Neural network 218.65 256.65 294.65 152.00

 Straight path approximation bounce too high

« Excluded by path deformation and neural network



Summary and outlook

The computation of the bounce action in EVADE was improved with important effects
on the vacuum stability analysis and the resulting limits.

e Added path deformation to EVADE via CosmoTransitions

* Enables large scale parameter scans with improved accuracy

e Added neural network based bounce action solver to EVADE
¢ Neural network outperforms path deformation in accuracy of the solution

* Ability to handle O(50) scalar fields was shown, even higher numbers expected
on more powerful hardware

¢ Demonstrated the significance of an accurate computation of the bounce
solution

e High computational cost

* Tuning of hyper parameters can be necessary

Outlook

e |mprove determination of stationary points to make full use of the neural
network capabilities

e Finite temperature

https://gitlab.com/fcampello/EVADE/-/tree/develop?ref_type=heads.


https://gitlab.com/fcampello/EVADE/-/tree/develop?ref_type=heads
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Backup - Benchmark scenarios

Scenario H tan 3 U My M, My
M;> [0,60] 1000 1000 1000 [0,2000]
M}2>(7) [ [0,60] 1000 180 300 [0,2000]
Mi5(A) || 20 [-5000,5000] 1000 1000 1500
Scenario H mp, e X A, A

M;> 2000 2800 A;=A A(X, p,tan )
M;>(7) || 350 2800 800  A(X, u, tan )
M}B(A) || 2000  X.(A,p,tanB) A=A [-6000,6000]

mQs,uz,ds = 1500, M3 = 2500
A=Ar=Ar=A;,, A=X;+u/tanp
A, =-100, peg=p, A=r=0.1



Backup - EVADE path deformation results
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Backup - Neural network approach - Results - MSSM
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Neural network path has the lowest loss

and barrier.
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