Precise *W*-boson mass predictions in the O(N)-singlet extension

Martin Gabelmann | THDM-Meeting, Apr 2023

The *W* boson mass...

- > two most-recent most-precise individual measurements
- > huge discrepancy of about $\propto 7\sigma$
- > also w/o CDF: small upwards tendency

BSM perspective:

despite what the solution for the $M_W^{exp.}$ -miracle might be, it will most-likely result in a very precise number \rightarrow precision predictions for concrete BSM scenarios also required!

M_W in singlet extensions

Previously:

- > no direct singlet coupling to W/Z
- > mixing with SM doublet: $\cos lpha$
- > alters/generates WWh/WWs and ZZh/ZZs couplings
 - \rightarrow contributes to $\Delta \textit{M}_{\textit{W}}$
- > However: fast decoupling and strong constraints on α

Idea:

- > Higgs doublet serves as "portal" to BSM
 > maybe Higgs teleports BSM effects onto M_W beyond one-loop?
 - \rightarrow use simple singlet extension to test this

Outline

- > introducing M_W calculation (in the SM)
- > the O(N) singlet extension (SSM_N)
- $> M_W$ results in the SSM_N

Getting started: how to "predict" M_W ?

> in most models (incl. SM): M_W cannot be "predicted"

- > actual prediction: relation between M_W and other theory parameters/observables
- > e.g. in the SM the tree-level relation [Ross, Veltman '75]

$$\rho = \frac{G_{CC}}{G_{NC}} = \frac{M_W^2}{c_w^2 M_Z^2} = 1, \quad (c_w = \cos\theta_w, s_w = \sin\theta_w)$$

is perturbed by higher-order terms.

Strategy: use/predict relations that involve theoretically and experimentally well-defined observables (e.g. OS pole-masses) that have smallest uncertainties. (physical meaning of $\cos \theta_w$? \rightarrow use $\rho^{(0)} = 1$ (if possible) to eliminate presence of $\cos \theta_w$ in the relation of some other set of observables.)

Relation between $M_W \leftrightarrow M_Z$, G_F and α_{QED}

consider muon decay:
$$G_F/\sqrt{2} \left(\overline{e}\gamma_{\rho}\nu_{e}\right) \left(\overline{\mu}\gamma^{\rho}\nu_{\mu}\right)$$

$$G_F = \frac{\pi \alpha_{\mathsf{QED}}}{\sqrt{2}M_W^2 \left(1 - M_W^2 / M_Z^2\right)} (1 + \Delta r)$$

Solve (iteratively) for M_W :

$$M_W = M_Z \left(\frac{1}{2} + \sqrt{\frac{1}{4} - \frac{\pi \alpha_{\mathsf{QED}}}{\sqrt{2}G_F M_Z^2} (1 + \Delta r)}\right)$$

- > G_F: from muon life time
- > $\alpha_{\text{QED}}(0)$: fine-structure constant (including $\Delta \alpha$ resummation)
- > M_W and M_Z : pole-masses
- > Δr : contains higher-order corrections $\Delta r \equiv \Delta r(M_W, M_Z, \alpha, ...)$

Instead of *predicting* M_W we are asking "which (OS) value of M_W do we need to get the muon decay right?"

Higher-order corrections to the muon decay (sketchy)

$$\begin{split} \Delta \mathbf{r}^{(1)} &= 2 \frac{\delta^{(1)} Z_e}{e} + \frac{\Sigma_W^{(1), T}(0) - \delta^{(1)} M_W^2}{M_W^2} - \frac{\delta^{(1)} s_w^2}{s_w^2} + \delta_{\text{vertex+box}} \\ &\approx \Delta \alpha - \frac{c_w^2}{s_w^2} \Delta \rho + \Delta r_{\text{remainder}} \end{split}$$

ingredients:

> $\delta^{(1)}Z_e$: photon and photon-Z selfenergies > $\delta^{(1)}M_{W/Z}^2$, $\Sigma_{W/Z}^{(1), T}(0)$, $\delta^{(1)}s_W^2$: (transverse) W/Z selfenergies > $\delta_{vertex+box}$: vertex/box diagrams

dominant:

>
$$\Delta \alpha$$
: light fermion contributions (SM-like)
> $\Delta \rho = \frac{\Sigma_Z^{(1), \tau}(0)}{M_Z^2} - \frac{\Sigma_W^{(1), \tau}(0)}{M_W^2} \leftarrow \text{sensitivity to BSM physics}$

 μ^{-}

The O(N) singlet extension (SSM_N)

(see also [Drozd, Grzadkowski, Wudka '11])

Higgs doublet *H* as in the SM extended with $\vec{S} = (S_1, S_2, \dots, S_N)^T$ singlets:

$$V_{\mathsf{SSM}_{N}} = \mu^{2} |H|^{2} + \frac{\lambda_{H}}{2} |H|^{4} + \frac{1}{2} \vec{S} \cdot \vec{S} \left(\mu_{S}^{2} + \lambda_{SH} |H|^{2} + \lambda_{S} \vec{S} \cdot \vec{S} \right)$$

> obeys global
$$O(N)$$
 symmetry (\mathbb{Z}_2 for $N = 1$)
> $\mu_S^2 > 0$ and $\mu^2 < 0$: EWSB as in the SM, $O(N)$ stays *exact*
 $\rightarrow \langle H \rangle = v$ and $\langle \vec{S} \rangle = \vec{0}$
> S_i are degenerate in mass: $m_{S_i} = m_S$ (can be broken by soft terms $\mu_{ij}^2 S_i S_j$)

- > S_i do not mix with h_{SM}
- > viable dark matter candidate $(\Omega_{\text{DM}}^{N} = N \Omega_{\text{DM}}^{N=1}) \rightarrow \vec{S}$ acts like one singlet with N d.o.f.

Input parameters:
$$\lambda_H = \frac{M_h^2}{v^2}$$
, $\lambda_{SH} = \frac{2(m_S^2 - \mu_S^2)}{v^2}$ and λ_S

The O(N) singlet extension (SSM_N): pre- M_W constraints $V_{\text{SSM}_N} = \mu^2 |H|^2 + \frac{\lambda_H}{2} |H|^4 + \frac{1}{2} \vec{S} \cdot \vec{S} \left(\mu_S^2 + \lambda_{SH} |H|^2 + \lambda_S \vec{S} \cdot \vec{S} \right), \quad \lambda_H = \frac{M_h^2}{v^2}, \quad \lambda_{SH} = \frac{2 \left(m_S^2 - \mu_S^2 \right)}{v^2}, \quad \lambda_S = \frac{2$

> bounded from below (BFB): $V_{\text{SSM}_N}(H, S \to \infty) \ge 0$

$$\begin{array}{l} \cdot \quad \lambda_{H} > 0 \ (\checkmark) \\ \cdot \quad \lambda_{SH} > 0 \rightarrow \lambda_{S} > 0 \\ \cdot \quad \lambda_{SH} < 0 \rightarrow \lambda_{S} > \frac{\lambda_{SH}^{2}}{4\lambda_{H}^{2}} = \frac{\left(m_{S}^{2} - \mu_{S}^{2}\right)^{2}}{M_{h}^{2}v^{2}} \end{array}$$

>~ perturbative unitarity: $\lambda_i < 8\pi~(a_0^{\max} < 0.5~{
m computed}$ with SPheno)

> for $m_S \leq M_h/2$: enhancement of $h \rightarrow$ inv. possible

- compute spectrum+decays with SARAH/SPheno for N = 1
- use HiggsBounds/HiggsSignals with $\Gamma_{inv.}^{N} = N \cdot \Gamma_{inv.}^{N=1}$

> no singlet VEVs $\mu_s^2 > 0$ (\checkmark)

M_W prediction in the SSM_N

- > At tree-level:
 - $\ \ \, \rho_{\mathsf{SSM}_{\textit{N}}} = 1 \leftrightarrow \textit{M}_{\textit{W}}^{(1),\,\mathsf{SSM}_{\textit{N}}} = \textit{M}_{\textit{W}}^{(1),\,\mathsf{SM}}$
 - all tree-level h-to-SM couplings are exactly as in the SM
 - \vec{S} does only couples to H(h), not to $W/Z/\gamma$
- > At one-loop:
 - *H* contributes to M_W at one-loop but not \vec{S} (due to tree-level relations)

$$\rightarrow M_W^{(1), \, \mathrm{SSM}_N} = M_W^{(1), \, \mathrm{SSM}_N}$$

> At two-loop:

- vertex+box diagrams: same as in the SM (known)
- self-energies: \vec{S} appears for the time via coupling to H $\rightarrow \Sigma_V^{(2)} = \Sigma_V^{(2), \text{SM}} + N \cdot \Sigma_V^{(2), \text{SSM}_{N=1}}$

Strategy: only calculate two-loop diagrams involving at least one \vec{S} . Take SM corrections from literature (incl. higher-orders).

Renormalisation of $\Delta \rho$ in the SSM_N

Sub-loop renormalisation

Remember: one-loop singlet contribution vanishes \rightarrow only take singlet effects $\mathcal{O}(\lambda_{SH})$ into account.

Adopting an on-shell (OS) scheme the singlet-only contributions to the one-loop counterterms read:

> "OS" tadpoles:
$$T_h = \delta^{(1)} t_h + t_h^{(1)} = 0$$

 $\rightarrow \delta^{(1)} t_h = \lambda_{SH} A_0(m_S^2)/32\pi^2$
 \rightarrow leads to "OS" Goldstones: $\delta^{(1)} m_{G^{\pm/0}}^2 = \delta^{(1)} t_h/v_{G^{\pm/0}}$

> OS Higgs mass:
$$\delta^{(1)}M_h^2 = \Sigma_{hh}(p^2 = M_h^2)$$

= $\lambda_{SH} \left(\lambda_{SH} v^2 B_0(M_h^2; m_S^2, m_S^2) - A_0(m_S^2) \right) / 32\pi^2$

> OS
$$W/Z$$
 masses: $\delta^{(1)}M^2_{W/Z} = 0$ (also $\delta^{(1)}e = 0$) since no one-loop diagrams with singlets exist

Results for $\Delta \rho|_{SSM_{H}}$

 $\Delta \rho|_{\mathsf{SSM}_N} = \frac{\Sigma_Z^{(2), \, T}(0)}{M_Z^2} - \frac{\Sigma_W^{(2), \, T}(0)}{M_Z^2}$

Consistency checks:

UV-finite

- > no $\log \mu^2$ -dependence
- > $\Delta \rho|_{\text{SSM}_N} \xrightarrow{M_Z \to M_W} 0$ > $\Delta \rho|_{\text{SSM}_N} \xrightarrow{m_S \to \infty} 0$

 $\approx N \frac{\lambda_{SH}^2}{(4\pi)^4} \times \mathcal{O}\left(\frac{M_{W/Z/h}^2}{m_{\gamma}^2}\right)$

Combination with known higher-order SM-results

Reminder:
$$M_W = M_Z \left(\frac{1}{2} + \sqrt{\frac{1}{4}} - \frac{\pi \alpha_{\mathsf{QED}}}{\sqrt{2} G_F M_Z^2} (1 + \Delta r(M_W, M_Z, M_t, M_h, m_S, \mu_S)) \right)$$

$$> \Delta r = \Delta r|_{\mathsf{SM}} + \Delta r|_{\mathsf{SSM}_N} \approx \Delta r|_{\mathsf{SM}} - \frac{c_w^2}{s_w^2} \Delta
ho|_{\mathsf{SSM}_N}$$

 $\sum_{M} \Delta r|_{SM} \text{ full one&two-loop and partially three&four loop available [Awramik, Chen, Chetyrkin, Czakon, Degrassi, Djouad, Fleischer, Freitas, Giardino, Gambino, Hollik, Jegerlehner, Kühn, Kniehl, Sirlin, Steinhauser, Tarasov, Weiglein, ...]$ recently improved/collected/implemented in [Bagnaschi, Chakraborti, Heinemeyer, Saha, Weiglein '22]

0

> also fit formulas available [Awramik, Czakon, Freitas, Weiglein '21]

 $M_W^{\rm SM} = 80.3526 \,{\rm GeV}$

$$\Delta M_W \equiv M_W^{\mathsf{SSM}_N} - M_W^{\mathsf{SM}}$$

DESY. | Precise W-boson mass predictions, in the O(N)-singlet extension | Martin Gabelmann | THDM-Meeting, Apr 2023

Phenomenology

DESY. | Precise W-boson mass predictions, in the O(N)-singlet extension | Martin Gabelmann | THDM-Meeting, Apr 2023

Summary

- > W boson mass M_W as precision observable sensitive to new physics
- $> 7\sigma$ discrepancy between CDF experiment and SM (but also between CDF and every other experiment...)
- > studied two-loop corrections to $\Delta \rho$ in the O(N) singlet extension
- > corrections $\lesssim 5 \,\mathrm{MeV}$ for small *N* (i.e. smaller than SM-theory uncertainty)
- > large N:
 - larger corrections possible
 - can "release" tension between SM and experiment
 - not possible to "overshoot" CDF but can be close

Backup

RGEs of the SSM_N

One loop results from [Drozd, Grzadkowski, Wudka '11]:

$$\begin{split} \beta_{\lambda_{H}}^{(1)} &= 24\lambda_{H} + 2N\lambda_{SH}^{2} - 6Y_{t}^{2}(1 - 2\lambda_{H})^{2} + \mathcal{O}(g_{1}^{2}, g_{2}^{2}) \\ \beta_{\lambda_{S}}^{(1)} &= \lambda_{SH}^{2} + 4(8 + N)\lambda_{S}^{2} \\ \beta_{\lambda_{SH}}^{(1)} &= \lambda_{SH} \left(6\lambda_{H} + 12\lambda_{S} + 4\lambda_{SH} + 6Y_{t}^{2} + \mathcal{O}(g_{1}^{2}, g_{2}^{2}) \right) \end{split}$$

 \rightarrow large λ_{SH} , λ_S and/or large N may induce too large λ_H and lead to a relatively low UV cut-off (landau pole near the electroweak scale)

Beyond $\Delta \rho$

$$\begin{split} \Delta \mathbf{r}^{(2)} &= 2 \frac{\delta^{(2)} Z_{\mathbf{e}}}{\mathbf{e}} + \frac{\Sigma_{W}^{(2), T}(0) - \delta^{(2)} M_{W}^{2}}{M_{W}^{2}} - \frac{\delta^{(2)} s_{w}^{2}}{s_{w}^{2}} + \delta^{(2)}_{\text{vertex+box}} \\ &\approx \Delta \alpha - \frac{c_{w}^{2}}{s_{w}^{2}} \Delta \rho + \Delta r_{\text{remainder}} \end{split}$$

Estimate two-loop contributions from $\Delta r_{\text{remainder}}$:

> all one-loop-squared pieces vanish 🗸

 $> \delta^{(2)}Z_e = 0$ (due to "OS" tadpoles/Goldstones), already checked \checkmark

> vertex+boxes: independent of M_h at one-loop

 $ightarrow ec{S}$ contributes only via Goldstone-propagator corrections which should also cancel \checkmark

- > need $\Sigma_{W/Z}^{(2), T}(p^2 \neq 0)$ for proper OS definition
 - → WIP (requires e.g. TSIL [Martin, Robertson '05], but could not yet obtain UV-finite result)

Two-Loop Diagrammatic *n*-**Point Functions**

Idea: calculate "generic" diagrams

Assume most general Lorentz-invariant couplings and arbitrary masses. Calculate to "robust form" and perform specific field-insertions later-on.

Strategy:

- > FeynArts: generate generic diagrams ("InsertionLevel ~ {Generic}") [Hahn, '01]
- > FeynCalc: basic simplifications, Dirac traces [Shtabovenko, '16]
- > TARCER: reduction to scalar master integrals [Tarasov, '97] [Mertig, Scharf, '98]
- > handle special cases such as vanishing Gram determinants etc.

Then:

- > SSM FeynArts model file with SARAH [Staub, '08]: calculates LO-vertices and NLO-CT-vertices
- > generate arbitrary set of diagrams with FeynArts ("InsertionLevel ~{Classes or Particles}")
- > iterate over generic amplitudes while applying insertion rules