Automatized Matching of Scalar Couplings

Introduction to SARAH and applications

Martin Gabelmann Thusrday's Meeting, 18.11.2021

HELMHOLTZ RESEARCH FOR GRAND CHALLENGE

Outline

Motivation / Introduction

Matching and Running in SARAH

Live Demo

Results

Other Aspects of Matchings

 $Motivation\ /\ Introduction$

Matching and Running in SARAH

Live Demo

Results

Other Aspects of Matchings

Top quark	Weak bosons	light fermions
$m_t pprox 173 { m GeV} \ {m_b \over m_t} pprox 0.02$	$m_W, m_Z pprox 80, 90 { m GeV}$ $rac{m_b}{m_W} pprox 0.05$	$rac{m_e pprox 500 { m keV}}{rac{m_e}{m_\mu} pprox 0.0002}$

Top quark	Weak bosons	light fermions
$m_t pprox 173 { m GeV} \ rac{m_b}{m_t} pprox 0.02$	$m_W, m_Z pprox 80, 90 { m GeV} \ rac{m_b}{m_W} pprox 0.05$	$m_e pprox 500 \mathrm{keV}$ $rac{m_e}{m_\mu} pprox 0.0002$

...rich tower of EFTs already exists within the SM \rightarrow very well tested formalism:

Top quark	Weak bosons	light fermions
$m_t pprox 173 { m GeV} \ {m_b \over m_t} pprox 0.02$	$m_W, m_Z pprox 80, 90 { m GeV}$ $rac{m_b}{m_W} pprox 0.05$	$m_e pprox 500 \mathrm{keV}$ $rac{m_e}{m_\mu} pprox 0.0002$

...rich tower of EFTs already exists within the SM \rightarrow very well tested formalism:

Electroweakinos	Extended Higgs sectors	Coloured Scalars
(i.e. weak fermions)	(e.g. MSSM inspired 2HDM)	(e.g. stops)
$egin{aligned} &m_{\chi_1^0}\gtrsim50 ext{-}200 ext{GeV}\ &m_{\chi_1^\pm}\gtrsim94 ext{GeV} \end{aligned}$	$m_{\mathcal{A}}\gtrsim 500\text{-}600 ext{GeV}$ $ aneta\gtrsim 1-2_{ ext{[Bahl et. al]}}$	$m_{ ilde{t}_1}\gtrsim 1\text{-}2\mathrm{TeV}$

Electroweakinos	Extended Higgs sectors	Coloured Scalars
(i.e. weak fermions)	(e.g. MSSM inspired 2HDM)	(e.g. stops)
$egin{aligned} &m_{\chi_1^0}\gtrsim 50 ext{-}200 ext{GeV}\ &m_{\chi_1^\pm}\gtrsim 94 ext{GeV} \end{aligned}$	$m_{\mathcal{A}}\gtrsim 500\text{-}600 ext{GeV}$ $ aneta\gtrsim 1-2_{ ext{[Bahl et. al]}}$	$m_{ ilde{t}_1}\gtrsim 1 ext{-}2 ext{TeV}$

... suggest a hierachy between scalars and fermions

Electroweakinos (i.e. weak fermions)	Extended Higgs sectors (e.g. MSSM inspired 2HDM)	Coloured Scalars (e.g. stops)
$m_{\chi_1^0}\gtrsim 50 ext{-}200 ext{GeV}$	$m_A\gtrsim 500\text{-}600\mathrm{GeV}$	$m_{ ilde{t}_1}\gtrsim 1 ext{-}2 ext{TeV}$
$m_{\chi_1^\pm}\gtrsim 94{ m GeV}$	$ aneta\gtrsim 1-2$ [Bahl et. al]	
sugge	st a hierachy between scalars a	nd fermions
	Weak-scale-SUSY: 🗲	
,	\mathcal{L}_{SM} \mathcal{L}_{MSSM}	
	$m_t m_{\chi} m_A m_{\tilde{t}} m_{\tilde{g}}$	

Electroweakinos (i.e. weak fermions)	Extended Higgs sectors (e.g. MSSM inspired 2HDM)	Coloured Scalars (e.g. stops)
$m_{\chi_1^0}\gtrsim 50 ext{-}200 ext{GeV}$	$m_A\gtrsim 500\text{-}600\mathrm{GeV}$	$m_{ ilde{t}_1}\gtrsim 1 ext{-}2 ext{TeV}$
$m_{\chi_1^\pm}\gtrsim 94{ m GeV}$	$ aneta\gtrsim 1-2$ [Bahl et. al]	
sugg	est a hierachy between scalars a	and fermions
,	Weak-scale-SUSY: 4 \mathcal{L}_{SM} \mathcal{L}_{MSSM}	,
\	$m_t m_{\chi} m_A m_{\tilde{t}} m_{\tilde{g}}$	7
	Split-SUSY: 🗸	
\mathcal{L}_{SM} $\mathcal{L}_{SM+EWinos}$	← L2HDM+EWinos	£_MSSM
m_t m_χ	m _A	$m_{\tilde{t}}$ $m_{\tilde{g}}$

DESY. | Automatized Matching of Scalar Couplings | Martin Gabelmann | Thusrday's Meeting, 18.11.2021

Example: Higgs Mass Uncertainty in the High-Scale MSSM

Assumption: all SUSY states heavy.

> SS+H/FS+H: m_h fixed-order
 > HSSUSY: m_h EFT (MSSM→SM matching)

Split-NMSSM:

 $> \mathcal{L}_{\text{NMSSM}} \rightarrow \mathcal{L}_{\text{MSSM}} \rightarrow \dots$

Split-NMSSM:

 $\begin{array}{l} > \ \mathcal{L}_{\mathsf{NMSSM}} \rightarrow \mathcal{L}_{\mathsf{MSSM}} \rightarrow \dots \\ \\ > \ \mathcal{L}_{\mathsf{NMSSM}} \rightarrow \mathcal{L}_{\mathsf{2HDM}_{(+\mathsf{EWinos})}} \rightarrow \mathcal{L}_{\mathsf{SM}_{(+\mathsf{EWinos})}} \end{array}$

Split-NMSSM:

 $\begin{array}{l} > \ \mathcal{L}_{\mathsf{NMSSM}} \rightarrow \mathcal{L}_{\mathsf{MSSM}} \rightarrow \dots \\ > \ \mathcal{L}_{\mathsf{NMSSM}} \rightarrow \mathcal{L}_{\mathsf{2HDM}(+\textit{EWinos})} \rightarrow \mathcal{L}_{\mathsf{SM}(+\textit{EWinos})} \\ > \ \mathcal{L}_{\mathsf{NMSSM}} \rightarrow \mathcal{L}_{\mathsf{N2HDM}(+\textit{EWinos})} \rightarrow \mathcal{L}_{\mathsf{2HDM}(+\textit{EWinos})} \rightarrow SM_{(+\textit{EWinos})} \end{array}$

Split-NMSSM:

$$\begin{array}{l} > \mathcal{L}_{\text{NMSSM}} \rightarrow \mathcal{L}_{\text{MSSM}} \rightarrow \dots \\ > \mathcal{L}_{\text{NMSSM}} \rightarrow \mathcal{L}_{2\text{HDM}(+\text{EWinos})} \rightarrow \mathcal{L}_{\text{SM}(+\text{EWinos})} \\ > \mathcal{L}_{\text{NMSSM}} \rightarrow \mathcal{L}_{\text{N2HDM}(+\text{EWinos})} \rightarrow \mathcal{L}_{2\text{HDM}(+\text{EWinos})} \rightarrow SM_{(+\text{EWinos})} \\ > \mathcal{L}_{\text{NMSSM}} \rightarrow \mathcal{L}_{\text{N2HDM}(+\text{EWinos})} \rightarrow \mathcal{L}_{\text{SM}+\text{Singlet}(+\text{EWinos})} \end{array}$$

Split-NMSSM:

$$\begin{array}{l} > \mathcal{L}_{NMSSM} \rightarrow \mathcal{L}_{MSSM} \rightarrow \dots \\ > \mathcal{L}_{NMSSM} \rightarrow \mathcal{L}_{2HDM(+EWinos)} \rightarrow \mathcal{L}_{SM(+EWinos)} \\ > \mathcal{L}_{NMSSM} \rightarrow \mathcal{L}_{N2HDM(+EWinos)} \rightarrow \mathcal{L}_{2HDM(+EWinos)} \rightarrow SM(+EWinos) \\ > \mathcal{L}_{NMSSM} \rightarrow \mathcal{L}_{N2HDM(+EWinos)} \rightarrow \mathcal{L}_{SM+Singlet(+EWinos)} \\ > \dots \end{array}$$

\rightarrow Automation required! (\rightarrow 2nd part of talk)

This talk: \rightarrow focus on scalar sector (in particular Higgs mass predictions). Example: 4-scalar interaction $\frac{\lambda}{4}h^4$ receives contributions from

This talk: \rightarrow focus on scalar sector (in particular Higgs mass predictions). Example: 4-scalar interaction $\frac{\lambda}{4}h^4$ receives contributions from

> higher-dimensional operators (dim6, dim8, ...)

$$\lambda \Phi^4 + \frac{C_6}{\Lambda^2} \Phi^6 + \dots \rightarrow (\lambda + C_6 \frac{v^2}{\Lambda^2} + \dots) h^4$$

This talk: \rightarrow focus on scalar sector (in particular Higgs mass predictions). Example: 4-scalar interaction $\frac{\lambda}{4}h^4$ receives contributions from

- > higher-dimensional operators (dim6, dim8, ...) $\lambda \Phi^4 + \frac{C_6}{\Lambda^2} \Phi^6 + \cdots \rightarrow (\lambda + C_6 \frac{v^2}{\Lambda^2} + \dots) h^4$
- > higher-order corrections to their Wilson coefficients $C_6 = C_6^{(0)} + \delta^{(1)}C_6 + \dots$

This talk: \rightarrow focus on scalar sector (in particular Higgs mass predictions). Example: 4-scalar interaction $\frac{\lambda}{4}h^4$ receives contributions from

- > higher-dimensional operators (dim6, dim8, ...) $\lambda \Phi^4 + \frac{C_6}{\Lambda^2} \Phi^6 + \cdots \rightarrow (\lambda + C_6 \frac{\nu^2}{\Lambda^2} + \dots) h^4$
- > higher-order corrections to their Wilson coefficients $C_6 = C_6^{(0)} + \delta^{(1)}C_6 + \dots$
- > higher-order corrections to ren. couplings $\lambda = \lambda^{(0)} + \delta^{(1)} \lambda + \dots$

This talk: \rightarrow focus on scalar sector (in particular Higgs mass predictions). Example: 4-scalar interaction $\frac{\lambda}{4}h^4$ receives contributions from

- > higher-dimensional operators (dim6, dim8, ...) $\lambda \Phi^4 + \frac{C_6}{\Lambda^2} \Phi^6 + \cdots \rightarrow (\lambda + C_6 \frac{\nu^2}{\Lambda^2} + \dots) h^4$
- > higher-order corrections to their Wilson coefficients $C_6 = C_6^{(0)} + \delta^{(1)}C_6 + \dots$
- > higher-order corrections to ren. couplings $\lambda = \lambda^{(0)} + \delta^{(1)} \lambda + \dots$

Which contributions are important?

For scalar sector and $v \ll \Lambda$: only renormalizable couplings!

DESY. | Automatized Matching of Scalar Couplings | Martin Gabelmann | Thusrday's Meeting, 18.11.2021

Motivation / Introduction

Matching and Running in SARAH

Live Demo

Results

Other Aspects of Matchings

DESY. | Automatized Matching of Scalar Couplings | Martin Gabelmann | Thusrday's Meeting, 18.11.2021

BSM
$$m_{ij}^{\text{BSM}} \equiv m_{ij}, \kappa_{ijk}^{\text{BSM}} \equiv \kappa_{ijk}, \lambda_{ijkl}^{\text{BSM}} \equiv \lambda_{ijkl}$$

Matching condition: $\lambda^{\mathsf{BSM}}(Q_{\mathsf{match}}) = \lambda^{\mathsf{EFT}}(Q_{\mathsf{match}})$

 $> \lambda_{i_1,...,i_n} \rightarrow$ evaluate *n*-point function at $p_{ ext{ext.}}^2 = 0$ to *m*-loops in both models

BSM
$$m_{ij}^{\text{BSM}} \equiv m_{ij}, \kappa_{ijk}^{\text{BSM}} \equiv \kappa_{ijk}, \lambda_{ijkl}^{\text{BSM}} \equiv \lambda_{ijkl}$$

Matching condition: $\lambda^{\mathsf{BSM}}(Q_{\mathsf{match}}) = \lambda^{\mathsf{EFT}}(Q_{\mathsf{match}})$

> $\lambda_{i_1,...,i_n}$ ightarrow evaluate *n*-point function at $p^2_{\mathsf{ext.}}=0$ to *m*-loops in both models

> IR-contributions appearing on both sides in the matching condition do cancel

BSM
$$m_{ij}^{\text{BSM}} \equiv m_{ij}, \kappa_{ijk}^{\text{BSM}} \equiv \kappa_{ijk}, \lambda_{ijkl}^{\text{BSM}} \equiv \lambda_{ijkl}$$

Matching condition: $\lambda^{\mathsf{BSM}}(Q_{\mathsf{match}}) = \lambda^{\mathsf{EFT}}(Q_{\mathsf{match}})$

> $\lambda_{i_1,...,i_n} \rightarrow$ evaluate *n*-point function at $p_{\text{ext.}}^2 = 0$ to *m*-loops in both models > IR-contributions appearing on both sides in the matching condition do cancel More details for LO and NLO matchings:

- > 1810.09388 [Braathen, Goodsell, Slavich]
- > 1810.12326 [MG, Mühlleitner, Staub]
- > MG's [Masterthesis]

Matching and Running - SARAH's Two-Fold Implementation

two independent implementations:

- > numerical (Fortran)
- > analytical (Mathematica)

SARAH Wiki

One-Loop Threshold Corrections in Scalar Sectors

Motivation / Introduction

Matching and Running in SARAH

Live Demo

Results

Other Aspects of Matchings

Demo: MSSM \rightarrow 2HDM Matching

Motivation / Introduction

Matching and Running in SARAH

Live Demo

Results

Other Aspects of Matchings

Results: MSSM \rightarrow 2HDM Matching

Comparison against MSSM \rightarrow SM matching:

Matching the Split-NMSSM

Idea: NMSSM with a light singlet (+EWinos). Everything else decoupled.

Matching the Split-NMSSM

Idea: NMSSM with a light singlet (+EWinos). Everything else decoupled.

DESY. | Automatized Matching of Scalar Couplings | Martin Gabelmann | Thusrday's Meeting, 18.11.2021

Why keep the EWinos light?

Decoupling them would destabilize the potential! **Example for** $\kappa_S S^3$:

Non-Decoupling Effects

Singlet Mass Prediction: LO vs. NLO

Motivation / Introduction

Matching and Running in SARAH

Live Demo

Results

Other Aspects of Matchings

UV- vs. EFT-Model

parameter counting

$$\begin{array}{c|c} & \Sigma \\ \hline \mathsf{UV} & \lambda, \, \kappa, \, \mathcal{T}_{\lambda}, \, \mathcal{T}_{\kappa}, \, \tan\beta & \mathbf{5} \\ \mathsf{EFT} & \lambda_{H}, \, \lambda_{S}, \, \lambda_{SH}, \, \kappa_{S}, \, \kappa_{SH} & \mathbf{5} \end{array}$$

Matching important at all? Why not simply studying the EFT without connecting to any UV model?

UV- vs. EFT-model: Comparison of Parameter Scans

Electroweak Phasetransistions (EWPTs)

Idea:

- > use matching to simplify (SUSY) predictions other than m_h that also involve the Higgs sector.
- > Starting point: **Strong first-order electroweak phasetransistions** (SFOEWPT).

Electroweak Phasetransistions (EWPTs)

Idea:

- > use matching to simplify (SUSY) predictions other than m_h that also involve the Higgs sector.
- > Starting point: **Strong first-order electroweak phasetransistions** (SFOEWPT). However:
- > PTs are not only sensitive on scalar but also fermion sector (*T*-corrections).
- > Q1: How do split-SUSY fermions influence the PT of a 2HDM?
- > Q2: Which UV-completions of the 2HDM $_{+EWinos}$ are compatible with a SFOEWPT? \rightarrow Matching required!

Electroweak Phasetransistions (EWPTs)

Idea:

- > use matching to simplify (SUSY) predictions other than m_h that also involve the Higgs sector.
- > Starting point: **Strong first-order electroweak phasetransistions** (SFOEWPT). However:
- > PTs are not only sensitive on scalar but also fermion sector (*T*-corrections).
- > Q1: How do split-SUSY fermions influence the PT of a 2HDM?
- > Q2: Which UV-completions of the 2HDM_{+EWinos} are compatible with a SFOEWPT? \rightarrow Matching required!

$$\mathcal{V}(\mathcal{T}) = \mathcal{V}_{ ext{2HDM}}^{(ext{tree})} + \mathcal{V}_{ ext{CW}}^{(1)} + \mathcal{V}_{ ext{T}} + \mathcal{V}_{ ext{CT}}$$

> tree-level potential $V_{2\text{HDM}}^{(\text{tree})}$ of the 2HDM

$$\mathcal{V}(\mathcal{T}) = \mathcal{V}_{2\mathsf{HDM}}^{(\mathsf{tree})} + \mathcal{V}_{\mathcal{CW}}^{(1)} + \mathcal{V}_{\mathcal{T}} + \mathcal{V}_{\mathcal{CT}}$$

> tree-level potential $V_{2\rm HDM}^{\rm (tree)}$ of the 2HDM

> one-loop effective potential $V_{CW}^{(1)}$ including effects of $\mathcal{L}_{\mathsf{EWinos}}$

$$\mathcal{V}(\mathcal{T}) = \mathcal{V}_{2\mathsf{HDM}}^{(\mathsf{tree})} + \mathcal{V}_{CW}^{(1)} + \mathcal{V}_{\mathcal{T}} + \mathcal{V}_{C\mathcal{T}}$$

> tree-level potential $V_{2\text{HDM}}^{(\text{tree})}$ of the 2HDM

- > one-loop effective potential $V_{CW}^{(1)}$ including effects of $\mathcal{L}_{\mathsf{EWinos}}$
- > temperature corrections V_T (incl. $\mathcal{L}_{\text{EWinos}}$)

$$\mathcal{V}(\mathcal{T}) = \mathcal{V}_{2\mathsf{HDM}}^{(\mathsf{tree})} + \mathcal{V}_{CW}^{(1)} + \mathcal{V}_{\mathcal{T}} + \mathcal{V}_{C\mathcal{T}}$$

- > tree-level potential $V_{2\text{HDM}}^{(\text{tree})}$ of the 2HDM
- > one-loop effective potential $V_{CW}^{(1)}$ including effects of $\mathcal{L}_{\mathsf{EWinos}}$
- > temperature corrections V_T (incl. $\mathcal{L}_{\text{EWinos}}$)
- > Counterterm potential V_{CT}

$$\mathcal{V}(\mathcal{T}) = \mathcal{V}_{ ext{2HDM}}^{(ext{tree})} + \mathcal{V}_{ ext{CW}}^{(1)} + \mathcal{V}_{ ext{T}} + \mathcal{V}_{ ext{CT}}$$

- > tree-level potential $V_{2\text{HDM}}^{(\text{tree})}$ of the 2HDM
- > one-loop effective potential $V_{CW}^{(1)}$ including effects of $\mathcal{L}_{\mathsf{EWinos}}$
- > temperature corrections V_T (incl. $\mathcal{L}_{\text{EWinos}}$)
- > Counterterm potential V_{CT}
- > implemented in BSMPT [Basler et. al]

$$\mathcal{V}(\mathcal{T}) = \mathcal{V}_{ ext{2HDM}}^{(ext{tree})} + \mathcal{V}_{ ext{CW}}^{(1)} + \mathcal{V}_{ ext{T}} + \mathcal{V}_{ ext{CT}}$$

- > tree-level potential $V_{2\text{HDM}}^{(\text{tree})}$ of the 2HDM
- > one-loop effective potential $V_{CW}^{(1)}$ including effects of $\mathcal{L}_{\mathsf{EWinos}}$
- > temperature corrections V_T (incl. $\mathcal{L}_{\text{EWinos}}$)
- > Counterterm potential V_{CT}
- > implemented in BSMPT [Basler et. al]
- > more details: [2107.09617]

Can split-SUSY fermions relax tensions in the 2HDM?

Example Point: 2HDM

Idea: start with 2HDM (without EWinos) and then turn-on fermion contributions.

$$\begin{split} m_h &= 125.09 \, {\rm GeV}, & m_H &= 637.37 \, {\rm GeV}, \\ m_A &= 811.35 \, {\rm GeV}, & m_{H^\pm} &= 839.90 \, {\rm GeV}, \\ \tan \beta &= 6.15 \; , & \alpha &= -0.1605 \; , \end{split}$$

leads to

$$\xi_{\rm c}^{\rm 2HDM}=0.82<1$$

when considering the pure 2HDM.

Example Point: 2HDM+EWinos

Example Point: 2HDM+EWinos

Can it emerge from split-SUSY?

> MSSM:

- $\lambda_{1,2,3,4} = \mathcal{O}(g_1^2, g_2^2) + \frac{1}{(4\pi)^2} \mathcal{O}(\frac{A_t}{m_{\tilde{t}}})$
- $\lambda_{5,6,7} = 0 + \frac{1}{(4\pi)^2} \mathcal{O}(\frac{A_t}{m_{\tilde{t}}})$
- A_t is a low-scale parameter
- > our scan requires:

$$\lambda_5>0.1$$
 to reach $\xi_{m{c}}>1$ for $\lambda_{1,2,3,4}pprox\lambda_{1,2,3,4}^{\sf MSSM}$

> MSSM:

- $\lambda_{1,2,3,4} = \mathcal{O}(g_1^2, g_2^2) + \frac{1}{(4\pi)^2} \mathcal{O}(\frac{A_t}{m_{\tilde{t}}})$
- $\lambda_{5,6,7} = 0 + \frac{1}{(4\pi)^2} \mathcal{O}(\frac{A_t}{m_{\tilde{t}}})$
- A_t is a low-scale parameter
- > our scan requires:

$$\lambda_5>0.1$$
 to reach $\xi_{m c}>1$ for $\lambda_{1,2,3,4}pprox\lambda_{1,2,3,4}^{\sf MSSM}$

alternatives:

MSSM.

- $\begin{array}{l} \cdot \ \ \lambda_{1,2,3,4} = \mathcal{O}(g_1^2,g_2^2) + \frac{1}{(4\pi)^2} \mathcal{O}(\frac{A_t}{m_t}) \\ \cdot \ \ \lambda_{5,6,7} = 0 + \frac{1}{(4\pi)^2} \mathcal{O}(\frac{A_t}{m_t}) \end{array}$
- A_t is a low-scale parameter
- our scan requires:

$$\lambda_5>0.1$$
 to reach $\xi_{m{c}}>1$ for $\lambda_{1,2,3,4}pprox\lambda_{1,2,3,4}^{\sf MSSM}$

alternatives:

add light singlet (split-NMSSM) [Demidov et. al] [Athron et. al] \rightarrow singlet couplings enable SFOEWPT

> MSSM:

- $\lambda_{1,2,3,4} = \mathcal{O}(g_1^2, g_2^2) + \frac{1}{(4\pi)^2} \mathcal{O}(\frac{A_t}{m_{\tilde{t}}})$
- $\lambda_{5,6,7} = 0 + \frac{1}{(4\pi)^2} \mathcal{O}(\frac{A_t}{m_t})$
- A_t is a low-scale parameter

> our scan requires:

$$\lambda_5>0.1$$
 to reach $\xi_{m{c}}>1$ for $\lambda_{1,2,3,4}pprox\lambda_{1,2,3,4}^{ ext{MSSM}}$

alternatives:

- > add light singlet (split-NMSSM) [Demidov et. al] [Athron et. al] \rightarrow singlet couplings enable SFOEWPT
- > integrate out heavy singlet NMSSM \rightarrow MSSM \rightarrow 2HDM+EWinos

Matching Dim>4 Operators

It is well established that dim>4 operators do not significantly contribute to m_h . Open question: how does this behave for e.g.

- > Relic density? (4-fermion operators)
- > EWPTs?
- > Unitarity?

> ...

> despite $m_{\tilde{t}} > 1 \,\mathrm{TeV}$, Higgs mass community still very active!

> despite $m_{ ilde{t}} > 1\,{
m TeV}$, Higgs mass community still very active!

> matching to non-standard EFTs:

> despite $m_{ ilde{t}} > 1\,{
m TeV}$, Higgs mass community still very active!

> matching to non-standard EFTs:

> precise Higgs masses for large $m_{\tilde{t}}, m_A, \ldots$

> despite $m_{ ilde{t}} > 1\,{
m TeV}$, Higgs mass community still very active!

> matching to non-standard EFTs:

> precise Higgs masses for large $m_{\tilde{t}}, m_A, \ldots$

> also interesting: other predictions within SUSY-EFTs (e.g. Ωh^2 or $\frac{v_c}{T_c}$)

Thank you!

Backup

Global View: reopen parameter space with large masses

- > random parameter scan using ScannerS [Coimbra et al.]
- > scan with default 2HDM allowing for all ξ_c

Global View: reopen parameter space with large masses

- > random parameter scan using ScannerS [Coimbra et al.]
- $>\,$ scan with default 2HDM allowing for all ξ_c
- > re-evaluate using 2HDM+EWinos:
 - $g_{1u} = g_{1d} = g_1^{SM}$ $g_{2u} = g_{2d} = g_2^{SM}$
 - $M_{\tilde{B}} = M_{\tilde{W}} = \mu = 200 \, \text{GeV}$
- > compare ξ_c with $\xi_c^{2\text{HDM}}$
Global View: reopen parameter space with large masses

- random parameter scan using ScannerS [Coimbra et al.]
- scan with default 2HDM allowing for all \mathcal{E}_c
- re-evaluate using 2HDM+EWinos: " $g_{1u} = g_{1d} = g_1^{SM}$ $g_{2u} = g_{2d} = g_2^{SM}$ • $M_{\tilde{B}} = M_{\tilde{W}} = \mu = 200 \,\mathrm{GeV}$ compare ξ_c with ξ_c^{2HDM}

large-mass points which were forbidden in the 2HDM are now allowed!

DEST

Global Mass Scan

Page 37

Global Yukawa Scan

$$V(T) = V_{2\text{HDM}}^{(\text{tree})} + V_{CW}^{(1)} + V_T + V_{CT}$$

> extended to incorporate corrections from fermions in arbitrary model

$$V(T) = V_{2\text{HDM}}^{(\text{tree})} + V_{CW}^{(1)} + V_T + V_{CT}$$

> extended to incorporate corrections from fermions in arbitrary model

 $\begin{array}{l} \cdot \ \ V_{CW}^{(1)}|_{inos} \\ \cdot \ \ V_{T}|_{inos} = -\frac{T^{4}}{\pi^{2}} \mathrm{Tr} \left[J_{+} \left(\mathbf{m}_{\tilde{\chi}_{i}^{0}}^{2} / T^{2} \right) + 2J_{+} \left(\mathbf{m}_{\tilde{\chi}_{i}^{-}}^{2} / T^{2} \right) \right] + V_{\mathrm{Debye}}|_{inos} \\ \cdot \ \ J_{+}(x) = \int_{0}^{\infty} dk \ k^{2} \log \left[1 + \exp \left(-\sqrt{k^{2} + x} \right) \right] \\ \cdot \ \ V_{\mathrm{Debye}}|_{inos} \propto T^{2} f(g_{1u}^{2}, g_{1d}^{2}, g_{1}^{2}, \dots) \end{array}$

> calculates all ingredients for V(T)

$$V(T) = V_{2\text{HDM}}^{(\text{tree})} + V_{CW}^{(1)} + V_T + V_{CT}$$

> extended to incorporate corrections from fermions in arbitrary model

> calculates all ingredients for V(T)

> V_{CT} : achieves equal scalar tree-level and one-loop masses/mixings

$$V(T) = V_{2\text{HDM}}^{(\text{tree})} + V_{CW}^{(1)} + V_T + V_{CT}$$

> extended to incorporate corrections from fermions in arbitrary model

- > calculates all ingredients for $V({\it T})$
- > V_{CT} : achieves equal scalar tree-level and one-loop masses/mixings

> minimizes V(T)

 \rightarrow perturbative determination of $\xi_{c}=\textit{v}_{c}/\textit{T}_{c}$

$$V(T) = V_{2\text{HDM}}^{(\text{tree})} + V_{CW}^{(1)} + V_T + V_{CT}$$

> extended to incorporate corrections from fermions in arbitrary model

- > calculates all ingredients for $V({\it T})$
- > V_{CT} : achieves equal scalar tree-level and one-loop masses/mixings

> minimizes V(T)

 \rightarrow perturbative determination of $\xi_{c}=\textit{v}_{c}/\textit{T}_{c}$

> Open SOURCE [phbasler.github.io/BSMPT]

Fixed-order VS. EFT

Common lore: *n*-loop matching requires n + 1-loop running

Not always appropriate: TODO ref to Johannes et. al.