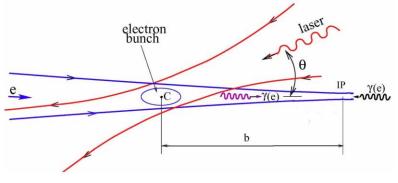
Gamma-gamma collider with Energy < 12 GeV based on European XFEL

Marten Berger

In cooperation with Gudrid Moortgat-Pick, Monika Alexandra Wüst

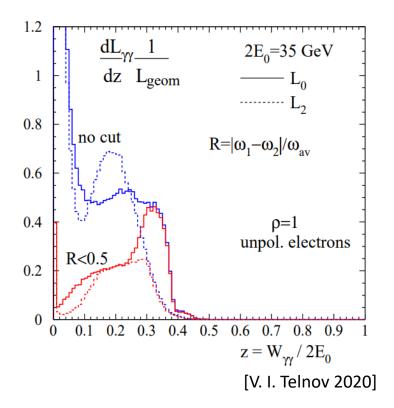
Contents


- Gamma-gamma collider
 - Dark photon
 - · Light-by-Light
 - · "KSVZ model"

- Addition to e^+e^- colliders
- Compton backscattering
- Getting access to $\gamma\gamma$ and γe processes

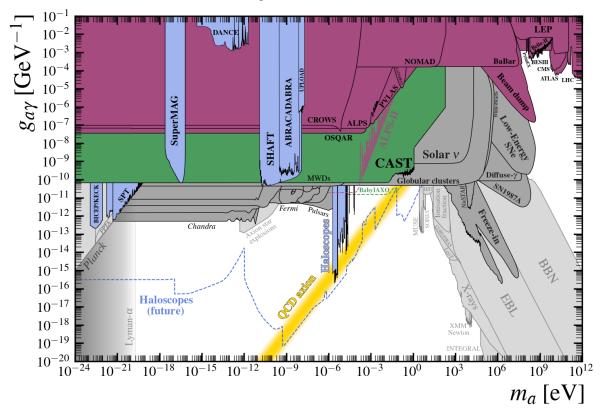
$$\omega_m \approx \frac{x}{x+1} E_0$$

$$x = \frac{4E_0 \omega_0}{m^2 c^4} \simeq 15.3 \left[\frac{E_0}{\text{TeV}} \right] \left[\frac{\omega_0}{\text{eV}} \right] = 19 \left[\frac{E_0}{\text{TeV}} \right] \left[\frac{\mu \text{m}}{\lambda} \right]$$


V. I. Telnov 2020

- Use European XFEL (E_0 = 17.5 GeV)
- At the beam dump

- 12 GeV peak
- Excellent for $b \overline{b}$ and $c \overline{c}$ range


$$\omega_m \approx \frac{x}{x+1} E_0$$

$$x = \frac{4E_0 \omega_0}{m^2 c^4} \simeq 15.3 \left[\frac{E_0}{\text{TeV}} \right] \left[\frac{\omega_0}{\text{eV}} \right] = 19 \left[\frac{E_0}{\text{TeV}} \right] \left[\frac{\mu \text{m}}{\lambda} \right]$$

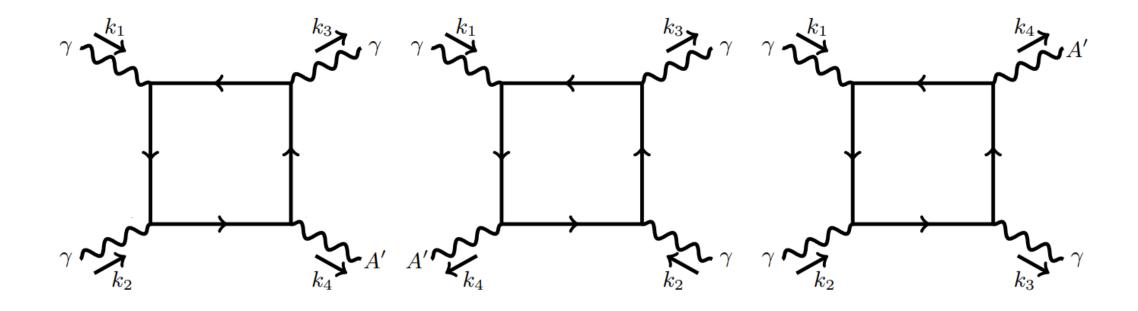
- Additional hadronic resonances [V. I. Telnov 2020:2007.14003v2]
- Possible four-quark states

- Looking for BSM particles
 - (Dark photon)
 - ALPs
- Indirect tests of SM physics
 - Precision observables

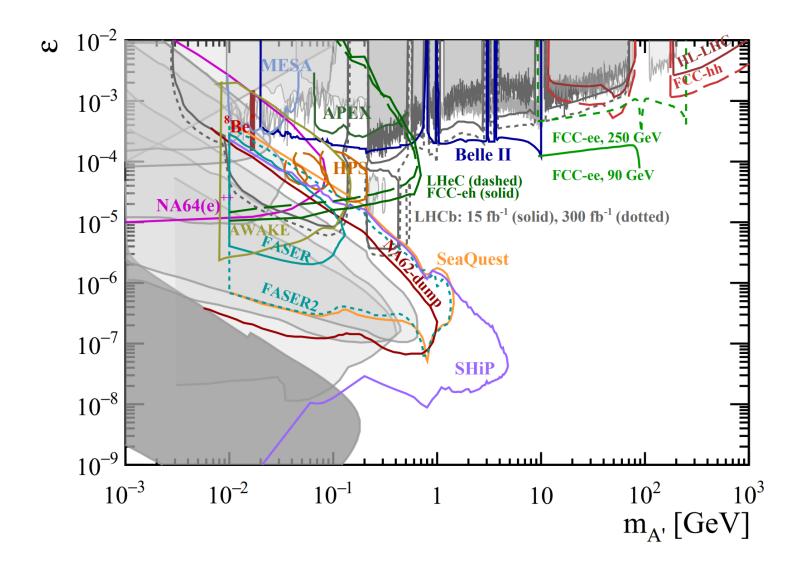
Dark photon

- Extra U(1): $SU(3)_C \otimes SU(2)_L \otimes U_1(1) \otimes U_2(1)$
- Mixing between the two U(1) groups

$$\mathcal{L} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} - \frac{1}{4}F'_{\mu\nu}F'^{\mu\nu} - \frac{\varepsilon}{2}F_{\mu\nu}F'^{\mu\nu} + \frac{1}{2}m_{A'}^2V_{\mu}V^{\mu}$$


Mixing between photon, Z-boson and dark photon

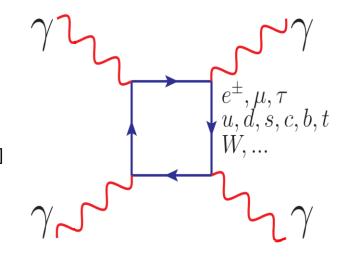
$$\begin{pmatrix} W_{\mu}^{3} \\ B_{\mu} \\ \tilde{A}'_{\mu} \end{pmatrix} = \begin{pmatrix} c_{W} & s_{W} & -s_{W}\varepsilon \\ -s_{W} & c_{W} & -c_{W}\varepsilon \\ t_{W}\varepsilon & 0 & 1 \end{pmatrix} \begin{pmatrix} Z_{\mu} \\ A_{\mu} \\ A'_{\mu} \end{pmatrix}$$

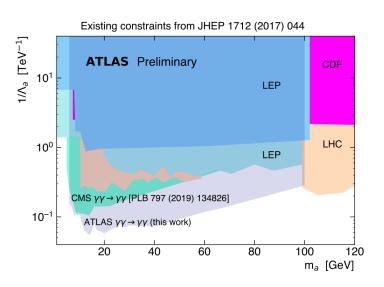

Dark photon

- Massless
 - Massless only interacts through operators of dimension higher than 4
- Massive
 - Mass through Stückelberg or dark Higgs mechanism
 - Possible dark matter candidate for $m_{A'} < 1$ MeV and $\varepsilon < 10^{-9}$
- Visible and invisible decays
 - Searches at colliders and beam dump experiments

Dark photon at a gamma-gamma collider

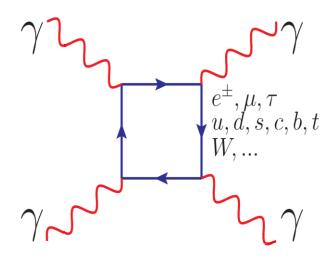

- Every fermion except for top
- So far only looked at low energy




[M. Fabbrichesi 2020]

Light-by-light scattering

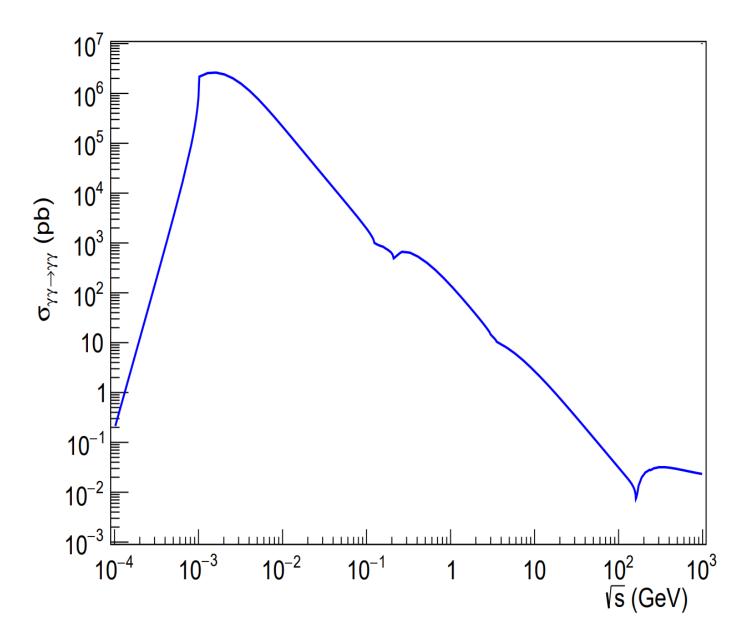
- Has been done for a long time [Lifshitz, De Tollis, Karplus, Neuman]
- So far observed by ATLAS
 - most recent results from 2020
- Possibility to observe BSM contributions



Light-by-light scattering

$$\frac{d\sigma}{d\Omega} = \frac{1}{64\pi^2} \frac{1}{4\omega^2} |M_{fi}|^2$$

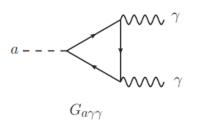
$$|M_{fi}|^2 \to \frac{1}{2} \{ 2|M_{++++}|^2 + 2|M_{++--}|^2 + 2|M_{+-+-}|^2 + 2|M_{+--+}|^2 + 8|M_{+++-}|^2 \}$$

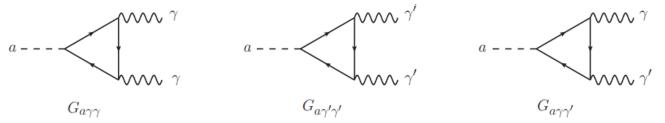

$$M_{++++}$$
, M_{++--} und M_{+++-}

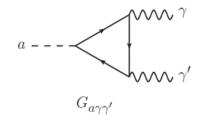
Light-by-light scattering

$$\begin{split} \frac{1}{8\alpha^2}\,M_{++++} &= -1 \,- \left(2\,+\frac{4t}{s}\right)B(t)\,- \left(2\,+\frac{4u}{s}\right)B(u) \\ &- \frac{2(t^2+u^2)}{s^2}\,-\frac{8}{s}\left[T(t)\,+\,T(u)\right] \\ &+ \frac{4}{t}\left(1\,-\frac{2}{s}\right)I(s,t)\,+\frac{4}{u}\left(1\,-\frac{2}{s}\right)I(s,u) \\ &+ \left[\frac{2(t^2+u^2)}{s^2}\,-\frac{16}{s}\,-\frac{4}{t}\,-\frac{4}{u}\,-\frac{8}{tu}\right]I(t,u)\,, \\ \frac{1}{8\alpha^2}M_{+++-} &= 1\,+4\left(\frac{1}{s}\,+\frac{1}{t}\,+\frac{1}{u}\right)\left[T(s)\,+\,T(t)\,+\,T(u)\right] \\ &- 4\left(\frac{1}{u}\,+\frac{2}{st}\right)I(s,t)\,-\,4\left(\frac{1}{t}\,+\frac{2}{su}\right)I(s,u) \\ &- 4\left(\frac{1}{s}\,+\frac{2}{tu}\right)I(t,u)\,, \\ \frac{1}{8\alpha^2}M_{++--} &= 1\,-\frac{8}{st}\,I(s,t)\,-\frac{8}{su}\,I(s,u)\,-\frac{8}{tu}\,I(t,u)\,. \end{split}$$

$$\begin{split} B(r) &= \frac{1}{2} \int_{0}^{1} \mathrm{d}y \ln \left\{ 1 - i\varepsilon - 4ry(1 - y) \right\} = \\ &= \left(1 - \frac{1}{r} \right)^{\frac{1}{2}} \sinh^{-1} \sqrt{-r} - 1 & (r < 0); \\ &= \left(\frac{1}{r} - 1 \right)^{\frac{1}{2}} \sin^{-1} \sqrt{r} - 1 & (0 < r < 1); \\ &= \left(1 - \frac{1}{r} \right)^{\frac{1}{2}} \cosh^{-1} \sqrt{r} - 1 - \frac{\pi i}{2} \left(1 - \frac{1}{r} \right)^{\frac{1}{2}} & (1 < r). \\ T(r) &= \int_{0}^{1} \frac{\mathrm{d}y}{4y(1 - y)} \ln \left\{ 1 - i\varepsilon - 4ry(1 - y) \right\} = \\ &= \left(\sinh^{-1} \sqrt{-r} \right)^{2} & (r < 0); \\ &= - \left(\sin^{-1} \sqrt{r} \right)^{2} & (0 < r < 1); \\ &= \left(\cosh^{-1} \sqrt{r} \right)^{2} - \frac{1}{4}\pi^{2} - i\pi \cosh^{-1} \sqrt{r} & (1 < r). \\ I(r, s) &= I(s, r) = \int_{0}^{1} \frac{\mathrm{d}y}{4y(1 - y) - (r + s)/rs} \cdot \left\{ \ln \left[1 - i\varepsilon - 4ry(1 - y) \right] + \ln \left[1 - i\varepsilon - 4sy(1 - y) \right] \right\}, \end{split}$$


"KSV7 model"


- KSVZ-type axion [Kim, Shifman, Vainshtein, Zakharov]
 - (Very) heavy quark and (nearly) sterile axion
- With dark photon


$$\mathcal{L}_{\text{axion portal}} = \frac{G_{agg}}{4} a G_{\mu\nu} \tilde{G}^{\mu\nu} + \frac{G_{a\gamma\gamma}}{4} a F_{\mu\nu} \tilde{F}^{\mu\nu} + \cdots$$

$$\mathcal{L}_{\text{vector portal}} = \frac{\epsilon}{2} F_{\mu\nu} F^{\prime\mu\nu}$$

$$\mathcal{L}_{\text{dark axion portal}} = \frac{G_{a\gamma'\gamma'}}{4} a F'_{\mu\nu} \tilde{F}'^{\mu\nu} + \frac{G_{a\gamma\gamma'}}{4} a F_{\mu\nu} \tilde{F}'^{\mu\nu}$$

Conclusion

- Gamma-gamma colliders are great additions to e^+e^- colliders
- At European XFEL first look at the technology for future colliders
- $b\overline{b}$ and $c\overline{c}$ production range is covered

Outlook

- SM LbyL vs different BSM contributions
- Automation of SM part
- SANC

Thank you for listening

$2E_0$	GeV	35
N per bunch	10^{10}	0.62
Collision rate	kHz	13.5
σ_z	μ m	70
$\left \varepsilon_{x,n}/\varepsilon_{y,n} \right $	mm · mrad	1.4/1.4
β_x/β_y at IP	μ m	70/70
σ_x/σ_y at IP	nm	53/53
Laser wavelength λ	μ m	0.5
Parameters x and ξ^2		0.65, 0.05
Laser flash energy	J	3
Laser pulse duration	ps	2
$f# \equiv F/D$ of laser system		27
Crossing angle	mrad	~ 30
b (CP–IP distance)	mm	1.8
$\mathcal{L}_{ee, ext{geom}}$	$10^{33}\mathrm{cm}^{-2}\mathrm{s}^{-1}$	1.45
$\mathcal{L}_{\gamma\gamma}(z>0.5z_m)$	$10^{33}\mathrm{cm}^{-2}\mathrm{s}^{-1}$	0.19
$W_{\gamma\gamma}$ (peak)	GeV	12

[V. I. Telnov 2020]