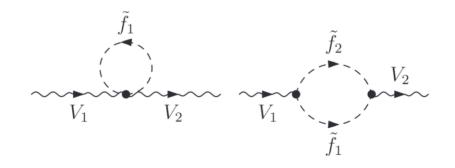
Constraining BSM models using high precision observables

Marten Berger

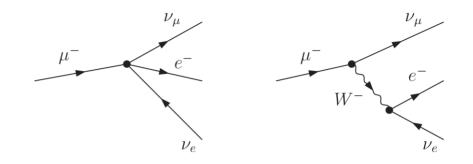
Supervisors Georg Weiglein, Sven Heinemeyer In cooperation with Gudrid Moortgat-Pick

Contents

.Electroweak precision observables .MSSM $\cdot \Delta r$.Numerical evaluation



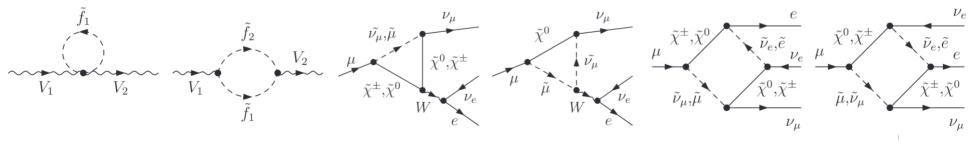
22.03.2022


Electroweak precision observables

M_W , $\sin^2 heta_{ m eff}$

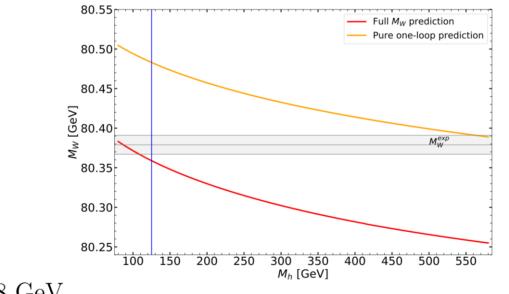
- . Direct searches have not resulted in any signals so far
- . Indirect constraints of the parameter space
- Highly sensitive to quantum corrections of physics beyond the Standard Model

$$M_W$$



. Comparing the muon-decay amplitude

•
$$\frac{G_{\mu}}{\sqrt{2}} = \frac{M_Z^2 e^2}{8 M_W^2 \left(M_Z^2 - M_W^2\right)} \left(1 + \Delta r(M_W, M_Z, m_t, \dots, X)\right)$$


•
$$M_W^2 = M_Z^2 \left(\frac{1}{2} + \sqrt{\frac{1}{4} - \frac{\alpha \pi}{\sqrt{2}G_\mu M_Z^2} (1 + \Delta r)} \right)$$

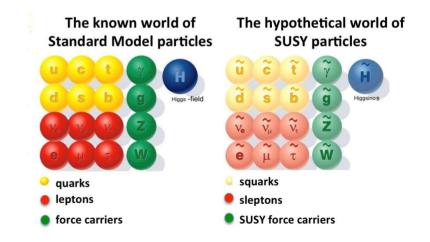
 $\cdot \Delta r$ contains all loop diagrams contributing to the muon-decay amplitude

M_W in the ${\rm SM}$

. Why looking beyond the SM?

• $M_W^{\rm SM} = 80.358 \,\,{\rm GeV}$

• Current experimental bounds: $M_W = 80.379 \pm 0.012 \,\, {
m GeV}$ [PDG]



Minimal Supersymmetric Standard Model (MSSM)

. Higgs-doublets

$$H_1 = \begin{pmatrix} H_1^0 \\ H^- \end{pmatrix}, \quad H_2 = \begin{pmatrix} H^+ \\ H_2^0 \end{pmatrix}$$

- . Higgs mass is not a free parameter
- R-Parity conservation
 - LSP is stable
- Symmetry broken

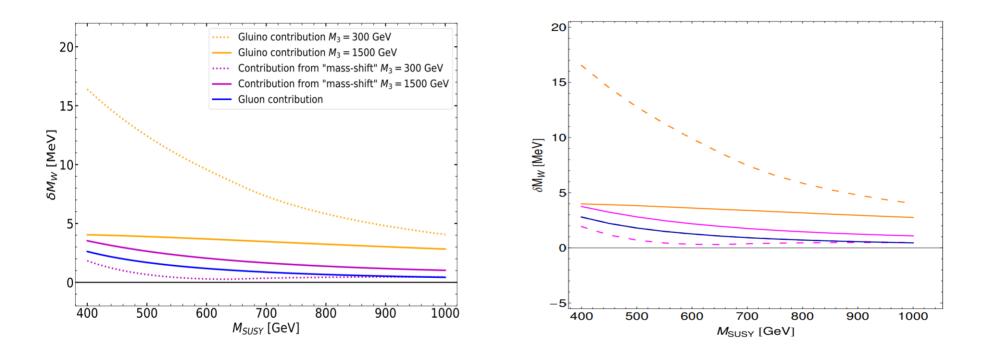
. In the SM we include contributions up to four-loop order

$$\Delta r^{\rm SM} = \Delta r^{(\alpha)} + \Delta r^{(\alpha\alpha_s)} + \Delta r^{(\alpha\alpha_s^2)} + \Delta r^{(\alpha^2)}_{\rm ferm} + \Delta r^{(\alpha^2)}_{\rm hos} + \Delta r^{(G^2_\mu\alpha_s m_t^4)} + \Delta r^{(G^3_\mu m_t^6)} + \Delta r^{(G_\mu\alpha_s^3 m_t^2)}$$

- In the MSSM we include the full one-loop contributions with higher-order corrections $\Delta r^{\text{MSSM}} = \Delta r^{\text{MSSM}(\alpha)} + \Delta r^{\text{MSSM}(\text{h.o.})}$
 - One-loop can be split into groups
 - 1. Gauge boson self-energies containing sfermions in the loop
 - 2. Contributions from the Higgs and gauge boson sector
 - 3. Contributions from the chargino and neutralino sector

 $\Delta r^{\text{MSSM(h.o.)}} = \Delta r^{\text{SM(h.o.)}} + \Delta r^{\text{SUSY(h.o.)}}$

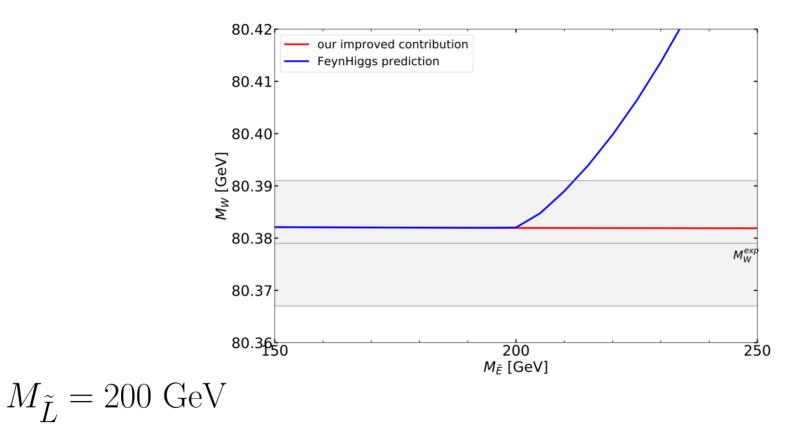
Numerical evaluation


- . Developed a standalone Mathematica code
- Use FeynHiggs for the Higgs masses
- . Implemented parts from the current FeynHiggs code
- . New sfermion contributions
- . Shift due to specific contributions

$$\delta M_W = -\frac{M_W^{\text{ref}}}{2} \frac{s_W^2}{c_W^2 - s_W^2} \Delta r^{\text{SUSY}}(M_W^{\text{ref}})$$

Numerical evaluation

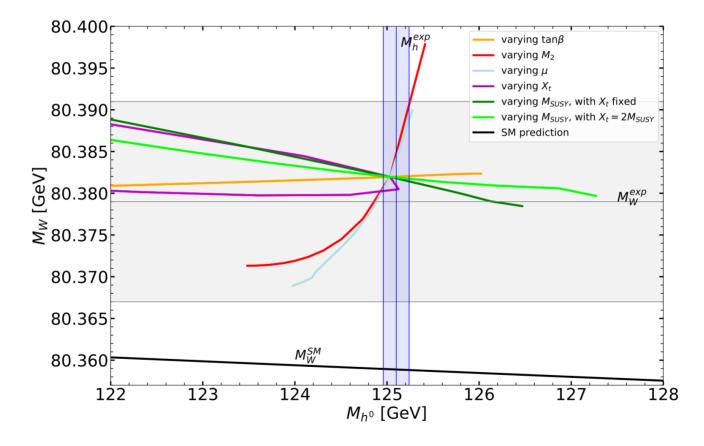
Parameters								
m_e	m_{μ}	$m_{ au}$	m_u	m_c	m_t	m_d	m_s	m_b
$\Delta \alpha$	e	G_{μ}	$M_{h_{ m SM}}$	M_Z	M_W	$\alpha_S(M_Z)$	Version	
						M_H		
M_q	M_u	M_d	M_l	M_e	A_f	$\sin lpha$		


Comparison with literature – Gluion/Gluon/Massshift

Comparison graphs were taken from

'Constraining supersymmetric models using Higgs physics, precision observables and direct searches' L. Zeune (2014)

Sfermion contribution to M_W



Parameter	fixed	varying
$\overline{m_t}$	$172.76~{\rm GeV}$	-
aneta	20	5 - 25
μ	$200~{\rm GeV}$	$100 - 1200 { m GeV}$
$M_{{ ilde L}/{ ilde E}}$	$200~{\rm GeV}$	-
$M_{ ilde Q/ ilde U/ ilde D_{1,2}}$	$1500~{\rm GeV}$	-
$M_{\rm SUSY} = M_{\tilde{Q}/\tilde{U}/\tilde{D}_3}$	$1250~{\rm GeV}$	$850 - 1650 { m GeV}$
X_t	$2500~{\rm GeV}$	$1500 - 3500 { m GeV}$
M_2	$200~{\rm GeV}$	$100 - 1200 { m GeV}$
M_3	$1500~{\rm GeV}$	_
M_A	$1500 { m ~GeV}$	-

$$M_{h^0} = 125.033 \text{ GeV}$$

 $M_W = 80.382 \text{ GeV}$

experimental bounds: $M_W = 80.379 \pm 0.012 ~{
m GeV}$ [PDG]

M_W in the $\ensuremath{\mathsf{MSSM}}$

Conclusion

Electroweak precision observables are a very powerful tool for testing models

• Use alongside other exclusion methods to narrow done the parameter space

• We presented a new standalone Mathematica code and a scenario to study the impact of MSSM input parameters

Outlook

- . Easy to operate public version
- Implementing FeynHiggs in the code for the Higgs masses

Thank you for listening

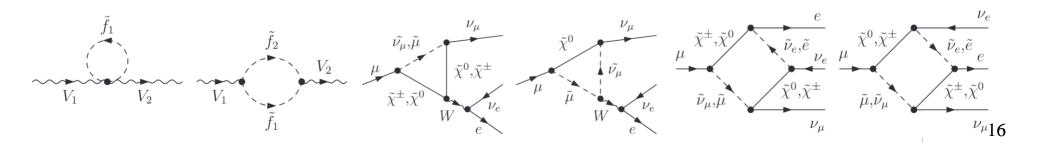
Sfermions

Mass-matrix:

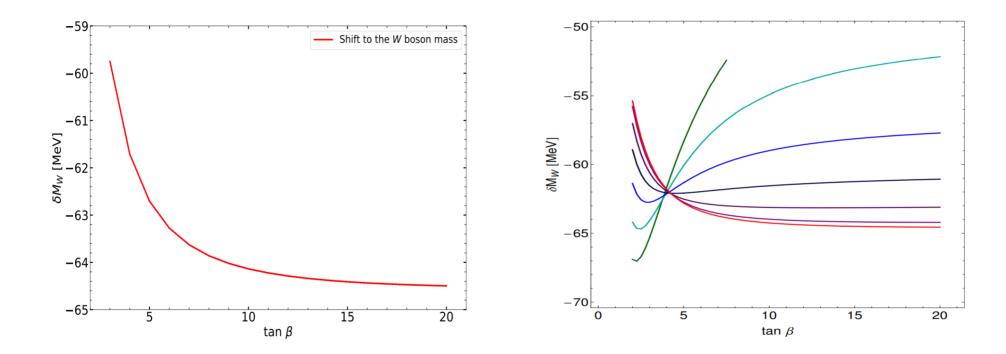
$$\mathbf{M}_{\tilde{f}} = \begin{pmatrix} M_L^2 + m_f^2 & m_f X_f^* \\ m_f X_f & M_R^2 + m_f^2 \end{pmatrix}$$

- Diagonalizing with 2×2 unitary matrix $U_{\tilde{f}}$

$$\begin{pmatrix} \tilde{f}_1\\ \tilde{f}_2 \end{pmatrix} = U_{\tilde{f}} \begin{pmatrix} \tilde{f}_L\\ \tilde{f}_R \end{pmatrix}$$

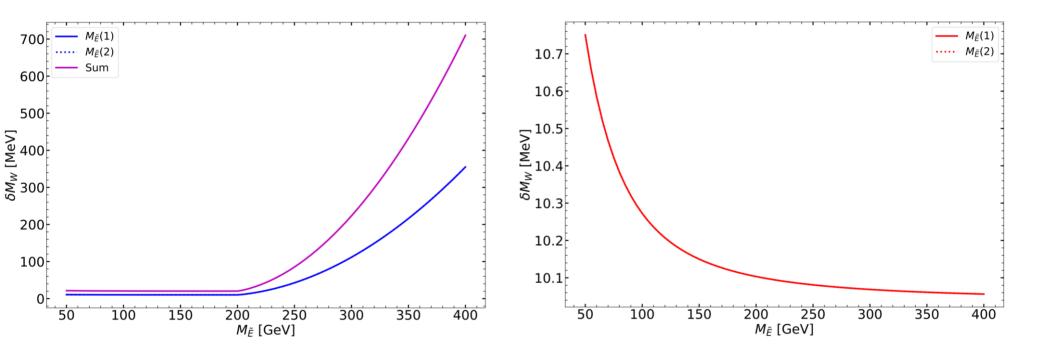

. Only demand $m_{\tilde{f}_1} \leq m_{\tilde{f}_2}$

r one-loop

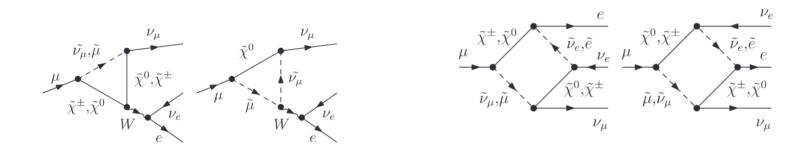

•
$$\Delta r^{(\alpha)} = \frac{\Sigma_T^{WW}(0) - \operatorname{Re}(\Sigma_T^{WW}(M_W^2))}{M_W^2} + \Pi^{AA}(0) - \frac{c_W^2}{s_W^2} \operatorname{Re}\left[\frac{\Sigma_T^{ZZ}(M_Z^2)}{M_Z^2} - \frac{\Sigma_T^{WW}(M_W^2)}{M_W^2}\right] + 2\frac{s_W}{c_W}\frac{\Sigma_T^{AZ}(0)}{M_Z^2} + \operatorname{Vertex} + \operatorname{Box} - \frac{1}{2}\operatorname{Re}(\Sigma_L^{\mu}(0) + \Sigma_L^{e}(0) + \Sigma_L^{\nu_{\mu}}(0) + \Sigma_L^{\nu_{e}}(0))$$

- On-shell renormalization

- Is done separately for the different groups $\mathcal{M}_{\mathrm{Loop},i} = \Delta r_i \mathcal{M}_{\mathrm{Born}}$
- Vertex- and box-diagrams only with charginos/neutralinos


Comparison with literature – Higgs sector

Comparison graphs were taken from


'Constraining supersymmetric models using Higgs physics, precision observables and direct searches' L. Zeune (2014)

Slepton contribution

 $M_{\tilde{L}} = 200 \,\, {\rm GeV}$

'Improved prediction for the mass of the W boson in the NMSSM'
 O. Stål, G. Weiglein, L. Zeune (2015)

