Domain walls and Gravitational Waves

Luis Hellmich, 2HDM Working Group Hamburg, 02.07.2020

Outline

Dynamics of domain walls

- Formation
- Cosmological evolution
- Solution to domain wall problem

Gravitional waves from domain walls

- Estimation of spectra
- Physical interpretation of spectra
- Model-independent predictions
- Example: NMSSM

Summary and Outlook

Formation of Domain walls

- Mainly follow paper: "A review of gravitational waves from cosmic domain walls", K. Saikawa, 2017, ArXiv: 1703.02576
- Domain walls are thought to be created when a discrete symmetry is spontaneously broken.

Consider a Toy-model with $V(\phi) = \frac{\lambda}{4}(\phi^2 + v^2)^2$ Discrete \mathbb{Z}_2 -symmetry $\phi \to -\phi$, is spontaneously broken when ϕ acquires vev $\langle \phi \rangle = \pm v$

 \Rightarrow Regions of space in the evolution of the universe, which live in different vacua

- \Rightarrow Transition between this regions, where ϕ =0, which is called "**Domain Wall"**
- Problem: Stable domain walls cosmological unfavourable

Cosmological evolution of Domain walls

- Dynamics driven by two forces:
 - Tension $p_T \sim \frac{\sigma}{R_{wall}}$, σ : surface energy density, R_{wall} :curvature radius
 - Friction $p_F \sim vT^4 \rightarrow$ exponentially damped at temperatures $T < m_{int}$
- Domain walls enter so-called "scaling regime", when
 p_T dominates: R_{wall} ~ L ~ H⁻¹~ t ⇒ ρ_{wall}(t) = A σ/t
 A: dimensionless "area parameter", proportional to number of degenerate vacua
- $\rho_{wall} \sim t^{-1}$ while $\rho_m \sim \rho_r \sim t^{-2} \Rightarrow$ Domain walls would dominate the energy density of the universe
- Additionally: large scale density fluctuations must be measurable in CMB

 $\Rightarrow \frac{\delta \rho}{\rho} \sim \frac{\rho_{wall}}{\rho_c} \sim 10^{12} \frac{\sigma}{TeV^3} \Rightarrow \text{upper bound } \sigma^{1/3} \lesssim O(MeV) \text{ (ZKO-Bound)}$

Solution to domain wall problem

- Idea: Introduction of additional term ΔV, which breaks the discrete symmetry explicitly, so-called bias
- Symmetry must still hold approximately, so that domain walls can form
 - $\frac{p_-}{p_+} \cong \exp\left(-\frac{V_{bias}}{V_0}\right)$
 - $p_- > p_c$ to guarantee that regions of both vacua will develop

$$\Rightarrow \frac{V_{bias}}{V_0} < \ln\left(\frac{1-p_c}{p_c}\right) = 0.795$$

Solution to domain wall problem

- The energy difference of the vacua drives the dynamics of the domain wall network
 ⇒ regions of false vacuum shrink, domain walls become unstable
- Described by volume pressure $p_V \sim V_{bias}$ When $p_V \sim p_T$ walls annihilate

$$\Rightarrow t_{ann} = C_{ann} \frac{A\sigma}{V_{bias}} \Rightarrow T_{ann} \propto g_* (T_{ann})^{-1/4} * t_{ann}^{-1/2}$$

• Require $t_{ann} < t_{dom}$ \Rightarrow lower bound for bias and temperature

 $V_{bias} > \frac{4C_{ann}A^2\sigma^2}{3M_{pl}^2}$; $T_{ann} > g_*(T_{ann})^{-1/4}(A\sigma)^{1/2}$

 These bounds can be further constrained by BBN, since decay products of domain walls may interact with particles in the universe

Gravitational waves from domain walls

- Energy density of GW can be estimated as $\rho_{GW} \sim GA^2 \sigma^2$
- Numerical calculation of the GW spectrum:
 - Simulation of scalar field dynamics
 - Calculate the stress-energy tensor
 - Integrate over conformal time $\Rightarrow \rho_{GW}$ $\Rightarrow \Omega_{GW}(t, f) = \frac{1}{\rho_c(t)} \frac{d\rho_{GW}(t)}{d \ln(f)}$; $f = \frac{k}{2\pi a(t)}$ \Rightarrow simulations confirm the theoretical estimation
- Extrapolating the spectrum to present cosmic time leads to:

 $\Omega_{peak}(t_0) \sim (A\sigma)^2 T_{ann}^{-4}; f_{peak} \sim T_{ann}$

Gravitational waves from domain walls – Toy model

• Example: Toy model with bias term, with discrete \mathbb{Z}_2 -symmetry $\phi \to -\phi$

 $V(\phi)=rac{\lambda}{4}(\phi^2-\eta^2)^2+\epsilon\eta\phi\left(rac{1}{3}\phi^2-\eta^2
ight)+rac{\lambda}{8}T^2\phi^2.$

- Peak frequency corresponds to horizon size, cutoff at higher frequencies and scaling towards is determined by wall width δ
- ε parametrizes V_{bias} ⇒ for larger ε, shorter lifetime of domain walls and therefore smaller amplitude

[Gravitational Waves from Collapsing Domain Walls, T. Hiramatsu et al., ArXiv:1002.1555]

Gravitational waves from domain walls

Model-independent predictions

Gravitational waves from domain walls

Model-independent predictions

Example model with unstable domain walls - NMSSM

$$V = \left|\kappa S^{2} - \lambda H_{u} H_{d}\right|^{2} + m_{H_{u}}^{2} |H_{u}|^{2} + m_{H_{d}}^{2} |H_{d}|^{2} + m_{S}^{2} |S|^{2} + |\lambda|^{2} |S|^{2} (|H_{u}|^{2} + |H_{d}|^{2})^{2} + \frac{g^{2}}{4} \left(|H_{u}|^{2} - |H_{d}|^{2}\right)^{2} + \left[\frac{1}{3}\kappa A_{\kappa} S^{3} - \lambda A_{\lambda} H_{u} H_{d} S + \text{h.c.}\right],$$

• Discrete Z3-symmetry imposed: $\Phi \rightarrow e^{\frac{2\pi i}{3}}\Phi$

 $\Rightarrow \text{ three degenerate vacua } (\langle S \rangle, \langle H_u \rangle, \langle H_d \rangle) = (v_s/\sqrt{2}, v_u/\sqrt{2}, v_d/\sqrt{2}), (v_s e^{\frac{2\pi i}{3}}/\sqrt{2}, v_u e^{\frac{2\pi i}{3}}/\sqrt{2}), (v_s e^{\frac{4\pi i}{3}}/\sqrt{2}, v_u e^{\frac{4\pi i}{3}}/\sqrt{2}, v_d e^{\frac{4\pi i}{3}}/\sqrt{2})$

•
$$\mu \equiv \frac{\lambda v_S}{\sqrt{2}} \rightarrow O(100) GeV$$
; in the decopling limit $\lambda \ll 1 \Rightarrow v_S$ large, $\lambda \sim \kappa$

•
$$\Rightarrow V \simeq \kappa^2 |S|^4 + m_S^2 |S|^2 + \left[\frac{1}{3}\kappa A_\kappa S^3 + \text{h.c.}\right]$$

["*Gravitational waves from domain walls in the next-to-minimal supersymmetric standard model*", K. Kadota et al., 2015, ArXiv: 1503.06998]

DESY. | Domain Walls and Gravitational Waves | Luis Hellmich, 02.07.2020

Example model with unstable domain walls - NMSSM

• Find domain wall solution with planar wall approximation:

$$\frac{d^2 S}{dz^2} = \frac{\partial V}{\partial S^*}, \quad \frac{d^2 H_u}{dz^2} = \frac{\partial V}{\partial H_u^*}, \quad \text{and} \quad \frac{d^2 H_d}{dz^2} = \frac{\partial V}{\partial H_d^*}$$
$$\rho_{\text{wall}}(z) = \left|\frac{dS}{dz}(z)\right|^2 + \left|\frac{dH_u}{dz}(z)\right|^2 + \left|\frac{dH_d}{dz}(z)\right|^2 + \left|\frac{dH_d}{dz}(z)\right|^2 + V(S(z), H_u(z), H_d(z)) - V(v_s/\sqrt{2}, v_u/\sqrt{2}, v_d/\sqrt{2})$$

- From this one can finally get the surface wall density: $\sigma_{wall} = \int dz \, \rho_{wall}(z)$
- In the decoupling limit, one can estimate $\sigma_{wall} \sim \kappa v_S^3$
- Bias term is not specified, but the range it can take is theoretically constrained

Example with unstable domain walls - NMSSM

	Ι	II	III
λ	5×10^{-4}	5×10^{-3}	5×10^{-6}
κ	2×10^{-4}	2×10^{-3}	2×10^{-6}
A_{λ}	$150 { m GeV}$	$150 { m GeV}$	$150 { m GeV}$
A_{κ}	$-150 \mathrm{GeV}$	$-150 \mathrm{GeV}$	$-150 \mathrm{GeV}$
aneta	5	5	5
μ	$200 {\rm GeV}$	$200 {\rm GeV}$	$200 { m GeV}$
$t_{ m dec}$	10^{-2} sec	10^{-2} sec	10^{-6} sec
$\sigma_{ m wall}$	$1.96 \times 10^4 \text{ TeV}^3$	$1.96 \times 10^2 \text{ TeV}^3$	$1.96 \times 10^8 \text{ TeV}^3$
$\Omega_{\rm gw} h^2(t_0)_{\rm peak}$	4.66×10^{-9}	4.66×10^{-13}	2.51×10^{-9}
$f(t_0)_{\text{peak}}$	$1.02 \times 10^{-9} \mathrm{Hz}$	$1.02 \times 10^{-9} \mathrm{Hz}$	$1.02 \times 10^{-7} \mathrm{Hz}$

Summary and Outlook

- Gravitational waves from unstable domain walls could be a tool to test high energy physics
- The key model-dependent quantities are σ and T_{ann}
- Simulation techniques are limited ⇒ analytic approach to calculate GW spectrum needed

Backup

