Higgs coupling measurements at the ILC of a light Higgs in the HxSM

Kateryna Radchenko Supervisor: Sven Heinemeyer

Final Degree Project 20.10.21 Multi-Higgs DESY meeting

Real scalar singlet extension of the SM

SM:
$$V(\Phi) = \mu^2 \Phi^{\dagger} \Phi + \lambda (\Phi^{\dagger} \Phi)^2, \quad \lambda > 0$$

HXSM: $V(\Phi, S) = -m^2 \Phi^{\dagger} \Phi - \mu^2 S^2 + \left(\Phi^{\dagger} \Phi - S^2 \right) \begin{pmatrix} \lambda_1 & \frac{\lambda_3}{2} \\ \frac{\lambda_3}{2} & \lambda_2 \end{pmatrix} \begin{pmatrix} \Phi^{\dagger} \Phi \\ S^2 \end{pmatrix}$
 $= -m^2 \Phi^{\dagger} \Phi - \mu^2 S^2 + \lambda_1 (\Phi^{\dagger} \Phi)^2 + \lambda_3 S^2 \Phi^{\dagger} \Phi + \lambda_2 S^4$

$$\Phi \equiv \begin{pmatrix} 0\\ \frac{\tilde{h}+v}{\sqrt{2}} \end{pmatrix} \quad S \equiv \frac{h'+x}{\sqrt{2}} \quad \begin{pmatrix} \phi\\ h \end{pmatrix} = \begin{pmatrix} \cos(\alpha) & -\sin(\alpha)\\ \sin(\alpha) & \cos(\alpha) \end{pmatrix} \begin{pmatrix} \tilde{h}\\ h' \end{pmatrix}$$

Range of free parameters

Mass range:

 $m_{\phi} \in [63\ 123]\ GeV$

<u>Green</u>: Values excluded by previous direct searches at LEP

<u>Blue</u>: Values excluded by measurements of the 125 GeV Higgs at LHC

We thank Tania Robens for providing the data

International linear collider (ILC)

Advantages over LHC:

- Cleaner events
- Better precision

Source: ILC International Development Team https://linearcollider.org/

Objectives and tools

- Motivations:
 - First step to analyse a new particle
 - Evaluate to which model it adjusts
 - Possibly allow to distinguish between models
- Evaluation method:
 - Statistical study of the experimental uncertainties of the couplings of a light Higgs boson relative to the SM Higgs.
 - The couplings (g) are a measurement of the force at which the Higgs interacts with the rest of the particles (fermions and bosons).
 higher coupling strength → more frequent process

Evaluation method: Couplings I

Decay mode

$$\frac{\left(\frac{\Delta g_x}{g_x}\right)_{\phi}}{\left(\frac{\Delta g_x}{g_x}\right)_h} = \sqrt{\frac{D+f_h}{1+f_h}} \sqrt{\frac{\sigma(e^+e^- \to Zh)}{\sigma(e^+e^- \to Z\phi)}} \sqrt{\frac{BR(h \to xx)}{BR(\phi \to xx)}} \frac{(1-BR(h \to xx))}{(1-BR(\phi \to xx))}$$

Branching Ratio : BR

 \succ Cross section: σ

 \succ D factor:

.

$$D \equiv \frac{f_h}{f_{\phi}} = \frac{\left(\frac{N_S}{N_B}\right)_h}{\left(\frac{N_S}{N_B}\right)_{\phi}}, \quad D \propto \frac{1}{\cos^2(\alpha)}$$

Everything relative to the values of the 125 GeV Higgs

Evaluation method: Couplings II

$$\frac{\left(\frac{\Delta g_Z}{g_Z}\right)_{\phi}}{\left(\frac{\Delta g_Z}{g_Z}\right)_h} = \sqrt{\frac{\sigma(e^+e^- \to Zh)}{\sigma(e^+e^- \to Z\phi)}}$$

 \succ Cross section : σ

Relative to the known values of 125 GeV Higgs

Evaluation method: BR and Cross Section

$$BR(h \to xx') \equiv \frac{\Gamma(h \to xx')}{\Gamma_{h,TOT}}$$

$$\sigma(e^+e^- \to Z\phi) = \sigma_{SM}^{\phi}(e^+e^- \to H_{SM}^{\phi}Z) \times \cos^2\alpha$$

$$\sigma_{SM}^{\phi}(e^+e^- \to H_{SM}^{\phi}Z) \times \cos^2\alpha$$

Source: LHC Higgs Working Group https://twiki.cern.ch/twiki/bin/view/LHCPhysics/LHCHWGBRs

We thank Christian Schappacher for the evaluation of $\sigma_{SM}(e^+e^- \rightarrow Z H_{SM})$ at the full one-loop level including soft and hard QED radiation

Results: Best case

Decay mode

Production mode

Results: Worst case

Decay mode

Production mode

We consider an uncertainty higher than 2σ : This means at this point the meaurement of the coupling is in 2σ accordance with a null value.

O Loss of sensitivity in this chanels at this mass threshold

Results: Precision of a I

Decay mode

Results: Precision of a II

Decay mode: Comparison

Dashed line: Worst case Solid line: Best case

• The definition of the worst case matches the accuracy allowed by constaints (best case)

Results: Precision of a III

Production mode

Results: Couplings precision

Decay mode

Conclusions

- The ILC offers a future possibility to validate the existence of an additional lighter Higgs boson in the parameter range still available by all the constraints and previous measurements.
- The precision of the couplings of the lighter Higgs boson is considerable to determine its existence if it is given in nature.

Questions

Appendix I: Uncertainties of the angle

• Decay:

$$\Delta \alpha = K \left[2 \cos \alpha \sin \alpha \left(\frac{1}{\sqrt{1 + caf_h}} - \frac{caf_h}{2\sqrt{(1 + caf_h)^3}} \right) \right]^{-1}, \quad \text{where:} \quad \cos^2 \alpha \equiv ca$$

$$K = \left(\frac{\Delta g_x}{g_x}\right)_h \sqrt{\frac{\sigma(e^+e^- \to Zh)}{\sigma_{SM}^{\phi}(1+f_h)}} \sqrt{\frac{BR(h \to xx)}{BR(\phi \to xx)}} \frac{(1 - BR(h \to xx))}{(1 - BR(\phi \to xx))}$$

• Production:

$$\Delta \alpha = \left(\frac{\Delta g_Z}{g_Z}\right)_h \sqrt{\frac{\sigma(e^+e^- \to Zh)}{\sigma_{SM}^{\phi}}} \frac{1}{\sin\alpha}$$

Appendix II: Data relative to the 125 GeV Higgs

$$\sigma(e^+e^- \to Zh) = 206 \text{ fb}$$

• Decay:

Decay mode	$b\overline{b}$	$c\bar{c}$	gg	$\tau^{-}\tau^{+}$	WW^*
Branching ratio	0.582	0.029	0.082	0.063	0.214
$(\Delta g_x/g_x)_h$ [%]	1.04	1.79	1.60	1.16	0.65
S/B	1/0.89	1/4.7	1/13	1/0.44	1/0.96

• Production:

Production mode ZZ $(\Delta g_Z/a_Z)_h$ [%] 0.66

$(-g_Z/g_Z)_h$ [70]	0.00
S/B	1/2.0

Appendix III: Branching Ratios

Source: LHC Higgs Working Group. https://twiki.cern.ch/twiki/bin/view/LHCPhysics/LHCHWGBRs