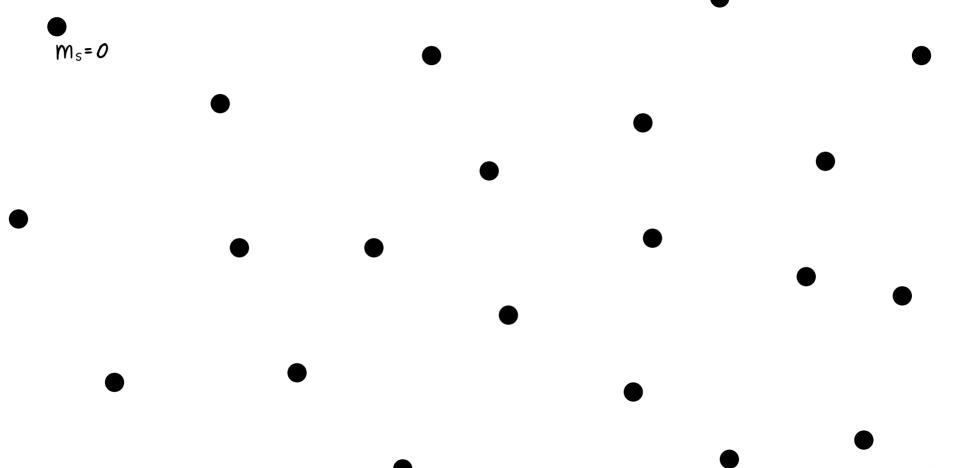
Phase transitions with symmetry restoration - when does the bubble stop running?

Speaker: Julia Ziegler In collaboration with: Andrew Long, Bibhushan Shakya

symmetric phase

Boedeker & Moore, arXiv: 1703.08215

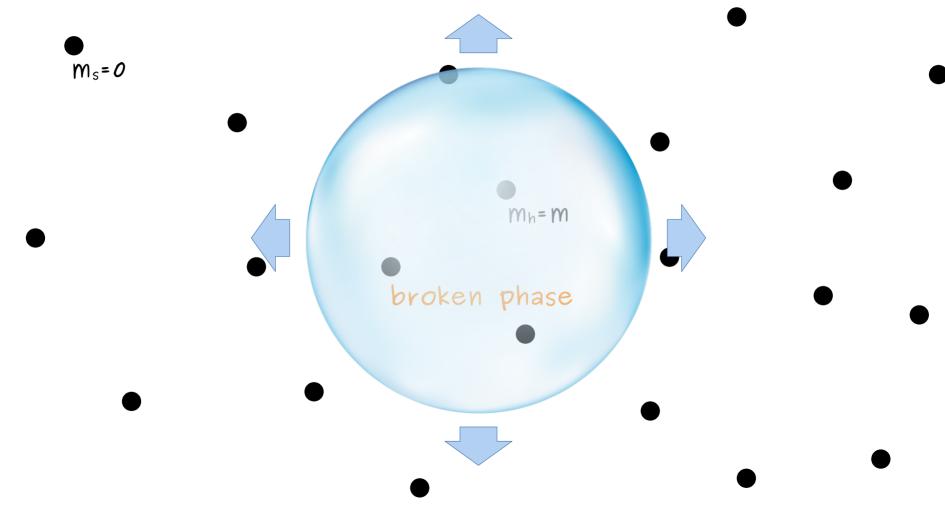


Boedeker & Moore, arXiv: 1703.08215

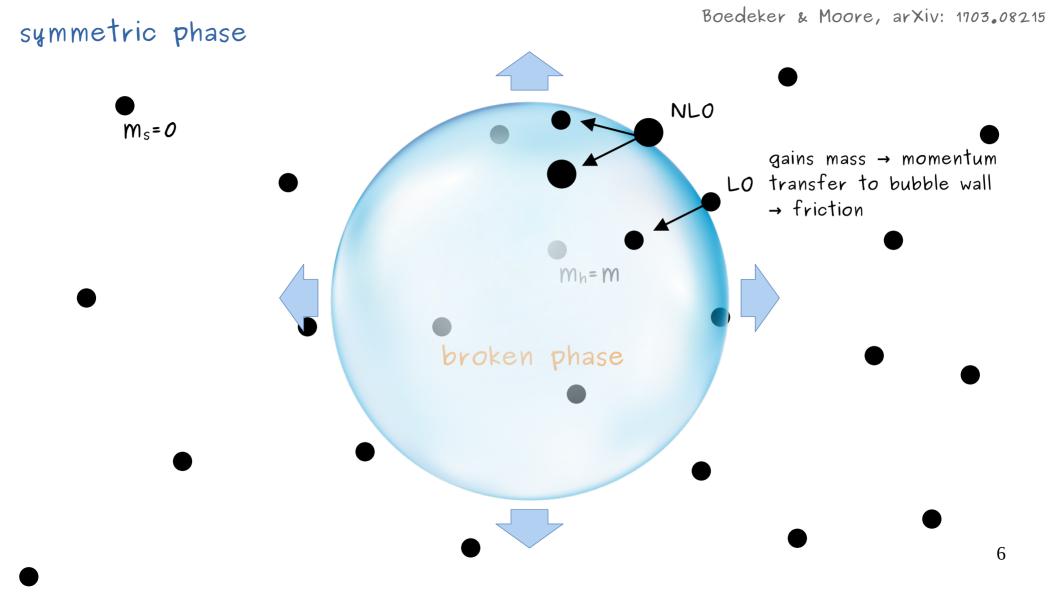
symmetric phase

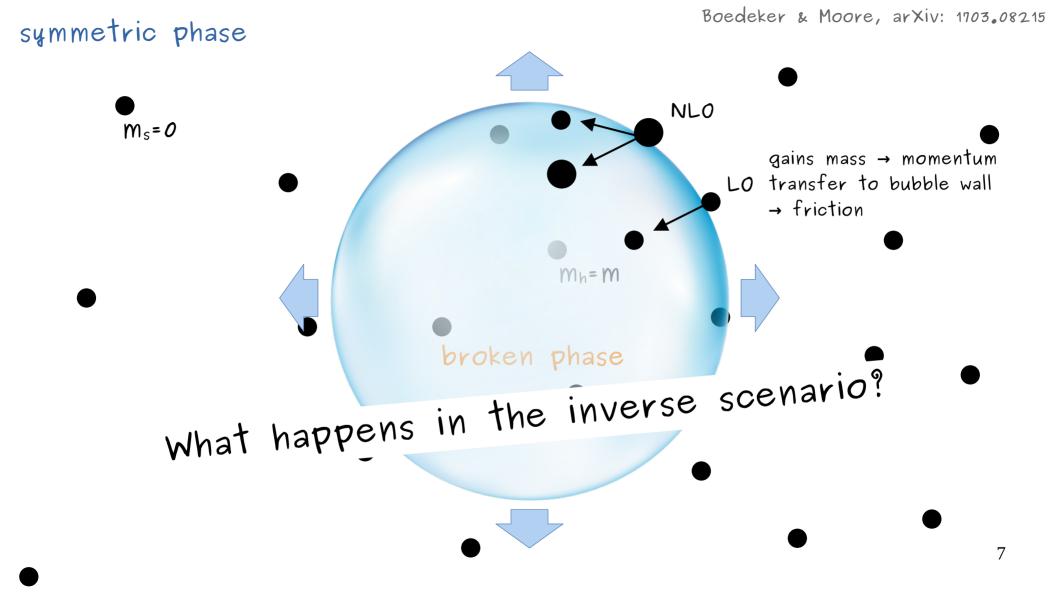
symmetric phase

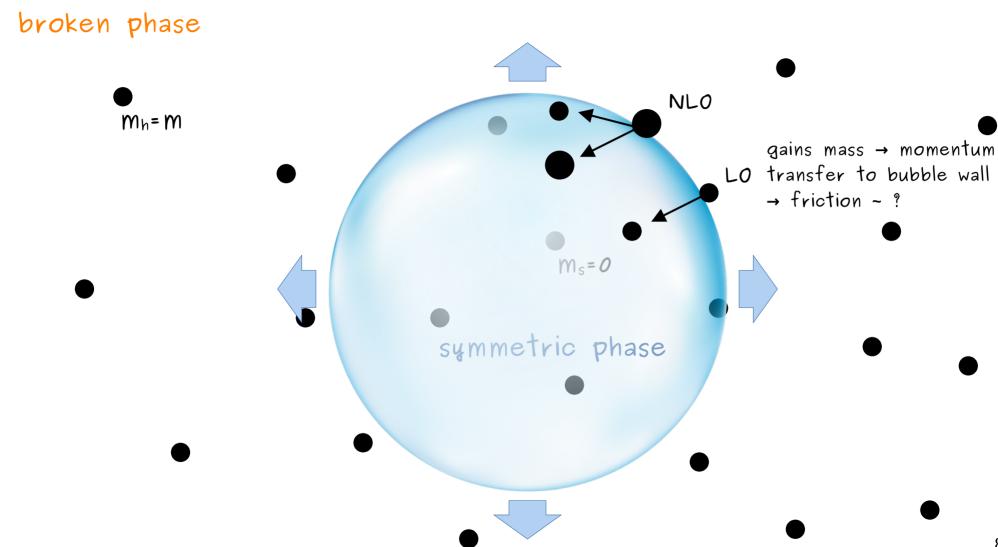
Boedeker & Moore, arXiv: 1703.08215











What is a first order phase transition (FOPT)?

What is a first order phase transition, (FOPT)? Transition from one state of a medium (or vacuum state) to another e.g. boiling of water, ferromagnetic transition

What is a first order phase transition, (FOPT)? Discontinuous change in Transition from one macroscopic quantity (e.g. state of a medium density) (or vacuum state) to during transition both phases another can coexist and separate into e.g. boiling of little droplets or bubbles water, ferromagnetic e.g. boiling of water transition

What is a first order phase transition (FOPT)? Discontinuous change in Transition from one macroscopic quantity (e.g. state of a medium density) (or vacuum state) to during transition both phases another can coexist and separate into e.g. boiling of little droplets or bubbles water, ferromagnetic e.g. boiling of water transition

Electroweak phase transition (symmetric \rightarrow broken):

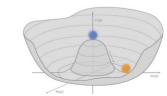
- SM: second order or crossover
- BSM: can be first order 🔵 🦲



What is a first order phase transition (FOPT)? Discontinuous change in Transition from one macroscopic quantity (e.g. state of a medium density) (or vacuum state) to during transition both phases another can coexist and separate into e.g. boiling of little droplets or bubbles water, ferromagnetic e.g. boiling of water transition

Electroweak phase transition (symmetric \rightarrow broken):

- SM: second order or crossover
- BSM: can be first order 🤍
- → implications for: baryogenesis,
 GW, topological defects



Nucleation

Expansion

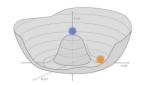
Collision

Nucleation

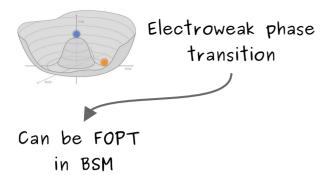
Expansion

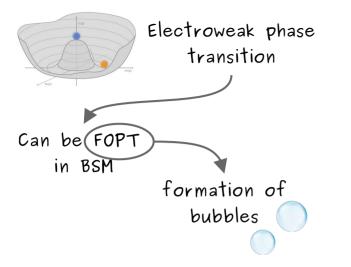
- → driven by difference of potential in symmetric and broken phase
- \rightarrow damped by friction of surrounding plasma
- → impact on GW signal, baryogenesis, plasma dynamics, discriminate between BSM models

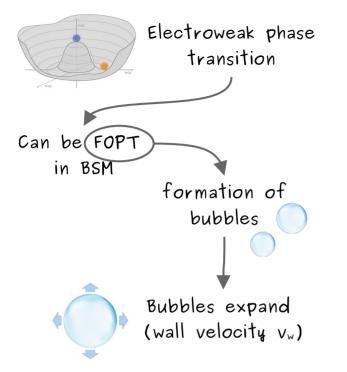
Collision

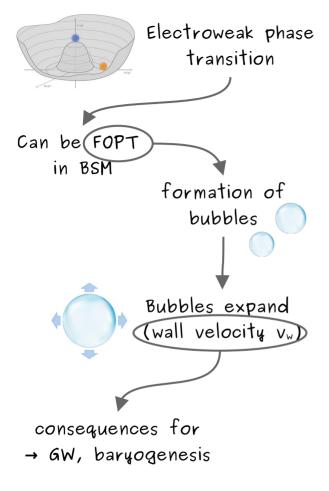


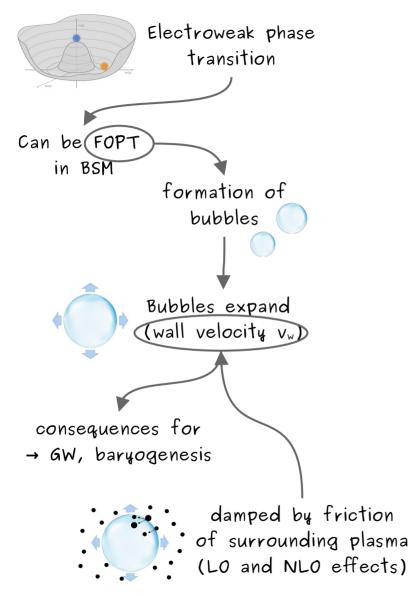
Electroweak phase transition

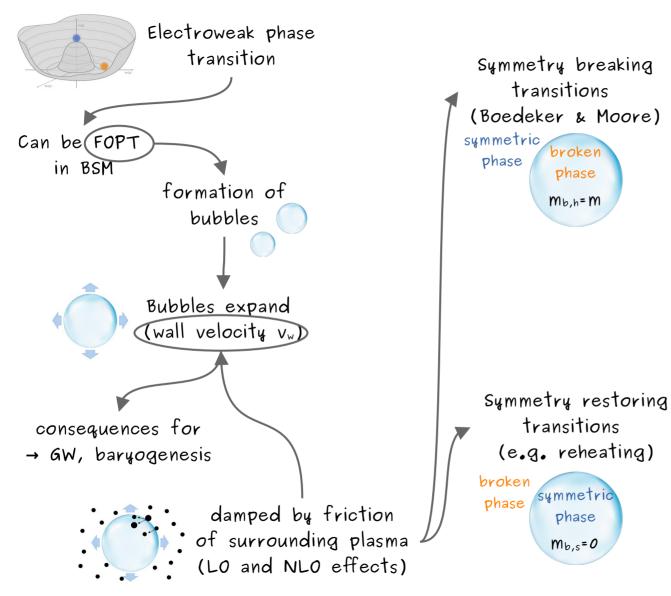












broken

phase

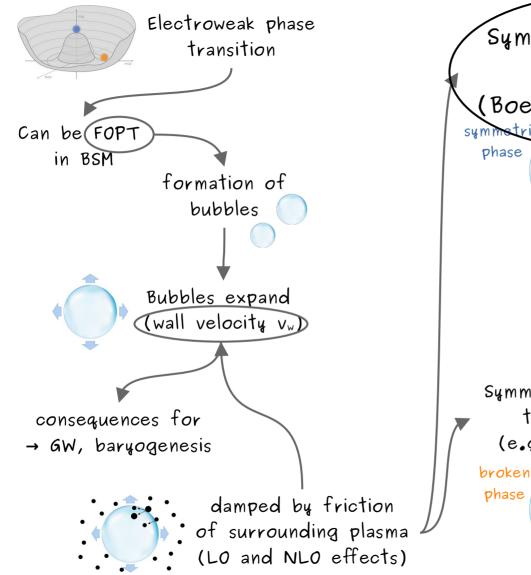
 $M_{b,h}=M$

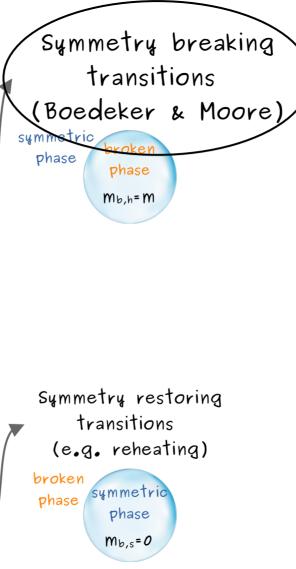
symmetric

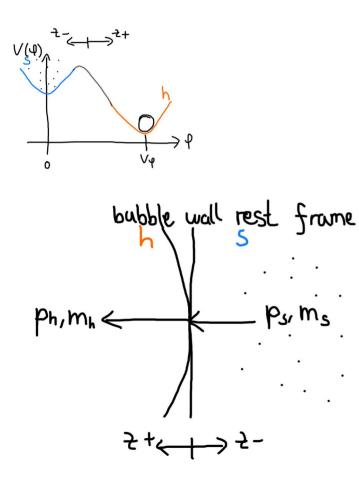
phase

 $M_{b,s}=0$

23







Symmetric (s) \rightarrow broken/Higgs (h)

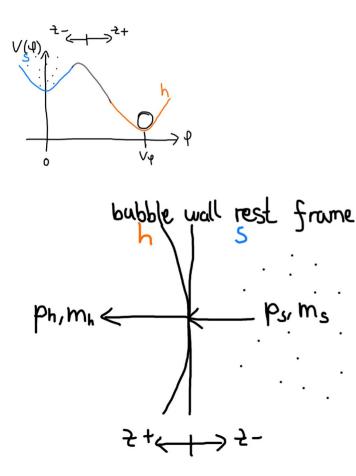
- · particles obtain mass in bubble
- particles exert friction on bubble wall
 (decelerate expansion)

L0:

Friction $\sim m^2 T^2$

force of expansion can be greater than
 friction → run away of bubble wall

$$\mathcal{P}_{1\to 1} \sim \int \frac{d^3 p}{(2\pi)^3} \underbrace{\Delta p_{1\to 1}}_{\approx \frac{m_h^2 - m_s^2}{2E}}$$
$$\approx \int \frac{d^3 p}{(2\pi)^3 2E} (m_h^2 - \underbrace{m_s^2}_{\approx 0})$$
$$\sim m_h^2 T^2$$



Symmetric (s) \rightarrow broken/Higgs (h)

- · particles obtain mass in bubble
- particles exert friction on bubble wall
 (decelerate expansion)

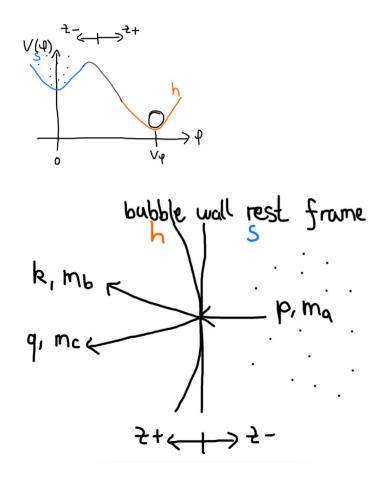
L0:

Friction $\sim m^2 T^2$

force of expansion can be greater than
 friction → run away of bubble wall

$$\mathcal{P}_{1\to 1} \sim \int \frac{d^3 p}{(2\pi)^3} \underbrace{\frac{\Delta p_{1\to 1}}{\approx \frac{m_h^2 - m_s^2}{2E}}}_{\approx \int \frac{d^3 p}{(2\pi)^3 2E} (m_h^2 - \underbrace{m_s^2}_{\approx 0})}$$
$$\sim m_h^2 T^2$$

R



Symmetric (s) \rightarrow broken/Higgs (h)

- · particles obtain mass in bubble
- particles exert friction on bubble wall
 (decelerate expansion)

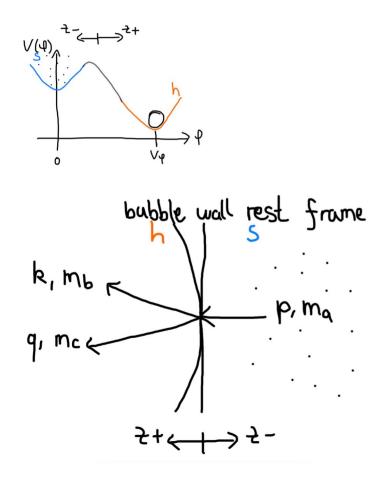
L0:

Friction $\sim m^2 T^2$

force of expansion can be greater than
 friction → run away of bubble wall

NLO: Friction ~ ymT³ (y = y-factor of the wall) friction grows with y → no run away of bubble wall

[Boedeker & Moore, arXiv: 1703.08215]



Symmetric (s) \rightarrow broken/Higgs (h)

- · particles obtain mass in bubble
- particles exert friction on bubble wall (decelerate expansion)

L0:

Friction $\sim m^2 T^2$

force of expansion can be greater than
 friction → run away of bubble wall

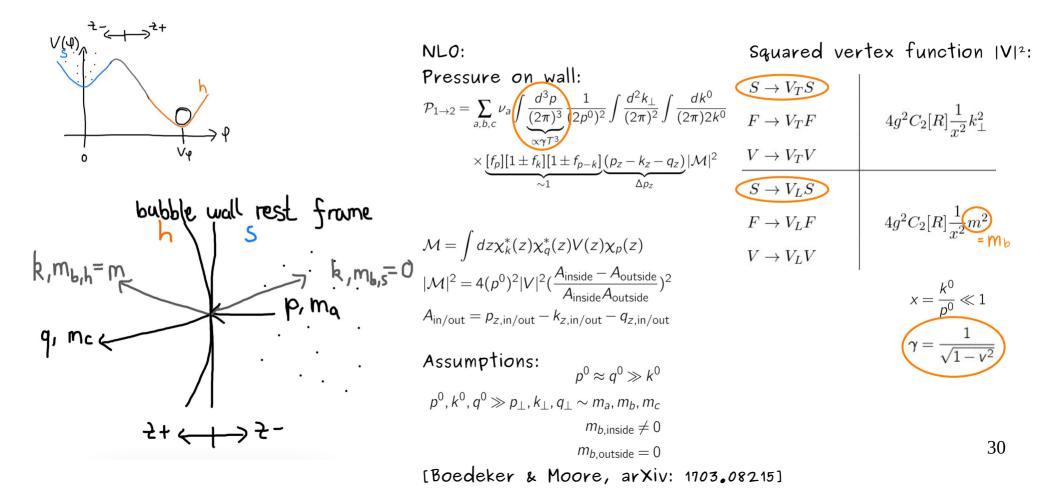
NLO: Friction ~ γmT^3 ($\gamma = \gamma - factor of the wall)$

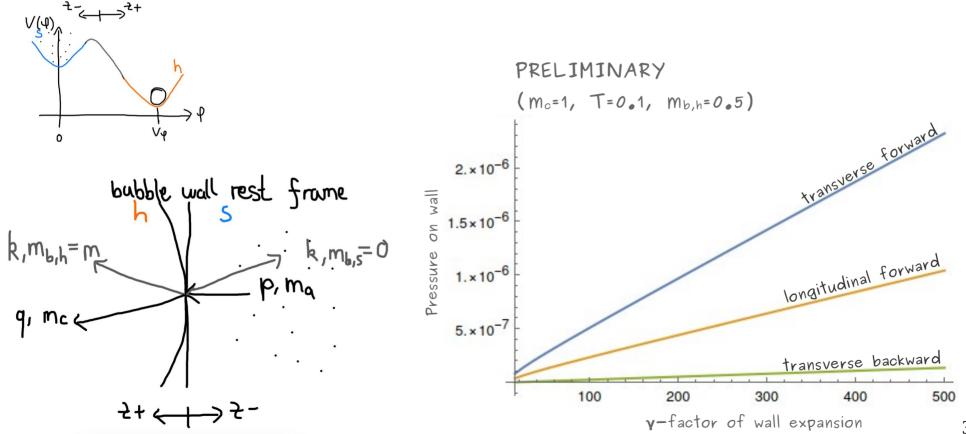
• friction grows with $\gamma \rightarrow$ no run away of bubble wall \checkmark

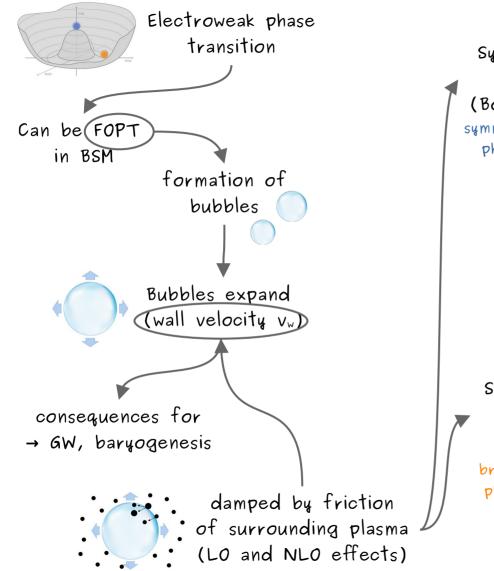
[Boedeker & Moore, arXiv: 1703.08215]

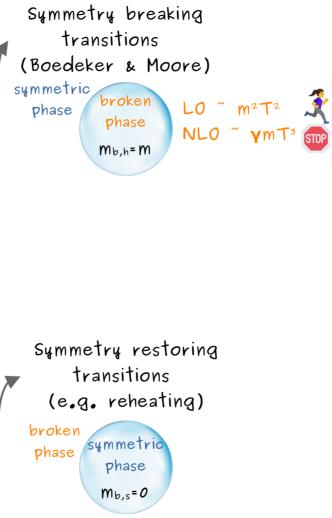
$V(\Psi)$	NLO:	Squared vertex function $ V ^2$:	
h h	Pressure on wall:	$S \rightarrow V_T S$	
	$\mathcal{P}_{1\to 2} = \sum_{a,b,c} \nu_a \int \underbrace{\frac{d^3 p}{(2\pi)^3}}_{=\pi\pi^3} \frac{1}{(2p^0)^2} \int \frac{d^2 k_\perp}{(2\pi)^2} \int \frac{dk^0}{(2\pi)^2 k^0}$	$F \rightarrow V_T F$	$4g^2C_2[R]\frac{1}{x^2}k_\perp^2$
0 Vq	$\times [f_p][1 \pm f_k][1 \pm f_{p-k}](p_z - k_z - q_z) \mathcal{M} ^2$	$V \to V_T V$	
	~ 1 Δp_Z	$S \rightarrow V_L S$	
bubble wall rest frame	ſ	$F \rightarrow V_L F$	$4g^2C_2[R]rac{1}{r^2}m^2$
hm = m	$\mathcal{M} = \int dz \chi_k^*(z) \chi_q^*(z) V(z) \chi_p(z)$	$V \rightarrow V_L V$	a.
$k_{m_{b,h}} = m_{k_{m_{b,s}}}$	$-0 \mathcal{M} ^2 = 4(p^0)^2 \mathcal{V} ^2 (\frac{A_{\text{inside}} - A_{\text{outside}}}{A_{\text{inside}}A_{\text{outside}}})^2$		$x = \frac{k^0}{p^0} \ll 1$
Prillia .	$A_{\rm in/out} = p_{z,\rm in/out} - k_{z,\rm in/out} - q_{z,\rm in/out}$		1
q, mc <	Assumptions: $p^0 \approx q^0 \gg k^0$		$\gamma = \frac{1}{\sqrt{1 - v^2}}$
/	p^0 , k^0 , $q^0 \gg p_\perp$, k_\perp , $q_\perp \sim m_a$, m_b , m_c		
2+ <-+-> 2-	$m_{b, ext{inside}} eq 0$		20
•	$m_{b,\text{outside}} = 0$	_	29

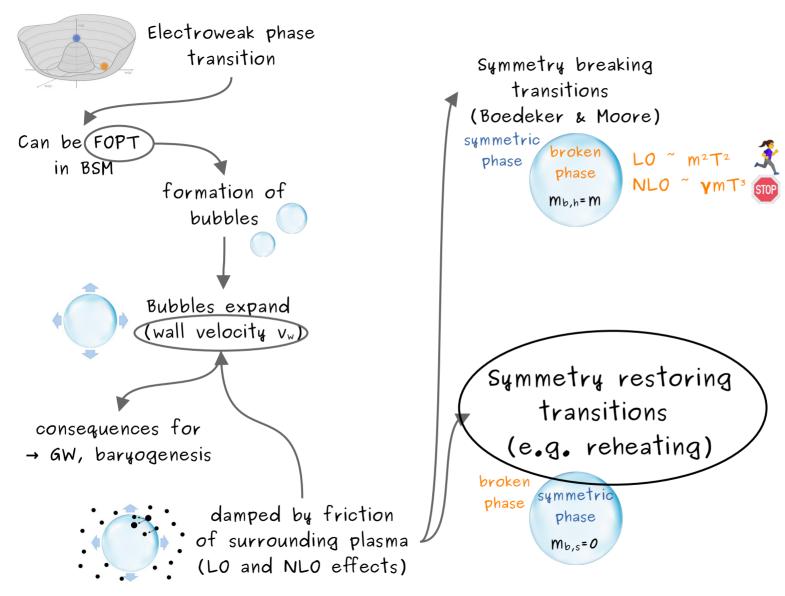
[Boedeker & Moore, arXiv: 1703.08215]







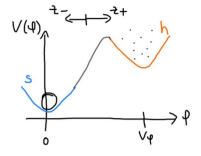


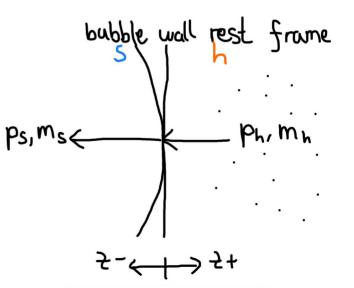


Broken/Higgs (h) → symmetric (s) · particles become massless in bubble

LO:
Anti-Friction ~ -m²T²
negative friction → acceleration and run away of bubble wall

$$\mathcal{P}_{1\to 1} \sim \int \frac{d^3 p}{(2\pi)^3} \underbrace{\Delta p_{1\to 1}}_{\approx \frac{m_s^2 - m_h^2}{2E}}$$
$$\approx \int \frac{d^3 p}{(2\pi)^3 2E} (\underbrace{m_s^2}_{\approx 0} - m_h^2)$$
$$\sim -m_h^2 T^2$$

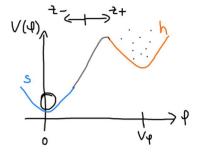


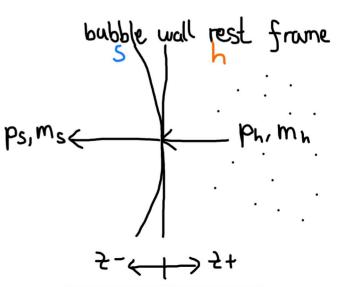


Broken/Higgs (h) → symmetric (s) · particles become massless in bubble

LO:
Anti-Friction ~ -m²T²
negative friction → acceleration and run away of bubble wall

$$\mathcal{P}_{1\to 1} \sim \int \frac{d^3 p}{(2\pi)^3} \underbrace{\Delta p_{1\to 1}}_{\approx \frac{m_{\rm s}^2 - m_{\rm h}^2}{2E}}$$
$$\approx \int \frac{d^3 p}{(2\pi)^3 2E} (\underbrace{m_{\rm s}^2}_{\approx 0} - m_{\rm h}^2)$$
$$\sim -m_{\rm h}^2 T^2$$





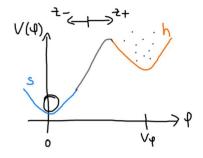
```
Broken/Higgs (h) → symmetric (s)

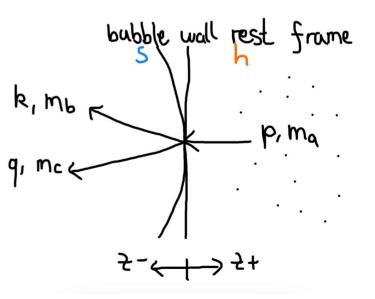
· particles become massless in bubble
```

```
LO:
Anti-Friction ~ -m<sup>2</sup>T<sup>2</sup>
· negative friction → acceleration and run
away of bubble wall
```

```
NLO:
Friction ~ γ
(γ = γ-factor of the wall)
friction grows with γ → no run away of bubble wall
```

[Azatov et al, arXiv: 2405.19447]





Bubble wall expansion, symmetry restoring

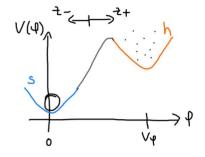
```
Broken/Higgs (h) → symmetric (s)

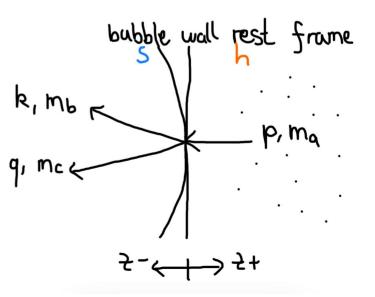
· particles become massless in bubble
```

```
LO:
Anti-Friction ~ -m<sup>2</sup>T<sup>2</sup>
· negative friction → acceleration and run
away of bubble wall
```

```
NLO:
Friction ~ γ
(γ = γ-factor of the wall)
friction grows with γ → no run away of bubble wall
```


[Azatov et al, arXiv: 2405.19447]

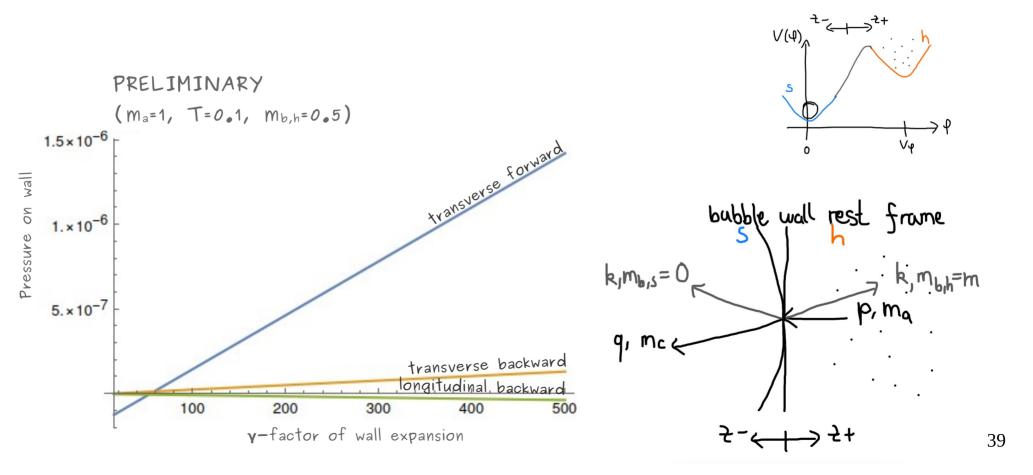


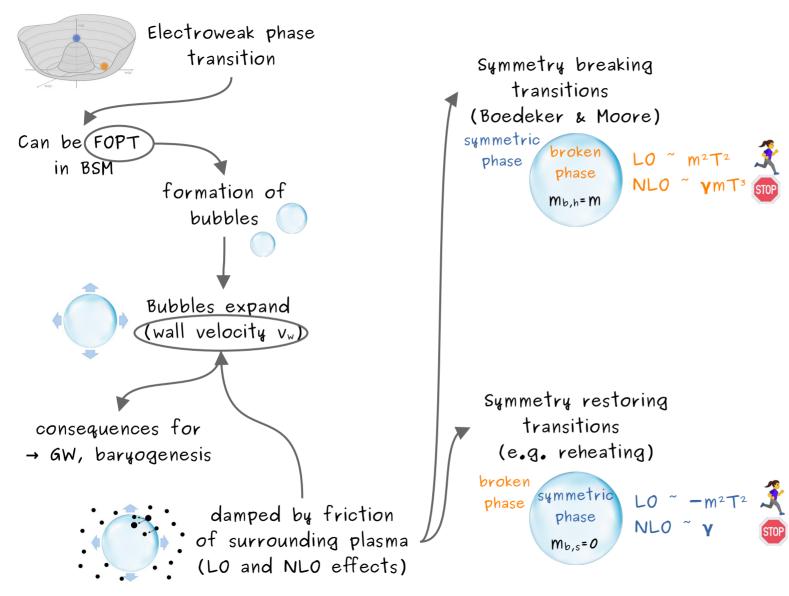


Bubble wall expansion, symmetry restoring

NLO:	Squared ve	rtex function IV12:	V(4)
Pressure on wall: $(d^3p = 1 + (d^2k) + (d^k))$	$S \rightarrow V_T S$		s
$\mathcal{P}_{1\to 2} = \sum_{a,b,c} \nu_a \int \underbrace{\frac{d^3 p}{(2\pi)^3}}_{==\pm\pi^{73}} \frac{1}{(2p^0)^2} \int \frac{d^2 k_\perp}{(2\pi)^2} \int \frac{dk^0}{(2\pi)^2 k^0}$	$F \rightarrow V_T F$	$4g^2C_2[R]\frac{1}{x^2}k_\perp^2$	
$\times [f_p][1 \pm f_k][1 \pm f_{p-k}](p_z - k_z - q_z) \mathcal{M} ^2$	$V \rightarrow V_T V$		νγ
\sim_1 Δp_z	$S \rightarrow V_L S$		
ſ	$F \rightarrow V_L F$	$4g^2C_2[R]\frac{1}{r^2}m^2$	bubble wall rest frame
$\mathcal{M} = \int dz \chi_k^*(z) \chi_q^*(z) V(z) \chi_p(z)$	$V \rightarrow V_L V$	J.	S \ h J
$ \mathcal{M} ^2 = 4(p^0)^2 V ^2 (\frac{A_{\text{inside}} - A_{\text{outside}}}{A_{\text{inside}}A_{\text{outside}}})^2$		$x = \frac{k^0}{p^0} \ll 1$ $k_1 m_{b,s} = 0$	$k_{m_{bh}} = m$
$A_{\rm in/out} = p_{z,{\rm in/out}} - k_{z,{\rm in/out}} - q_{z,{\rm in/out}}$			p, m_q
Assumptions: $p^0 pprox q^0 \gg k^0$		$\gamma = rac{1}{\sqrt{1-v^2}}$ q, Mc 4	
p^0 , k^0 , $q^0 \gg p_\perp$, k_\perp , $q_\perp \sim m_a, m_b, m_c$			
$m_{b, ext{inside}} = 0$ $m_{b, ext{outside}} eq 0$			₹- <) ₹+
[Boedeker & Moore, arXiv: 1703.03	8215]		

Bubble wall expansion, symmetry restoring



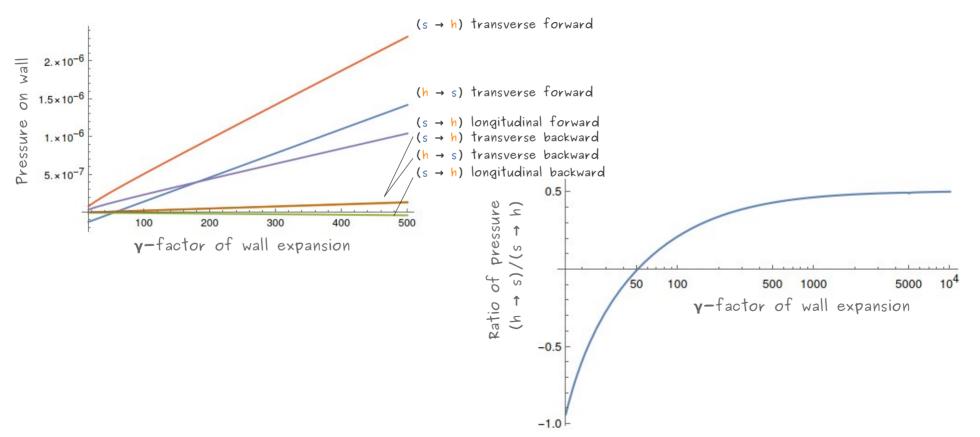


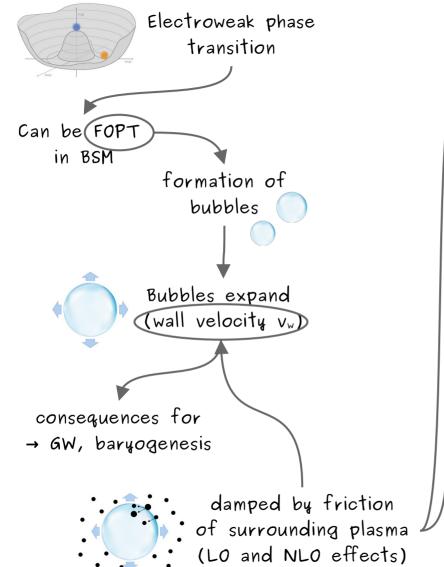
 $\begin{array}{c}
 LO & m^2T^2 \\
 NLO & \gamma mT^3 \\
 \hline
 \end{array}$

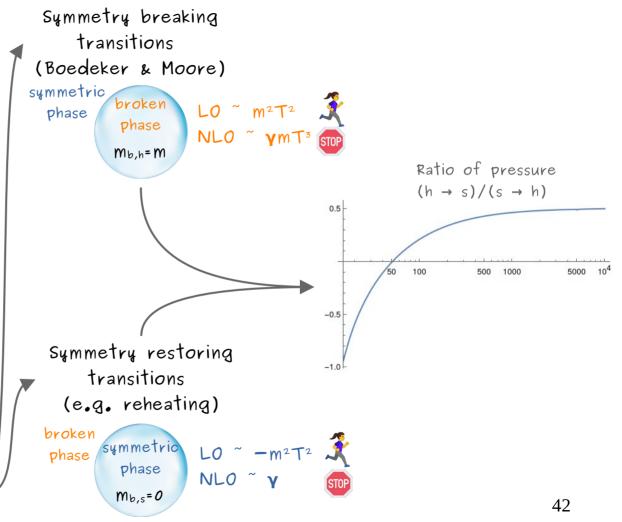
Bubble wall expansion, comparison

PRELIMINARY

 $(M_{a,h}=M_{c,h}=1, T=0.1, M_{b,h}=0.5)$







Conclusion

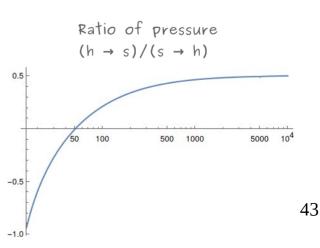
Investigated bubble wall expansion from FOPT at LO and NLO

Symmetry breaking transitions (s → h) are well studied, e.g. [Boedeker & Moore, arXiv: 1703.08215]

Symmetry restoring transitions (h → s) investigated in this work, also studied by e.g. [Azatov et al, arXiv: 2405.19447], here: repeated calculation as by Boedeker & Moore

In both cases: bubbles run away at LO

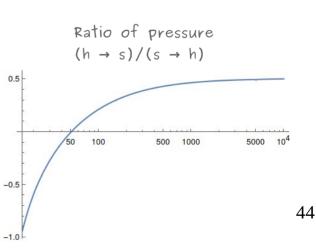
- In both cases: NLO contributions stop bubble run away
- For $\gamma < 50$: get negative contributions (at NLO for (h \rightarrow s))
- For γ > 1000: get ratio of 0.5 here (at NLO for (h \rightarrow s)/(s \rightarrow h))



Conclusion

- Investigated bubble wall expansion from FOPT at LO and NLO
- Symmetry breaking transitions (s → h) are well studied, e.g. [Boedeker & Moore, arXiv: 1703.08215]
- Symmetry restoring transitions (h → s) investigated in this work, also studied by e.g. [Azatov et al, arXiv: 2405.19447], here: repeated calculation as by Boedeker & Moore
- In both cases: bubbles run away at LO
- In both cases: NLO contributions stop bubble run away
- For $\gamma < 50$: get negative contributions (at NLO for (h \rightarrow s))
- For γ > 1000: get ratio of 0.5 here (at NLO for (h \rightarrow s)/(s \rightarrow h))

Thank you!



For one particle moving through the wall without radiating (see left image of Figure 2), the momentum transfer $\Delta p_{1\rightarrow 1}$ on the wall in *z*-direction is obtained by simple energy conservation:

$$E_{\text{outside}} = p_{z,\text{outside}}^2 + p_{\perp,\text{outside}}^2 + m_{\text{outside}}^2$$

$$= p_{z,\text{inside}}^2 + p_{\perp,\text{inside}}^2 + m_{\text{inside}}^2 = E_{\text{inside}} \qquad (3.1)$$

$$\Rightarrow m_{\text{inside}}^2 - m_{\text{outside}}^2 = p_{z,\text{outside}}^2 - p_{z,\text{inside}}^2 + \underbrace{p_{\perp,\text{outside}}^2 - p_{\perp,\text{inside}}^2}_{=0} \qquad (3.2)$$

$$= \underbrace{(p_{z,\text{outside}} - p_{z,\text{inside}})}_{\Delta p_{1 \rightarrow 1}} \underbrace{(p_{z,\text{outside}} + p_{z,\text{inside}})}_{\approx 2E} \qquad (3.3)$$

$$\Rightarrow \Delta p_{1 \rightarrow 1} \approx \frac{m_{\text{inside}}^2 - m_{\text{outside}}^2}{2E}. \qquad (3.3)$$

In the symmetry restoring scenario the mass inside the bubble is approximately 0 and the **pressure** $\mathcal{P}_{1\to 1}$ on the wall is then negative and leads to anti-friction, which accelerates the wall further:

$$\mathcal{P}_{1 \to 1} = \sum_{a} \nu_{a} \int \frac{d^{3}p}{(2\pi)^{3}} f_{a}(p) \underbrace{\Delta p_{1 \to 1}}_{\approx \frac{m_{\text{inside}}^{2} - m_{\text{outside}}^{2}}{2E}}$$

$$\approx \sum_{a} \nu_{a} \int \frac{d^{3}p}{(2\pi)^{3}2E} f_{a}(p) \underbrace{(m_{\text{inside}}^{2} - m_{\text{outside}}^{2})}_{\approx 0}$$

$$\sim -m_{\text{outside}}^{2} T^{2} \tag{3.4}$$

 $\Delta p_{1 \rightarrow 2, \text{forward}}$ on the wall is:

$$\begin{split} \Delta p_{1 \to 2, \text{forward}} &= \Delta p_{z, \text{forward}} = \underbrace{p_{z}}_{\approx p^{0} - \frac{m_{a}^{2} + p_{\perp}^{2}}{2p^{0}}}^{-} \underbrace{k_{z, \text{forward}}}_{\geq k^{0} - \frac{m_{b, \text{inside}}^{2} + k_{\perp}^{2}}{2p^{0}}}_{= 2q^{0} - \frac{m_{c}^{2} + q_{\perp}^{2}}{2q^{0}}}^{-} \underbrace{q_{z}}_{\geq q^{0} - \frac{m_{c}^{2} + q_{\perp}^{2}}{2p^{0}}}^{-} \\ &\approx \underbrace{p^{0} - k^{0} - q^{0}}_{= 0}^{-} - \frac{1}{2p^{0}} (m_{a}^{2} + \underbrace{p_{\perp}^{2}}_{= 0}) + \frac{1}{2k^{0}} (\underbrace{m_{b, \text{inside}}^{2} + k_{\perp}^{2}}_{= 0})^{+} + \underbrace{\frac{1}{2q^{0}}}_{q^{0} = p^{0} - k^{0} \approx p^{0}}^{-} \underbrace{m_{c}^{2} + q_{\perp}^{2}}_{= k_{\perp}^{2}}^{-} \\ &\approx - \underbrace{\frac{m_{a}^{2}}{2p^{0}}}_{\approx 0}^{+} + \underbrace{\frac{k_{\perp}^{2}}{2k^{0}}}_{\approx 0}^{+} \underbrace{\frac{m_{c}^{2} + k_{\perp}^{2}}{2p^{0}}}_{\approx 0}^{-} - \underbrace{\frac{m_{a}^{2}}{2p^{0}}}^{+} + \underbrace{\frac{k_{\perp}^{2}}{2k^{0}}}^{-} \end{aligned}$$
(3.5)

• particle *b* moves backwards outside the bubble (see right image of Figure 2), hence k_z has a negative sign and m_b is not zero. The momentum transfer $\Delta p_{1\rightarrow 2, \text{backward}}$ on the wall is:

$$\begin{split} \Delta p_{1\to 2, \text{backward}} &= \Delta p_{z, \text{backward}} = \underbrace{\Delta p_{z, \text{backward}}}_{\approx p^0 - \frac{m_a^2 + p_\perp^2}{2\mu^0}} = \underbrace{k_{z, \text{backward}}}_{\approx -k^0 + \frac{m_{b, \text{outside}}^2 + k_\perp^2}{2k^0}} = \underbrace{q_z}_{\approx q^0 - \frac{m_c^2 + q_\perp^2}{2q^0}} \\ &\approx \underbrace{p^0 - q^0}_{=k^0} + k^0 - \frac{1}{2p^0} (m_a^2 + \underbrace{p_\perp^2}_{=0}) - \frac{1}{2k^0} (m_{b, \text{outside}}^2 + k_\perp^2) + \underbrace{\frac{1}{2q^0}}_{q^0 \approx p^0} (m_c^2 + \underbrace{q_\perp^2}_{=k_\perp^2}) \\ &\approx 2k^0 - \frac{m_a^2}{2p^0} - \frac{m_{b, \text{outside}}^2 + k_\perp^2}{2k^0} + \underbrace{\frac{m_c^2 + k_\perp^2}{2p^0}}_{\approx 0} \approx 2k^0 - \frac{m_a^2}{2p^0} - \frac{m_{b, \text{outside}}^2 + k_\perp^2}{2k^0} \end{split}$$
(3.6)

The pressure $\mathcal{P}_{1\to 2}$ on the wall can then be computed via the following equation from [4, eq. (12), (16)]:

$$\mathcal{P}_{1\to2} = \sum_{a,b,c} \nu_a \int \frac{d^3 p}{(2\pi)^3 2p^0} \int \frac{d^3 k d^3 q}{(2\pi)^6 2k^0 2 \underbrace{q^0}_{\approx p^0}} f_p[1\pm f_k][1\pm f_q] \underbrace{(p_z - k_z - q_z)}_{\Delta p_z} \\ \times (2\pi)^3 \delta^2(\mathbf{p}_\perp - \mathbf{k}_\perp - \mathbf{q}_\perp) \delta(p^0 - k^0 - q^0) |\mathcal{M}|^2 \\ = \sum_{a,b,c} \nu_a \int \frac{d^3 p}{(2\pi)^3 (2p^0)^2} f_p \int \frac{d^2 k_\perp}{(2\pi)^2} \int \frac{dk^0}{(2\pi) 2k^0} [1\pm f_k][1\pm f_{p-k}] \Delta p_z |\mathcal{M}|^2,$$
(3.7)

r

$$\mathcal{M} = \int dz \chi_k^*(z) \chi_q^*(z) V(z) \chi_p(z)$$

$$\approx \exp(-i \int_0^z k_z(z') dz') \exp(-i \int_0^z q_z(z') dz') V(z) \exp(i \int_0^z p_z(z') dz')$$

$$= V_{\text{inside}} \int_{-\infty}^0 dz \exp(i z (\underline{p_{z,\text{inside}} - k_{z,\text{inside}} - q_{z,\text{inside}}))$$

$$= A_{\text{inside}/2p^0}$$

$$+ V_{\text{outside}} \int_0^\infty dz \exp(i z (\underline{p_{z,\text{outside}} - k_{z,\text{outside}} - q_{z,\text{outside}}))$$

$$= A_{\text{outside}/2p^0}$$

$$= 2i p^0 (\frac{V_{\text{outside}}}{A_{\text{outside}}} - \frac{V_{\text{inside}}}{A_{\text{inside}}}) \qquad (3.8)$$

$$|\mathcal{M}|^2 = 4(p^0)^2 |V|^2 (\frac{A_{\text{inside}} - A_{\text{outside}}}{A_{\text{inside}}})^2 \qquad (3.9)$$

• for the case of particle *b* moving forward, with $\frac{k^0}{a^0} = x \ll 1$, we get:

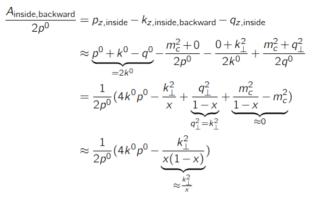
$$\frac{A_{\text{inside,forward}}}{2p^{0}} = p_{z,\text{inside}} - k_{z,\text{inside,forward}} - q_{z,\text{inside}}
\approx \frac{p^{0} - k^{0} - q^{0}}{2p^{0}} - \frac{m_{c}^{2} + 0}{2p^{0}} + \frac{0 + k_{1}^{2}}{2k^{0}} + \frac{m_{c}^{2} + q_{1}^{2}}{2q^{0}}
= \frac{1}{2p^{0}} \left(-m_{c}^{2} + \frac{k_{1}^{2}}{k^{0}/p^{0}} + \frac{m_{c}^{2} + q_{1}^{2}}{q^{0}/p^{0}} \right)
= \frac{1}{2p^{0}} \left(\frac{k_{1}^{2}}{x} + \frac{q_{1}^{2}}{1 - x} + \frac{m_{c}^{2}}{1 - x} - m_{c}^{2} \right)
\approx \frac{1}{2p^{0}} \frac{k_{1}^{2}}{x(1 - x)}
\approx \frac{1}{2p^{0}} \frac{k_{1}^{2}}{x(1 - x)}
\approx \frac{k_{1}^{2}}{2p^{0}} = p_{z,\text{outside}} - k_{z,\text{outside,forward}} - q_{z,\text{outside}}
\approx \frac{p^{0} - k^{0} - q^{0}}{q^{0}} - \frac{m_{a}^{2} + 0}{2p^{0}} + \frac{m_{b,\text{outside}}^{2} + k_{1}^{2}}{2k^{0}} + \frac{m_{a}^{2} + q_{1}^{2}}{2q^{0}}$$

$$(3.11)
= \frac{1}{2p^{0}} \left(\frac{m_{b,\text{outside}}^{2} + k_{1}^{2}}{x} + \frac{q_{1}^{2}}{1 - x}} + \frac{m_{a}^{2}}{1 - x}}{w^{0}} + \frac{m_{a}^{2} - m_{a}^{2}}{w^{0}} \right)
\approx \frac{A_{\text{inside,forward}}}{2p^{0}} = p_{z,\text{outside}} + \frac{m_{b,\text{outside}}^{2}}{2k^{0}} + \frac{m_{a}^{2} - m_{a}^{2}}{2q^{0}}$$

$$(3.12)$$

we then get for the term $\left(\frac{A_{\text{inside}} - A_{\text{outside}}}{A_{\text{inside}} A_{\text{outside}}}\right)^2$:

$$\left(\frac{A_{\text{inside}} - A_{\text{outside}}}{A_{\text{inside}}A_{\text{outside}}}\right)^2|_{\text{forward}} = x^2 \frac{m_{b,\text{outside}}^4}{k_{\perp}^4 (k_{\perp}^2 + m_{b,\text{outside}}^2)^2}$$
(3.13)



$$\begin{aligned} \frac{A_{\text{outside,backward}}}{2p^0} &= p_{z,\text{outside}} - k_{z,\text{outside,backward}} - q_{z,\text{outside}} \\ &\approx \underbrace{p^0 + k^0 - q^0}_{=2k^0} - \frac{m_a^2 + 0}{2p^0} - \frac{m_{b,\text{outside}}^2 + k_{\perp}^2}{2k^0} + \frac{m_a^2 + q_{\perp}^2}{2q^0} \\ &= \frac{1}{2p^0} (4k^0p^0 - \frac{m_{b,\text{outside}}^2 + k_{\perp}^2}{x} + \underbrace{\frac{q_{\perp}^2}_{1-x}}_{q_{\perp}^2 = k_{\perp}^2} + \underbrace{\frac{m_a^2}{1-x}}_{\approx 0} - \frac{m_a^2}{2p^0} \end{aligned}$$

we then get for the term $(\frac{A_{\text{inside}} - A_{\text{outside}}}{A_{\text{inside}}A_{\text{outside}}})^2$:

$$\frac{A_{\text{inside}} - A_{\text{outside}}}{A_{\text{inside}} A_{\text{outside}}})^2|_{\text{backward}} = x^2 \frac{m_{b,\text{outside}}^4}{(\underbrace{4xk^0p^0}_{(2k^0)^2} - k_{\perp}^2)^2(\underbrace{4xk^0p^0}_{(2k^0)^2} - k_{\perp}^2 - m_{b,\text{outside}}^2)^2}_{(2k^0)^2}$$
(3.16)

	forward scattering, $m_{b,\text{inside}} = m_{b,\text{s}} = 0$	backward scattering, $m_{b,\text{outside}} = m_{b,h} \neq 0$
transverse vector boson	$ V ^2 = 4g^2 C_2[R] \frac{1}{x^2} k_{\perp}^2$	$ V ^2 = 4g^2 C_2[R] \frac{1}{x^2} k_{\perp}^2$
	$\left(\frac{A_{\rm in}-A_{\rm out}}{A_{\rm in}A_{\rm out}}\right)^2 \approx x^2 \frac{m_{b,\rm out}^4}{k_{\perp}^4 (k_{\perp}^2 + m_{b,\rm out}^2)^2}$	$\left(\frac{A_{\text{in}}-A_{\text{out}}}{A_{\text{in}}A_{\text{out}}}\right)^2 \approx x^2 \frac{m_{b,\text{out}}^4}{((2k^0)^2 - k_\perp^2)^2((2k^0)^2 - k_\perp^2 - m_{b,\text{out}}^2)^2}$
	$\Delta ho_{1 ightarrow 2} pprox -rac{m_{d}^2}{2 ho^0} + rac{k_\perp^2}{2k^0}$	$\Delta p_{1 \to 2} \approx 2k^0 - \frac{m_a^2}{2p^0} - \frac{m_{b,\text{out}}^2 + k_\perp^2}{2k^0}$
longitudinal vector boson	$ V ^2 = 0$	$ V ^2 = 4g^2 C_2[R] \frac{1}{x^2} m_{b,\text{out}}^2$
		$\left(\frac{A_{\text{in}} - A_{\text{out}}}{A_{\text{in}} A_{\text{out}}}\right)^2 \approx x^2 \frac{m_{b,\text{out}}^2}{((2k^0)^2 - k_\perp^2)^2 ((2k^0)^2 - k_\perp^2 - m_{b,\text{out}}^2)^2}$
		$\Delta p_{1\to 2} \approx 2k^0 - \frac{m_a^2}{2p^0} - \frac{m_{b,\text{out}}^2 + k_\perp^2}{2k^0}$

Backup, symmetry breaking, LO

$$\mathcal{P}_{1\to1} = \sum_{a} \nu_a \int \frac{d^3 p}{(2\pi)^3} f_a(p) \underbrace{\Delta p_{1\to1}}_{\approx \frac{m_{\text{inside}}^2 - m_{\text{outside}}^2}{2E}}$$
$$\approx \sum_{a} \nu_a \int \frac{d^3 p}{(2\pi)^3 2E} f_a(p) (m_{\text{inside}}^2 - \underbrace{m_{\text{outside}}^2}_{\approx 0})$$
$$\sim m_{\text{inside}}^2 T^2$$

Backup, symmetry breaking, NLO

• particle *b* moves forward inside the bubble (see middle image of Figure 3). The momentum transfer $\Delta p_{1\rightarrow 2,\text{forward}}$ on the wall is¹

$$\begin{split} \Delta p_{1 \to 2, \text{forward}} &= \Delta p_{z, \text{forward}} = \underbrace{p_{z}}_{\approx p^{0} - \frac{m_{a}^{2} + p_{\perp}^{2}}{2p^{0}}}^{-} \underbrace{k_{z, \text{forward}}}_{\geq k^{0} - \frac{m_{b, \text{inside}}^{2} + k_{\perp}^{2}}{2k^{0}}}^{-} \underbrace{q_{z}}_{\approx q^{0} - \frac{m_{c}^{2} + q_{\perp}^{2}}{2q^{0}}}^{-} \\ &\approx \underbrace{p^{0} - k^{0} - q^{0}}_{= 0}^{-} - \frac{1}{2p^{0}} (m_{a}^{2} + \underbrace{p_{\perp}^{2}}_{= 0}^{2}) + \frac{1}{2k^{0}} (m_{b, \text{inside}}^{2} + k_{\perp}^{2}) + \underbrace{\frac{1}{2q^{0}}}_{q^{0} \approx p^{0}} (m_{c}^{2} + \underbrace{q_{\perp}^{2}}_{= k_{\perp}^{2}}) \\ &\approx -\underbrace{\frac{m_{a}^{2}}{2p^{0}}}_{\approx 0}^{+} + \frac{m_{b, \text{inside}}^{2} + k_{\perp}^{2}}{2k^{0}} + \underbrace{\frac{m_{c}^{2}}{2p^{0}}}_{\approx 0}^{2} \approx \frac{m_{b, \text{inside}}^{2} + k_{\perp}^{2}}{2k^{0}} + \frac{m_{c}^{2}}{2p^{0}} \end{split}$$
(4.2)

particle b moves backwards outside the bubble (see right image of Figure 3), hence k_z has a negative sign and m_b is zero. The momentum transfer Δp_{1→2,backward} on the wall is:

$$\Delta p_{1\to2,\text{backward}} = \Delta p_{z,\text{backward}} = \underbrace{p_{z}}_{\approx p^{0} - \frac{m_{a}^{2} + p_{\perp}^{2}}{2p^{0}}} - \underbrace{k_{z,\text{backward}}}_{\approx -k^{0} + \frac{m_{b,\text{outside}}^{2} + k_{\perp}^{2}}{2k^{0}}} - \underbrace{q_{z}}_{\approx q^{0} - \frac{m_{c}^{2} + q_{\perp}^{2}}{2q^{0}}} \\ \approx \underbrace{p_{-}^{0} - q_{-}^{0} + k^{0} - \frac{1}{2p^{0}} (m_{a}^{2} + \underbrace{p_{\perp}^{2}}_{=0}) - \frac{1}{2k^{0}} (\underbrace{m_{b,\text{outside}}^{2} + k_{\perp}^{2}}_{=0}) + \underbrace{\frac{1}{2q^{0}} (m_{c}^{2} + \underbrace{q_{\perp}^{2}}_{=k_{\perp}^{2}})}_{q^{0} \approx p^{0}} \\ \approx 2k^{0} - \underbrace{\frac{m_{a}^{2}}{2p^{0}}}_{\approx 0} - \frac{k_{\perp}^{2}}{2k^{0}} + \underbrace{\frac{m_{c}^{2}}{2p^{0}}}_{\approx 0} \\ \approx 2k^{0} - \underbrace{\frac{m_{a}^{2}}{2p^{0}}}_{\approx 0} - \underbrace{\frac{k_{\perp}^{2}}{2k^{0}}}_{\approx 0} + \underbrace{\frac{k_{\perp}^{2}}{2p^{0}}}_{\approx 0} \\ \approx 2k^{0} - \underbrace{\frac{m_{a}^{2}}{2p^{0}}}_{\approx 0} - \underbrace{\frac{k_{\perp}^{2}}{2p^{0}}}_{\approx 0} \\ \end{cases}$$
(4.3)

Backup, symmetry breaking, NLO

	forward scattering, $m_{b,\text{inside}} = m_{b,\text{h}} \neq 0$	backward scattering, $m_{b,outside} = m_{b,s} = 0$
transverse vector boson	$ V ^2 = 4g^2 C_2[R] \frac{1}{x^2} k_{\perp}^2$	$ V ^2 = 4g^2 C_2[R] \frac{1}{x^2} k_{\perp}^2$
	$\left(\frac{A_{\rm in}-A_{\rm out}}{A_{\rm in}A_{\rm out}}\right)^2 \approx x^2 \frac{m_{b,\rm in}^4}{k_\perp^4 (k_\perp^2 + m_{b,\rm in}^2)^2}$	$\left(\frac{A_{\rm in}-A_{\rm out}}{A_{\rm in}A_{\rm out}}\right)^2 \approx x^2 \frac{m_{b,\rm in}^4}{((2k^0)^2 - k_\perp^2)^2((2k^0)^2 - k_\perp^2 - m_{b,\rm in}^2)^2}$
	$\Delta p_{1 \to 2} \approx \frac{m_{b,\text{in}}^2 + k_{\perp}^2}{2k^0} + \frac{m_c^2}{2p^0}$	$\Delta p_{1 \to 2} \approx 2k^0 - rac{k_{\perp}^2}{2k^0} + rac{m_c^2}{2p^0}$
longitudinal vector boson	$ V ^2 = 4g^2 C_2[R] \frac{1}{x^2} m_{b,in}^2$	$ V ^2 = 0$
	$\left(\frac{A_{\rm in}-A_{\rm out}}{A_{\rm in}A_{\rm out}}\right)^2 \approx x^2 \frac{m_{b,\rm in}^4}{k_{\perp}^4 (k_{\perp}^2 + m_{b,\rm in}^2)^2}$	
	$\Delta p_{1\to 2} \approx \frac{m_{b,in}^2 + k_{\perp}^2}{2k^0} + \frac{m_c^2}{2p^0}$	