Dark Matter Phenomenology in Z'₂ broken Two Higgs Doublet Model with Complex Singlet Extension

Julia Ziegler with Juhi Dutta, Cheng Li, Gudrid Moortgat-Pick, Tabira Farah Sheikh

Dark Matter Dh-Can we explain DM in a 2HDMS?

Julia Ziegler with Juhi Dutta, Cheng Li, Gudrid Moortgat-Pick, Tabira Farah Sheikh

What is Dark Matter (DM)?

Scientists : 80% of Universe is Dark matter People : OK what is Dark matter ?

Scientists :

https://imgflip.com/i/3s0055]

Scientists : 80% of Universe is Dark matter People : OK what is Dark matter ?

Scientists :

Properties:

- Massive
- Electrically neutral
- Colourless
- Stable
- Barely interacts with ordinary matter (except through gravity)

Proofs:

- Rotation curves of galaxies
- Gravitational lensing
- Cosmic microwave background
- Structure of the universe, galaxy formation
- Mass location during galactic collisions

https://imgflip.com/i/3s0055]

What is a Two Higgs Doublet Model with Complex Singlet Extension (2HDMS)?

• SM Higgs Potential

$$V_{\mathsf{SM}} = -\mu^2 \Phi^\dagger \Phi + \lambda (\Phi^\dagger \Phi)^2$$

• 2HDMS Higgs Sector Potential [Notation as in: S. Baum and N. R. Shah, 2018]

What is a 2HDMS? - Particle Content

Mass squared matrix:

 $[M^2]_{ij} = rac{\partial^2 V}{\partial \varphi_i^\dagger \partial \varphi_j} ert_{\substack{\Phi_1 = \langle \Phi_1
angle} S = \langle S
angle} ert_{\substack{S = \langle S
angle}} ert_{\substack{S$

Rotation matrices:

Minimisation conditions:

$$0 = rac{\partial V}{\partial \Phi_2} |_{\Phi_i = \langle \Phi_i
angle, S = \langle S
angle}$$

eliminate m₁₁, m₂₂, m_s

Mass eigenvalues and eigenfields:

$$\begin{aligned} \operatorname{diag}(m_{H^{\pm}}^{2}, m_{G^{\pm}}^{2}) &\models R^{\pm} M_{\operatorname{charged}}^{2} R^{\pm T}, \qquad \begin{pmatrix} H^{\pm} \\ G^{\pm} \end{pmatrix} \\ \\ \operatorname{diag}(m_{h_{1}}^{2}, m_{h_{2}}^{2}, m_{h_{3}}^{2}) &\models R M_{\operatorname{scalar}}^{2} R^{T}, \qquad \begin{pmatrix} h_{1} \\ h_{2} \\ h_{3} \end{pmatrix} \\ \\ \\ \\ \operatorname{diag}(m_{A}^{2}, m_{G^{0}}^{2}) &\models R^{A} M_{\operatorname{pseudo}}^{2} R^{AT}, \qquad \begin{pmatrix} A \\ G^{0} \end{pmatrix} \\ \\ \\ \operatorname{diag}(m_{A}^{2}, m_{G^{0}}^{2}) &\models M_{A_{S}}^{2}, \qquad (A_{S}) \end{aligned}$$

 $= R^{\pm} \begin{pmatrix} \phi_1^+ \\ \phi_2^+ \end{pmatrix}$

 ho_2

 (η_1)

= R

 $= R^A$

 $= (A_S)$

1 . 1

Interaction Basis Parameters: $\lambda_{1, 2, 3, 4, 5}$, $\lambda'_{1, 2, 4, 5}$, $\lambda''_{1, 3}$, m^{2}_{12} , m'^{2}_{5} , v_{5} , tanβ

$$\lambda'_{1}=\lambda'_{4},\\\lambda'_{2}=\lambda'_{5}$$

Mass Basis Parameters:
$$m_{h1, h2, h3, A, AS, H\pm}$$
, c_{h1bb} , c_{h1tt} , m_{12}^2 , m_s^2 , v_s , tan β , alignm

$$v = \sqrt{v_1^2 + v_2^2}$$
$$\tan(\beta) = \frac{v_2}{v_1}$$

$$c_{h_1bb} = \frac{R_{11}}{\cos\beta}$$
$$c_{h_1tt} = \frac{R_{12}}{\sin\beta}$$

$$alignm = |\sin(\beta - (\alpha_1 + \alpha_3 \cdot \text{sgn}(\alpha_2)))| \\ \in [0.98, 1]$$

What is a 2HDMS? - Important Couplings

What is DM? What is a 2HDMS? What is DM? What is a 2HDMS?

Can we explain DM in a 2HDMS?

What is DM?

What is a 2HDMS?

Find a viable benchmark (in accordance with 96 GeV excess at CMS + LEP)

Calculate DM observables (relic density, direct detection cross section) + vary some parameters

arxiv: 2112.11958

by S. Heinemeyer, C. Li et al

Compare results to measurements from experiments

(Extra: compare to model with v_s=0) arxiv: 2203.05509

by J. Dutta et al

SARAH SPheno micrOMEGAs

- Relic density (=amount of DM left in universe today)
- Planck constraint: Ωh²≈0.12

[https://www.nasa.gov]

Contributing Diagrams:

- Direct detection CS (=elastic scattering of DM on nucleon)
- LUX-ZEPLIN (LZ) constraint depends on DM mass

Nucleus

[arXiv:1605.08788]

Contributing Diagrams:

liggsBounds iggsSignals approved	m_{h_1}	m_{h_2}	m _{h3}	m _A	m_{A_S}	$m_{H^{\pm}}$	Vs
	96 GeV	125.09 GeV	800 GeV	800 GeV	200 GeV	800 GeV	100 GeV
	$tan(\beta)$	Ch ₁ bb	C _{h1tt}	m_{12}^2	$m_S^{\prime 2}$	alignm	
	10	0.05	0.27	$-1.01 \cdot 10^{5} \text{GeV}^{2}$	$-1 \cdot 10^4 \text{GeV}^2$	1	

100	<i>m</i> _{<i>h</i>1}	m_{h_2}	m _{h3}	m _A	m _{As}	$m_{H^{\pm}}$	VS
gassia	96 GeV	125.09 GeV	800 GeV	800 GeV	200 GeV	800 GeV	100 GeV
approved	$tan(\beta)$	Ch ₁ bb	C _{h1tt}	m_{12}^2	$m_S^{\prime 2}$	alignm	
	10	0.05	0.27	$-1.01 \cdot 10^{5} \text{GeV}^{2}$	$-1 \cdot 10^4 \text{GeV}^2$	1	

Direct detection CS Relic density \bullet \bullet 10^{-43} 10^{-44} 0.55 10⁻⁴⁵ 10⁻⁴⁶ E 0.5 0.08 Ch1tt 0.45 S 0.55 _47 10 0.07 0.4 10^{-48} 0.5 Oprot 10^{-49} 0.06 0.35 LZ excl. 0.05 cz UG 10^{-50} 0.45 Ch1tt 0.3 10^{-51} 0.2 0.3 0.4 0.5 0.4 0.1 Ch1bb 0.03 0.35 0.02 10⁻⁴³ 0.3 10⁻⁴⁴ 0.55 0.01 10⁻⁴⁵ E 10⁻⁴⁶ D 0.2 0.1 0.3 0.4 0.5 0.5 0.45 Ch 1tt Ch1bb _47 10 0.4 10⁻⁴⁸ oneutron 10⁻⁴⁹ R_{11} 0.35 LZ excl 10⁻⁵⁰ $c_{h_1bb} =$ $\cos\beta$ 0.3 10⁻⁵¹ g_{h_iff} R_{12} C_{h_iff} 0.1 0.2 0.3 0.4 0.5 C_{h_1tt} $g_{H_{\rm SM}ff}$ $\sin\beta$ Ch1bb

liggsBounds iggsSignals approved	m_{h_1}	m_{h_2}	m _{h3}	m _A	m_{A_S}	$m_{H^{\pm}}$	Vs
	96 GeV	125.09 GeV	800 GeV	800 GeV	200 GeV	800 GeV	100 GeV
	$tan(\beta)$	Ch ₁ bb	C _{h1tt}	m_{12}^2	$m_S^{\prime 2}$	alignm	
	10	0.05	0.27	$-1.01 \cdot 10^{5} \text{GeV}^{2}$	$-1 \cdot 10^4 \text{GeV}^2$	1	

Relic density

• Direct detection CS

line	m_{h_1}	m_{h_2}	m _{h3}	m _A	m_{A_S}	$m_{H^{\pm}}$	Vs
iggsSignals approved	96 GeV	125.09 GeV	800 GeV	800 GeV	200 GeV	800 GeV	100 GeV
	$tan(\beta)$	Ch ₁ bb	C _{h1tt}	m_{12}^2	$m_S^{\prime 2}$	alignm	
	10	0.05	0.27	$-1.01 \cdot 10^{5} \text{GeV}^{2}$	$-1 \cdot 10^4 \text{GeV}^2$	1	

iggsBounds ggsSignals approved	<i>m</i> _{<i>h</i>1}	m_{h_2}	m _{h3}	m _A	m_{A_S}	$m_{H^{\pm}}$	Vs
	96 GeV	125.09 GeV	800 GeV	800 GeV	200 GeV	800 GeV	100 GeV
	$tan(\beta)$	Ch ₁ bb	C _{h1tt}	m_{12}^2	$m_S^{\prime 2}$	alignm	
	10	0.05	0.27	$-1.01 \cdot 10^{5} \text{GeV}^{2}$	$-1 \cdot 10^4 \text{GeV}^2$	1	

in.	m_{h_1}	m_{h_2}	m_{h_3}	m _A	m _{As}	$m_{H^{\pm}}$	Vs
iggsBounds iggsSignals approved	96 GeV	125.09 GeV	1000 GeV	1000 GeV	200 GeV	1000 GeV	100 GeV
	$tan(\beta)$	C _{h1bb}	C _{h1tt}	m_{12}^2	$m_S^{\prime 2}$	alignm	
-Cu	10	0.05	0.27	$-1.01 \cdot 10^{5} \text{GeV}^{2}$	$-1 \cdot 10^4 \text{GeV}^2$	1	

What is a 2HDMS? - Wrap Up

DM candidate:	A _s (pseudo-scalar component of singlet S)
Number of free parameters:	13
Symmetries:	U(1) + all parameters real (not broken), Z ₂ (spontaneously + softly broken), Z' ₂ (spontaneously broken)
Higgs sector particles:	1 charged: H [±] , 1 charged GB: G [±] , 3 scalars: h ₁ , h ₂ , h ₃ , 1 pseudo-scalar: A, 1 pseudo-scalar GB: G ⁰ , 1 pseudo-scalar DM: A _s
DM to scalar Higgs couplings parameters:	V_{s} , tan β , m ² _s , m ² _{As} , c _{h1bb} , c _{h1tt} , alignm, m ² _{h1, h2, h3}

DM Observables – Wrap Up

m _{AS} :	Low and high values (130 GeV – 800 GeV) allowed
v _s :	Low and high values (100 GeV – 1500 GeV) allowed
C _{h1bb} - C _{h1tt} :	Strongly constrained
m'² _s :	Strongly constrained
alignm:	Strongly constrained
tanβ:	High values (7 – 20) allowed (for m _{as} between 130 GeV – 250 GeV)

Comparison with $v_s = 0$

Comparison with $v_s = 0$

	v _s ≠0	v _s =0
DM candidate:	A _s (pseudo-scalar component of singlet S) $m_{AS}^{2} = -(2m_{S}^{2} + (2/3)\lambda_{1}^{2}v_{S}^{2} + 2(\lambda_{4}^{2}v_{1}^{2} + \lambda_{5}^{2}v_{2}^{2})$	S=(1/ $\sqrt{2}$)(ρ_{s} +iA _s) m ² _x = m ² _s + (1/2)($\lambda_{1}^{\prime}v_{1}^{2} + \lambda_{2}^{\prime}v_{2}^{2}$)
Number of free parameters:	15	15
Symmetries:	U(1) + all parameters real (not broken), Z ₂ (spontaneously + softly broken), Z' ₂ (spontaneously broken)	U(1) + all parameters real (not broken), Z ₂ (spontaneously + softly broken), Z' ₂ (not broken)
Higgs sector particles:	1 charged: H [±] , 1 charged GB: G [±] , 3 scalars: h ₁ , h ₂ , h ₃ , 1 pseudo-scalar: A, 1 pseudo-scalar GB: G ⁰ , 1 pseudo-scalar DM: A _s	1 charged: H [±] , 1 charged GB: G [±] , 2 scalars: h, H, 1 pseudo-scalar: A, 1 pseudo-scalar GB: G ⁰ , 1 DM: S
DM to scalar Higgs couplings parameters:	$\lambda'_{1}, \lambda'_{2}, \lambda'_{4}, \lambda'_{5}, \lambda''_{1}, \lambda''_{3}$	$\lambda'_{1}, \lambda'_{2}, \lambda'_{4}, \lambda'_{5}$

Comparison with $v_s=0$, in Interaction Basis

<i>m</i> _{<i>h</i>1}	m	12	m _{h3}	<i>m</i> _{<i>h</i>₃}		m _A		m _{As}	m _{H[±]}	VS
86.1 Ge	/ 1250	GeV	724 GeV		724 GeV		V 470 GeV		728 GeV	10^{-4} GeV
$tan(\beta)$	α	1	α2		α3		m ₁₂ ²		$m_{S}^{\prime 2}$	
5	0.1	98	$\frac{\pi}{2} + 10$	-9	10 ⁻⁹ 1.0		1.01	$\cdot 10^5 \text{GeV}^2$	$-1.18 \cdot 10^{5} \text{GeV}^{2}$	
λ_1	λ_2		λ3		λ_4		۱ ₅	tan β	m_{12}^2	VS
-0.902	0.259		17.2	-(0.144	44 0.0460		5	$1.01 \cdot 10^5 \text{GeV}^2$	10 ⁻⁴ GeV
λ'_1	λ'_2		λ_3''	λ_3'')	Λ_5'	λ_1''	$m_{S}^{\prime 2}$	
0.042	0.042	5.5	$6 \cdot 10^{11}$		0.1 0		.1	$5.56 \cdot 10^{11}$	$-1.18 \cdot 10^5 \text{GeV}^2$	

Γ	m _h	m	Н	m _A			mχ		m _{H±}	ms
	125 Ge\	√ 724	GeV		724 Ge	۷	339	9 GeV	728 GeV	$1.13 \cdot 10^5 \text{GeV}^2$
Γ	$tan(\beta)$) c	۲		m_{12}^2		I	$n_{S}^{\prime 2}$		
	5	0.1	98	-	$1.01 \cdot 10^{5}$	GeV ²	1.13.	$10^5 \mathrm{GeV}^2$		
	λ_1	λ_2	λ_3	3	λ_4	λ_5	$tan \beta$	m	2 12	m _S
	0.233	0.249	0.39	90	-0.167	0.001	5	$-1.01 \cdot 1$	$0^5 \mathrm{GeV}^2$	$1.13 \cdot 10^5 \text{GeV}^2$
	λ'_1	λ'_2	λ_3''	3	λ'_4	λ'_5	λ_1''	т	12 S	
	0.042	0.042	0.1	1	0.1	0.1	0.1	1.13.10	$0^5 \mathrm{GeV}^2$	

v_s=0

26

[Merle Schreiber, Master Thesis: Dark Matter Phenomenology in a Two Higgs Doublet Model with an Additional Complex Singlet]

Comparison with $v_s = 0$, in Interaction Basis

n	1 _{h1}	m _h	2	m _{h3}	<i>m</i> _{<i>h</i>₃}		1	m _{As}		$m_{H^{\pm}}$	VS
86.1	. GeV	1250	GeV	724 GeV		724 GeV		eV 470 GeV		728 GeV	$10^{-4}\mathrm{GeV}$
tan	$n(\beta)$	α_1	L	α_2		α_3		m_{12}^2		$m_{S}^{\prime 2}$	
	5	0.19	98	$\frac{\pi}{2} + 10^{-5}$	⁻⁹ 10 ⁻⁹		$9 1.01 \cdot 10^{5}$		$\cdot 10^5 \text{GeV}^2$	$-1.18 \cdot 10^{5} \text{GeV}^{2}$	
λ	1	λ_2		λ ₃		λ_4		\ 5	tanβ	m_{12}^2	VS
-0.9	902 (0.259	1	17.2	-(0.144	144 0.0460		5	$1.01 \cdot 10^5 \text{GeV}^2$	$10^{-4}\mathrm{GeV}$
λ'	1	λ'_2		λ_3''		λ'_4		λ'_5	λ_1''	$m_{S}^{\prime 2}$	
0.0	42 (0.042	5.5	$6 \cdot 10^{11}$		0.1		.1	$5.56 \cdot 10^{11}$	$-1.18 \cdot 10^5 \text{GeV}^2$	

ſ	m _h m _H		н	m _A			m _x		m _{H±}	ms
	125 GeV 724		GeV		724 GeV		339 GeV		728 GeV	$1.13 \cdot 10^5 \text{GeV}^2$
ſ	$tan(\beta)$	$tan(\beta) \qquad \alpha$		m_{12}^2			$m_{S}^{\prime 2}$			
	5	0.1	0.198		$-1.01 \cdot 10^5 \text{GeV}^2$		$1.13 \cdot 10^5 \text{GeV}^2$			
	λ_1	λ_2	λ3		λ_4	λ_5	$tan \beta$	m	2 12	m _S
	0.233	0.249	0.39	90	-0.167	0.001	5	$-1.01 \cdot 1$	$.0^5 \mathrm{GeV}^2$	$1.13 \cdot 10^5 \text{GeV}^2$
	λ'_1	λ'_2	λ_3''		λ'_4	λ'_5	λ_1''	$m_{S}^{\prime 2}$		
	0.042	0.042	0.1	L	0.1	0.1	0.1	1.13.10	$0^5 \mathrm{GeV}^2$	

0.5 1.0 1.5 2.0

 $v_s = 0$

Mphi

Maba

MAb2

Mema

 $\lambda_1 = 0.233375613$

 $\lambda_2 = 0.249104504$

 $\lambda_3 = 0.389954438$

 $\lambda_4 = -0.167252157$

 $M_{12}^2 = -101439.724$

 $\lambda_5=0.001$

 $tan(\beta) = 5.0$

 $\lambda'_{1} = 0.042$

 $\lambda_{2}^{\prime} = 0.042$

 $\lambda_{3}^{\prime \prime} = 0.1$

 $\lambda_4' = 0.1$

 $\lambda_5' = 0.1$

 $\lambda_1'' = 0.1$

2.5 3.0

27

 m_s^2

3.5 4.0

 $\times 10^{5}$

 $m_s^{2\prime} = 113000.0$

[Merle Schreiber, Master Thesis: Dark Matter Phenomenology in a Two Higgs Doublet Model with an Additional Complex Singlet]

SUMMARY

Done:

- Pseudo-scalar A_s from 2HDMS as DM candidate
- Derived masses and DM couplings from potential
- Found viable benchmark + scanned some parameter regions + calculated relic density and direct detection CS
- Compared to experiments + included bfb constraints
- Compared to model with v_s=0

To Do:

- Find 'better' benchmark (do full scan)
- Include constraints from treelevel perturbative unitarity
- Include future collider prospects
 + collider signals

SUMMARY

Done:

•

- **Pseudo-scalar As from 2HDMS as** \bullet **DM** candidate
- **Derived masses and DM** couplings from potential Can we explain DM in a 2HDMS?

- To Do:
 - Find 'better' benchmark (do full \bullet scan)
- Include constrainte \bullet

ects

e-

compared to experiments + included bfb constraints

Compared to model with $v_s=0$ \bullet

SUMMARY

Done:

•

- **Pseudo-scalar A_s from 2HDMS as** \bullet **DM** candidate
- **Derived masses and DM** couplings from potential Can we explain DM in a 2HDMS?

- To Do:
 - Find 'better' benchmark (do full \bullet scan)
- Include constrainte \bullet

ects

e-

- compared to experiments + included bfb constraints
- Compared to model with $v_s=0$ \bullet

CS:

- Grows with m_{AS}
- Falls with v_s

Peaks and dips:

• Dip at m_{AS}=m_{h2}: interference effect

Relic:

- Falls with m_{AS}
- Grows with v_s

Peaks and Dips:

- Dip at m_{AS}=m_{h2}/2: resonant annihilation AS AS → h2
- Dip at m_{AS}=m_{h1}: AS AS → h1 h1 opens up
- Peak at m_{AS}=131 GeV: minimum in couplings
- Peak at m_{AS}=194 GeV: interference with scalars
- Dip at m_{AS}=m_{h3}/2:
 resonant annihilation AS
 AS → h3

Backup, DM Couplings in Interaction Basis

$$\begin{split} \lambda_{h_j h_k A_S A_S} &= \frac{\partial^4 V}{\partial h_j \partial h_k \partial A_S \partial A_S} \\ &= -i[(\lambda_1' - 2\lambda_4')R_{j1}R_{k1} + (\lambda_2' - 2\lambda_5')R_{j2}R_{k2} - \frac{1}{2}(\lambda_1'' - \lambda_3'')R_{j3}R_{k3}] \\ \frac{\lambda_{h_j A_S A_S}}{v} &= \frac{1}{v} \frac{\partial^3 V}{\partial h_j \partial A_S \partial A_S} \\ &= -i[(\lambda_1' - 2\lambda_4')c_\beta R_{j1} + (\lambda_2' - 2\lambda_5')s_\beta R_{j2} - \frac{v_S}{2v}(\lambda_1'' - \lambda_3'')R_{j3}], \end{split}$$

Backup, Mass Eigenvalues

Charged Block:

$$[M_{\text{charged}}^2]_{ij} = \frac{\partial^2 V}{\partial \phi_i^+ \partial \phi_j^-} |_{\substack{\Phi_1 = \langle \Phi_1 \rangle \\ \Phi_2 = \langle \Phi_2 \rangle \\ S = \langle S \rangle}} \quad i, i = 1, 2$$
$$[M_{\text{charged}}^2] = [\frac{m_{12}^2}{v_1 v_2} - \frac{1}{2}(\lambda_4 + \lambda_5)] \begin{pmatrix} v_2^2 & -v_1 v_2 \\ -v_1 v_2 & v_1^2 \end{pmatrix}$$

Mass eigenvalues after diagonalisation:

$$m_{H^{\pm}}^{2} = \left[\frac{m_{12}^{2}}{v_{1}v_{2}} - \frac{1}{2}(\lambda_{4} + \lambda_{5})\right](v_{1}^{2} + v_{2}^{2})$$
$$m_{G^{\pm}}^{2} = 0$$

Pseudo-Scalar Block:

$$[M_{\text{pseudo}}^2]_{ij} = \frac{\partial^2 V}{\partial \eta_i^{\dagger} \partial \eta_j} \Big|_{\substack{\Phi_1 = \langle \Phi_1 \rangle, \\ \Phi_2 = \langle \Phi_2 \rangle \\ S = \langle S \rangle}} i, j = 1, 2$$
$$[M_{\text{pseudo}}^2] = [\frac{m_{12}^2}{v_1 v_2} - \lambda_5] \left(\begin{array}{c} v_2^2 & -v_1 v_2 \\ -v_1 v_2 & v_1^2 \end{array} \right)$$

Mass eigenvalues after diagonalisation:

$$m_A^2 = \left[\frac{m_{12}^2}{v_1 v_2} - \lambda_5\right] (v_1^2 + v_2^2)$$
$$m_{G^0}^2 = 0$$

Backup, Mass Eigenvalues

Scalar Block:

$$\begin{split} [M_{\text{scalar}}^2]_{ij} &= \frac{\partial^2 V}{\partial \rho_i^{\dagger} \partial \rho_j} |_{\substack{\Phi_1 = \langle \Phi_1 \rangle, \\ \Phi_2 = \langle \Phi_2 \rangle \\ S = \langle S \rangle}} i, j = 1, 2, S \\ [M_{\text{scalar}}^2] &= \begin{pmatrix} m_{12}^2 \frac{v_2}{v_1} + \lambda_1 v_1^2 & -m_{12}^2 + \lambda_{345} v_1 v_2 & (\lambda_1' + 2\lambda_4') v_1 v_S \\ -m_{12}^2 + \lambda_{345} v_1 v_2 & m_{12}^2 \frac{v_1}{v_2} + \lambda_2 v_2^2 & (\lambda_2' + 2\lambda_5') v_2 v_S \\ (\lambda_1' + 2\lambda_4') v_1 v_S & (\lambda_2' + 2\lambda_5') v_2 v_S & (\frac{\lambda_1''}{6} + \frac{2\lambda_1''}{3} + \frac{\lambda_3''}{2}) v_S^2 \end{pmatrix}$$

Where $\lambda_{345} = \lambda_3 + \lambda_4 + \lambda_5$.

Mass eigenvalues after diagonalisation:

$$m_{h_1}^2 = \dots$$

 $m_{h_2}^2 = \dots$
 $m_{h_3}^2 = \dots$

Dark Matter Block:

$$[M_{\rm DM}^2] = \frac{\partial^2 V}{\partial A_5^{\dagger} \partial A_5} |_{\substack{\Phi_1 = \langle \Phi_1 \rangle \\ \Phi_2 = \langle \Phi_2 \rangle \\ S = \langle S \rangle}}$$

= $-(2m_5'^2 + v_5^2(\frac{\lambda_1''}{3} + \frac{\lambda_1''}{3}) + 2(\lambda_4'v_1^2 + \lambda_5'v_2^2))$

Mass eigenvalue:

$$m_{A_{S}}^{2} = -(2m_{S}^{\prime 2} + v_{S}^{2}(\frac{\lambda_{1}^{\prime \prime}}{3} + \frac{\lambda_{1}^{\prime \prime}}{3}) + 2(\lambda_{4}^{\prime}v_{1}^{2} + \lambda_{5}^{\prime}v_{2}^{2})$$

Backup, Bounded from Below

$$V_{4} = \frac{\lambda_{1}}{2} (|\Phi_{1}|^{2})^{2} + \frac{\lambda_{2}}{2} (|\Phi_{2}|^{2})^{2} + \lambda_{3} (|\Phi_{1}|^{2}) (|\Phi_{2}|^{2}) + \lambda_{4} \rho^{2} (|\Phi_{1}|^{2}) (|\Phi_{2}|^{2}) \qquad (A_{1} + \frac{|\lambda_{5}|}{2} \rho^{2} (|\Phi_{1}|^{2}) (|\Phi_{2}|^{2}) \underbrace{[e^{i\varphi_{\lambda_{5}}} e^{2i\varphi} + e^{-i\varphi_{\lambda_{5}}} e^{-2i\varphi}]}_{2\cos(\varphi_{\lambda_{5}} + 2\varphi)} \\ + \frac{|\lambda_{1}''|}{24} (|S|^{2})^{2} (\underbrace{[e^{i\varphi_{\lambda_{1}''}} e^{4i\varphi_{5}} + e^{-i\varphi_{\lambda_{1}''}} e^{-4i\varphi_{5}}]}_{2\cos(\varphi_{\lambda_{1}''} + 4\varphi_{5})} + 4 \underbrace{[e^{i\varphi_{\lambda_{1}''}} e^{2i\varphi_{5}} + e^{-i\varphi_{\lambda_{1}''}} e^{-2i\varphi_{5}}]}_{2\cos(\varphi_{\lambda_{1}''} + 2\varphi_{5})} \\ + \frac{\lambda_{3}''}{4} (|S|^{2})^{2} + [\lambda_{1}' (|\Phi_{1}|^{2}) + \lambda_{2}' (|\Phi_{2}|^{2})] (|S|^{2}) \\ + |\lambda_{4}'| (|S|^{2}) (|\Phi_{1}|^{2}) \underbrace{[e^{i\varphi_{\lambda_{4}'}} e^{2i\varphi_{5}} + e^{-i\varphi_{\lambda_{4}'}} e^{-2i\varphi_{5}}]}_{2\cos(\varphi_{\lambda_{4}'} + 2\varphi_{5})} \\ + |\lambda_{5}'| (|S|^{2}) (|\Phi_{2}|^{2}) \underbrace{[e^{i\varphi_{\lambda_{5}'}} e^{2i\varphi_{5}} + e^{-i\varphi_{\lambda_{5}'}} e^{-2i\varphi_{5}}]}_{2\cos(\varphi_{\lambda_{5}'} + 2\varphi_{5})} \\ \cdot$$

Using that min $[\cos(\alpha)] = -1^{21}$, we can find the minimum of the potential and write it in the basis $B = (|\Phi_1|^2 |\Phi_2|^2 |S|^2)^T$:

$$\min[V_4] = B^T \frac{1}{2} \cdot \begin{pmatrix} \lambda_1 & \lambda_3 + \rho^2 (\lambda_4 - |\lambda_5|) & \lambda_1' - 2|\lambda_4'| \\ \lambda_3 + \rho^2 (\lambda_4 - |\lambda_5|) & \lambda_2 & \lambda_2' - 2|\lambda_5'| \\ \lambda_1' - 2|\lambda_4'| & \lambda_2' - 2|\lambda_5'| & \frac{\lambda_3''}{2} - \frac{5|\lambda_1''|}{6} \end{pmatrix} B. \quad (A.29)$$

The potential V (Equation 2.13) is bounded from below, if the matrix in Equation A.29 is copositive: A matrix M is strictly copositive, if the form $x^T M x > 0 \quad \forall x > 0$. In our case x = B > 0, which is positive since it contains only squares of absolute values of fields.

Backup, Bounded from Below

$$\begin{split} \lambda_1 &> 0, \quad \lambda_2 > 0, \quad \frac{\lambda_3''}{2} - \frac{5|\lambda_1''|}{6} > 0 \\ \bar{\lambda}_{12} &= \lambda_3 + \rho^2 (\lambda_4 - |\lambda_5|) + \sqrt{\lambda_1 \cdot \lambda_2} > 0 \\ \bar{\lambda}_{13} &= \lambda_1' - 2|\lambda_4'| + \sqrt{\lambda_1 \cdot (\frac{\lambda_3''}{2} - \frac{5|\lambda_1''|}{6})} > 0 \\ \bar{\lambda}_{23} &= \lambda_2' - 2|\lambda_5'| + \sqrt{\lambda_2 \cdot (\frac{\lambda_3''}{2} - \frac{5|\lambda_1''|}{6})} > 0 \\ \sqrt{\lambda_1 \cdot \lambda_2 \cdot (\frac{\lambda_3''}{2} - \frac{5|\lambda_1''|}{6})} + [\lambda_3 + \rho^2 (\lambda_4 - |\lambda_5|)] \cdot \sqrt{\frac{\lambda_3''}{2} - \frac{5|\lambda_1''|}{6}} \\ &+ [\lambda_1' - 2|\lambda_4'|] \cdot \sqrt{\lambda_2} + [\lambda_2' - 2|\lambda_5'|] \sqrt{\lambda_1} + \sqrt{2\bar{\lambda}_{12}\bar{\lambda}_{13}\bar{\lambda}_{23}} > 0. \end{split}$$

Where we distinguish two cases:

Case 1:
$$(\lambda_4 - |\lambda_5|) \ge 0 \implies \min[V_4] = V_4|_{\rho=0}$$

Case 2: $(\lambda_4 - |\lambda_5|) < 0 \implies \min[V_4] = V_4|_{\rho=1}$

arxiv: 2112.11958 by S. Heinemeyer, C. Li et al

 $m_{h_{1}} \in \{95, 98\} \text{ GeV}, \qquad m_{h_{2}} = 125.09 \text{ GeV}, \qquad m_{a_{1}} \in \{200, 500\} \text{ GeV}, \\ |\sin(\beta - (\alpha_{1} + \operatorname{sgn}(\alpha_{2})\alpha_{3}))| \in \{0.98, 1\} \qquad \alpha_{4} \in \{\frac{\pi}{4}, \frac{\pi}{2}\}, \qquad v_{S} \in \{100, 2000\} \text{ GeV}, \\ \frac{\tan \beta}{\tan \alpha_{1}} \in \{0, 1\}, \qquad \alpha_{2} \in \pm\{0.95, 1.3\}.$ (49)

Alignment limit

Make signal at CMS and LEP not too suppressed

What is a 2HDMS? - Symmetries

- 2HDM potential symmetric under U(1)
- All parameters real

$$egin{aligned} \Phi_i \stackrel{U(1)}{
ightarrow} e^{i heta} \Phi_i \ \Phi_i^\dagger \stackrel{U(1)}{
ightarrow} e^{-i heta} \Phi_i^\dagger \end{aligned}$$

Potential symmetric under CP

$$\begin{split} \Phi_i(t,x) &\xrightarrow{P} \eta_P \Phi_i(t,-x) \\ \Phi_i(t,x) &\xrightarrow{C} \eta_C \Phi_i^{\dagger}(t,x) \\ \Phi_i(t,x) &\xrightarrow{CP} \eta_C \eta_P \Phi_i^{\dagger}(t,-x) \end{split}$$

What is a 2HDMS? - Symmetries

- **Potential symmetric under Z**₂ \bullet
- Spontaneously broken by \bullet doublet vevs
- (softly broken by m_{12} -term \rightarrow to \bullet avoid domain walls)

$$\Phi_{1} \xrightarrow{Z_{2}} -\Phi_{1}$$

$$\Phi_{2} \xrightarrow{Z_{2}} \Phi_{2}$$

$$S \xrightarrow{Z_{2}} S$$

$$e_{jR} \xrightarrow{Z_{2}} -e_{jR}$$

$$u_{jR} \xrightarrow{Z_{2}} u_{jR}$$

(

- Each doublet couples only to \bullet one type of fermions \rightarrow FCNC are avoided
- In Type II:
- Φ_1 couples to down-type, leptons
- Φ_2 couples to up-type

$$V_{\text{Yukawa}} = -(y_{ij}^1 \bar{Q}_{iL} \Phi_1 d_{jR} + y_{ij}^2 \bar{Q}_{iL} \bar{\Phi}_2 u_{jR} + y_{ij}^5 \bar{L}_{iL} \Phi_1 e_{jR})$$

What is a 2HDMS? - Symmetries

- Potential symmetric under Z'₂
- Spontaneously broken by singlet vev

$$\Phi_1 \xrightarrow{Z'_2} \Phi_1$$
$$\Phi_2 \xrightarrow{Z'_2} \Phi_2$$
$$S \xrightarrow{Z'_2} -S$$

 S only appears in even powers in the potential → no decaying of DM → DM is stable

Mass squared matrix:

$$[M^{2}]_{ij} = \frac{\partial^{2} V}{\partial \varphi_{i}^{\dagger} \partial \varphi_{j}} \underset{\substack{\Phi_{1} = \langle \Phi_{1} \rangle \\ S = \langle \Phi_{2} \rangle \\ S = \langle S \rangle}}{ \varphi_{i} = \varphi_{i}^{+}, \rho_{i}, \eta_{i}, \rho_{S}, A_{S} \\ \Phi_{i} = \begin{pmatrix} \varphi_{i}^{+} \\ \frac{1}{\sqrt{2}}(v_{i} + \rho_{i} + i\eta_{i}) \end{pmatrix} \\ S = \frac{1}{\sqrt{2}}(v_{S} + \rho_{S} + iA_{S}) \\ S = \frac{1}{\sqrt{2}}(v_{S} + \rho_{S} + iA_{S}) \\ 0 & [M^{2}_{\text{scalar}}] & 0 & 0 \\ 0 & [M^{2}_{\text{scalar}}] & 0 & 0 \\ 0 & [M^{2}_{\text{scalar}}] & 0 & 0 \\ 0 & 0 & [M^{2}_{\text{pseudo}}] & 0 \\ 0 & 0 & 0 & [M^{2}_{\text{pseudo}}] & 0 \\ 0 & 0 & 0 & [M^{2}_{\text{A}_{S}}] \end{pmatrix}$$

What is a 2HDMS? - Particle Content

Minimisation conditions:

$$0 = \frac{\partial V}{\partial \Phi_1} |_{\Phi_i = \langle \Phi_i \rangle, S = \langle S \rangle}$$
$$0 = \frac{\partial V}{\partial \Phi_2} |_{\Phi_i = \langle \Phi_i \rangle, S = \langle S \rangle}$$
$$0 = \frac{\partial V}{\partial S} |_{\Phi_i = \langle \Phi_i \rangle, S = \langle S \rangle}$$

diag
$$(m_{H^{\pm}}^2,m_{G^{\pm}}^2)$$
 > $R^{\pm}M_{charged}^2R^{\pm T}$

diag
$$(m_{h_1}^2, m_{h_2}^2, m_{h_3}^2) = RM_{\text{scalar}}^2 R^T$$

diag
$$(m_A^2, m_{G^0}^2) \ge R^A M_{\text{pseudo}}^2 R^{AT}$$
,

$$\operatorname{diag}(m_{A_S}^2) = M_{A_S}^2,$$

$$\begin{pmatrix} H^{\pm} \\ G^{\pm} \end{pmatrix} = R^{\pm} \begin{pmatrix} \phi_1^+ \\ \phi_2^+ \end{pmatrix}$$
$$\begin{pmatrix} h_1 \\ h_2 \\ h_3 \end{pmatrix} = R \begin{pmatrix} \rho_1 \\ \rho_2 \\ \rho_S \end{pmatrix}$$
$$\begin{pmatrix} A \\ G^0 \end{pmatrix} = R^A \begin{pmatrix} \eta_1 \\ \eta_2 \end{pmatrix}$$
$$\begin{pmatrix} A_S \end{pmatrix} = \begin{pmatrix} A_S \end{pmatrix}$$