Updates in the Two higgs doublet model with complex scalar singlet

Juhi Dutta, Gudrid Moortgat-Pick and Merle Schreiber

Working Group THDM

October 7, 2021

- Standard Model (SM) gauge singlet scalars provide a natural candidate for dark matter in extended Higgs sectors such as the Two Higgs doublet model.
- Also addresses explain matter-antimatter asymmetry, potential source of CP-violation and gravitational waves.

Dorsch et.al JCAP05 (2017) 052, Drozd et.al JHEP11 (2014) 105, Dey et.al JHEP 09 (2019) 004

- Consider a softly broken Z₂ symmetric Two Higgs doublet model and conserved Z'₂ symmetric singlet scalar potential.
- The quantum numbers of the fields are

Particles	Z_2	Z'_2
Φ_1	+1	+1
Φ2	-1	+1
S	+1	-1

Table: The quantum numbers of the Higgs doublets Φ_1, Φ_2 and complex singlet *S* under $Z_2 \times Z'_2$.

The Scalar Potential

$$V_{THDMCS} = V_{THDM} + V_S + V_{HS}$$

$$\begin{split} \mathbf{V}_{\mathsf{THDM}} &= m_{11}^2 \Phi_1^{\dagger} \Phi_1 + m_{22}^2 \Phi_2^{\dagger} \Phi_2 - (m_{12}^2 \Phi_1^{\dagger} \Phi_2 + h.c) + \frac{\lambda_1}{2} (\Phi_1^{\dagger} \Phi_1)^2 \\ &+ \frac{\lambda_2}{2} (\Phi_2^{\dagger} \Phi_2)^2 + \lambda_3 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) + \lambda_4 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1) + (\frac{\lambda_5}{2} (\Phi_1^{\dagger} \Phi_2)^2 + h.c.) \end{split}$$

$$V_{S} = m_{S}^{2}S^{\dagger}S + (\frac{m_{S'}^{2}}{2}S^{2} + h.c) + (\frac{\lambda_{1}''}{24}S^{4} + h.c) + \frac{\lambda_{1}''}{6}(S^{2}(S^{\dagger}S) + h.c) + \frac{\lambda_{3}''}{4}(S^{\dagger}S)^{2}$$

$$\mathbf{V}_{HS} = [S^{\dagger}S(\lambda_1'\Phi_1^{\dagger}\Phi_1 + \lambda_2'\Phi_2^{\dagger}\Phi_2)] + [S^2(\lambda_4'\Phi_1^{\dagger}\Phi_1 + \lambda_5'\Phi_2^{\dagger}\Phi_2) + h.c]$$

Baum, Shah JHEP 12 (044) 2018

• Free parameters of the model are

 $\lambda_1, \lambda_2, \lambda_3, \lambda_4, \lambda_5, \textit{m}_{12}^2, \alpha, \tan\beta, \lambda_1', \lambda_2', \lambda_4', \lambda_5', \lambda_1'', \lambda_3'', \textit{m}_S^2, \textit{m}_{S'}^2$

- The Higgs sector, after electroweak symmetry breaking, consists of two scalars *h*, *H*, pseudoscalar *A*, and charged higgses *H*[±].
- Our focus on Type II THDM where the up-type quarks couple to Φ_2 and down-type quarks and leptons couple to Φ_1 .

Higgs(es) as portal to dark matter

- The CP-even higgses couple to the dark matter candidate at tree-level.
- Relevant couplings of the higgses to the DM,

$$\lambda_{hSS^*} \propto i \frac{1}{\sqrt{1 + \tan^2 \beta}} (\lambda'_1 \sin \alpha - \lambda'_2 \cos \alpha \tan \beta)$$

$$\lambda_{HSS^*} \propto -i \frac{1}{\sqrt{1 + \tan^2 \beta}} (\lambda_1' \cos \alpha + \lambda_2' \sin \alpha \tan \beta)$$

Here, v is the vacuum expectation value (vev) such that $v^2 = v_1^2 + v_2^2$ where v_i (i = 1, 2) refers to the vev's of the Higgs doublets Φ_i and tan $\beta = \frac{v_2}{v_1}$.

Real vs Complex DM

Figure: Relic density and direct detection cross-section for real and complex DM.

In the real singlet limit, $m_S^{2\prime}, \lambda_4^\prime, \lambda_5^\prime$ and $\lambda_1^{\prime\prime}=0.$

m_{χ} (GeV)	Ωh^2	σ_p^{SI} (in pb)	σ_n^{SI} (in pb)
338.9 (C)	0.0589	7.65e-11	7.88e-11
338.9 (R)	0.161	3.07e-10	3.16e-10

Table: Comparison of the DM observables for complex and real scalar DM.

Representative benchmarks

Parameters	BP1	BP2	BP3
λ_1	0.23	0.1	0.23
λ_2	0.25	0.26	0.26
λ_3	0.39	0.10	0.2
λ_4	-0.17	-0.10	-0.14
λ_5	0.001	0.10	0.10
m_{12}^2 (GeV ²)	-1.0×10^{5}	$-1.0 imes 10^{5}$	-1.0×10^{5}
λ_1''	0.1	0.1	0.1
$\lambda_3^{\dagger\prime}$	0.1	0.1	0.1
λ_1^{\vee}	0.042	0.04	2.0
$\lambda_2^{\tilde{l}}$	0.042	0.001	0.01
$\lambda_{A}^{\overline{\prime}}$	0.1	0.1	0.1
λ'_5	0.1	0.1	0.1
m_h (GeV)	125.09	125.09	125.09
m_H (GeV)	724.4	816.4	821.7
m_A (GeV)	724.4	812.6	817.9
$m_{H^{\pm}}$ (GeV)	728.3	816.3	822.2
aneta	4.9	6.5	6.5
m_{DM} (GeV)	338.0	76.7	357.1
Ωh^2	0.058	0.119	0.05
$\sigma^p_{SI} imes 10^{10} \text{ (pb)}$	0.76	0.052	2.9
$\sigma_{SI}^n \times 10^{10} \text{ (pb)}$	0.78	0.054	3.1

Table: Relevant parameters of the benchmark used for the study.

Decay Channels	Branching ratios for		
	BP1	BP2	BP3
$H ightarrow bar{b}$	0.14	0.29	0.24
$H ightarrow t ar{t}$	0.83	0.66	0.68
$H \to \tau \bar{\tau}$	0.02	0.45	0.04
$H o \chi ar\chi$	0.0	0.0	0.05
$A ightarrow bar{b}$	0.12	0.27	0.27
$A ightarrow t ar{t}$	0.86	0.69	0.69
$A ightarrow au ar{ au}$	0.02	0.04	0.04
$H^{\pm} ightarrow tar{b}$	0.97	0.96	0.96
$H^{\pm} ightarrow au ar{ u_{ au}}$	0.022	0.03	0.03

Table: Dominant decay modes of the heavy higgses for the benchmarks **BP1**, **BP2** and **BP3**.

- Important production modes: gluon fusion, $b\bar{b}H$, VBF, ZH, $t\bar{t}H$.
- Possible collider channels: Mono-j + ∉_T, jj + ∉_T, bb̄ + ∉_T, bb̄ℓ⁺ℓ⁻ + ∉_T
- Dominant SM backgrounds: $V + j, t\bar{t} + j$, QCD.

Processes	Cross section (in fb) at
	$\sqrt{s}=$ 14 TeV
Н	22.0
Hjj	1.843
WH	1.195×10^{-3}
ZH	0.93
ZA	3.999
bbH	21.52
tŦH	0.1988

Table: The leading order (LO) cross-section (in fb) for dominant processes for **BP1** before analysis for $\sqrt{s} = 14$ TeV LHC.

Processes	Cross section (in fb) at	
	$\sqrt{s} = 1.5$ TeV	$\sqrt{s} = 3 \text{ TeV}$
HA	0.1	0.8

Table: The important leading order (LO) cross-sections (in fb) for **BP1** before analysis for an e^+e^- collider. The initial state polarisation of the incoming (e^+ , e^-) beams are (0.3,-0.8) as chosen for ILC.

- Extensions of THDM with complex scalar singlet provides a potential dark matter candidate.
- The DM candidate interacts with the SM via the CP-even scalar higgses at tree-level.
- Possible to obtain suitable parameter points allowed by DM and higgs constraints, with representative benchmark points in light and heavy mass regions.
- Collider study for the potential channels at LHC and ILC underway.

Thank you!

Backup

Direct detection

Figure: Processes for spin-independent direct detection cross-section.

- Relic density constraint from Planck.
- Spin independent (SI) DM-nucleon direct detection cross section from XENON-1T.
- The lightest CP-even Higgs mass constraints from LHC.
- Collider limits on heavy higgses from LHC and LEP.
- Flavour physics constraints: BR(B $\rightarrow s\gamma$), BR(B $\rightarrow \mu^+\mu^-$).

Model implementation/adoption in the following codes:

- Model building: SARAH
- Spectrum Generator: SARAH-SPheno
- DM constraints: micrOMEGAs
- Higgs constraints: HiggsBounds and HiggsSignals
- Flavour constraints and tree-level unitarity constraints: SPheno

Relic Density

Constraints from relic density

Figure: Variation of the relic density with the mass of the DM candidate, m_{χ} .

- Recall, the higgs couples to the DM via the portal couplings $\lambda_1', \lambda_2', \lambda_4', \lambda_5'$ and tan β .
- We vary each of these parameters to determine the allowed region of parameter space.

Strongest effect on the direct-detection cross section of λ_2' and $\tan\beta.$

Direct detection cross-section

Figure: Direct detection constraints on the mass of the DM.