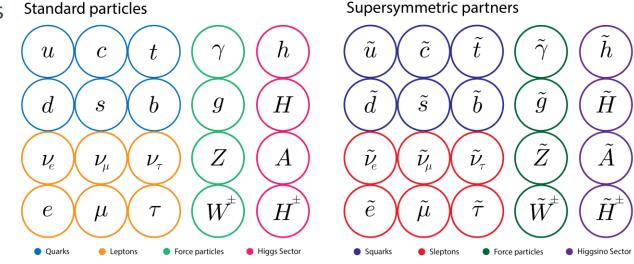


Florian Lika Gudrid Moortgat-Pick, Sven Heinemeyer

Direct and indirect searches in the MSSM

Minimal Supersymmetric Standard Model


Gaugino and higgsino fields mix into mass eigenstates

1. Neutralinos

$$\tilde{\chi}_1^0, \tilde{\chi}_2^0, \tilde{\chi}_3^0, \tilde{\chi}_4^0$$

2. Charginos

$$\widetilde{\chi}_1^{\pm}$$
, $\widetilde{\chi}_2^{\pm}$

Neutralino Sector

- SUSY-Parameters M_1 , M_2 , μ , tan β
- M₁ can only be determined with Neutralinos
- M_2 , μ , tan β are determined using chargino data

$$\mathcal{M}_{N} = \begin{pmatrix} M_{1}\cos^{2}\theta_{W} + M_{2}\sin^{2}\theta_{W} & (M_{2} - M_{1})\sin\theta_{W}\cos\theta_{W} & 0 & 0\\ (M_{2} - M_{1})\sin\theta_{W}\cos\theta_{W} & M_{1}\cos^{2}\theta_{W} + M_{2}\sin^{2}\theta_{W} & m_{Z} & 0\\ 0 & m_{Z} & \mu\sin2\beta & -\mu\cos2\beta\\ 0 & 0 & -\mu\cos2\beta & -\mu\sin2\beta \end{pmatrix}$$

$$x_{i}M_{1}^{2} + y_{i}M_{1} - z_{i} = 0, \quad \text{for} \quad i = 1, 2, 3, 4$$

$$x_{i} = -m_{\tilde{\chi}_{i}^{0}}^{6} + a_{41}m_{\tilde{\chi}_{i}^{0}}^{4} - a_{21}m_{\tilde{\chi}_{i}^{0}}^{2} + a_{01},$$

$$y_{i} = a_{42}m_{\tilde{\chi}_{i}^{0}}^{4} - a_{22}m_{\tilde{\chi}_{i}^{0}}^{2} + a_{02},$$

$$z_{i} = m_{\tilde{\chi}_{i}^{0}}^{8} - a_{63}m_{\tilde{\chi}_{i}^{0}}^{6} + a_{43}m_{\tilde{\chi}_{i}^{0}}^{4} - a_{23}m_{\tilde{\chi}_{i}^{0}}^{2} + a_{03},$$

 a_{kl} with k=0,2,4,6; l=1,2,3 coefficients depending on M_2 , μ , $\tan\beta$

Chargino Sector

- Two unitary transformations for chargino mixing $U_{L,R}$
- Two mixing angles $\Phi_{L,R}$

Goal:

• Use $\Phi_{L,R}$, $m_{\widetilde{\chi}_1^\pm}$, $m_{\widetilde{\chi}_2^\pm}$ to recalculate SUSY-parameters

$$\mathcal{M}_C = \begin{pmatrix} M_2 & \sqrt{2}m_W \cos \beta \\ \sqrt{2}m_W \sin \beta & \mu \end{pmatrix}$$

$$\begin{pmatrix} \tilde{\chi}_1^- \\ \tilde{\chi}_2^- \end{pmatrix}_{L,R} = U_{L,R} \begin{pmatrix} \tilde{W}^- \\ \tilde{H}^- \end{pmatrix}_{L,R}$$

$$U_{L,R} = \begin{pmatrix} \cos \Phi_{L,R} & \sin \Phi_{L,R} \\ -\sin \Phi_{L,R} & \cos \Phi_{L,R} \end{pmatrix}$$

$$m_{\tilde{\chi}_{1,2}^{\pm}}^2 = \frac{1}{2} (M_2^2 + \mu^2 + 2m_W^2 \mp \Delta_C)$$

$$\cos 2\phi_{L,R} = -(M_2^2 - \mu^2 \mp 2m_W^2 \cos 2\beta)/\Delta_C$$

$$\Delta_C = [(M_2^2 - \mu^2)^2 + 4m_W^4 \cos^2 2\beta + 4m_W^2 (M_2^2 + \mu^2) + 8m_W^2 M_2 \mu \sin 2\beta]^{1/2}$$

Chargino Sector

- M_2 , μ , aneta can be calculated using p, q, r with $r^2 = rac{m_{\widetilde{\chi}_1^\pm}^2}{m_{\widetilde{\chi}_1^\pm}^2}$
- Sign of p is ambiguous since $\sigma^{\pm}\{ij\}$ is calculated using $\cos(2\Phi_{L,R})$

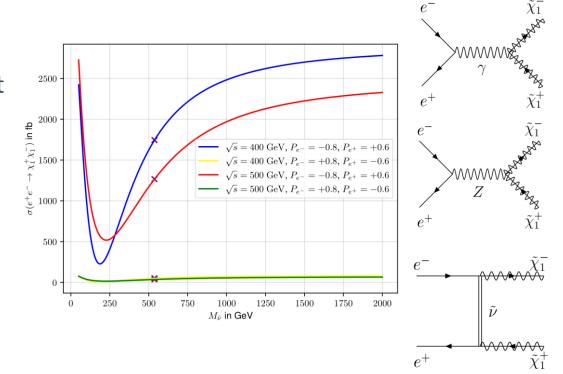
$$p = \pm \left| \frac{\sin 2\Phi_L + \sin 2\Phi_R}{\cos 2\Phi_L - \cos 2\Phi_R} \right|$$

$$q = \frac{1}{p} \frac{\cos 2\Phi_L + \cos 2\Phi_R}{\cos 2\Phi_L - \cos 2\Phi_R}$$

$$M_2 = \frac{m_W}{\sqrt{2}} \left[(p+q)\sin\beta - (p-q)\cos\beta \right]$$

$$\mu = \frac{m_W}{\sqrt{2}} \left[(p-q)\sin\beta - (p+q)\cos\beta \right]$$

$$\tan\beta = \left[\frac{p^2 - q^2 \pm \sqrt{r^2(p^2 + q^2 + 2 - r^2)}}{(\sqrt{1 + p^2} - \sqrt{1 + q^2})^2 - 2r^2} \right]^{\eta}$$


$$\sigma^{\pm}\{ij\} = c_1 \cos^2 2\Phi_L + c_2 \cos 2\Phi_L + c_3 \cos^2 2\Phi_R + c_4 \cos 2\Phi_R + c_5 \cos 2\Phi_L \cos 2\Phi_R + c_6$$
$$\sigma^{\pm}\{ij\} = \sigma(e^+e^- \to \tilde{\chi}_i^{\pm} \tilde{\chi}_j^{\mp})$$

M_1	175.09 GeV	σ^{400}	1744.2519 fb
-		$\sigma_{-0.8,+0.6}^{100}$	
M_2	178.25 GeV	$\sigma_{+0.8,-0.6}^{400}$	49.8956 fb
μ	1215.85 GeV	$\sigma_{-0.8,+0.6}^{500}$	1265.4737 fb
$\tan \beta$	34.81	$\sigma_{+0.8,-0.6}^{500}$	35.6168 fb
$M_{ ilde{ u}}$	536.9 GeV	$m_{\chi_1^{\pm}}$	177.1484 GeV

Cross sections

- Sneutrino mass $M_{\widetilde{\nu}}$ relevant in t-channel propagator
- → Finding sensible limit becomes important objective

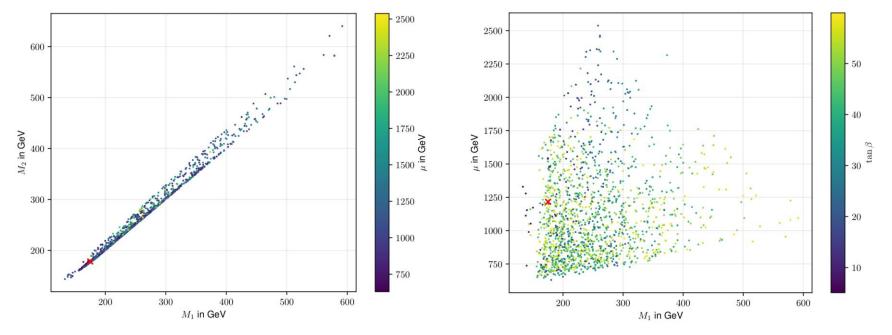
Strategy

- Take a parameter point with correct dark matter relic density
- Determine $\sigma(e^+e^- \to \tilde{\chi}_1^+ \tilde{\chi}_1^-)$ and chargino masses
 - at $\sqrt{s} = 400 \text{ GeV}$, 500 GeV
 - With $P_{e^-} = \pm 0.8$ and $P_{e^+} = \pm 0.6$
 - Considering necessary uncertainties especially from $M_{\widetilde{\nu}}$
- Calculate chargino mixing angles
- Redetermine chargino SUSY parameters $-M_2$, μ , $\tan \beta$,
- Calculate neutralino masses
- Redetermine neutralino SUSY parameters M₁
- Recalculate DM relic density including all uncertainties

Dataset

- Bino/Wino dark matter with $\tilde{\chi}_1^{\pm}$ -coannihilation Constraints:
- Muon (g-2) BNL and Fermilab
- Vacuum stability stable and correct EW vacuum
- LHC constraints all relevant SUSY searches
- Dark matter relic density constraints Planck 2018
- Direct dark matter detection XENON1T

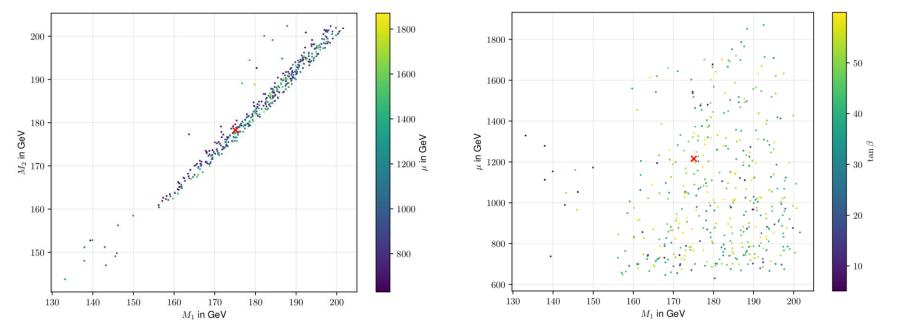
Manimala Chakraborti, Sven Heinemeyer, Ipsita Saha arXiv:2104.03287v1


$$100 \, \mathrm{GeV} \le M_1 \le 1 \, \mathrm{TeV}$$
 $M_1 \le M_2 \le 1.1 M_1$
 $1.1 M_1 \le \mu \le 10 M_1$
 $5 \le \tan\beta \le 60$

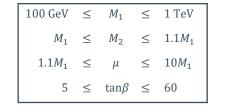
$\overline{M_1}$	$175.09 \; \mathrm{GeV}$	$\sigma^{400}_{-0.8,+0.6}$	1744.2519 fb
M_2	$178.25~\mathrm{GeV}$	$\sigma^{400}_{+0.8,-0.6}$	49.8956 fb
μ	\mid 1215.85 GeV \mid	$\sigma_{-0.8,+0.6}^{500}$	1265.4737 fb
$\tan \beta$	34.81	$\sigma_{+0.8,-0.6}^{500}$	35.6168 fb
$M_{\tilde{ u}}$	$536.9~\mathrm{GeV}$	$m_{\chi_1^{\pm}}$	177.1484 GeV

100 GeV	<u>≤</u>	M_1	<u>≤</u>	1 TeV
M_1	\leq	M_2	\leq	$1.1M_{1}$
$1.1M_{1}$	\leq	μ	\leq	$10M_1$
5	\leq	$tan \beta$	\leq	60

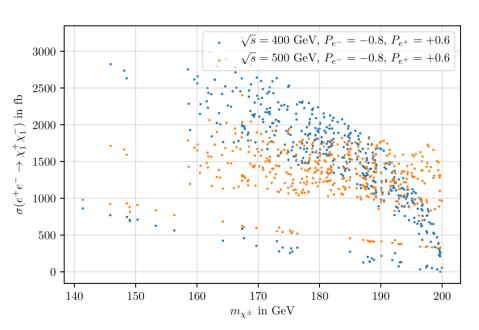
Dataset

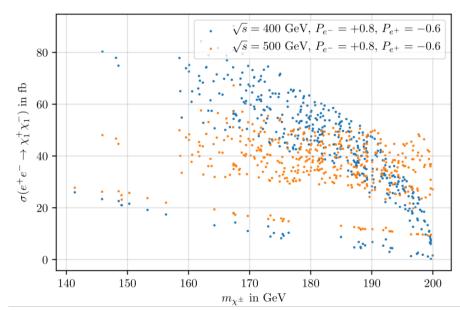


$\overline{M_1}$	$175.09 \; \mathrm{GeV}$	$\sigma^{400}_{-0.8,+0.6}$	1744.2519 fb
M_2	$178.25~\mathrm{GeV}$	$\sigma^{400}_{+0.8,-0.6}$	49.8956 fb
μ	$1215.85~\mathrm{GeV}$	$\sigma_{-0.8,+0.6}^{500}$	1265.4737 fb
$\tan \beta$	34.81	$\sigma^{500}_{+0.8,-0.6}$	35.6168 fb
$M_{ ilde{ u}}$	$536.9~\mathrm{GeV}$	$m_{\chi_1^{\pm}}$	177.1484 GeV


100 GeV	<u>≤</u>	M_1	<u>≤</u>	1 TeV
M_1	\leq	M_2	\leq	$1.1M_{1}$
$1.1M_{1}$	\leq	μ	\leq	$10M_1$
5	\leq	$tan \beta$	\leq	60

Dataset – kinematically allowed

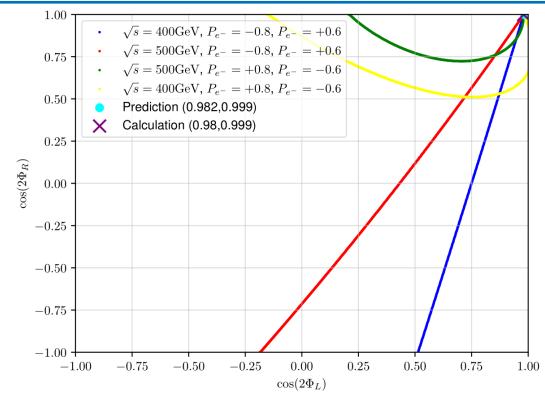




$\overline{M_1}$	$175.09 \; \mathrm{GeV}$	$\sigma^{400}_{-0.8,+0.6}$	1744.2519 fb
M_2	$178.25 \; \mathrm{GeV}$	$\sigma_{+0.8,-0.6}^{400}$	49.8956 fb
μ	$\mid 1215.85 \; \mathrm{GeV} \mid$	$\sigma_{-0.8.\pm0.6}^{500}$	1265.4737 fb
$\tan \beta$	34.81	$\sigma_{+0.8,-0.6}^{500}$	35.6168 fb
$M_{\tilde{ u}}$	$536.9~\mathrm{GeV}$	$m_{\chi_1^{\pm}}$	177.1484 GeV

Dataset – Cross sections

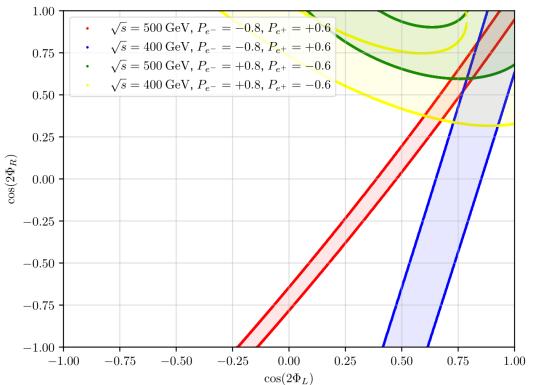
$175.09 \; \mathrm{GeV}$	σ_{-}^{4}
$178.25~\mathrm{GeV}$	σ_+^4
1215.85 GeV	σ_{-}^{5}
34.81	σ_{+}^{5}
536.9 GeV	
	178.25 GeV 1215.85 GeV 34.81


$$\begin{array}{c|c} V & \sigma^{400}_{-0.8,+0.6} \\ V & \sigma^{400}_{+0.8,-0.6} \\ V & \sigma^{500}_{-0.8,+0.6} \\ \sigma^{500}_{+0.8,-0.6} \\ \sigma^{500}_{+0.8,-0.6} \end{array}$$

1744.2519 fb
49.8956 fb
1265.4737 fb
35.6168 fb
$177.1484~\mathrm{GeV}$

Mixing angles

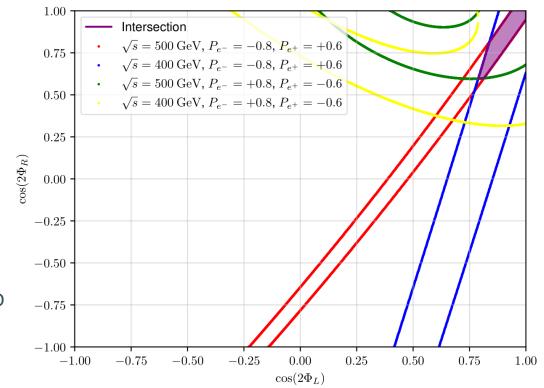
- Single beam energy causes ambiguities
- → two energies remove ambiguity
- Direct vs. Indirect approach
- Indirect approach has slight ambiguities in intersection coordinates



M_1	$175.09~\mathrm{GeV}$	$\sigma^{400}_{-0.8,+0.6}$	1744.2519 fb
M_2	$178.25 \mathrm{GeV}$	$\sigma_{+0.8,-0.6}^{400}$	49.8956 fb
μ	$1215.85 \mathrm{GeV}$	$\sigma_{-0.8,+0.6}^{500}$	1265.4737 fb
$\tan \beta$	34.81	$\sigma^{500}_{+0.8,-0.6}$	35.6168 fb
$M_{\tilde{ u}}$	536.9 GeV	$m_{\chi_1^{\pm}}$	177.1484 GeV

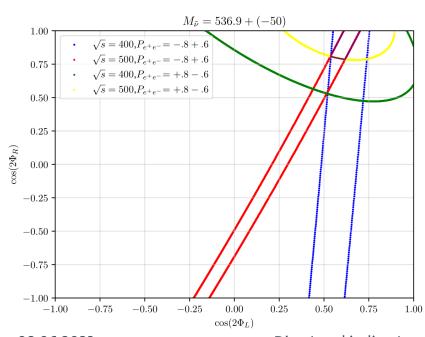
Mixing angles

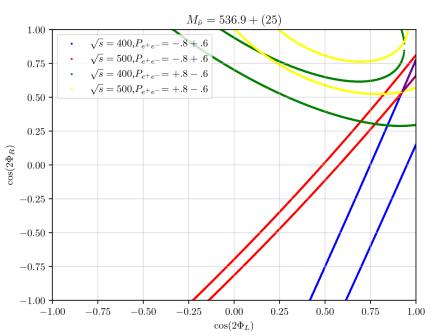
- Adding uncertainties
 - 0.5% on chargino mass
 - Gaussian error on cross section
 - 0.5% on polarisation
 - → Sneutrino mass error not included
- 1D Curves now become 2D bands
- Intersection becomes 2D area



GeV $\sigma_{-0.8}^{400}$	-0.6 1744.2519 fb
GeV $\sigma_{+0.8}^{400}$	-0.6 49.8956 fb
$\sigma_{-0.8}^{500}$	$\frac{0.6}{1265.4737}$ fb
$\sigma_{\pm 0.8}^{500}$	$\frac{0.6}{-0.6}$ 35.6168 fb
GeV $m_{\chi_1^{\pm}}^{\text{ro.s,}}$	
	$ \begin{array}{c c} GeV & \sigma^{400}_{+0.8,-} \\ GeV & \sigma^{500}_{-0.8,+} \\ G & \sigma^{500}_{+0.8,-} \end{array} $

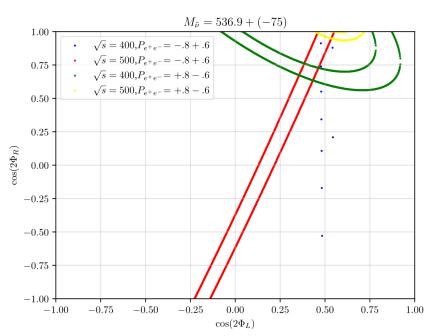
Mixing angles

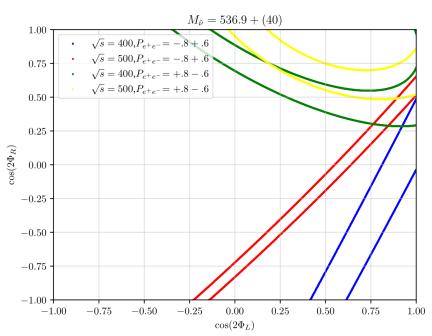

- Set theory approach
 - Mixing angle bands are defined as polygons using the shapely Python libary
 - Intersection of polygons is calculated
- Accurately describes all the points within and on the boundary
- Calculation is easier, more efficient and less ambiguous compared to 1D case



$\overline{M_1}$	175.09 GeV	$\sigma^{400}_{-0.8,+0.6}$	1744.2519 fb
M_2	$178.25 \; \mathrm{GeV}$	$\sigma_{+0.8,-0.6}^{400}$	49.8956 fb
μ	1215.85 GeV	$\sigma_{-0.8,+0.6}^{500}$	1265.4737 fb
$\tan \beta$	34.81	$\sigma_{+0.8,-0.6}^{500}$	35.6168 fb
$M_{\tilde{\nu}}$	$536.9 \; \mathrm{GeV}$	$m_{\chi_1^{\pm}}$	177.1484 GeV

Mixing angles - $M_{\widetilde{\nu}}$

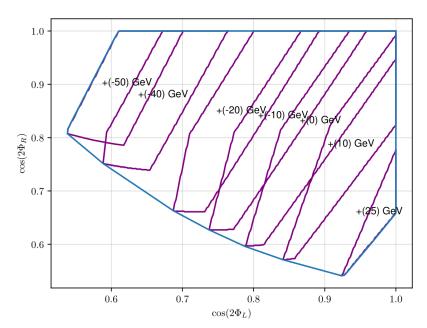




$\overline{M_1}$	$175.09 \; \mathrm{GeV}$	$\sigma^{400}_{-0.8,+0.6}$	1744.2519 fb
M_2	$178.25~\mathrm{GeV}$	$\sigma_{+0.8,-0.6}^{400}$	49.8956 fb
μ	$1215.85~\mathrm{GeV}$	$\sigma_{-0.8,+0.6}^{500}$	1265.4737 fb
$\tan \beta$	34.81	$\sigma_{+0.8,-0.6}^{500}$	35.6168 fb
$M_{\tilde{ u}}$	$536.9~\mathrm{GeV}$	$m_{\chi_1^{\pm}}$	177.1484 GeV

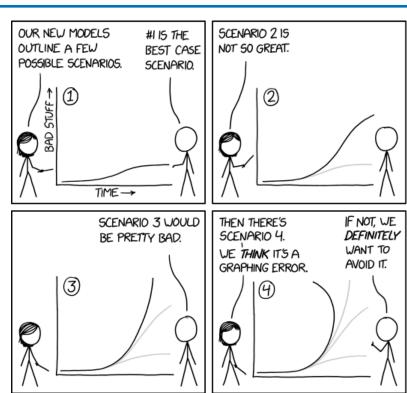
Mixing angles - $M_{\tilde{\nu}}$





M_1	$175.09 \; \mathrm{GeV}$	$\sigma^{400}_{-0.8,+0.6}$	1744.2519 fb
M_2	$178.25~\mathrm{GeV}$	$\sigma_{+0.8,-0.6}^{400}$	49.8956 fb
μ	1215.85 GeV	$\sigma_{-0.8,+0.6}^{500}$	1265.4737 fb
$\tan \beta$	34.81	$\sigma_{+0.8,-0.6}^{500}$	35.6168 fb
$M_{ ilde{ u}}$	$536.9~\mathrm{GeV}$	$m_{\chi_1^{\pm}}$	177.1484 GeV

Mixing angles - $M_{\tilde{\nu}}$



Next Steps

- Automate uncertainties resulting from Sneutrino mass
- Neutralino mass calculations
- Describe SUSY-parameters using chargino and neutralino calculations
- Relic Density

Thank you

https://xkcd.com/2289/